

FCC CO-LOCATION RADIO TEST REPORT

FCC ID	:	IHDT56XP2
Equipment	:	Mobile Cellular Phone
Brand Name	:	Motorola
Model Name	:	XT1962-4
Applicant	:	Motorola Mobility LLC
		222 W,Merchandise Mart Plaza, Chicago IL 60654 USA
Manufacturer	:	Motorola Mobility LLC
		222 W,Merchandise Mart Plaza, Chicago IL 60654 USA
Standard	:	FCC Part 15 Subpart E §15.407

The product was received on Sep. 08, 2018 and testing was started from Oct. 01, 2018 and completed on Oct. 06, 2018. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Approved by: Joseph Lin SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

Table of Contents

His	story of	of this test report	3
Su	mmar	y of Test Result	4
1	Gene	eral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Product Specification of Equipment Under Test	7
	1.3	Modification of EUT	7
	1.4	Testing Location	8
	1.5	Applicable Standards	8
2	Test	Configuration of Equipment Under Test	9
	2.1	Carrier Frequency and Channel	9
	2.2	Test Mode	9
	2.3	Connection Diagram of Test System	10
	2.4	EUT Operation Test Setup	10
3	Test	Result	11
	3.1	Unwanted Emissions Measurement	11
	3.2	Antenna Requirements	15
4	List	of Measuring Equipment	16
5	Unce	ertainty of Evaluation	17
Ap	pendi	ix A. Radiated Spurious Emission	
_			

Appendix B. Radiated Spurious Emission Plots

Appendix C. Duty Cycle Plots

History of this test report

Report No.	Version	Description	Issued Date
FR890804-01F	01	Initial issue of report	Oct. 24, 2018

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.407(b)	Unwanted Emissions	Pass	Under limit 5.54 dB at 42.420 MHz
3.2	15.203 15.407(a)	Antenna Requirement	Pass	-

Reviewed by: Wii Chang

Report Producer: Natasha Hsieh

1 General Description

1.1 Product Feature of Equipment Under Test

	Product Feature		
Equipment	Mobile Cellular Phone		
Brand Name	Motorola		
Model Name	XT1962-4		
Sample 1	Dual SIM		
Sample 2	Single SIM		
FCC ID	IHDT56XP2		
IMEI Code	Radiation : IMEI 1: 355570090016257 IMEI 2: 355570090016265		
EUT supports Radios application	GSM/EGPRS/WCDMA/HSPA/LTE/GNSS/FM WLAN 11b/g/n HT20 WLAN 11a/n HT20/HT40 Bluetooth BR/EDR/LE		
HW Version	DVT1-B		
EUT Stage	Identical Prototype		

Remark: The above EUT's information was declared by manufacturer.

	Acces	sory List	
	Brand Name :	Motorola	
AC Adapter 1	Model Name :	SC-51	
	Manufacturer :	Salom	
	Brand Name :	Motorola	
AC Adapter 1	Model Name :	SC-52	
-	Manufacturer :	Salom	
	Brand Name :	Motorola	
AC Adapter 1	Model Name :	SC-57	
-	Manufacturer :	Salom	
	Brand Name :	Motorola	
AC Adapter 1	Model Name :	SC-56	
-	Manufacturer :	Salom	
	Brand Name :	Motorola	
AC Adapter 1	Model Name :	SC-52	
-	Manufacturer :	Salom	
	Brand Name :	Motorola	
AC Adapter 1	Model Name :	SC-57	
-	Manufacturer :	Flex	
	Brand Name :	Motorola	
AC Adapter 2	Model Name :	SC-51	
-	Manufacturer :	Chenyang	
	Brand Name :	Motorola	
AC Adapter 2	Model Name :	SC-52	
·	Manufacturer :	Chenyang	
	Brand Name :	Motorola	
AC Adapter 2	Model Name :	SC-56	
-	Manufacturer :	Chenyang	
	Brand Name :	Motorola	
AC Adapter 2	Model Name :	SC-57	
•	Manufacturer :	Cliptech	
	Brand Name :	Motorola	
Battery	Model Name :	JG30	
-	Manufacturer :	Amperex	
	Brand Name :	Motorola	
Earphone	Model Name :	SH38C37773	
	Manufacturer :	Lyand	
	Brand Name :	Luxshare	
USB Cable 1	Model Name :	SKN6473A	
	Brand Name :	Cabletech	
USB Cable 2	Model Name :	SKN6473A	
	Brand Name :	Saibao	
USB Cable 3	Model Name :	SKN6473A	

1.2 Product Specification of Equipment Under Test

Standards-related Product Specification		
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz 5180 MHz ~ 5240 MHz 5260 MHz ~ 5320 MHz 5500 MHz ~ 5720 MHz	
Antenna Type / Gain	<2400 MHz ~ 2483.5 MHz> Monopole Antenna type with gain 3.0 dBi <5150 MHz ~ 5250 MHz> IFA Antenna with gain 0.0 dBi <5250 MHz ~ 5350 MHz> IFA Antenna with gain 0.0 dBi <5470 MHz ~ 5725 MHz> IFA Antenna with gain 0.0 dBi	
Type of Modulation	Bluetooth LE : GFSK 802.11a/n : OFDM (BPSK / QPSK / 16QAM / 64QAM)	

Remark: The WLAN operation in 5600 MHz ~ 5650 MHz is notched.

1.3 Modification of EUT

No modifications are made to the EUT during all test items.

1.4 Testing Location

Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code : 1190) and the FCC designation No. TW0007 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC Test.

Test Site	SPORTON INTERNATIONAL INC.	
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855	
Test Site No.	Sporton Site No. 03CH11-HY	

Note: The test site complies with ANSI C63.4 2014 requirement.

1.5 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart E
- FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v04
- FCC KDB 414788 D01 Radiated Test Site v01r01.
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

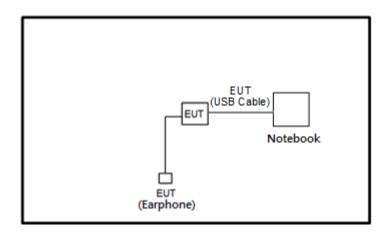
a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (X plane) were recorded in this report.

2.1 Carrier Frequency and Channel

5150 MHz-5250 MHz 802.11n HT40		
Channel Freq. (MHz)		
38	5190	
2400-2483.5 MHz Bluetooth 3Mbps 8-DPSK		
Channel Freq. (MHz)		
78	2480	

2.2 Test Mode

Final test modes are considering the modulation and worse data rates as below table.


<Co-Location>

Modulation	Data Rate	
802.11n HT40 + Bluetooth	MCS0 + 3 Mbps	

2.3 Connection Diagram of Test System

<WLAN Tx Mode>

2.4 EUT Operation Test Setup

The RF test items, utility "CMD" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

3 Test Result

3.1 Unwanted Emissions Measurement

3.1.1 Limit of Unwanted Emissions

(1) Unwanted spurious emissions fallen in restricted bands shall comply with the general field strength limits as below table,

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 – 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

Note: The following formula is used to convert the EIRP to field strength.

$$F = \frac{1000000\sqrt{30}}{1000000}$$

3

μV/m, where P is the eirp (Watts)

EIRP (dBm)	Field Strength at 3m (dBµV/m)
- 27	68.3

- (2) KDB789033 D02 v02r01 G)2)c)
 - (i) Section 15.407(b)(1) to (b)(3) specify the unwanted emission limits for the U-NII-1 and U-NII-2 bands. As specified, emissions above 1000 MHz that are outside of the restricted bands are subject to a peak emission limit of -27 dBm/MHz.³
 - (ii) Section 15.407(b)(4) specifies the unwanted emission limit for the U-NII-3 band. A band emissions mask is specified in Section 15.407(b)(4)(i). The emission limits are in terms of a Peak detector. An alternative to the band emissions mask is specified in Section 15.407(b)(4)(ii). The alternative limits are based on the highest antenna gain specified in the filing. There are also marketing and importation restrictions for the devices using the alternative limit.⁴
 - **Note 3:** An out-of-band emission that complies with both the average and peak limits of Section 15.209 is not required to satisfy the -27 dBm/MHz peak emission limit.
 - Note 4: Only devices with antenna gains of 10 dBi or less may be approved using the emission limits specified in Section 15.247(d) till March 2, 2018; all other devices operating in this band must use the mask specified in Section 15.407(b)(4)(i).

3.1.2 Measuring Instruments

See list of measuring equipment of this test report.

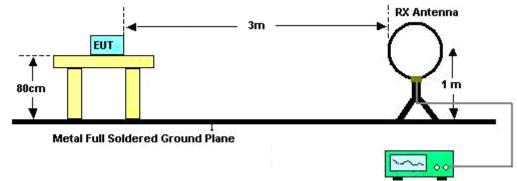
3.1.3 Test Procedures

 The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01. Section G) Unwanted emissions measurement.

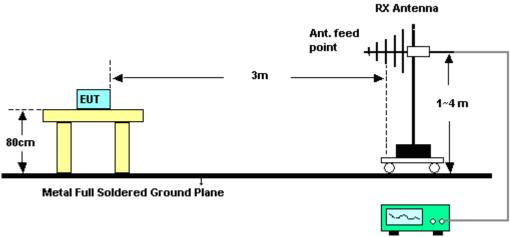
(1) Procedure for Unwanted Emissions Measurements Below 1000MHz

- RBW = 120 kHz
- VBW = 300 kHz
- Detector = Peak
- Trace mode = max hold
- (2) Procedure for Peak Unwanted Emissions Measurements Above 1000 MHz
 - RBW = 1 MHz
 - VBW ≥ 3 MHz
 - Detector = Peak
 - Sweep time = auto
 - Trace mode = max hold

(3) Procedures for Average Unwanted Emissions Measurements Above 1000MHz

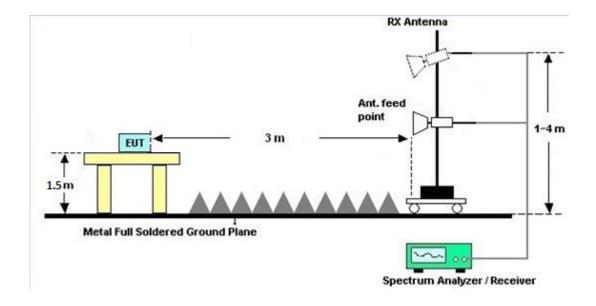

- RBW = 1 MHz
- VBW = 10 Hz, when duty cycle is no less than 98 percent.
- VBW \geq 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
- 2. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 3. The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- 4. The antenna is a broadband antenna and its height is adjusted between one meter and four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.
- 5. For each suspected emission, the EUT was arranged to its worst case and then adjust the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.

- 6. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.


3.1.4 Test Setup

For radiated emissions below 30MHz

Spectrum Analyzer / Receiver


For radiated emissions from 30MHz to 1GHz

Spectrum Analyzer / Receiver

For radiated emissions above 1GHz

3.1.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

3.1.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix A and B.

3.1.7 Duty Cycle

Please refer to Appendix C.

3.1.8 Test Result of Radiated Spurious Emissions (30MHz ~ 10th Harmonic)

Please refer to Appendix A and B.

3.2 Antenna Requirements

3.2.1 Standard Applicable

If transmitting antenna directional gain is greater than 6 dBi, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.2.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.2.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Nov. 23, 2017	Oct. 01, 2018~ Oct. 06, 2018	Nov. 22, 2018	Radiation (03CH11-HY)
Bilog Antenna	TESEQ	CBL 6111D&N-6-0 6	35414&AT- N0602	30MHz~1GHz	Oct. 14, 2017	Oct. 01, 2018~ Oct. 06, 2018	Oct. 13, 2018	Radiation (03CH11-HY)
Preamplifier	Jet-Power	JPA0118-55-3 03K	171000180 0054002	1GHz~18GHz	Apr. 17, 2018	Oct. 01, 2018~ Oct. 06, 2018	Apr. 16, 2019	Radiation (03CH11-HY)
Spectrum Analyzer	Keysight	N9010A	MY542004 86	10Hz ~ 44GHz	Oct. 19, 2017	Oct. 01, 2018~ Oct. 06, 2018	Oct. 18, 2018	Radiation (03CH11-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-132 6	1GHz ~ 18GHz	Oct. 16, 2017	Oct. 01, 2018~ Oct. 06, 2018	Oct. 15, 2018	Radiation (03CH11-HY)
Hygrometer	TECPEL	DTN-303B	TP140325	N/A	Oct. 12, 2017	Oct. 01, 2018~ Oct. 06, 2018	Oct. 11, 2018	Radiation (03CH11-HY)
Preamplifier	Keysight	83017A	MY532700 80	1GHz~26.5GHz	Jan. 16, 2018	Oct. 01, 2018~ Oct. 06, 2018	Jan. 15, 2020	Radiation (03CH11-HY)
Spectrum Analyzer	Keysight	N9010A	MY542004 86	10Hz ~ 44GHz	Oct. 19, 2017	Oct. 01, 2018~ Oct. 06, 2018	Oct. 18, 2018	Radiation (03CH11-HY)
Controller	EMEC	EM 1000	N/A	Control Turn table & Ant Mast	N/A	Oct. 01, 2018~ Oct. 06, 2018	N/A	Radiation (03CH11-HY)
Antenna Mast	EMEC	AM-BS-4500- B	N/A	1~4m	N/A	Oct. 01, 2018~ Oct. 06, 2018	N/A	Radiation (03CH11-HY)
Turn Table	EMEC	TT 2000	N/A	0~360 Degree	N/A	Oct. 01, 2018~ Oct. 06, 2018	N/A	Radiation (03CH11-HY)
Preamplifier	Jet-Power	JPA0118-55-3 03K	171000180 0054002	1GHz~18GHz	Apr. 17, 2018	Oct. 01, 2018~ Oct. 06, 2018	Apr. 16, 2019	Radiation (03CH11-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA9170 584	18GHz- 40GHz	Nov. 27, 2017	Oct. 01, 2018~ Oct. 06, 2018	Nov. 26, 2018	Radiation (03CH11-HY)
Software	Audix	E3 6.2009-8-24	RK-00104 2	N/A	N/A	Oct. 01, 2018~ Oct. 06, 2018	N/A	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY9837/4 PE	9kHz-30MHz	Mar. 14, 2018	Oct. 01, 2018~ Oct. 06, 2018	Mar. 13, 2019	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY2859/2	30MHz-40GHz	Mar. 14, 2018	Oct. 01, 2018~ Oct. 06, 2018	Mar. 13, 2019	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY9837/4 PE	30M-18G	Mar. 14, 2018	Oct. 01, 2018~ Oct. 06, 2018	Mar. 13, 2019	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY4274/2	30MHz-40GHz	Mar. 14, 2018	Oct. 01, 2018~ Oct. 06, 2018	Mar. 13, 2019	Radiation (03CH11-HY)
Filter	Wainwright	WLK4-1000-1 530-8000-40S S	SN11	1G Low Pass	Sep. 17, 2018	Oct. 01, 2018~ Oct. 06, 2018	Sep. 16, 2019	Radiation (03CH11-HY)
Filter	Wainwright	WHKX12-270 0-3000-18000 -60SS	SN3	2.7G High Pass	Sep. 17, 2018	Oct. 01, 2018~ Oct. 06, 2018	Sep. 16, 2019	Radiation (03CH11-HY)

5 Uncertainty of Evaluation

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.20
of 95% (U = 2Uc(y))	5.20

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5 50
of 95% (U = 2Uc(y))	5.50

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.20
of 95% (U = 2Uc(y))	5.20

Appendix A. Radiated Spurious Emission

Test Engineer :	Jack Cheng , Lance Chiang , Peter Liao	Temperature :	22~25°C
Test Engineer .		Relative Humidity :	53~67%

Co-location Mode

Bluetooth and WIFI 802.11n HT40 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
Simultaneously		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2710	43.81	-30.19	74	42.5	27.92	6.94	33.55	100	0	Р	Н
		2775	47.25	-26.75	74	45.69	28.04	7.06	33.54	100	0	Р	Н
		4960	49.89	-24.11	74	41.98	31.54	9.42	33.05	100	0	Ρ	Н
		7440	43.92	-30.08	74	50.48	36.59	12.91	56.06	100	0	Ρ	Н
Bluetooth		7670	44.45	-29.55	74	50.67	36.83	13.18	56.23	100	0	Р	Н
CH78		10380	44.85	-23.35	68.2	50	39.54	15.35	60.04	100	0	Р	Н
2480 MHz		15570	44.05	-29.95	74	45.34	37.91	18.8	58	100	0	Р	Н
+													Н
802.11n		2710	44.57	-29.43	74	43.26	27.92	6.94	33.55	100	0	Ρ	V
HT40		2775	44.38	-29.62	74	42.82	28.04	7.06	33.54	100	0	Ρ	V
CH38		4960	49.72	-24.28	74	41.81	31.54	9.42	33.05	100	0	Ρ	V
5190 MHz		7440	45.21	-28.79	74	51.77	36.59	12.91	56.06	100	0	Ρ	V
		7670	45	-29	74	51.22	36.83	13.18	56.23	100	0	Ρ	V
		10380	45.1	-23.1	68.2	50.25	39.54	15.35	60.04	100	0	Ρ	V
		15570	43.67	-30.33	74	44.96	37.91	18.8	58	100	0	Ρ	V
													V
Remark		lo other spuri Il results are		nst limit line).								

Emission below 1GHz

Bluetooth and WIFI 802.11n HT40 (LF @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
Simultaneously		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		42.15	24.75	-15.25	40	38.74	17.61	0.89	32.49	-	-	Р	Н
		47.55	24.98	-15.02	40	41.22	15.31	0.94	32.49	-	-	Ρ	Н
		81.84	24.33	-15.67	40	42.25	13.32	1.23	32.48	-	-	Ρ	Н
		310.5	27.24	-18.76	46	38.1	19.16	2.26	32.37	-	-	Ρ	Н
		622.7	29.01	-16.99	46	32.51	25.68	3.19	32.46	-	-	Ρ	Н
		952.4	34.56	-11.44	46	30.89	30.71	3.97	31.18	100	0	Ρ	Н
													Н
													Н
Bluetooth													Н
CH78													Н
2480 MHz													Н
+													Н
802.11n		39.72	32.3	-7.7	40	44.71	19.21	0.86	32.49	-	-	Ρ	V
HT40		42.42	34.46	-5.54	40	48.45	17.61	0.89	32.49	100	199	Ρ	V
CH38		48.36	29.48	-10.52	40	46.12	14.9	0.94	32.49	-	-	Ρ	V
5190 MHz		563.9	27.22	-18.78	46	30.57	25.95	3.04	32.43	-	-	Ρ	V
		746.6	30.32	-15.68	46	31.24	27.78	3.5	32.33	-	-	Ρ	V
		955.2	33.98	-12.02	46	30.12	30.87	3.97	31.15	-	-	Ρ	V
													V
													V
													V
													V
													V
													V
Remark		lo other spuri Il results are		st limit line).								

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
0		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

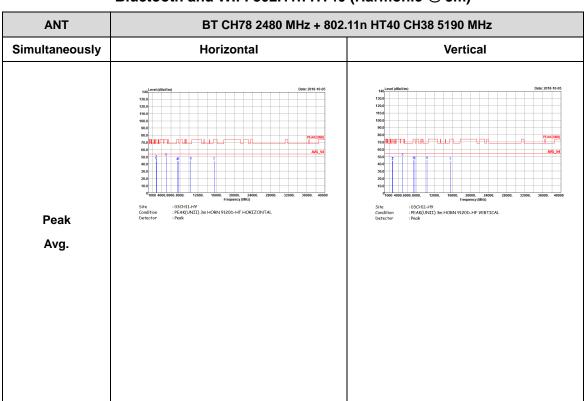
For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- = 43.54 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dB μ V/m) Limit Line(dB μ V/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

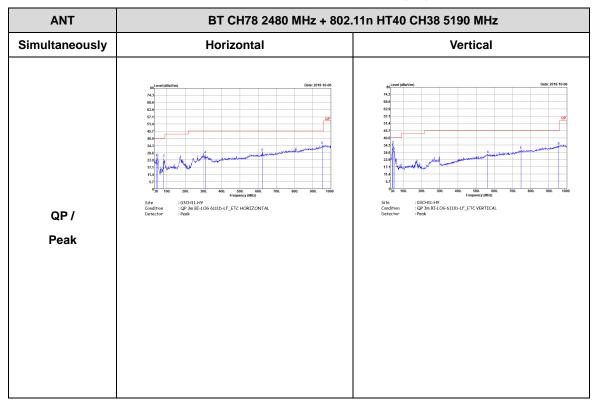
Both peak and average measured complies with the limit line, so test result is "PASS".


Appendix B. Radiated Spurious Emission Plots

Test Engineer :	Jack Cheng, Lance Chiang, and Peter Liao	Temperature :	22~25°C
rest Engineer .		Relative Humidity :	53~67%

Note symbol

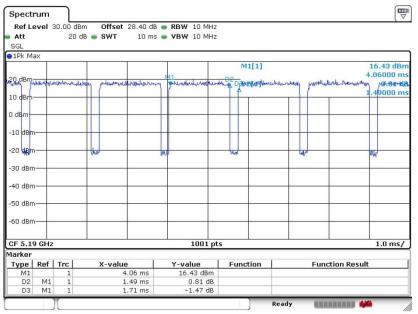
-L	Low channel location
-R	High channel location



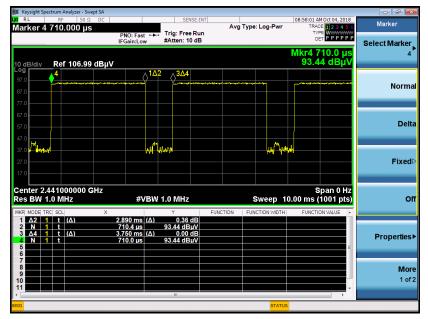
Co-location Mode

Bluetooth and WIFI 802.11n HT40 (Harmonic @ 3m)

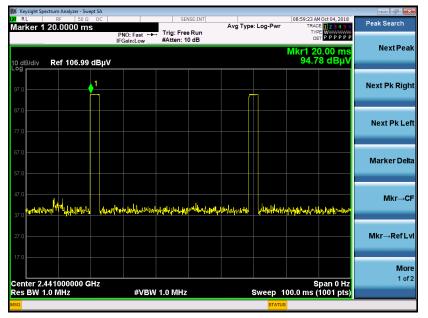
Emission below 1GHz


Bluetooth and WIFI 802.11n HT40 (LF)

Appendix C. Duty Cycle Plots


Band	Duty Cycle (%)	T(us)	1/T(kHz)	VBW Setting	Duty Factor(dB)	
5GHz 802.11n HT40	87.13	1490	0.671	1kHz	0.60	

802.11n HT40


Date: 21.SEP.2018 00:20:16

3DH5 on time (One Pulse) Plot on Channel 39

on time (Count Pulses) Plot on Channel 39

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = 2 * 2.89 / 100 = 5.78 %
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.76 dB
- 3. **3DH5** has the highest duty cycle worst case and is reported.

Duty Cycle Correction Factor Consideration for AFH mode:

Bluetooth normal hopping rate is 1600Hz and reduced to 800Hz in AFH mode; due to the reduced number of hopping frequencies, with the same packet configuration the dwell time in each channel frequency within 100msec period is longer in AFH mode than normal mode.

In AFH mode, the minimum hopping frequencies are 20, to get the longest dwell time DH5 packet is observed; the period to have DH5 packet completing one hopping sequence is

2.89 ms x 20 channels = 57.8 ms

There cannot be 2 complete hopping sequences within 100ms period, considering the random hopping behavior, maximum 2 hops can be possibly observed within the period. [100ms / 57.6ms] = 2 hops

Thus, the maximum possible ON time:

2.89 ms x 2 = 5.78 ms

Worst case Duty Cycle Correction factor, which is derived from the maximum possible ON time,

 $20 \times \log(5.78 \text{ ms}/100 \text{ms}) = -24.76 \text{ dB}$

------THE END------