

Report No. : FG890804D

FCC RADIO TEST REPORT

FCC ID	:	IHDT56XP1
Equipment	:	Mobile Cellular Phone
Brand Name	:	Motorola
Model Name	:	XT1962-1
Marketing Name	:	Motorola Mobility LLC
		222 W,Merchandise Mart Plaza, Chicago IL 60654 USA
Applicant	:	Motorola Mobility LLC
		222 W,Merchandise Mart Plaza, Chicago IL 60654 USA
Manufacturer	:	IHDT56XP1
Standard	:	FCC 47 CFR Part 2, and 90(S)

The product was received on Sep. 08, 208 and testing was started from mm. dd, yyyy and completed on mm. dd, yyyy. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures given in ANSI / TIA-603-E and has been in compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Approved by: Joseph Lin SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

Table of Contents

His	tory o	f this test report	3
Su	mmary	/ of Test Result	4
1	Gene	ral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Product Specification of Equipment Under Test	6
	1.3	Modification of EUT	6
	1.4	Emission Designator	6
	1.5	Testing Site	
	1.6	Applied Standards	
2	Test	Configuration of Equipment Under Test	8
	2.1	Test Mode	8
	2.2	Connection Diagram of Test System	9
	2.3	Support Unit used in test configuration and system	9
	2.4	Measurement Results Explanation Example	
	2.5	Frequency List of Low/Middle/High Channels	
3	Cond	ucted Test Items	11
	3.1	Measuring Instruments	
	3.2	Conducted Output Power Measurement and ERP Measurement	
	3.3	Peak-to-Average Ratio	
	3.4	99% Occupied Bandwidth and 26dB Bandwidth Measurement	
	3.5	Emissions Mask Measurement	
	3.6	Emissions Mask – Out Of Band Emissions Measurement	-
	3.7	Frequency Stability Measurement	
	3.8	Field Strength of Spurious Radiation Measurement	
4		of Measuring Equipment	
5	Unce	rtainty of Evaluation	22
Ар	pendix	A. Test Results of Conducted Test	

Appendix B. Test Results of ERP and Radiated Test

TEL : 886-3-327-3456	Page Number	: 2 of 22
FAX : 886-3-328-4978	Issued Date	: Oct. 12, 2018
Report Template No.: BU5-FGLTE90S Version 2.1	Report Version	: 01

History of this test report

Report No.	Version	Description	Issued Date
FG890804D	01	Initial issue of report	Oct. 12, 2018

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark		
3.2	§2.1046 §90.635	Conducted Output Power and Effective Radiated Power	Pass	-		
3.3	-	Peak-to-Average Ratio	Reporting only	-		
3.4	§2.1049 §90.209	Occupied Bandwidth and 26dB Bandwidth	Reporting only	-		
3.5	§2.1051 §90.691	Emission masks – In-band emissions	Pass	-		
3.6	§2.1051 §90.691	Emission masks – Out of band emissions	Pass	-		
3.7	§2.1055 §90.213	Frequency Stability for Temperature & Voltage	Pass	-		
3.8	§2.1053 §90.691	Field Strength of Spurious Radiation	Pass	Under limit 34.83 dB at 2472.000 MHz		

Reviewed by: Wii Chang Report Producer: Natasha Hsieh

1 General Description

1.1 Product Feature of Equipment Under Test

	Product Feature				
Equipment	Mobile Cellular Phone				
Brand Name	Motorola				
Model Name	XT1962-1				
FCC ID	IHDT56XP1				
IMEI Code	Conducted : IMEI : 355569090014213				
	Radiation : IMEI : 355569090016853				
	CDMA/EV-DO/GSM/EGPRS/WCDMA/HSPA/LTE/GNSS/				
	FM				
EUT supports Radios application	WLAN 11b/g/n HT20				
	WLAN 11a/n HT20/HT40				
	Bluetooth BR/EDR/LE				
HW Version	DVT1-B				
EUT Stage	Identical Prototype				

Remark: The above EUT's information was declared by manufacturer.

Accessory List							
	Brand Name : Motorola						
AC Adapter 1	Model Name : SC-51						
	Manufacturer : Salom						
	Brand Name : Motorola						
AC Adapter 2	Model Name : SC-51						
	Manufacturer : Chenyang						
	Brand Name : Motorola						
Battery	Model Name : JG30						
	Manufacturer : Amperex						
	Brand Name : Motorola						
Earphone	Model Name : SH38C37773						
	Manufacturer : Lyand						
USB Cable 1	Brand Name : Cabletech						
	Model Name : SKN6473A						
USB Cable 2	Brand Name : Saibao						
	Model Name : SKN6473A						
USB Cable 3	Brand Name : Luxshare						
USD Caple S	Model Name : SKN6473A						

1.2 Product Specification of Equipment Under Test

Product Specification subjective to this standard						
Tx Frequency	LTE Band 26 : 814.7 ~ 823.3 MHz					
Rx Frequency	LTE Band 26 : 859.7 ~ 868.3 MHz					
Bandwidth	1.4MHz / 3MHz / 5MHz / 10MHz / 15MHz					
Maximum Output Power to Antenna	22.68 dBm					
Antenna Type	Fixed Internal Antenna and Dipole Antenna					
Antenna Gain	0.0 dBi					
Type of Modulation	QPSK / 16QAM					

1.3 Modification of EUT

No modifications are made to the EUT during all test items.

1.4 Emission Designator

Ľ	TE Band 26	QP	SK	16QAM				
BW (MHz)	Frequency Range (MHz)	Emission Designator (99%OBW)	Frequency Tolerance (ppm)	Emission Designator (99%OBW)	Frequency Tolerance (ppm)			
1.4	814.7 ~ 823.3	1M10G7D	-	1M10W7D	-			
3	815.5 ~ 822.5	2M74G7D	-	2M73W7D	-			
5	816.5 ~ 821.5	4M50G7D	-	4M51W7D	-			
10	819.0	9M05G7D	0.0074	9M03W7D	-			
15	821.5	13M4G7D	0.0138	13M5W7D	-			

1.5 Testing Site

Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code : 1190) and the FCC designation No. TW1190 and TW0007 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC Test.

Test Site	SPORTON INTERNATIONAL INC.
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978
Test Site No.	Sporton Site No. TH05-HY

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	PORTON INTERNATIONAL INC.					
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855					
Test Site No.	O3CH15-HY					

Note: The test site complies with ANSI C63.4 2014 requirement.

1.6 Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

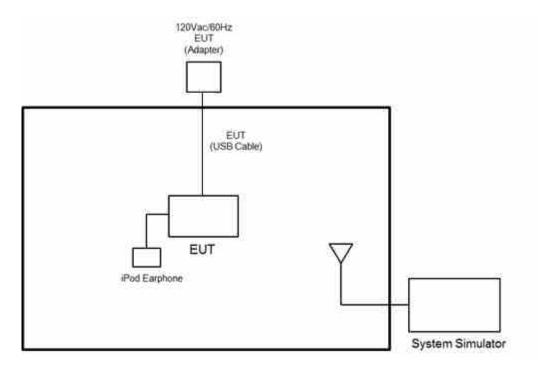
- FCC 47 CFR Part 2, 90
- ANSI / TIA-603-E
- ANSI C63.26-2015
- FCC KDB 971168 D01 Power Meas. License Digital Systems v03r01
- FCC KDB 412172 D01 Determining ERP and EIRP v01r01
- Interim Guidance for Equipment Authorization of Devices with Channel Bandwidths Combined Across Two Contiguous Service Rule Allocations OET/Lab/EACB, June 6, 2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

2.1 Test Mode


Antenna port conducted and radiated test items listed below are performed according to KDB 971168 D01 Power Meas. License Digital Systems v03r01 with maximum output power.

For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (X plane) were recorded in this report.

Conducted	Band	Bandwidth (MHz)						Modulation			RB #			Test Channel		
Test Cases	Бапа	1.4	3	5	10	15	20	QPSK	16QAM	64QAM	1	Half	Full	L	М	н
Max. Output Power	26	v	v	v	v	v	-	v	v		v	v	v	v	v	v
Peak-to-Average Ratio	26					v	-	v	v		v		v	v	v	v
26dB and 99% Bandwidth	26	v	v	v	v	v	-	v	v				v	v	v	v
Emission masks In-band emissions	26	v	v	v	v	v	-	v	v		v		v	v		v
Emission masks – Out of band emissions	26	v	v	v	v	v	-	v	v		v			v	v	v
Frequency Stability	26	-	-		v	v	-	v	v				v		v	
E.R.P.	26					v	-	v	v		v			v	v	v
Radiated Spurious Emission	26		Worst Case V V V													
Remark	2. Th 3. LT El	 The mark "-" means that this bandwidth is not supported. LTE Band26 transmit frequency for part22 rule is 824MHz-849MHz, for part90 rule is 8 ERP over 15MHz bandwidth complies the ERP limit line of part22 rule, therefore ERP frequency spectrum which falls within part 22 also complies. 													1Hz.	

2.2 Connection Diagram of Test System

2.3 Support Unit used in test configuration and system

lten	n Equipment	Trade Name	Model No.	FCC ID	Data Cable	Power Cord
1.	System Simulator	Anritsu	MT8820C	N/A	N/A	Unshielded, 1.8 m

2.4 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between RF conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level will be exactly the RF output level.

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

The following shows an offset computation example with RF cable loss 4.2 dB and a 10dB attenuator.

Example :

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

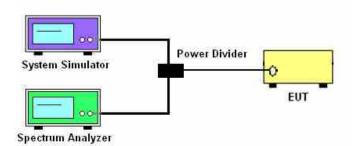
= 4.2 + 10 = 14.2 (dB)

2.5 Frequency List of Low/Middle/High Channels

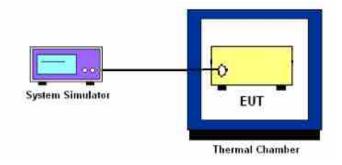
	LTE Band 26 Ch	annel and Frequen	icy List	
BW [MHz]	Channel/Frequency(MHz)	Lowest	Middle	Highest
15	Channel	26765	-	-
15	Frequency	821.5	-	-
10	Channel	-	26740	-
10	Frequency	-	819	-
5	Channel	26715	26740	26765
5	Frequency	816.5	819	821.5
3	Channel	26705	26740	26775
5	Frequency	815.5	819	822.5
1.4	Channel	26697	26740	26783
1.4	Frequency	814.7	819	823.3

3 Conducted Test Items

3.1 Measuring Instruments


See list of measuring instruments of this test report.

3.1.1 Test Setup


3.1.2 Conducted Output Power

3.1.3 Peak-to-Average Ratio, Occupied Bandwidth, Conducted Band-Edge, Emission Mask, Emissions Mask – Out Of Band Emissions, and Conducted Spurious Emission

3.1.4 Frequency Stability

3.1.5 Test Result of Conducted Test

Please refer to Appendix A.

3.2 Conducted Output Power Measurement and ERP Measurement

3.2.1 Description of the Conducted Output Power Measurement and ERP Measurement

A system simulator was used to establish communication with the EUT. Its parameters were set to enforce EUT transmitting at the maximum power. The measured power in the radio frequency on the transmitter output terminals shall be reported.

The ERP of mobile transmitters must not exceed 7 Watts for LTE Band 26.

According to KDB 412172 D01 Power Approach,

 $EIRP = P_T + G_T - L_C$, where

- P_T = transmitter output power in dBm
- G_T = gain of the transmitting antenna in dBi
- L_C = signal attenuation in the connecting cable between the transmitter and antenna in dB

3.2.2 Test Procedures

- 1. The transmitter output port was connected to the system simulator.
- 2. Set EUT at maximum power through system simulator.
- 3. Select lowest, middle, and highest channels for each band and different modulation.
- 4. Measure and record the power level from the system simulator.

3.3 Peak-to-Average Ratio

3.3.1 Description of the PAR Measurement

Reporting only

3.3.2 Test Procedures

- 1. The EUT was connected to spectrum and system simulator via a power divider.
- 2. Set the CCDF (Complementary Cumulative Distribution Function) option in spectrum analyzer.
- 3. The highest RF powers were measured and recorded the maximum PAPR level associated with a probability of 0.1 %.
- 4. Record the deviation as Peak to Average Ratio.

3.4 99% Occupied Bandwidth and 26dB Bandwidth Measurement

3.4.1 Description of (Occupied) Bandwidth Limitations Measurement

The 99% occupied bandwidth is the width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5% of the total mean transmitted power.

The emission bandwidth is defined as the width of the signal between two points, located at the 2 sides of the carrier frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

3.4.2 Test Procedures

- 1. The EUT was connected to spectrum analyzer and system simulator via a power divider.
- 2. The 26dB and 99% occupied bandwidth (BW) of the middle channel for the highest RF power with full RB sizes were measured.

3.5 Emissions Mask Measurement

3.5.1 Description of Emissions Mask Measurement

Equipment used in this licensed to EA or non-EA systems shall comply with the emission mask provisions of FCC

Part 90.691.(a)

(a) Out-of-band emission requirement shall apply only to the "outer" channels included in an EA license and to spectrum adjacent to interior channels used by incumbent licensees. The emission limits are as follows:

(1) For any frequency removed from the EA licensee's frequency block by up to and including 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 116 Log_{10} (f/6.1) decibels or 50 + 10 Log_{10} (P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 12.5 kHz.

(2) For any frequency removed from the EA licensee's frequency block greater than 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least $43 + 10 \text{Log}_{10}(\text{P})$ decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 37.5 kHz.

3.5.2 Test Procedures

- 1. The EUT was connected to spectrum analyzer and base station via power divider.
- 2. The emissions mask of low and high channels for the highest RF powers were measured.
- 3. The measured RBW and the VBW set 3 times of RBW are then set in spectrum analyzer, and
- the RBW correction factor 10log (1% of OBW/measured RBW)(dB) was compensated, if required.
- 5. The test results were shown below plots with a correction offset factor including cable loss, insertion loss of power divider.

3.6 Emissions Mask – Out Of Band Emissions Measurement

3.6.1 Description of Conducted Emissions Out of band emissions measurement

The power of any emission FCC Part 90.691 (a)(2) on any frequency removed from the assigned frequency by out of the authorized bandwidth at least $43 + 10 \log (P) dB$. It is measured by means of a calibrated spectrum analyzer and scanned from 30 MHz up to a frequency including its 10^{th} harmonic.

3.6.2 Test Procedures

- 1. The EUT was connected to spectrum analyzer and system simulator via a power divider.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. The middle channel for the highest RF power within the transmitting frequency was measured.
- 4. The conducted spurious emission for the whole frequency range was taken.
- 5. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz, taking the record of maximum spurious emission.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
- 7. The limit line is derived from 43 + 10log(P)dB below the transmitter power P(Watts)

3.7 Frequency Stability Measurement

3.7.1 Description of Frequency Stability Measurement

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

3.7.2 Measuring Instruments

See list of measuring instruments of this test report.

3.7.3 Test Procedures for Temperature Variation

- 1. The EUT was set up in the thermal chamber and connected with the base station.
- With power OFF, the temperature was decreased to -30°C and the EUT was stabilized for three hours. Power was applied and the maximum change in frequency was recorded within one minute.
- 3. With power OFF, the temperature was raised in 10°C step up to 50°C. The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute.

3.7.4 Test Procedures for Voltage Variation

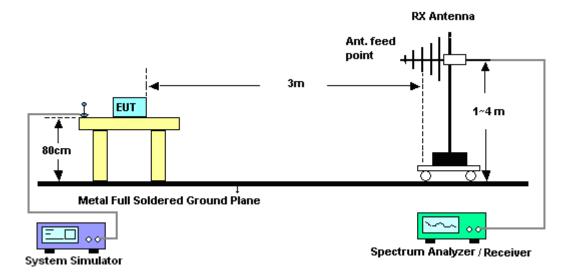
- 1. The EUT was placed in a temperature chamber at 20±5° C and connected with the base station.
- 2. The power supply voltage to the EUT was varied from BEP to 115% of the nominal value measured at the input to the EUT.
- 3. The variation in frequency was measured for the worst case.

3.8 Field Strength of Spurious Radiation Measurement

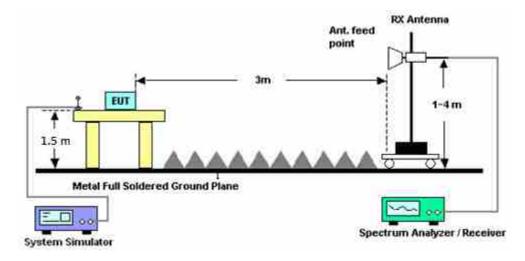
3.8.1 Description of Field Strength of Spurious Radiated Measurement

The radiated spurious emission was measured by substitution method according to ANSI / TIA-603-E. The power of any emission FCC Part 90.691 on any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth at least 43 + 10 log (P) dB. The spectrum is scanned from 30 MHz up to a frequency including its 10th harmonic.

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitter power (P) by a factor of at least 43+10log₁₀(P[Watts]) dB. The spectrum is scanned from 30 MHz up to a frequency including its 10th harmonic.


3.8.2 Test Procedures

- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the receiving antenna, which was mounted on the antenna tower.
- 3. The table was rotated 360 degrees to determine the position of the highest spurious emission.
- 4. The height of the receiving antenna is varied between one meter and four meters to search the maximum spurious emission for both horizontal and vertical polarizations.
- 5. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz, Sweep = 500ms, Taking the record of maximum spurious emission.
- 6. A horn antenna was substituted in place of the EUT and was driven by a signal generator.
- 7. Tune the output power of signal generator to the same emission level with EUT maximum spurious emission.
- 8. Taking the record of output power at antenna port.
- 9. Repeat step 7 to step 8 for another polarization.
- 10. EIRP (dBm) = S.G. Power Tx Cable Loss + Tx Antenna Gain
- 11. ERP (dBm) = EIRP 2.15
- 12. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
- 13. The limit line is derived from 43 + 10log(P) dB below the transmitter power P(Watts)



3.8.3 Test Setup

For radiated test from 30MHz to 1GHz

For radiated test above 1GHz

3.8.4 Test Result of Field Strength of Spurious Radiated

Please refer to Appendix B.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
LTE Base Station	Anritsu	MT8820C	620143282 1	GSM/GPRS /WCDMA/LTE	Oct. 13, 2017	Sep. 21, 2018~ Oct. 06, 2018	Oct. 12, 2018	Conducted (TH05-HY)
Spectrum Analyzer	Rohde & Schwarz	FSV40	101397	10Hz~40GHz	Nov. 07, 2017	Sep. 21, 2018~ Oct. 06, 2018	Nov. 06, 2018	Conducted (TH05-HY)
Temperature Chamber	ESPEC	SH-641	92013720	-40°C~90°C	Aug. 29, 2018	Sep. 21, 2018~ Oct. 06, 2018	Aug. 28, 2019	Conducted (TH05-HY)
Programmable Power Supply	GW Instek	PSS-2005	EL890089	1V~20V 0.5A~5A	Jan. 12, 2018	Sep. 21, 2018~ Oct. 06, 2018	Jan. 11, 2019	Conducted (TH05-HY)
Coupler	Warison	1-18GHz 20d B 25WSMA Directional C oupler	#B	1G~18GHz	Dec. 04, 2017	Sep. 21, 2018~ Oct. 06, 2018	Dec. 03, 2018	Conducted (TH05-HY)
Bilog Antenna	TESEQ	CBL6111D&0 0800N1D01N- 06	41912&05	30MHz to 1GHz	Jan. 10, 2018	Sep. 24, 2018~ Sep. 28, 2018	Jan. 09, 2019	Radiation (03CH15-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120D	9120D-162 0	1G~18GHz	Oct. 03, 2017	Sep. 24, 2018~ Sep. 28, 2018	Oct. 02, 2018	Radiation (03CH15-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-152 2	1G~18GHz	May. 10, 2018	Sep. 24, 2018~ Sep. 28, 2018	May. 09, 2019	Radiation (03CH15-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Nov. 23, 2017	Sep. 24, 2018~ Sep. 28, 2018	Nov. 22, 2018	Radiation (03CH15-HY)
Preamplifier	Keysight	83017A	MY532701 95	1GHz~26.5GHz	Aug. 23, 2018	Sep. 24, 2018~ Sep. 28, 2018	Aug. 22, 2019	Radiation (03CH15-HY)
Preamplifier	EMEC	EM18G40G	060715	18GHz ~ 40GHz	Dec. 05, 2017	Sep. 24, 2018~ Sep. 28, 2018	Dec. 04, 2018	Radiation (03CH15-HY)
Amplifier	SONOMA	310N	363440	9kHz~1GHz	Dec. 26, 2017	Sep. 24, 2018~ Sep. 28, 2018	Dec. 25, 2018	Radiation (03CH15-HY)
Spectrum Analyzer	Agilent	E4446A	MY501801 36	3Hz~44GHz	Apr. 25, 2018	Sep. 24, 2018~ Sep. 28, 2018	Apr. 24, 2019	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY2859/2	30MHz-40GHz	Mar. 04, 2018	Sep. 24, 2018~ Sep. 28, 2018	Mar. 03, 2019	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY4274/2	30MHz-40GHz	Mar. 14, 2018	Sep. 24, 2018~ Sep. 28, 2018	Mar. 13, 2019	Radiation (03CH15-HY)
Controller	ChainTek	3000-1	N/A	Control Turn table & Ant Mast	N/A	Sep. 24, 2018~ Sep. 28, 2018	N/A	Radiation (03CH15-HY)
Antenna Mast	ChainTek	MBS-520-1	N/A	1m~4m	N/A	Sep. 24, 2018~ Sep. 28, 2018	N/A	Radiation (03CH15-HY)
Turn Table	ChainTek	T-200-S-1	N/A	0~360 Degree	N/A	Sep. 24, 2018~ Sep. 28, 2018	N/A	Radiation (03CH15-HY)

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA9170 576	18GHz ~ 40GHz	May 08, 2018	Sep. 24, 2018~ Sep. 28, 2018	May 07, 2019	Radiation (03CH15-HY)
Signal Generator	Rohde & Schwarz	SMF100A	101107	100kHz~40GHz	May. 21, 2018	Sep. 24, 2018~ Sep. 28, 2018	May. 20, 2019	Radiation (03CH15-HY)
Software	Audix	E3 6.2009-8-24(K 5)	ARD-SPR- 000185	N/A	N/A	Sep. 24, 2018~ Sep. 28, 2018	N/A	Radiation (03CH15-HY)
Filter	Wainwright	WLK4-1000-1 530-8000-40S S	SN11	1G Low Pass	Sep. 16, 2018	Sep. 24, 2018~ Sep. 28, 2018	Sep. 15, 2019	Radiation (03CH15-HY)
Filter	Wainwright	WHKX12-270 0-3000-18000 -60ST	SN2	3 GHz Highpass	Jul. 15, 2018	Sep. 24, 2018~ Sep. 28, 2018	Jul. 14, 2019	Radiation (03CH15-HY)
Notch Filter	Wainwright	WRCT800/96 0-0.2/40-8SS K	SN22	GSM850	Nov. 03, 2017	Sep. 24, 2018~ Sep. 28, 2018	Nov. 02, 2018	Radiation (03CH15-HY)
Notch Filter	Wainwright	WRCT1747.5- 0.4/40-8SS	SN2	DCS 1800	Aug. 22, 2018	Sep. 24, 2018~ Sep. 28, 2018	Aug. 21, 2019	Radiation (03CH15-HY)
Notch Filter	Wainwright	WRCT2500/2 570-10/40-10 SSK	SN1 R	LTE Band7	Aug. 22, 2018	Sep. 24, 2018~ Sep. 28, 2018	Aug. 21, 2019	Radiation (03CH15-HY)
Notch Filter	Wainwright	WRCT698/79 8-10/40 8SSK	SN1	AWS Band	Nov. 08, 2017	Sep. 24, 2018~ Sep. 28, 2018	Nov. 07, 2018	Radiation (03CH15-HY)

5 Uncertainty of Evaluation

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of	2.27
Confidence of 95% (U = 2Uc(y))	3.37

Uncertainty of Radiated Emission Measurement (1 GHz ~ 18 GHz)

Measuring the enteinty for a lovel of	
Measuring Uncertainty for a Level of	3.67
Confidence of 95% (U = 2Uc(y))	5.07

Uncertainty of Radiated Emission Measurement (18 GHz ~ 40 GHz)

Measuring Uncertainty for a Level of	4.03
Confidence of 95% (U = 2Uc(y))	4.03

Appendix A. Test Results of Conducted Test

Conducted Output Power(Average power)

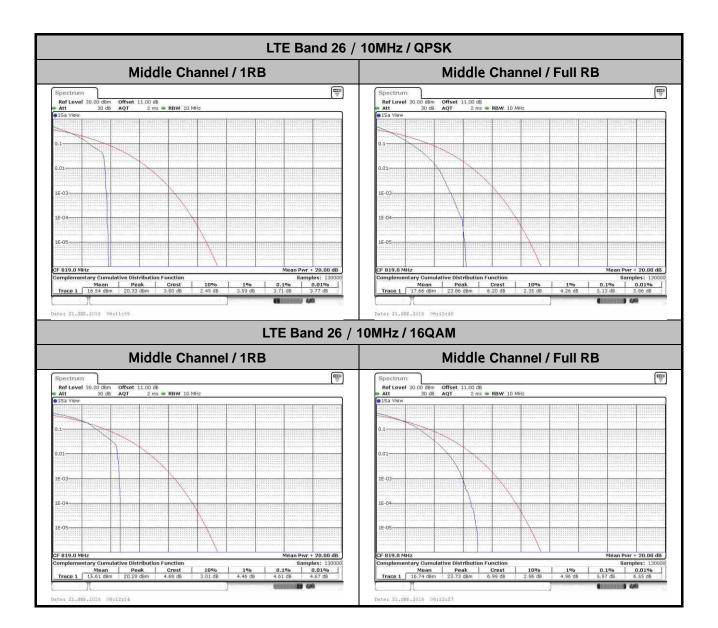
		LTE	Band 26 Ma	ximum Average Po	wer [dBm]	
BW [MHz]	RB Size	RB Offset	Mod	Lowest	Middle	Highest
15	1	0		22.99	-	-
15	1	37		23.32	-	-
15	1	74		23.02	-	-
15	36	0	QPSK	22.22	-	-
15	36	20		22.20	-	-
15	36	39		22.05	-	-
15	75	0		22.20	-	-
15	1	0		22.51	-	-
15	1	37		22.35	-	-
15	1	74		22.30	-	-
15	36	0	16-QAM	21.18	-	-
15	36	20		21.17	-	-
15	36	39		21.04	-	-
15	75	0		21.16	-	-
10	1	0		-	22.79	-
10	1	25		-	23.01	-
10	1	49		-	22.86	-
10	25	0	QPSK	-	21.97	-
10	25	12		-	22.06	-
10	25	25		-	21.85	-
10	50	0		-	21.89	-
10	1	0		-	21.91	-
10	1	25		-	22.23	-
10	1	49		-	21.71	-
10	25	0	16-QAM	-	20.96	-
10	25	12		-	21.06	-
10	25	25		-	20.86	-
10	50	0		-	20.89	-

Report No. : FG890804D

		LTE	Band 26 Ma	ximum Average Po	wer [dBm]	
BW [MHz]	RB Size	RB Offset	Mod	Lowest	Middle	Highest
5	1	0		22.86	22.95	22.78
5	1	12		23.10	22.93	22.80
5	1	24		23.16	22.93	22.89
5	12	0	QPSK	22.24	22.06	21.98
5	12	7		22.23	22.03	21.95
5	12	13		22.20	21.99	21.92
5	25	0		22.23	22.01	21.95
5	1	0		22.37	22.27	22.19
5	1	12		22.31	22.17	22.05
5	1	24		22.37	22.19	22.03
5	12	0	16-QAM	21.24	21.12	21.01
5	12	7		21.25	21.10	21.01
5	12	13		21.24	21.08	20.98
5	25	0		21.18	21.02	20.87
3	1	0		22.95	23.00	22.86
3	1	8		23.15	22.98	22.87
3	1	14		23.05	22.90	22.82
3	8	0	QPSK	22.17	22.00	21.92
3	8	4		22.19	22.00	21.94
3	8	7		22.16	21.97	21.90
3	15	0		22.17	21.98	21.92
3	1	0		22.39	22.23	22.07
3	1	8		22.38	22.18	22.12
3	1	14		22.32	22.14	22.04
3	8	0	16-QAM	21.29	21.13	21.03
3	8	4		21.28	21.14	21.06
3	8	7		21.31	21.09	21.03
3	15	0		21.21	21.00	20.90

Report No. : FG890804D

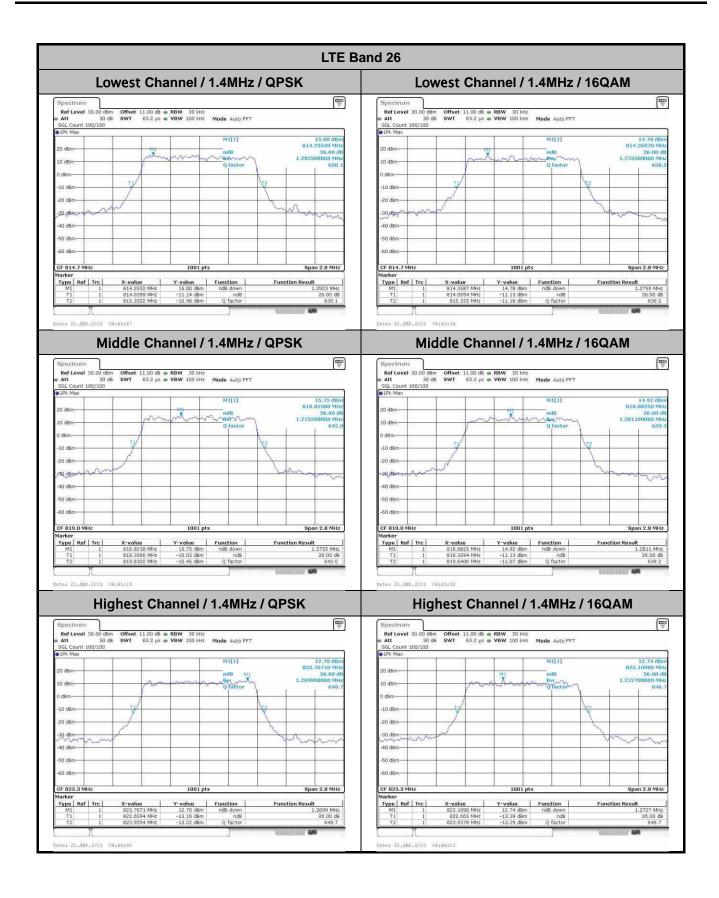
		LTE	Band 26 Ma	ximum Average Po	ower [dBm]	
BW [MHz]	RB Size	RB Offset	Mod	Lowest	Middle	Highest
1.4	1	0		22.86	22.65	22.63
1.4	1	3		22.94	22.73	22.68
1.4	1	5		22.91	22.64	22.61
1.4	3	0	QPSK	22.88	22.71	22.69
1.4	3	1		22.90	22.73	22.66
1.4	3	3		22.84	22.66	22.57
1.4	6	0		22.30	22.21	22.20
1.4	1	0		22.78	22.53	22.51
1.4	1	3		22.78	22.58	22.57
1.4	1	5		22.70	22.50	22.51
1.4	3	0	16-QAM	22.29	22.22	22.27
1.4	3	1		22.36	22.33	22.34
1.4	3	3		22.32	22.18	22.18
1.4	6	0		21.48	21.26	21.14

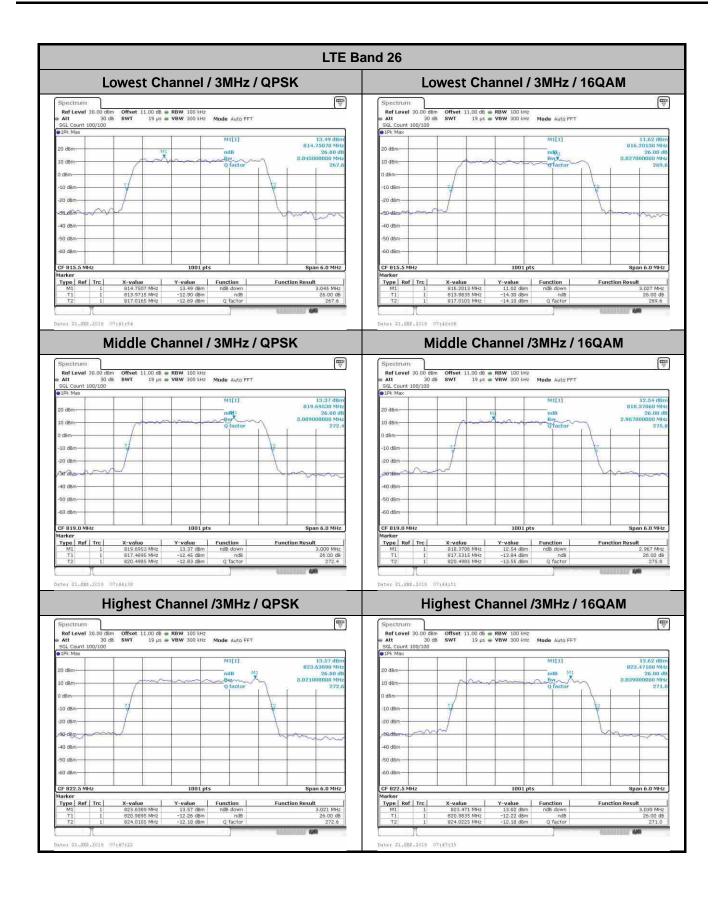


LTE Band 26_Part 90S

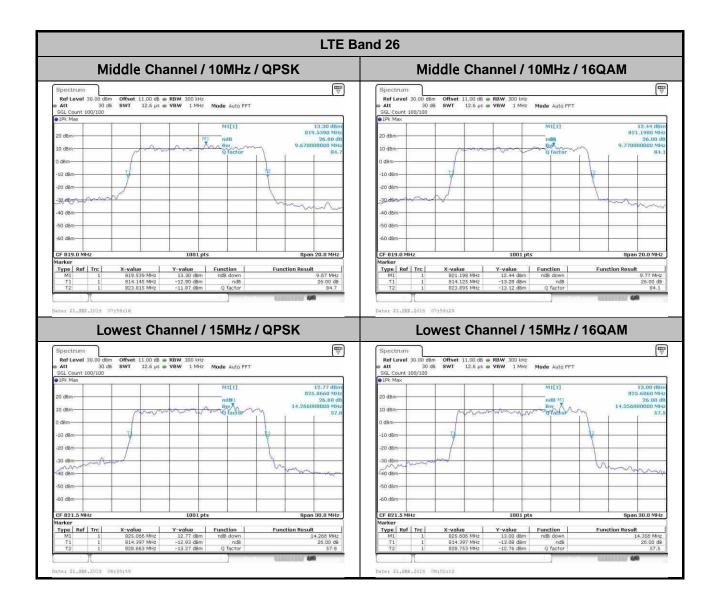
Peak-to-Average Ratio

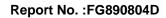
Mode		LTE Band 26 / 10MHz							
Mod.	QP	SK	160	Limit: 13dB					
RB Size	1RB	Full RB	1RB	Full RB	Result				
Lowest CH	-	-	-	-					
Middle CH	3.71	5.13	4.61	5.97	PASS				
Highest CH	-	-	-	-					

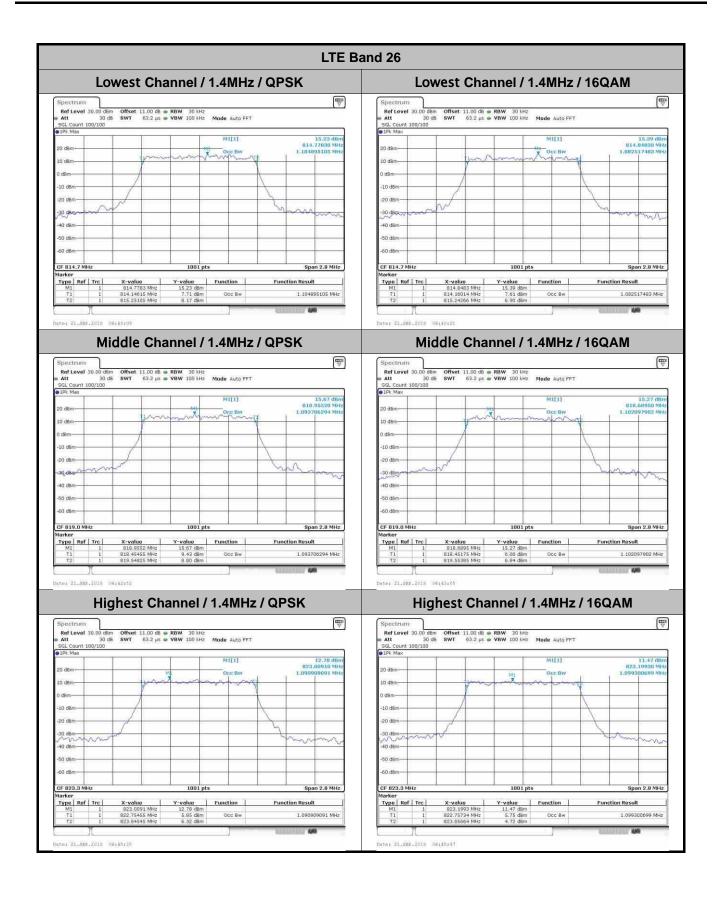



26dB Bandwidth

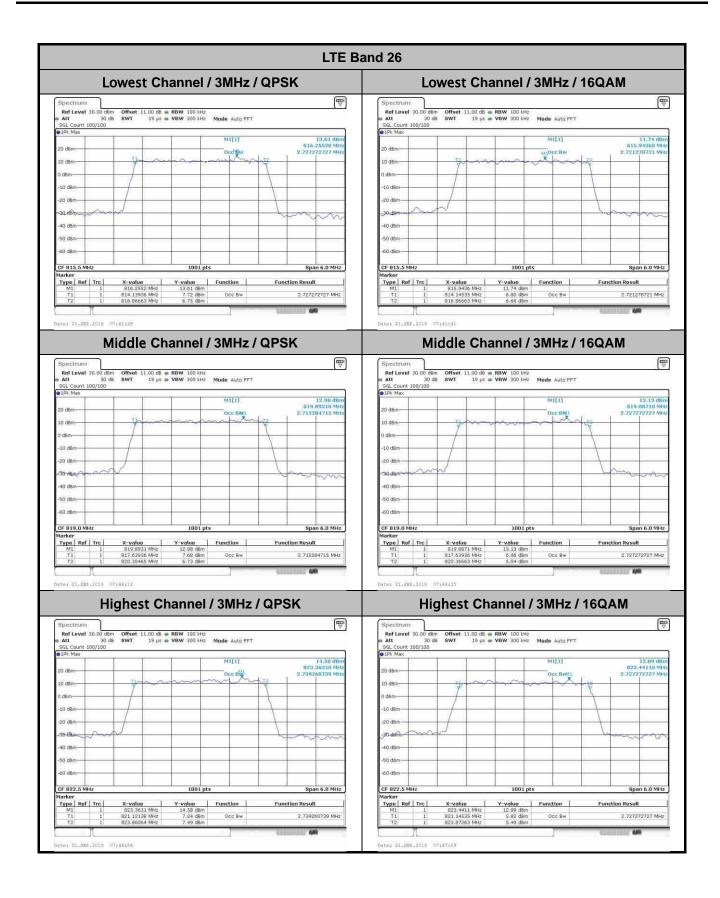
Mode		LTE Band 26 : 26dB BW(MHz)														
BW	1.4MHz		1.4MHz		BW 1.4MHz		3 N	IHz	5M	lHz	10	ЛНz	15N	ЛНz	201	ИHz
Mod.	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM				
Lowest CH	1.29	1.28	3.05	3.03	5.02	4.90	-	-	14.27	14.36	-	-				
Middle CH	1.28	1.28	3.01	2.97	5.03	4.85	9.67	9.77	-	-	-	-				
Highest CH	1.27	1.27	3.02	3.04	4.93	4.91	-	-	-	-	-	-				

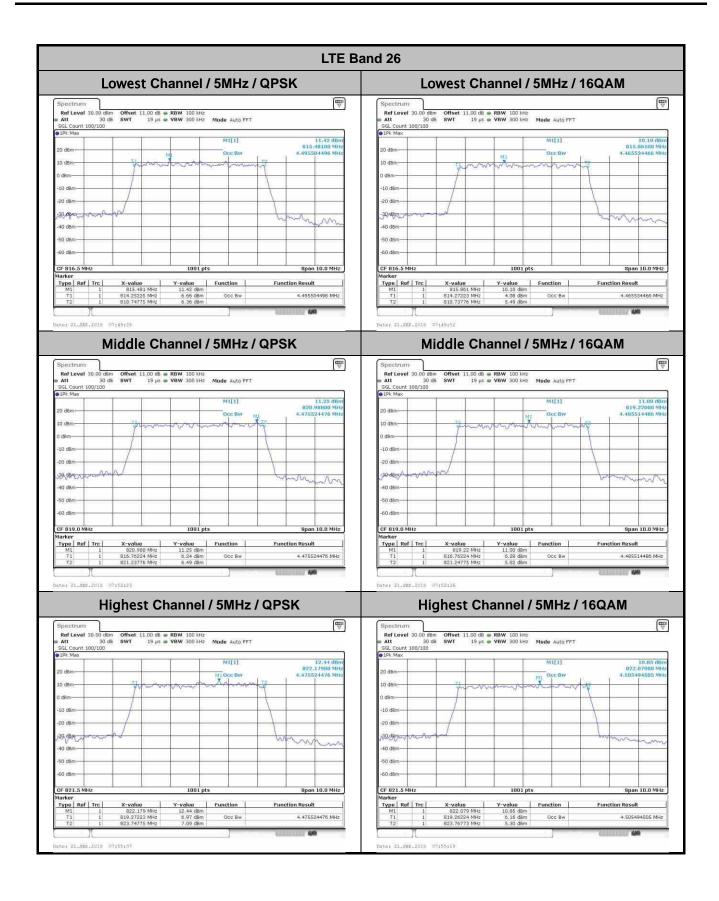


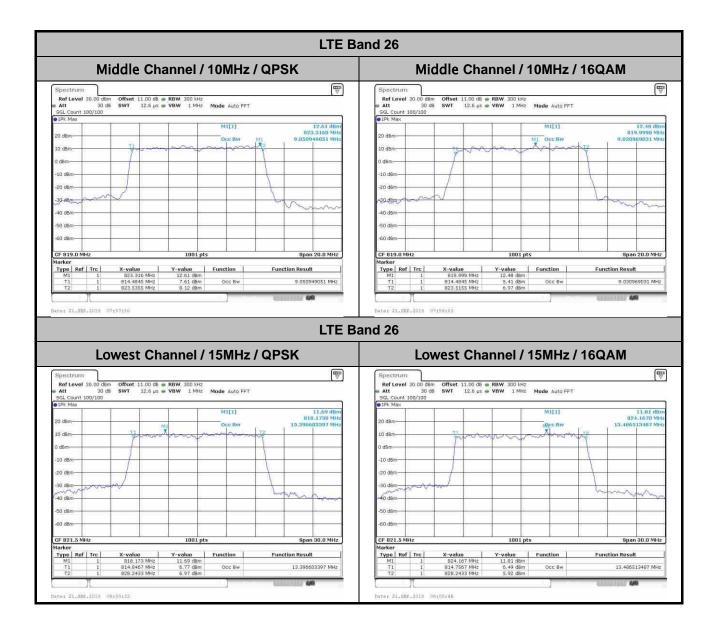


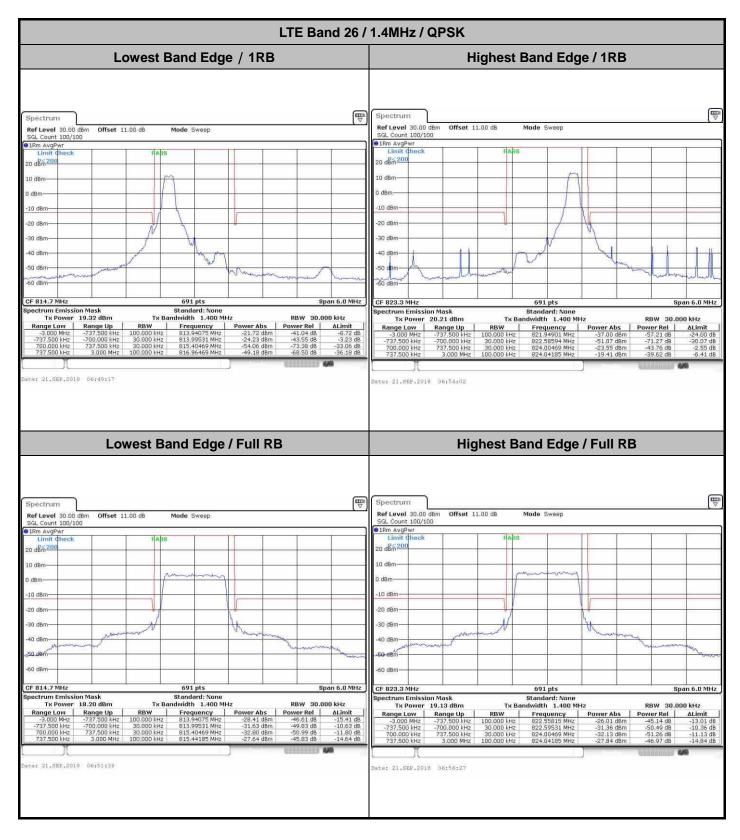


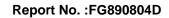
Occupied Bandwidth

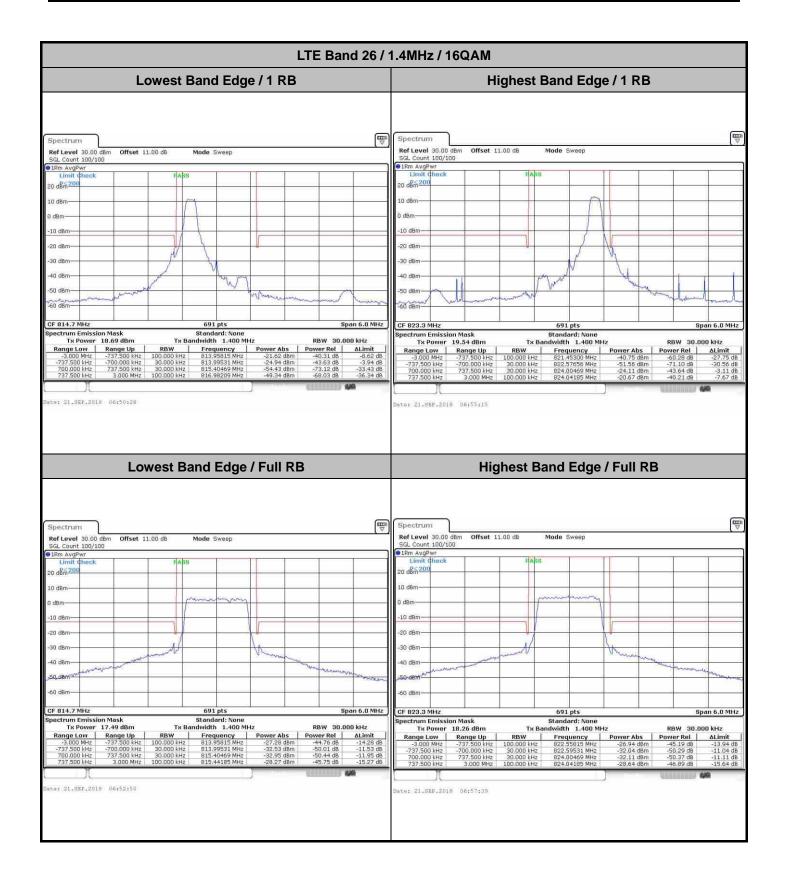

Mode	LTE Band 26 : 99%OBW(MHz)											
BW	1.4MHz		3MHz		5MHz		10MHz		15MHz		20MHz	
Mod.	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM
Lowest CH	1.1	1.08	2.73	2.72	4.5	4.47	-	-	13.4	13.49	-	-
Middle CH	1.09	1.1	2.72	2.73	4.48	4.49	9.05	9.03	-	-	-	-
Highest CH	1.09	1.1	2.74	2.73	4.48	4.51	-	-	-	-	-	-

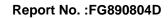




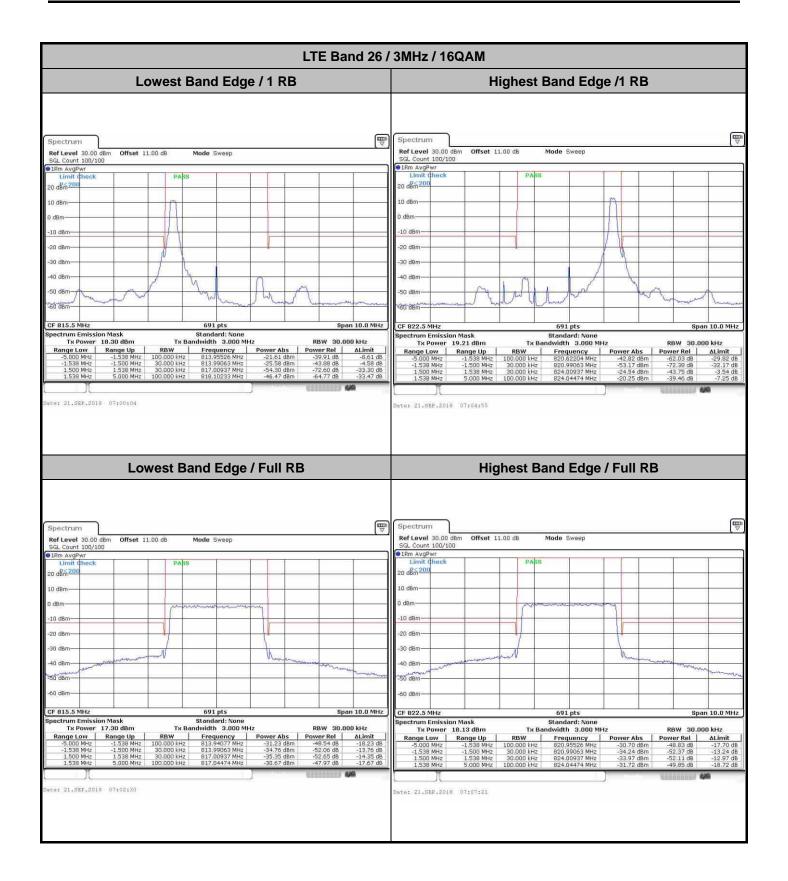


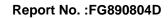


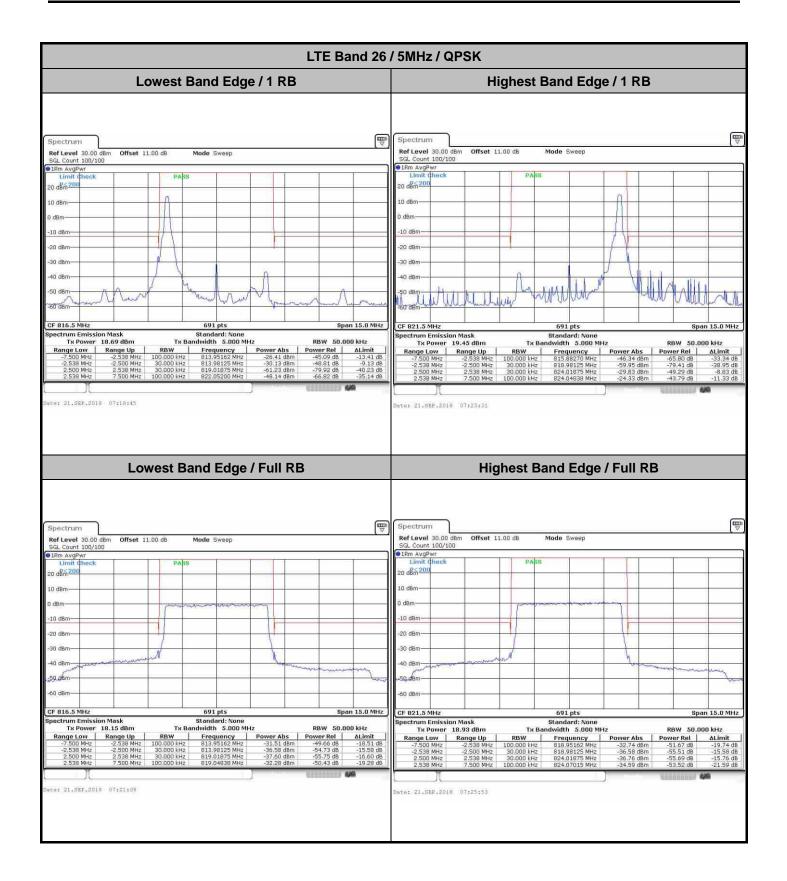


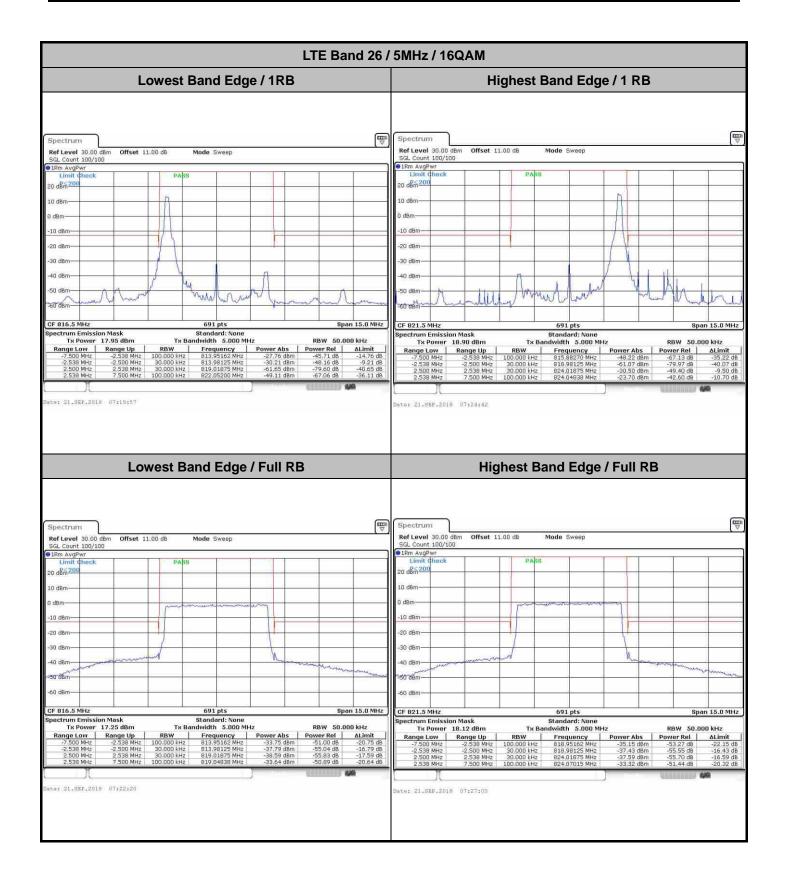

Conducted Band Edge

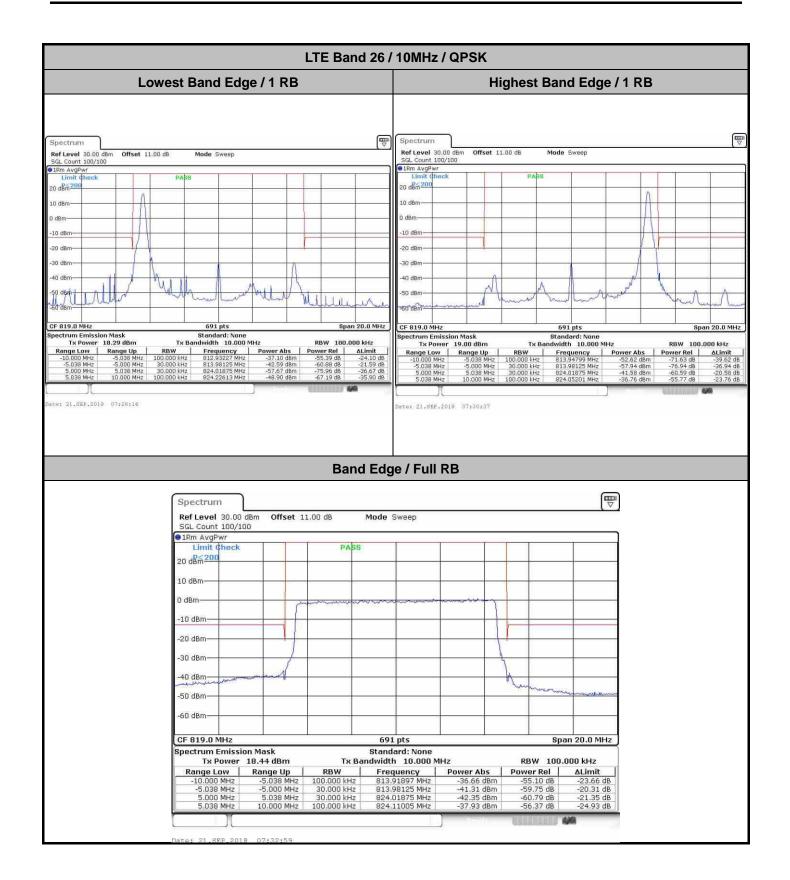


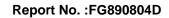


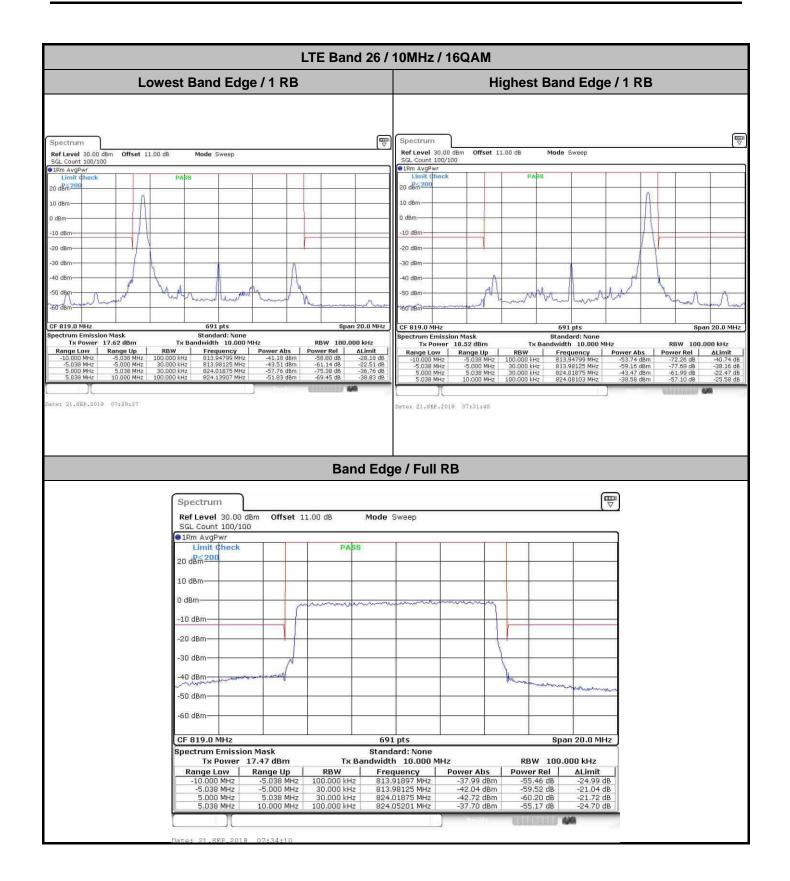


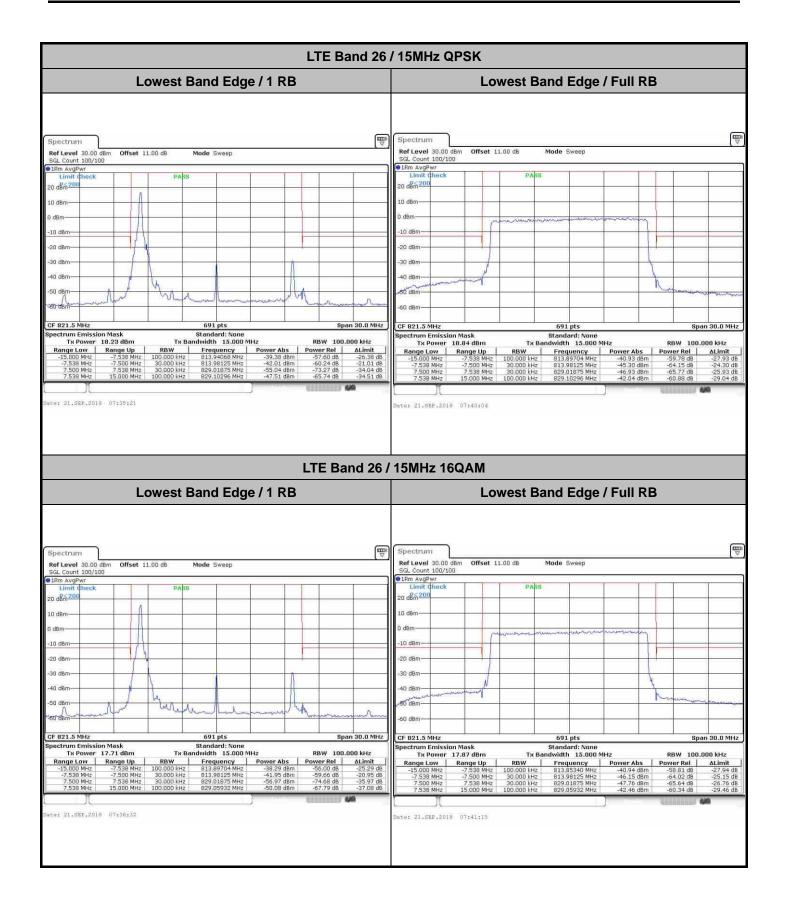


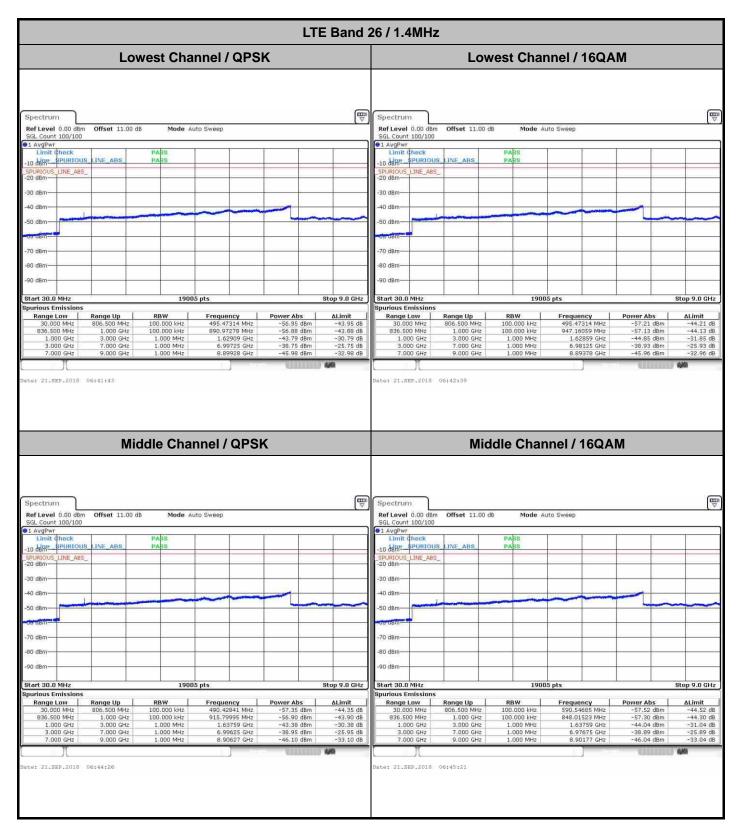


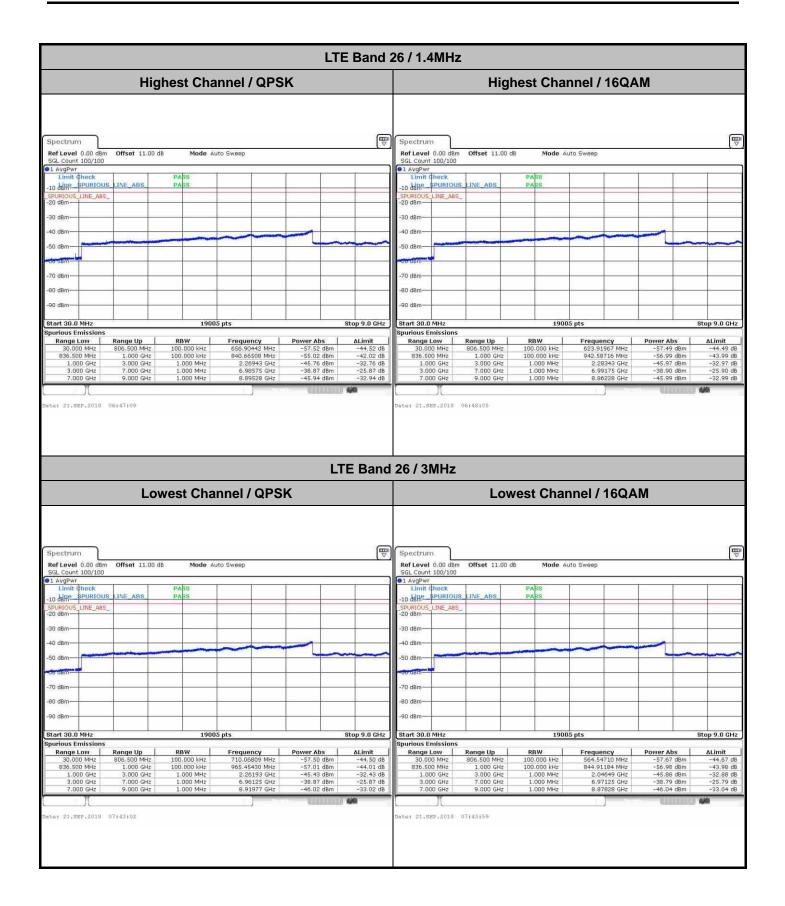


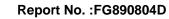


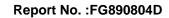


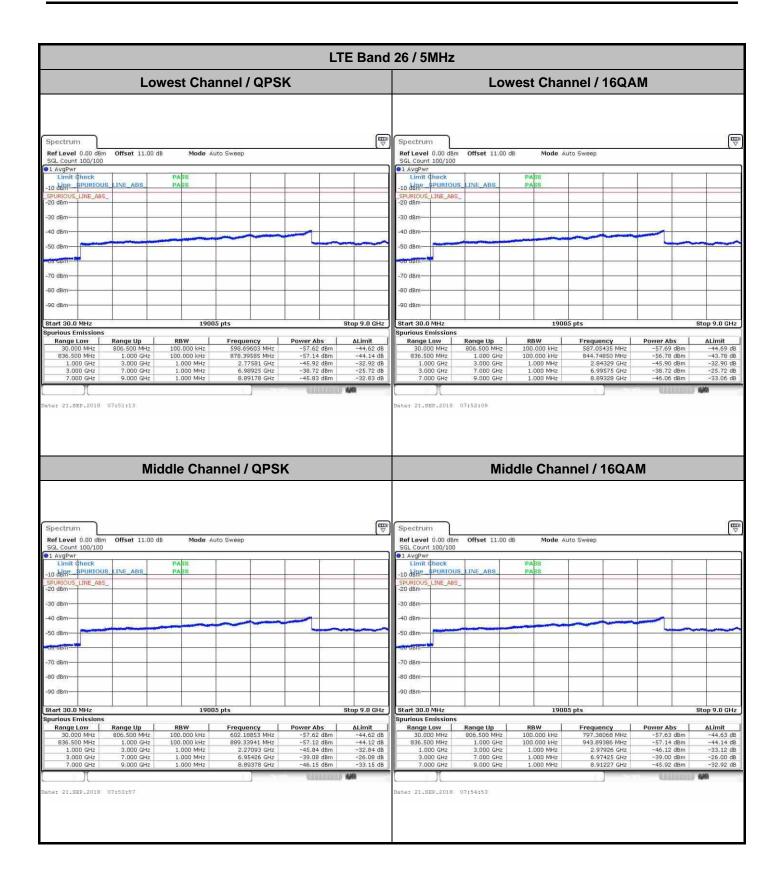




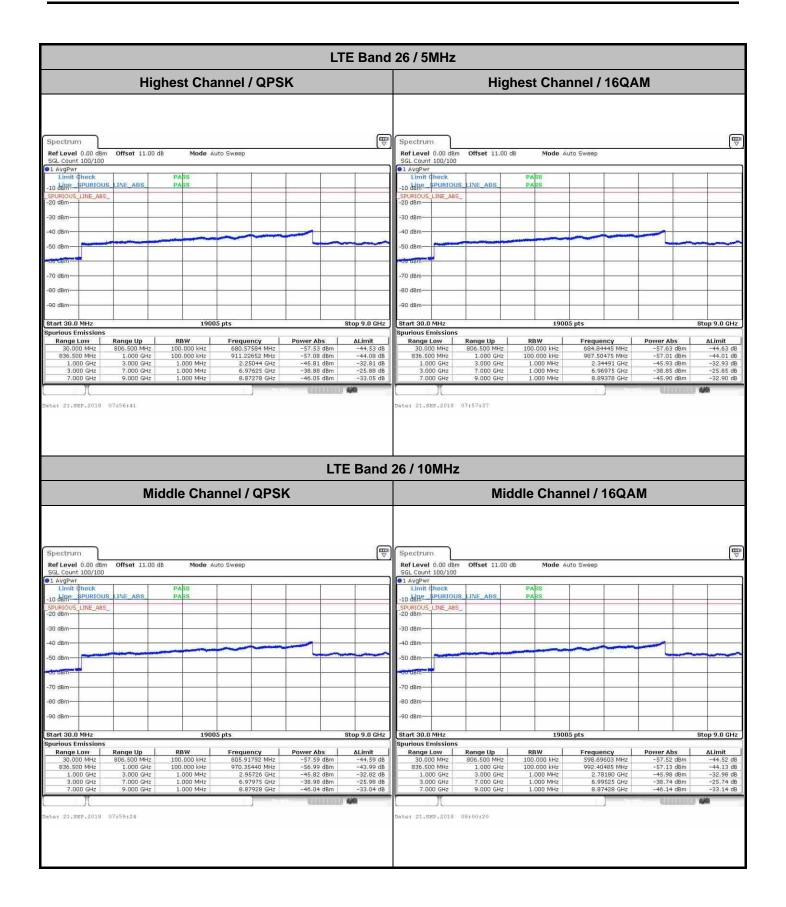


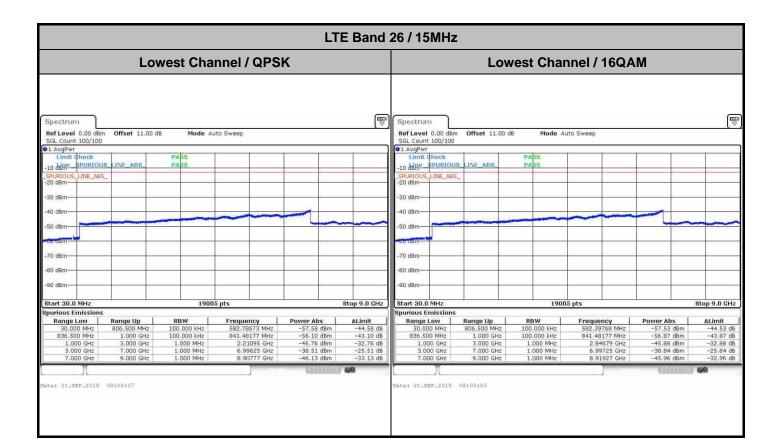

Conducted Spurious Emission





LTE Band	26 / 3MHz
Middle Channel / QPSK	Middle Channel / 16QAM
Spectrum Ref Level 0.00 dBm Offset 11.00 dB Mode Auto Sweep SGL Count 100/100 SIL Count 100/100 Limit Check -10 dBme_SPURIOUS_LINE_ABS_PABS	Spectrum Image: Construction of the section of the secti
SPURIOUS_LINE_ABS_	SPURIOUS_LINE_ABS_
-80 dBm -90	B0 dBm B0 dBm<
836,500 MHz 1.000 GHz 100.000 KHz 964,56469 MHz -56.99 dBm -43.99 dB 1.000 GHz 3.000 GHz 1.000 MHz 2.21195 GHz -45.98 dBm -32.99 dB 3.000 GHz 7.000 GHz 1.000 MHz 6.98775 GHz -38.92 dB 7.000 GHz 9.000 GHz 1.000 MHz 8.91077 GHz -45.92 dBm -32.92 dB Date: 21.SEP.2018 07:45:47	836.500 MHz 1.000 GHz 100.000 Hz 903.54970 MHz -57.20 dBm -44.20 dB 1.000 GHz 3.000 GHz 1.000 MHz 2.24394 GHz -45.99 dBm -32.89 dB 3.000 GHz 7.000 GHz 1.000 MHz 6.99225 GHz -38.69 dBm -25.66 dB 7.000 GHz 1.000 MHz 6.99225 GHz -38.69 dBm -33.09 dB 7.000 GHz 1.000 MHz 8.87078 GHz -46.09 dBm -33.09 dB Date: 21.55EP.2018 07:46:42 07:46:42 07:46:42
Highest Channel / QPSK	Highest Channel / 16QAM
Spectrum.	Spectrum RefLevel 0.00 dbm Offset 11.00 dB Mode Auto Sweep SGL Count 100/100 © 1 AvgPwr
Limit Chock PA38	Limit Ghock PABS -10 dBmSPURIOUS_LINE_ABS PABS -20 dBm
Band Range Low Range Up RBW Frequency Power Abs ALimit 30.000 MHz 806.500 MHz 100.000 KHz 681.74000 MHz -57.58 dBm -44.58 dB 336.500 MHz 1.000 GHz 100.000 KHz 681.74000 MHz -57.58 dBm -44.58 dB 1.000 GHz 3.000 GHz 1.000 GHz 1.000 MHz -57.58 dBm -44.14 dB 1.000 GHz 1.000 GHz 1.000 MHz -57.59 dBm -44.14 dB -32.96 dB 3.000 GHz 1.000 MHz 1.000 MHz -57.58 dBm -57.65 dB -57.65 dB 3.000 GHz 1.000 MHz 1.000 MHz -57.58 dBm -57.65 dB -57.65 dB 3.000 GHz 1.000 MHz 68.9975 GHz -38.65 dBm -52.65 dB -55.65 dB 7.000 GHz 9.000 GHz 1.000 MHz 8.89178 GHz -46.10 dBm -53.10 dB	Build Barrier Stop 9.0 GHz -90 dBm -90 dBm -90 dBm -90 dBm Start 30.0 MHz 19005 pts Start 30.0 MHz 806,500 MHz 30.000 MHz 806,500 MHz 100.000 KHz 577.74100 MHz -57.44 dBm -44,44 dB 836,500 MHz 1.000 GHz 1.000 GHz 1.000 GHz 1.000 GHz 1.000 MHz 966,576099 MHz -57.64 dBm -44,44 dB 3.000 GHz 1.000 MHz 1.000 GHz 1.000 MHz 0.000 GHz 1.000 MHz 0.9425 GHz -44,33 dBm 3.000 GHz 1.000 MHz 0.9425 GHz -48,94 dBm -32,94 dB -32,94 dBm 7,000 GHz 9.000 GHz 1.000 MHz 8.88678 GHz -46.09 dBm -33.09 dB
Dete: 21.5EP.2018 07:48:30	Date: 21.52P.2018 07:49:26





Frequency Stability

Test (Conditions	LTE Band 26 (QPSK) / Middle Channel	Limit
_		BW 10MHz	Note 2.
Temperature (°C)	Voltage (Volt)	Deviation (ppm)	Result
50	Normal Voltage	0.0073	
40	Normal Voltage	0.0063	
30	Normal Voltage	0.0020	
20(Ref.)	Normal Voltage	0.0000	
10	Normal Voltage	0.0022	
0	Normal Voltage	0.0016	
-10	Normal Voltage	0.0066	PASS
-20	Normal Voltage	0.0057	
-30	Normal Voltage	0.0012	
20	Maximum Voltage	0.0074	
20	Normal Voltage	0.0000	
20	Battery End Point	0.0049	

Note:

1. Normal Voltage =3.8 V. ; Battery End Point (BEP) =3.4 V. ; Maximum Voltage =4.35 V.

2. Note: The frequency fundamental emissions stay within the authorized frequency block.

Test (Conditions	LTE Band 26 (QPSK) / Low Channel	Limit
		BW 15MHz	Note 2.
Temperature (°C)	Voltage (Volt)	Deviation (ppm)	Result
50	Normal Voltage	0.0033	
40	Normal Voltage	0.0019	
30	Normal Voltage	0.0035	
20(Ref.)	Normal Voltage	0.0000	
10	Normal Voltage	0.0006	
0	Normal Voltage	0.0039	
-10	Normal Voltage	0.0026	PASS
-20	Normal Voltage	0.0138	
-30	Normal Voltage	0.0127	
20	Maximum Voltage	0.0088	
20	Normal Voltage	0.0000	
20	Battery End Point	0.0012	

Note:

1. Normal Voltage =3.8 V. ; Battery End Point (BEP) =3.4 V. ; Maximum Voltage =4.35 V.

2. Note: The frequency fundamental emissions stay within the authorized frequency block.

Appendix B. Test Results of ERP and Radiated Test

ERP

<Reporting Only>

	LTE Band 26 / 15MHz (Channel 26765) (GT - LC = 0 dB)										
Channel	Mode	RB		Cond	ucted	ERP					
Channel	Mode	Size	Offset	Power (dBm)	Power (Watts)	ERP(dBm)	ERP(W)				
Lowest		1	37	23.32	0.2148	21.17	0.1309				
Middle	QPSK	-	-	-	-	-	-				
Highest		-	-	-	-	-	-				
Lowest		1	0	22.51	0.1782	20.36	0.1086				
Middle	16QAM	-	-	-	-	-	-				
Highest		-	-	-	-	-	-				
Limit	ERP < 7W			Re	sult	PA	SS				

Radiated Spurious Emission

	LTE Band 26 / 5MHz / QPSK										
Channel	Frequency (MHz)	ERP (dBm)	Limit (dBm)	Over Limit (dB)	SPA Reading (dBm)	S.G. Power (dBm)	TX Cable loss (dB)	TX Antenna Gain (dBi)	Polarization (H/V)		
	1638	-63.46	-13	-50.46	-74.51	-69.27	0.69	8.65	Н		
	2456	-49.57	-13	-36.57	-65.53	-57.21	0.94	10.74	Н		
	3275	-57.60	-13	-44.60	-75.81	-66.06	1.20	11.81	Н		
									Н		
									Н		
Lowest									Н		
Lowesi	1638	-63.07	-13	-50.07	-73.99	-68.88	0.69	8.65	V		
	2456	-50.94	-13	-37.94	-66.94	-58.58	0.94	10.74	V		
	3275	-57.67	-13	-44.67	-75.79	-66.13	1.20	11.81	V		
									V		
									V		
									V		
	1643	-63.14	-13	-50.14	-74.2	-68.97	0.69	8.67	Н		
	2464	-48.70	-13	-35.70	-64.66	-56.35	0.95	10.75	Н		
	3288	-57.77	-13	-44.77	-75.96	-66.25	1.20	11.83	Н		
									Н		
									Н		
Middle									Н		
Middle	1643	-63.37	-13	-50.37	-74.31	-69.20	0.69	8.67	V		
	2464	-49.52	-13	-36.52	-65.49	-57.17	0.95	10.75	V		
	3288	-57.63	-13	-44.63	-75.68	-66.11	1.20	11.83	V		
									V		
									V		
									V		

Part 90S LTE Band 26

	1648	-63.38	-13	-50.38	-74.47	-69.23	0.69	8.69	Н
	2472	-47.83	-13	-34.83	-63.8	-55.49	0.95	10.76	Н
	3295	-58.03	-13	-45.03	-76.19	-66.53	1.20	11.85	Н
									Н
									Н
									Н
Highest									Н
riignest	1648	-63.21	-13	-50.21	-74.18	-69.06	0.69	8.69	V
	2472	-49.95	-13	-36.95	-65.92	-57.61	0.95	10.76	V
	3295	-57.96	-13	-44.96	-75.97	-66.46	1.20	11.85	V
									V
									V
									V
									V

Remark: Spurious emissions within 30-1000MHz were found more than 20dB below limit line.

			Ľ	TE Band 26	/ 10MHz / QF	PSK			
Channel	Frequency (MHz)	EIRP (dBm)	Limit (dBm)	Over Limit (dB)	SPA Reading (dBm)	S.G. Power (dBm)	TX Cable loss (dB)	TX Antenna Gain (dBi)	Polarization (H/V)
	1638	-63.16	-13	-50.16	-74.21	-68.97	0.69	8.65	Н
	2456	-48.25	-13	-35.25	-64.21	-55.89	0.94	10.74	Н
	3276	-57.68	-13	-44.68	-75.89	-66.14	1.20	11.81	Н
									Н
									Н
									Н
Middle									Н
Middle	1638	-63.53	-13	-50.53	-74.45	-69.34	0.69	8.65	V
	2456	-49.95	-13	-36.95	-65.95	-57.59	0.94	10.74	V
	3276	-57.61	-13	-44.61	-75.73	-66.07	1.20	11.81	V
									V
									V
									V
									V

			Ľ	TE Band 26	/ 15MHz / QF	PSK			
Channel	Frequency (MHz)	EIRP (dBm)	Limit (dBm)	Over Limit (dB)	SPA Reading (dBm)	S.G. Power (dBm)	TX Cable loss (dB)	TX Antenna Gain (dBi)	Polarization (H/V)
	1643	-63.38	-13	-50.38	-74.45	-69.21	0.69	8.67	Н
	2464	-49.68	-13	-36.68	-65.64	-57.33	0.95	10.75	Н
	3286	-57.73	-13	-44.73	-75.92	-66.21	1.20	11.83	Н
									Н
									Н
									Н
Lowest									Н
Lowest	1643	-63.25	-13	-50.25	-74.19	-69.08	0.69	8.67	V
	2464	-51.63	-13	-38.63	-67.6	-59.28	0.95	10.75	V
	3286	-57.91	-13	-44.91	-75.98	-66.39	1.20	11.83	V
									V
									V
									V
									V