

FCC RF Test Report

APPLICANT	: Motorola Mobility LLC
EQUIPMENT	: Mobile Cellular Phone
BRAND NAME	: Motorola
MODEL NAME	: XT1955-5, XT1955DL, XT1955-6
FCC ID	: IHDT56XQ1
STANDARD	: FCC Part 15 Subpart C §15.247
CLASSIFICATION	: (DTS) Digital Transmission System

The product was received on Sep. 28, 2018 and testing was completed on Oct. 26, 2018. We, Sporton International (Kunshan) Inc., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International (Kunshan) Inc., the test report shall not be reproduced except in full.

Journes Huang

TESTING NVLAP LAB CODE 600155-0

Approved by: James Huang / Manager

Sporton International (Kunshan) Inc. No. 1098, Pengxi North Road, Kunshan Economic Development Zone, Jiangsu Province 215335, China

Sporton International (Kunshan) Inc. TEL : 86-512-57900158 FAX : 86-512-57900958 FCC ID: IHDT56XQ1

TABLE OF CONTENTS

RE	VISIO	N HISTORY	3
SUI	MMAR	Y OF TEST RESULT	4
1	GEN	ERAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Manufacturer	5
	1.3	Product Feature of Equipment Under Test	5
	1.4	Product Specification of Equipment Under Test	6
	1.5	Modification of EUT	6
	1.6	Specification of Accessory	6
	1.7	Testing Location	
	1.8	Applicable Standards	
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	8
	2.1	Carrier Frequency Channel	8
	2.2	Test Mode	9
	2.3	Connection Diagram of Test System	10
	2.4	Support Unit used in test configuration and system	10
	2.5	EUT Operation Test Setup	11
	2.6	Measurement Results Explanation Example	
3	TEST	RESULT	12
	3.1	6dB and 99% Bandwidth Measurement	12
	3.2	Output Power Measurement	17
	3.3	Power Spectral Density Measurement	18
	3.4	Conducted Band Edges and Spurious Emission Measurement	23
	3.5	Radiated Band Edges and Spurious Emission Measurement	28
	3.6	AC Conducted Emission Measurement	32
	3.7	Antenna Requirements	
4	LIST	OF MEASURING EQUIPMENT	35
5	UNC	ERTAINTY OF EVALUATION	36
API	PEND	IX A. CONDUCTED TEST RESULTS	
API	PEND	IX B. AC CONDUCTED EMISSION TEST RESULT	
API	PEND	IX C. RADIATED SPURIOUS EMISSION	
API	PEND	IX D. DUTY CYCLE PLOTS	

APPENDIX E. SETUP PHOTOGRAPHS

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR892801B	Rev. 01	Initial issue of report	Dec. 26, 2018

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(2)	6dB Bandwidth	≥ 0.5MHz	Pass	-
3.1	-	99% Bandwidth	-	Pass	-
3.2	15.247(b)(3)	Peak Output Power	≤ 30dBm	Pass	-
3.3	15.247(e)	Power Spectral Density	≤ 8dBm/3kHz	Pass	-
3.4	15.247(d)	Conducted Band Edges and Spurious Emission	≤ 20dBc	Pass	-
3.5	15.247(d)	Radiated Band Edges and Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 9.19 dB at 41.64 MHz
3.6	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 6.35 dB at 0.195 MHz
3.7	15.203 & 15.247(b)	Antenna Requirement	N/A	Pass	-

1 General Description

1.1 Applicant

Motorola Mobility LLC

222 W,Merchandise Mart Plaza, Chicago IL 60654 USA

1.2 Manufacturer

Motorola Mobility LLC

222 W,Merchandise Mart Plaza, Chicago IL 60654 USA

1.3 Product Feature of Equipment Under Test

	Product Feature	
Equipment	Mobile Cellular Phone	
Brand Name	Motorola	
Model Name	XT1955-5, XT1955DL, XT1955-6	
FCC ID	IHDT56XQ1	
	CDMA/EVDO/GSM/GPRS/EGPRS/WCDMA/HSPA/	
	DC-HSDPA/HSPA+(16QAM uplink is not supported)/LTE	
EUT supports Radios application	WLAN 2.4GHz 802.11b/g/n HT20/HT40	
	WLAN 5GHz 802.11a/n HT20/HT40	
	Bluetooth BR/EDR/LE	
	Conducted: 359525090014179	
IMEI Code	Radiation: 359525090014625	
	Conduction: 359525090014641	
HW Version	DVT2	
SW Version	PPO29.60	
EUT Stage	Identical Prototype	

Remark:

- **1.** The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.
- 2. The different model names are for different market purpose.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification				
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz			
Number of Channels	40			
Carrier Frequency of Each Channel	40 Channel(37 hopping + 3 advertising channel)			
Maximum Output Power to Antenna	0.82 dBm (0.0012 W)			
99% Occupied Bandwidth	1.051MHz			
Antenna Type / Gain	Fixed Internal Antenna with gain -1.7 dBi			
Type of Modulation Bluetooth LE : GFSK				

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Specification of Accessory

Specification of Accessory						
	Brand Name	Motorola (Salom)	Model Name	SC-51		
AC Adapter 1	Power Rating	I/P: 100-240 Vac, 600mA O/P: 5Vdc,3000mA; 9Vdc,2000mA; 12Vdc,1500mA				
	Brand Name	Motorola (Chenyang)	Model Name	SC-51		
AC Adapter 2	Power Rating	I/P: 100-240 Vac, 600mA O/P: 5Vdc,3000mA; 9Vdc,2000mA; 12Vdc,1500mA				
Pottony	Brand Name	Motorola (ATL)	Model Name	JK50		
Battery	Power Rating	3.8Vdc,5000mAh	Туре	Li-ion, Polymer		
	Brand Name	Motorola (Saibao)	Model Name	711310002491		
USB Cable	Signal Line Type	1.0 meter, shielded cable, without ferrite core				

1.7 Testing Location

Sporton International (Kunshan) Inc. is accredited to ISO 17025 by National Voluntary Laboratory Accreditation Program (NVLAP code: 600155-0).

Test Site	Sporton International (Kunshan) Inc.				
	No. 1098, Pengxi North	n Road, Kunshan Econom	ic Development Zone,		
Test Site Location	Jiangsu Province 2153	35, China			
	TEL : 86-512-57900158				
	FAX : 86-512-57900958				
	Sporton Site No.	FCC designation No.	FCC Test Firm Registration No.		
Test Site No.	TH01-KS				
	CO01-KS	CN5013	630927		
	03CH05-KS				

1.8 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart C §15.247
- FCC KDB 558074 D01 15.247 Meas Guidance v05
- ANSI C63.10-2013

Remark:

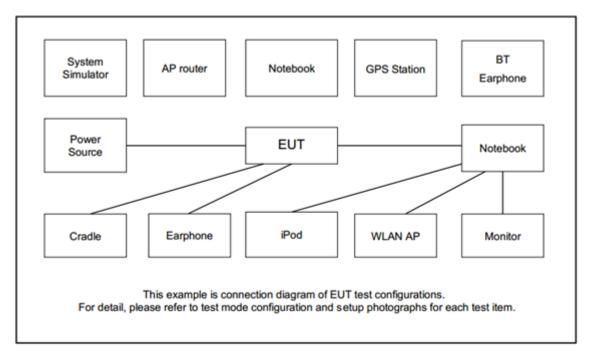
- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	21	2444
	1	2404	22	2446
	2	2406	23	2448
	3	2408	24	2450
	4	2410	25	2452
	5	2412	26	2454
	6	2414	27	2456
	7	2416	28	2458
	8	2418	29	2460
	9	2420	30	2462
2400-2483.5 MHz	10	2422	31	2464
	11	2424	32	2466
	12	2426	33	2468
	13	2428	34	2470
	14	2430	35	2472
	15	2432	36	2474
	16	2434	37	2476
	17	2436	38	2478
	18	2438	39	2480
	19	2440	-	-
	20	2442	-	-

2.2 Test Mode


- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Z plane) were recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

The following summary table is showing all test modes to demonstrate in compliance with the standard.

	Summary table of Test Cases
Test Item	Data Rate / Modulation
Test item	Bluetooth – LE / GFSK
Conducted	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps
	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps
TCs	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps
Radiated	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps
	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps
TCs	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps
AC Conducted Emission	Mode 1: GSM850 Idle + Bluetooth Link + WLAN Link (2.4G) + USB Cable(Charging from Adapter 2) + Earphone
Remark: For	Radiated Test Cases, The tests were performance with Adapter 2, Earphone, USB Cable
and	Earphone

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	Anritsu	MT8820C	N/A	N/A	Unshielded, 1.8 m
2.	WLAN AP	D-Link	DIR-855	KA2DIR855A2	N/A	Unshielded, 1.8 m
3.	Notebook	Lenovo	G480	N/A	N/A	Shielded cable DC O/P 1.8 m Unshielded AC I/P cable1.2 m
4.	Bluetooth Earphone	Lenovo	LBH308	N/A	N/A	N/A

2.5 EUT Operation Test Setup

For BLE function, the engineering test program was provided and enabled to make EUT continuous transmit/receive.

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example : The spectrum analyzer offset is derived from RF cable loss $Offset = RF \ cable \ loss$ Following shows an offset computation example with cable loss 5.5 dB.

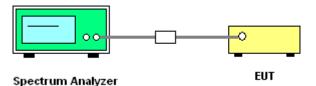
 $Offset(dB) = RF \ cable \ loss(dB)$ = 5.5 (dB)

3 Test Result

3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

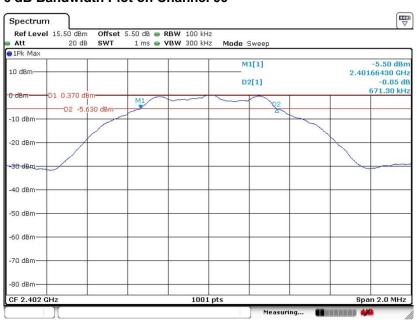
The minimum 6 dB bandwidth shall be at least 500 kHz.


3.1.2 Measuring Instruments

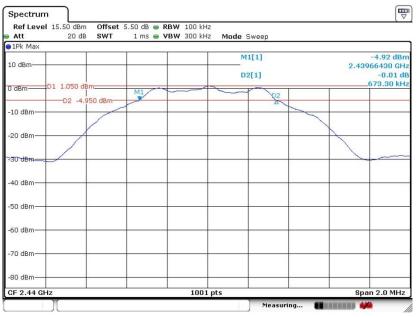
The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.1.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 11.8
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- 5. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 30kHz and set the Video bandwidth (VBW) = 100kHz.
- 6. Measure and record the results in the test report.


3.1.4 Test Setup

3.1.5 Test Result of 6dB Bandwidth


Please refer to Appendix A.

6 dB Bandwidth Plot on Channel 00

Date: 19.OCT.2018 01:10:30

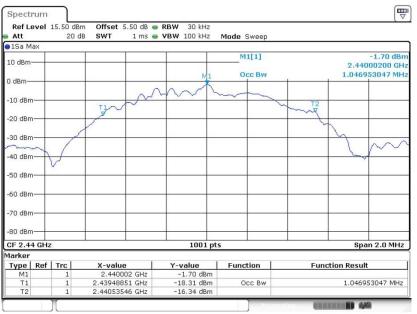
6 dB Bandwidth Plot on Channel 19

Date: 19.OCT.2018 01:15:30

6 dB Bandwidth Plot on Channel 39

Date: 19.OCT.2018 01:19:45

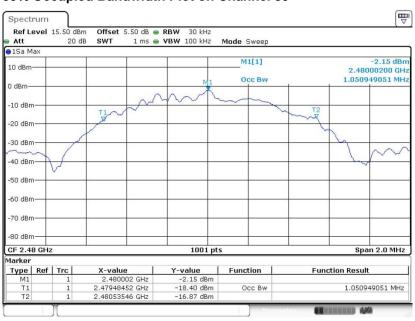
3.1.6 Test Result of 99% Occupied Bandwidth


Please refer to Appendix A.

99% Bandwidth Plot on Channel 00

Att	el 15.50 c			Mode Sweep		
1Sa Max		100 UNT 1110	TEN 100 KHZ	Houe Sweep		
10 dBm—				M1[1]		-2.40 dB 2.40200200 GI
0 dBm			M1	Occ Bw		1.050949051 M
o doni			1 And			
-10 dBm-		- A	422		- T2	
		T1~~~~			From	
-20 dBm-		1			~	S
-30 dBm-						2
-30 UBIII-	/					1 000
-40 dBm-	X					
	V					×.
-50 dBm-			+ +		-	
-60 dBm-						
-70 dBm-						
/o dom						
-80 dBm-	-		-			
CF 2.402	GHz		1001 pts	5		Span 2.0 MH
/larker						
Type F	lef Trc	X-value	Y-value	Function	Func	tion Result
M1	1	2.402002 GHz	-2.40 dBm			
T1 T2	1	2.40148651 GHz 2.40253746 GHz	-18.77 dBm -17.12 dBm	Occ Bw		1.050949051 MH

Date: 19.OCT.2018 01:14:34



99% Occupied Bandwidth Plot on Channel 19

Date: 19.OCT.2018 01:18:02

99% Occupied Bandwidth Plot on Channel 39

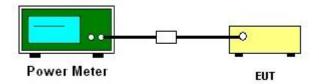
Date: 19.OCT.2018 01:22:37

Note : The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.


3.2.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.2.3 Test Procedures

- The testing follows the Measurement Procedure of ANSI C63.10-2013 clause 11.9.1.3 PKPM1 Peak power meter method.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

3.2.5 Test Result of Peak Output Power

Please refer to Appendix A.

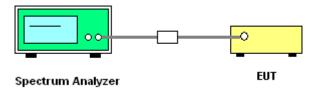
3.2.6 Test Result of Average Output Power (Reporting Olny)

Please refer to Appendix A.

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.


3.3.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

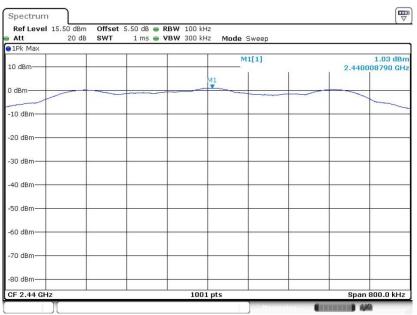
3.3.3 Test Procedures

- 1. The testing follows Measurement Procedure of ANSI C63.10-2013 clause 11.10.2 Method PKPSD.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz.
 Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- 7. The Measured power density (dBm)/ 100kHz is a reference level and used as 20dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

3.3.4 Test Setup

3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A.


3.3.6 Test Result of Power Spectral Density Plots (100kHz)

Spectrum Ref Level 15.50 dBm Offset 5.50 dB 👄 RBW 100 kHz Att 20 dB SWT 1 ms 👄 VBW 300 kHz 🛛 Mode Sweep 1Pk Max M1[1] 0.36 dBn 2.402005590 GH 10 dBn 0 dBm -10 dBm--20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -80 dBm CF 2.402 GH 1001 pts Span 800.0 kHz 1 44

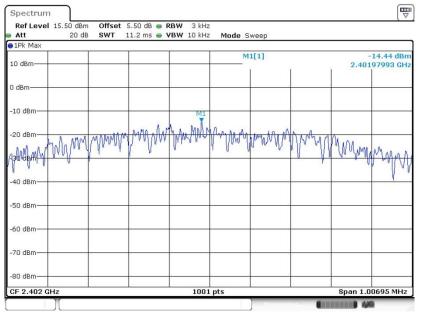
PSD 100kHz Plot on Channel 00

Date: 19.OCT.2018 01:11:03

PSD 100kHz Plot on Channel 19

Date: 19.OCT.2018 01:16:06

PSD 100kHz Plot on Channel 39

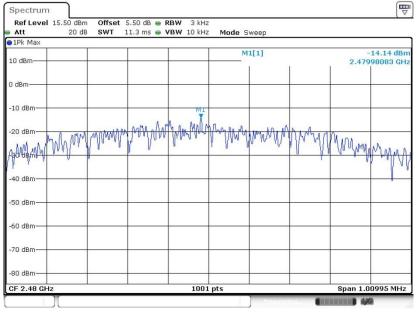

	Mode Sweep	VBW 300 kHz	1 ms 🥃 🛚	20 dB 8	Att
					1Pk Max
0.61 dB 2.480007190 G	M1[1]	+			LO dBm
		MI			
	 			/	dBm-
	 				10 dBm-
					20 dBm
					30 dBm
-					40 dBm
					50 dBm
					60 dBm
					70 dBm
					30 dBm
					-70 dBm

Date: 19.OCT.2018 01:20:17


3.3.7 Test Result of Power Spectral Density Plots (3kHz)

PSD 3kHz Plot on Channel 00

Date: 19.OCT.2018 01:10:51


PSD 3kHz Plot on Channel 19

Date: 19.OCT.2018 01:15:52

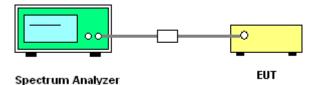
PSD 3kHz Plot on Channel 39

Date: 19.OCT.2018 01:20:02

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission

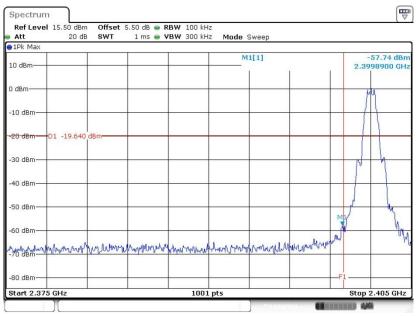
All harmonics/spurious must be at least 20 dB down from the highest emission level within the authorized band.

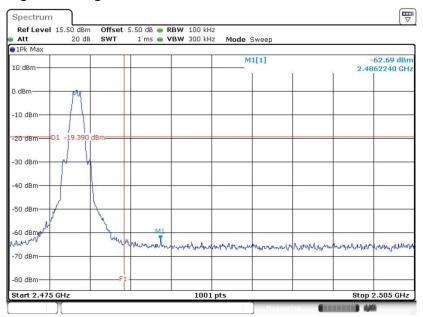

3.4.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

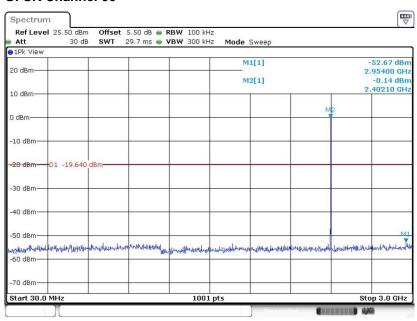
3.4.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 11.13
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.


3.4.4 Test Setup


3.4.5 Test Result of Conducted Band Edges Plots

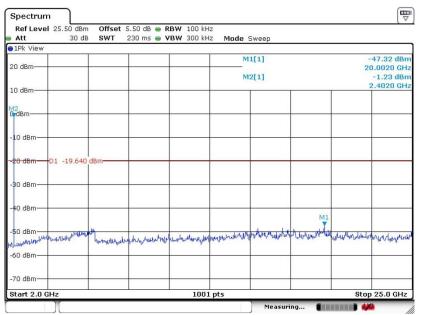
Date: 19.OCT.2018 01:12:26


High Band Edge Plot on Channel 39

Date: 19.OCT.2018 01:20:38

3.4.6 Test Result of Conducted Spurious Emission Plots

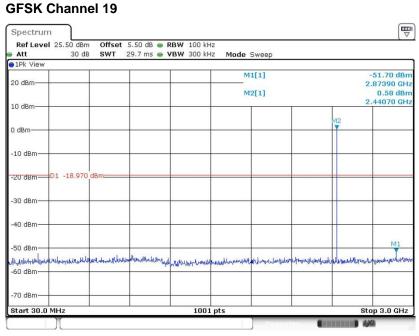
Conducted Spurious Emission Plot on Bluetooth LE 1Mbps



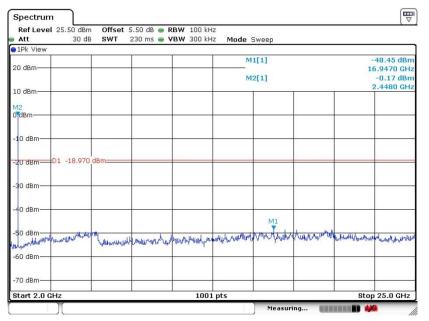
GFSK Channel 00

Date: 19.OCT.2018 01:13:46

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps


GFSK Channel 00

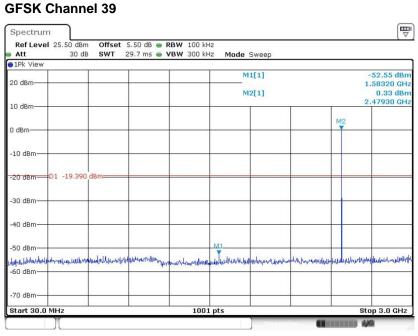
Date: 19.OCT.2018 01:14:05



Conducted Spurious Emission Plot on Bluetooth LE 1Mbps

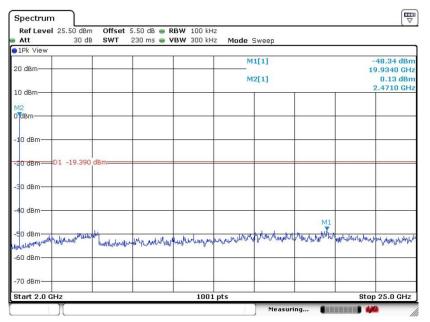
Date: 19.OCT.2018 01:17:35

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19



Date: 19.OCT.2018 01:17:51

Sporton International (Kunshan) Inc. TEL : 86-512-57900158 FAX : 86-512-57900958 FCC ID: IHDT56XQ1



Conducted Spurious Emission Plot on Bluetooth LE 1Mbps

Date: 19.0CT.2018 01:21:42

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 39

Date: 19.OCT.2018 01:21:56

3.5 Radiated Band Edges and Spurious Emission Measurement

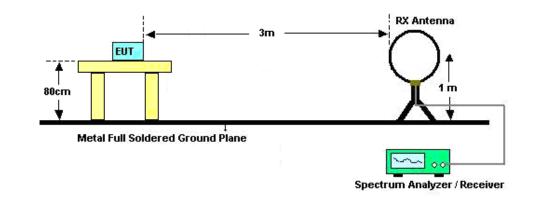
3.5.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

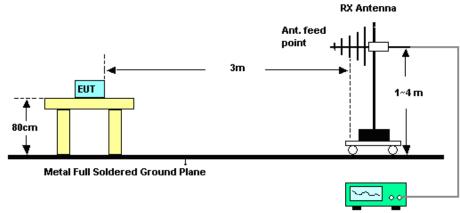
Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

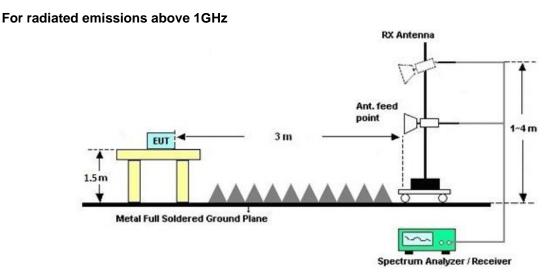
The section 4.0 of List of Measuring Equipment of this test report is used for test.


3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 11.11 & 11.12
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 8. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for $f \ge 1$ GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.



3.5.4 Test Setup


For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

Spectrum Analyzer / Receiver

Sporton International (Kunshan) Inc. TEL : 86-512-57900158 FAX : 86-512-57900958 FCC ID: IHDT56XQ1 Page Number : 30 of 36 Report Issued Date : Dec. 26, 2018 Report Version : Rev. 01 Report Template No.: BU5-FR15CBT4.0 Version 2.0

3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C.

3.5.7 Duty Cycle

Please refer to Appendix D.

3.5.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix C.

3.6 AC Conducted Emission Measurement

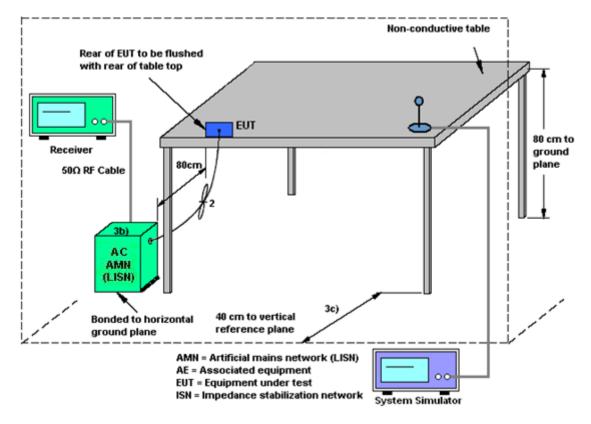
3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted limit (dBµV)				
Frequency of emission (MHZ)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

*Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments


The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.6.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.6.4 Test Setup

3.6.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

3.7 Antenna Requirements

3.7.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101040	10Hz~40GHz	Aug. 07, 2018	Oct. 19, 2018	Aug. 06, 2019	Conducted (TH01-KS)
Pulse Power Senor	Anritsu	MA2411B	0917070	300MHz~40GH z	Jan. 18, 2018	Oct. 19, 2018	Jan. 17, 2019	Conducted (TH01-KS)
Power Meter	Anritsu	ML2495A	1005002	50MHz Bandwidth	Jan. 18, 2018	Oct. 19, 2018	Jan. 17, 2019	Conducted (TH01-KS)
EMI Test Receiver	Keysight	N9038A	MY572901 51	3Hz~8.5GHz;M ax 30dBm	Jun. 25, 2018	Oct. 26, 2018	Jun. 24, 2019	Radiation (03CH05-KS)
EXA Spectrum Analyzer	Keysight	N9010A	MY551502 44	10Hz-44GHz	Apr. 17, 2018	Oct. 26, 2018	Apr.16, 2019	Radiation (03CH05-KS)
Loop Antenna	R&S	HFH2-Z2	100321	9kHz~30MHz	Oct. 19, 2018	Oct. 26, 2018	Oct. 18, 2019	Radiation (03CH05-KS)
Bilog Antenna	TeseQ	CBL6111D	49922	30MHz-1GHz	Jun. 12, 2018	Oct. 26, 2018	Jun. 11, 2019	Radiation (03CH05-KS)
Double Ridge Horn Antenna	ETS-Lindgren	3117	75959	1GHz~18GHz	Jan. 21, 2018	Oct. 26, 2018	Jan. 20, 2019	Radiation (03CH05-KS)
SHF-EHF Horn	Schwarzbeck	BBHA 9170	BBHA1702 49	15GHz~40GHz	Feb. 07, 2018	Oct. 26, 2018	Feb. 06, 2019	Radiation (03CH05-KS)
Amplifier	com-power	PA-103A	161069	1MHz ~1000MHz / 32 dB	Apr 17, 2018	Oct. 26, 2018	Apr 16, 2019	Radiation (03CH05-KS)
high gain Amplifier	MITEQ	AMF-7D-0010 1800-30-10P	2025788	1Ghz-18Ghz	Apr.17, 2018	Oct. 26, 2018	Apr.16, 2019	Radiation (03CH05-KS)
Amplifier	Keysight	83017A	MY572801 06	500MHz~26.5G Hz	Apr.18, 2018	Oct. 26, 2018	Apr.17, 2019	Radiation (03CH05-KS)
Amplifier	MITEQ	TTA1840-35- HG	1887435	18~40GHz	Feb. 08, 2018	Oct. 26, 2018	Feb. 07, 2019	Radiation (03CH05-KS)
AC Power Source	Chroma	61601	F1040900 04	N/A	NCR	Oct. 26, 2018	NCR	Radiation (03CH05-KS)
Turn Table	ChamPro	EM 1000-T	060762-T	0~360 degree	NCR	Oct. 26, 2018	NCR	Radiation (03CH05-KS)
Antenna Mast	ChamPro	EM 1000-A	060762-A	1 m~4 m	NCR	Oct. 26, 2018	NCR	Radiation (03CH05-KS)
EMI Receiver	R&S	ESCI7	100768	9kHz~7GHz;	Apr. 19, 2018	Oct. 26, 2018	Apr. 18, 2019	Conduction (CO01-KS)
AC LISN	MessTec	AN3016	060103	9kHz~30MHz	Oct. 12, 2018	Oct. 26, 2018	Oct. 11, 2019	Conduction (CO01-KS)
AC LISN (for auxiliary equipment)	MessTec	AN3016	060105	9kHz~30MHz	Nov. 23, 2017	Oct. 26, 2018	Nov. 22, 2018	Conduction (CO01-KS)
AC Power Source	Chroma	61602	ABP00000 0811	AC 0V~300V, 45Hz~1000Hz	Oct. 12, 2018	Oct. 26, 2018	Oct. 11, 2019	Conduction (CO01-KS)

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.9 dB
of 95% (U = 2Uc(y))	2.9 dB

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	5.0 dB
01 33 / (0 = 200(y))	

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0 dB
of 95% (U = 2Uc(y))	5.0 dB

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0 dB
of 95% (U = 2Uc(y))	5.0 dB

Appendix A. Test Result of Conducted Test Items

Report Number : FR892801B

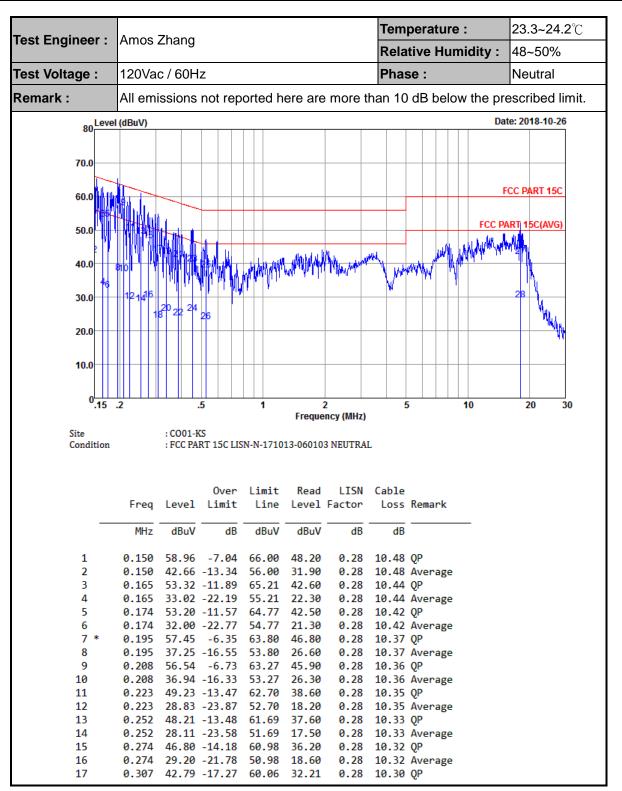
Test Engineer:	Silent Hai	Temperature:	21~25	°C
Test Date:	2018/10/19	Relative Humidity:	49~51	%

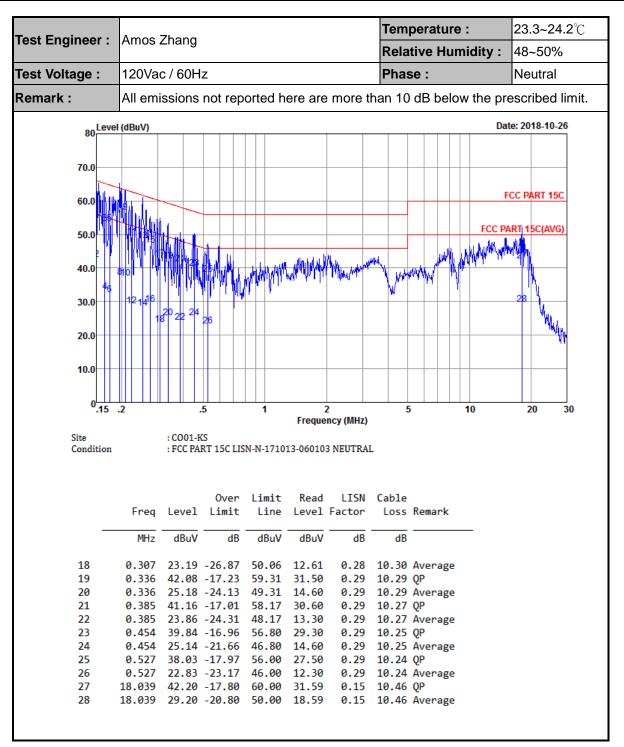
	<u>TEST RESULTS DATA</u> 6dB and 99% Occupied Bandwidth									
	oub and 33 % Occupied Bandy									
Mod	Data Rate	NTX	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail		
BLE	1Mbps	1	0	2402	1.05	0.67	0.50	Pass		
BLE	1Mbps	1	19	2440	1.05	0.67	0.50	Pass		
BLE	1Mbps	1	39	2480	1.05	0.67	0.50	Pass		

	<u>TEST RESULTS DATA</u> <u>Peak Power Table</u>										
Mod.	Data Rate	Ntx	CH.	Freq. (MHz)	Peak Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail	
BLE	1Mbps	1	0	2402	0.22	30.00	-1.70	-1.48	36.00	Pass	
BLE	1Mbps	1	19	2440	0.82	30.00	-1.70	-0.88	36.00	Pass	
BLE	1Mbps	1	39	2480	0.57	30.00	-1.70	-1.13	36.00	Pass	

	<u>TEST RESULTS DATA</u> <u>Average Power Table</u> <u>(Reporting Only)</u>								
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Duty Factor (dB)	Average Conducted Power (dBm)			
BLE	1Mbps	1	0	2402	2.05	0.07			
BLE	1Mbps	1	19	2440	2.05	0.53			
BLE	1Mbps	1	39	2480	2.05	0.27			

<u>TEST RESULTS DATA</u> <u>Peak Power Density</u>													
Mod.	Data Rate	Ntx	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail				
BLE	1Mbps	1	0	2402	0.36	-14.44	-1.70	8.00	Pass				
BLE	1Mbps	1	19	2440	1.03	-13.73	-1.70	8.00	Pass				
BLE	1Mbps	1	39	2480	0.61	-14.14	-1.70	8.00	Pass				


Bluetooth Low Energy


Appendix B. AC Conducted Emission Test Results

Toot Engineer	Amon Zhai				Tem	perature	:	23.3~24	.2℃		
Test Engineer :	Amos Zhar	ig				Rela	tive Hur	nidity :	48~50%		
Test Voltage :	120Vac / 6	0Hz				Phas	se :		Line		
Remark :		ns not rep	orted h	ere are	e more th	than 10 dB below the prescribed limit.					
80 Level	(dBuV)			Dat	te: 2018-10-2	2 6					
70.0											
60.0								F	CC PART 150	2	
		~~									
50.0								FCC PA	ART 15C(AVG)	
40.0				. A stall	Maria			and the state of t			
40.02	6	NULLAN I	NY	Arm Ma	TTON NO W	M	W MANA	10			
30.0		LWW I W		<u>, i l ;</u>	. U		W		12	-	
)) \$	ארי אי							- %		
20.0									N N	M	
10.0										_	
0.15	.2	.5	1		2		5	10	20	30	
Site)1-KS		Freque	ncy (MHz)						
Condition		PART 15C LIS	SN-L-1710	13-060103	3 LINE						
		0ver	Limit	Read		Cable					
	Freq Lev	el Limit	Line	Level	Factor	Loss	Remark				
	MHz dB	uV dB	dBuV	dBuV	dB	dB		_			
1	0.152 51.	94 -13.97	65.91	41.30	0.16	10.48	QP				
2	0.152 36.			26.30			Average				
3	0.193 49.					10.38					
4 5 *	0.193 29. 0.205 51.					10.38	Average OP				
6	0.205 33.						Qr Average				
7	0.260 43.					10.33					
8	0.260 24.			13.59			Average				
	14.288 41.			30.60	0.27	10.39	QP				
	14.288 33.			22.60			Average				
	18.524 40.					10.47					
12	18.524 27.	87 -22.13	50.00	17.20	0.20	10.47	Average				

Appendix C. Radiated Spurious Emission

2.4GHz 2	2400~2483	5MHz
----------	-----------	------

BLE (Band Edge @ 3m)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2318.84	47.46	-26.54	74	41.91	31.97	5.38	31.8	150	117	Ρ	Н
		2363.17	37.76	-16.24	54	32.06	32.07	5.43	31.8	150	117	А	Н
	*	2402	88.76	-	-	83.08	32	5.48	31.8	150	117	Ρ	Н
BLE CH 00	*	2402	88.24	-	-	82.56	32	5.48	31.8	150	117	А	Н
2402MHz		2380.85	47.68	-26.32	74	42.02	32.03	5.43	31.8	100	308	Ρ	V
240211112		2367.07	37.81	-16.19	54	32.11	32.07	5.43	31.8	100	308	А	V
	*	2402	89.41	-	-	83.73	32	5.48	31.8	100	308	Ρ	V
	*	2402	88.74	-	-	83.06	32	5.48	31.8	100	308	А	V
		2480	90.66	-	-	84.64	32.27	5.55	31.8	128	136	Ρ	Н
		2480	89.7	-	-	83.68	32.27	5.55	31.8	128	136	А	н
		2491.3	47.78	-26.22	74	41.83	32.2	5.55	31.8	128	136	Ρ	Н
BLE CH 39		2483.5	38.36	-15.64	54	32.34	32.27	5.55	31.8	128	136	А	н
СП 39 2480MHz		2480	89.92	-	-	83.9	32.27	5.55	31.8	126	81	Ρ	V
2400141112		2480	89.23	-	-	83.21	32.27	5.55	31.8	126	81	А	V
		2486.5	47.17	-26.83	74	41.15	32.27	5.55	31.8	126	81	Ρ	V
		2483.5	38.19	-15.81	54	32.17	32.27	5.55	31.8	126	81	А	V
Remark		o other spurious results are PA		Peak and	Average lim	it line.							

	BLE (Harmonic @ 3m)											_	
BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
BLE		4806	40.86	-33.14	74	62.32	34.2	8.1	63.76	100	360	Р	н
CH 00													
2402MHz		4806	41.69	-32.31	74	63.15	34.2	8.1	63.76	100	360	Р	V
		4878	40.03	-33.97	74	61.54	34.13	8.09	63.73	100	360	Р	Н
BLE CH 19		7320	42.75	-31.25	74	60.77	36.6	9.75	64.37	100	360	Р	н
2440MHz		4878	39.79	-34.21	74	61.3	34.13	8.09	63.73	100	360	Р	V
244011112		7320	41.77	-32.23	74	59.79	36.6	9.75	64.37	100	360	Р	V
BLE		4962	41.03	-12.97	54	62.57	34.1	8.05	63.69	100	360	Р	н
CH 39		7440	41.91	-12.09	54	60.05	36.4	9.84	64.38	100	360	Р	н
2480MHz		4960	40.67	-13.33	54	62.21	34.1	8.05	63.69	100	360	Р	V
2-10011112		7440	42.95	-11.05	54	61.09	36.4	9.84	64.38	100	360	Р	V
Remark		o other spurious results are PA		Peak and	Average limi	t line.							

2.4GHz 2400~2483.5MHz

Emission below 1GHz

2.4GHz BLE (LF)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		30	27.5	-12.5	40	34.37	24.5	0.61	31.98			Р	н
		37.76	30.61	-9.39	40	41.99	19.94	0.64	31.96			Р	н
		41.64	30.81	-9.19	40	44.19	17.89	0.68	31.95	100	28	Р	Н
		71.71	19.07	-20.93	40	37.44	12.67	0.88	31.92			Р	н
0.4011-		242.43	17.65	-28.35	46	30.32	17.59	1.69	31.95			Р	н
2.4GHz BLE		484.93	22.14	-23.86	46	29.17	22.95	2.27	32.25			Р	Н
LF		30	21.41	-18.59	40	28.28	24.5	0.61	31.98	150	261	Р	V
		38.73	19.79	-20.21	40	31.73	19.37	0.65	31.96			Р	V
		68.8	13.41	-26.59	40	31.9	12.58	0.86	31.93			Р	V
		109.54	16.69	-26.81	43.5	30.03	17.52	1.07	31.93			Р	V
		214.3	18.28	-25.22	43.5	33.51	15.16	1.53	31.92			Р	V
		243.4	19.11	-26.89	46	31.68	17.68	1.7	31.95			Р	V
	1. No	o other spurious	s found.										
Remark		results are PA		mit line.									

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any							
	unwanted emissions shall not exceed the level of the fundamental frequency.							
!	Test result is over limit line.							
P/A	Peak or Average							
H/V	Horizontal or Vertical							

A calculation example for radiated spurious emission is shown as below:

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

1. Level(dBµV/m) =

Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

2. Over Limit(dB) = Level(dBµV/m) – Limit Line(dBµV/m)

For Peak Limit @ 2390MHz:

1. Level(dB μ V/m)

```
= Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)
```

- = 32.22(dB/m) + 4.58(dB) + 54.51(dBµV) 35.86 (dB)
- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 42.6(dBµV) 35.86 (dB)
- = 43.54 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

Appendix D. Duty Cycle Plots

Band	Duty Cycle(%)	T(ms)	1/T(KHz)	VBW Setting	
Bluetooth LE	62.61	0.392	2.552	2.7KHz	

