

FCC EMI TEST REPORT

FCC ID	:	IHDT56XN3
Equipment	:	Mobile Cellular Phone
Brand Name	:	Motorola
Model Name	:	XT1965-3
Type Name	:	МЗС9А
Applicant	:	Motorola Mobility LLC
		222 W,Merchandise Mart Plaza, Chicago IL 60654 USA
Manufacturer	:	Motorola Mobility LLC
		222 W,Merchandise Mart Plaza, Chicago IL 60654 USA
Standard	:	FCC 47 CFR FCC Part 15 Subpart B

The product was received on Sep. 04, 2018 and testing was started from Sep. 18, 2018 and completed on Sep. 29, 2018. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures given in ANSI C63.4-2014 and has been in compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Jones Tsar

Approved by: Jones Tsai SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

Table of Contents

His	tory o	f this test report	.3
Su	nmary	/ of Test Result	4
1.	Gene	ral Description	5
	1.1. 1.2. 1.3. 1.4. 1.5.	Product Feature of Equipment Under Test Modification of EUT Product Specification of Equipment Under Test Test Location Applicable Standards	6 7 9
2.	Test	Configuration of Equipment Under Test	10
	2.1. 2.2. 2.3. 2.4.	Test Mode	12 13
3.	Test I	Result	15
	3.1. 3.2.	Test of AC Conducted Emission Measurement	17
4.	List o	f Measuring Equipment	19
5.	Unce	rtainty of Evaluation	21
Ap	pendix	A. AC Conducted Emission Test Result	

Appendix B. Radiated Emission Test Result

History of this test report

Report No.	Version	Description	Issued Date
FC890437-01	01	Initial issue of report	Oct. 22, 2018
1			

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.107	AC Conducted Emission	Pass	Under limit 4.65 dB at 13.560 MHz
3.2	15.109	Radiated Emission	Pass	Under limit 3.09 dB at 41.340 MHz for Quasi-Peak

Reviewed by: Louis Wu

Report Producer: Natasha Hsieh

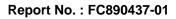
1. General Description

1.1. Product Feature of Equipment Under Test

Product Feature			
Equipment	Mobile Cellular Phone		
Brand Name	Motorola		
Model Name	XT1965-3		
Type Name	M3C9A		
Sample 1	Dual SIM		
Sample 2	Single SIM		
FCC ID	IHDT56XN3		
IMEI Code	IMEI 1: 355575090010671 Conduction : IMEI 2: 355575090010689 IMEI : 355574090003646 IMEI 1: 355575090011430 Radiation : IMEI 2: 355575090011448 IMEI : 355574090003380		
EUT supports Radios application	GSM/EGPRS/WCDMA/HSPA/LTE/GNSS/NFC/FM WLAN 11b/g/n/ac HT20/VHT20 WLAN 11a/n HT20/HT40 WLAN 11ac VHT20/VHT40/VHT80 Bluetooth BR/EDR/LE		
HW Version	DVT1B		
EUT Stage	Identical Prototype		

Remark: The above EUT's information was declared by manufacturer.

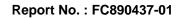
TEL : 886-3-327-3456	Page Number	: 5 of 21
FAX : 886-3-328-4978	Issued Date	: Oct. 22, 2018
Report Template No.: BU5-FD15B Version 2.0	Report Version	: 01



	Accessory List			
	Brand Name :	Motorola		
AC Adapter 1	Model Name :	SC-31		
	Manufacturer :	Salom		
	Brand Name :	Motorola		
AC Adapter 1	Model Name :	SC-32		
	Manufacturer :	Salom		
	Brand Name :	Motorola		
AC Adapter 1	Model Name :	SC-33		
	Manufacturer :	Salom		
	Brand Name :	Motorola		
AC Adapter 1	Model Name :	SC-35		
	Manufacturer :	Salom		
	Brand Name :	Motorola		
AC Adapter 2	Model Name :	SC-31		
	Manufacturer :	Acbel		
	Brand Name :	Motorola		
AC Adapter 2	Model Name :	SC-32		
-	Manufacturer :	Acbel		
	Brand Name :	Motorola		
AC Adapter 2	Model Name :	SC-33		
	Manufacturer :	Acbel		
	Brand Name :	Motorola		
AC Adapter 2	Model Name :	SC-35		
	Manufacturer :	Acbel		
	Brand Name :	Motorola		
Battery	Model Name :	JG40		
	Manufacturer :	Amperex		
	Brand Name :	Motorola		
Earphone	Model Name :	SH38C37773		
	Manufacturer :	Lyand		
USB Cable 1	Brand Name :	Cabletech		
	Model Name :	SC18C37157		
USB Cable 2	Brand Name :	Luxshare		
	Model Name :	SC18C37156		
USB Cable 3	Brand Name :	Saibao		
USD Capie 3	Model Name :	SC18C37155		

1.2. Modification of EUT

No modifications are made to the EUT during all test items.



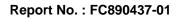
1.3.	Product	Specification	of Equi	ipment Unde	er Test
------	---------	---------------	---------	-------------	---------

Standards-	related Product Specification
Tx Frequency	GSM850: 824.2 MHz ~ 848.8 MHz GSM1900: 1850.2 MHz ~ 1909.8MHz WCDMA Band V: 826.4 MHz ~ 846.6 MHz WCDMA Band IV : 1712.4 MHz ~ 1752.6 MHz WCDMA Band II: 1852.4 MHz ~ 1907.6 MHz LTE Band 2: 1850.7 MHz ~ 1909.3 MHz LTE Band 4: 1710.7 MHz ~ 1754.3 MHz LTE Band 5: 824.7 MHz ~ 848.3 MHz LTE Band 7: 2502.5 MHz ~ 2567.5 MHz LTE Band 26: 814.7 MHz ~ 848.3 MHz LTE Band 26: 814.7 MHz ~ 848.3 MHz LTE Band 38: 2572.5 MHz ~ 2617.5 MHz LTE Band 41: 2498.5 MHz ~ 2687.5 MHz 802.11b/g/n/ac: 2412 MHz ~ 2462 MHz 802.11a/n/ac: 5180 MHz ~ 5240 MHz; 5260 MHz ~ 5320 MHz; 5500 MHz ~ 5580 MHz and 5660 MHz ~ 5700 MHz ; 5745 MHz ~ 5825 MHz Bluetooth: 2402 MHz ~ 2480 MHz NFC : 13.56 MHz
Rx Frequency	GSM850: 869.2 MHz ~ 893.8 MHz GSM1900: 1930.2 MHz ~ 1989.8 MHz WCDMA Band V: 871.4 MHz ~ 891.6 MHz WCDMA Band IV : 2112.4 MHz ~ 2152.6 MHz WCDMA Band II: 1932.4 MHz ~ 1987.6 MHz LTE Band 2: 1930.7 MHz ~ 1989.3 MHz LTE Band 4: 2110.7 MHz ~ 2154.3 MHz LTE Band 5: 869.7 MHz ~ 893.3 MHz LTE Band 5: 869.7 MHz ~ 893.3 MHz LTE Band 7: 2622.5 MHz ~ 2687.5 MHz LTE Band 26: 869.7 MHz ~ 893.3 MHz LTE Band 38: 2572.5 MHz ~ 2617.5 MHz LTE Band 41: 2498.5 MHz ~ 2687.5 MHz 802.11b/g/n/ac: 2412 MHz ~ 2462 MHz 802.11b/g/n/ac: 2412 MHz ~ 2462 MHz 802.11a/n/ac: 5180 MHz ~ 5240 MHz; 5260 MHz ~ 5320 MHz; 5500 MHz ~ 5580 MHz and 5660 MHz ~ 5700 MHz ; 5745 MHz ~ 5825 MHz Bluetooth: 2402 MHz ~ 2480 MHz GNSS : 1559 MHz ~ 1610 MHz (GPS/Glonass/Galileo) NFC : 13.56 MHz FM : 88 MHz ~ 108 MHz

Standards-related Product Specification		
Antenna Type	WWAN : Main : Fixed Internal Antenna Aux. : Fixed Internal Antenna WLAN : Internal antenna Bluetooth : Internal Loop Antenna NFC: Loop Antenna GPS/Glonass/Galileo: Internal Antenna FM : Using earphone as antenna	
Type of Modulation	GSM / GPRS: GMSKEGPRS : GMSK for MCS 0 ~ 4 & 8PSK for MCS5 ~9WCDMA: QPSK (Uplink)HSDPA: 16QAM (Downlink)HSUPA: QPSK (Uplink)LTE: QPSK / 16QAM / 64QAM802.11b: DSSS (BPSK / QPSK / CCK)802.11a/g/n/ac: OFDM (BPSK / QPSK / 16QAM / 64QAM / 256QAM)Bluetooth (1Mbps) : GFSK / Bluetooth 4.0 : GFSKBluetooth EDR (2Mbps) : π /4-DQPSKBluetooth EDR (1Mbps) : GFSK, π /4-DQPSK, 8-DPSKBluetooth EDR (1Mbps) : GFSK, π /4-DQPSK, 8-DPSKFM : FM	

1.4. Test Location

Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code : 1190) and the FCC designation No. TW1093 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC Test.


Test Site	SPORTON INTERNATIONAL INC.	
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978	
Test Site No.	Sporton Site No.	
Test Sile No.	CO05-HY	03CH10-HY

1.5. Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

FCC 47 CFR FCC Part 15 Subpart B ANSI C63.4-2014

Remark: All test items were verified and recorded according to the standards and without any deviation during the test.

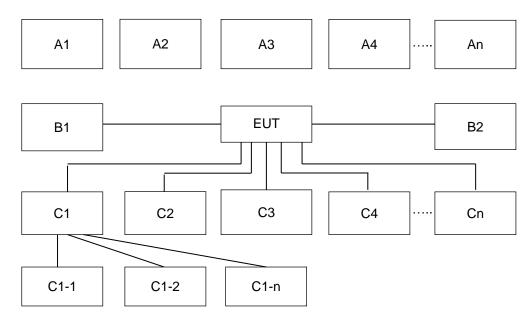
2. Test Configuration of Equipment Under Test

2.1. Test Mode

The EUT has been associated with peripherals pursuant to ANSI C63.4-2014 and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (30MHz to the 5th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower).

Test Items		Function Type
	Mode 1:	GSM850 Idle + Bluetooth Idle + WLAN Idle + MPEG4 + Earphone + USB Cable 1 Type C (Charging from Adapter 1) + Battery < 10% + SIM 1 for Sample 1
	Mode 2:	WCDMA Band V Idle + Bluetooth Idle + WLAN Idle + NFC On + Earphone + USB Cable 2 Type C (Charging from Adapter 2) + Battery 50% + SIM 2 for Sample 1
	Mode 3:	GSM1900 Idle + Bluetooth Idle + WLAN Idle + Camera (Front) + Earphone + USB Cable 3 Type C (Charging from Adapter 1) + Battery >90% + SIM 1 for Sample 1
	Mode 4:	WCDMA Band II Idle + Bluetooth Idle + WLAN Idle + Camera (Back) + Earphone + USB Cable 1 Type C (Charging from Adapter 2) + Battery < 10% + SIM 1 for Sample 1
	Mode 5:	WCDMA Band II Idle + Bluetooth Idle + WLAN Link + Wireless Display + Earphone + USB Cable 2 Type C (Charging from Adapter 1) + Battery 50% + SIM 1 for Sample 1
AC Conducted Emission	Mode 6:	WCDMA Band V Idle + Bluetooth Idle + WLAN Idle + NFC On + Earphone + USB Cable 2 Type C (Charging from Adapter 2) + Battery 50% for Sample 2
	Mode 7:	FM Rx (88 MHz) + Earphone + USB Cable 1 Type C (Charging from Adapter 1) for Sample 1
	Mode 8:	FM Rx (98 MHz) + Earphone + USB Cable 2 Type C (Charging from Adapter 2) for Sample 1
	Mode 9:	FM Rx (108 MHz) + Earphone + USB Cable 3 Type C (Charging from Adapter 1) for Sample 1
	Mode 10	: FM Rx (88 MHz) + Earphone + USB Cable 1 Type C (Charging from Adapter 1) for Sample 2
	Mode 11	: GSM850 Idle + Bluetooth Idle + WLAN Idle + Earphone + USB Cable 1 Type C (Data Link with Notebook) + SIM 1 for Sample 1
	Mode 12	: WCDMA Band V Idle + Bluetooth Idle + WLAN Idle + Earphone + USB Cable 2 Type C (Data Link with Notebook) + SIM 2 for Sample 1
	Mode 13	: GSM1900 Idle + Bluetooth Idle + WLAN Idle + Earphone + USB Cable 3 Type C (Data Link with Notebook) + SIM 1 for Sample 1
	Mode 14	: GSM850 Idle + Bluetooth Idle + WLAN Idle + Earphone + USB Cable 1 Type C (Data Link with Notebook) for Sample 2


Test Items		Function Type
	Mode 1:	GSM850 Idle + Bluetooth Idle + WLAN Idle + MPEG4 + Earphone + USB Cable 1 Type C (Charging from Adapter 1) + Battery < 10% + SIM 1 for Sample 1
	Mode 2:	WCDMA Band V Idle + Bluetooth Idle + WLAN Idle + NFC On + Earphone + USB Cable 2 Type C (Charging from Adapter 2) + Battery 50% + SIM 2 for Sample 1
	Mode 3:	GSM1900 Idle + Bluetooth Idle + WLAN Idle + Camera (Front) + Earphone + USB Cable 3 Type C (Charging from Adapter 1) + Battery >90% + SIM 1 for Sample 1
	Mode 4:	WCDMA Band II Idle + Bluetooth Idle + WLAN Idle + Camera (Back) + Earphone + USB Cable 1 Type C (Charging from Adapter 2) + Battery < 10% + SIM 1 for Sample 1
	Mode 5:	WCDMA Band II Idle + Bluetooth Idle + WLAN Link + Wireless Display + Earphone + USB Cable 2 Type C (Charging from Adapter 1) + Battery 50% + SIM 1 for Sample 1
Radiated	Mode 6:	WCDMA Band II Idle + Bluetooth Idle + WLAN Idle + Wireless Display + Earphone + USB Cable 2 Type C (Charging from Adapter 1) + Battery 50% for Sample 2
Emissions	Mode 7:	FM Rx (88 MHz) + Earphone + USB Cable 1 Type C (Charging from Adapter 1) + Battery <10% for Sample 1
	Mode 8:	FM Rx (98 MHz) + Earphone + USB Cable 2 Type C (Charging from Adapter 2) + Battery 50% for Sample 1
	Mode 9:	FM Rx (108 MHz) + Earphone + USB Cable 3 Type C (Charging from Adapter 1) + Battery >90% for Sample 1
	Mode 10	: FM Rx (88 MHz) + Earphone + USB Cable 1 Type C (Charging from Adapter 1) + Battery <10% for Sample 2
	Mode 11	: GSM850 Idle + Bluetooth Idle + WLAN Idle + Earphone + USB Cable 1 Type C (Data Link with Notebook) + Battery<10% + SIM 1 for Sample 1
	Mode 12	WCDMA Band V Idle + Bluetooth Idle + WLAN Idle + Earphone + USB Cable 2 Type C (Data Link with Notebook) + Battery 50% + SIM 2 for Sample 1
	Mode 13	: GSM1900 Idle + Bluetooth Idle + WLAN Idle + Earphone + USB Cable 3 Type C (Data Link with Notebook) + Battery> 90% + SIM 1 for Sample 1
	Mode 14	: GSM850 Idle + Bluetooth Idle + WLAN Idle + Earphone + USB Cable 1

The worst case of RE is mode 7; only the test data of this mode was reported.

3. Data Linking with Notebook means data application transferred mode between EUT and Notebook.

2.2. Connection Diagram of Test System

	Conduction Test Setup									
Na		Common tions Terms			Те	est Mo	de			
No.	Wireless Station	Connection Type	1	2	3	4	5	6	7	
A1	BT Earphone	Bluetooth	Х	Х	Х	Х	Х	Х		
A2	System Simulator	GSM/UMTS/CDMA/ WCDMA/LTE	x	Х	x	x	Х	x	х	
A3	AP router	WiFi	Х	Х	Х	Х	Х	Х		
A4	Wireless Display	Wireless WiFi					Х			
A5	Notebook	WiFi					Х			
No.	Power Source	Connection Type	1	2	3	4	5	6	7	
B1	AC : 120V/60Hz	AC Power Cable	Х	Х	Х	Х	Х	Х	Х	
No.	Setup Peripherals	Connection Type	1	2	3	4	5	6	7	
C1	Notebook	USB Cable								
C1-1	IPod	USB Cable to C1								
C1-2	Notebook	RJ-45 Cable to C1								
C1-3	AP router	RJ-45 Cable to C1								
C1	Earphone	Earphone jack	Х	Х	Х	Х	Х	Х	Х	
C2	SD card	SD I/O interface without Cable	X	Х	x	X	х	x	х	

	Conduction Test Setup									
No	Witeless Station	Connection Type			Те	st Mo	de			
NO.	No. Wireless Station Connection Type		8	9	10	11	12	13	14	
A1	BT Earphone	Bluetooth				Х	Х	Х	Х	
A2	System Simulator	GSM/UMTS/CDMA/ WCDMA/LTE/FM	Х	х	x	x	х	x	х	
A3	AP router	WiFi				Х	Х	Х	Х	
A4	Wireless Display	Wireless WiFi								
A5	Notebook	WiFi								
No.	Power Source	Connection Type	8	9	10	11	12	13	14	
B1	AC : 120V/60Hz	AC Power Cable	Х	Х	X					
No.	Setup Peripherals	Connection Type	8	9	10	11	12	13	14	
C1	Notebook	USB Cable				Х	Х	Х	Х	
C1-1	IPod	USB Cable to C1				Х	Х	Х	Х	
C1-2	Notebook	RJ-45 Cable to C1				Х	Х	Х	Х	
C1-3	AP router	RJ-45 Cable to C1				Х	Х	Х	Х	
C2	Earphone	Earphone jack	Х	Х	Х					
C3	SD card	SD I/O interface without Cable	x	x	x					

2.3. Support Unit used in test configuration and system

ltem	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	Anritsu	MT8820C	N/A	N/A	Unshielded, 1.8 m
2.	System Simulator	R&S	CMU 200	N/A	N/A	Unshielded, 1.8 m
3.	Bluetooth Earphone	Sony Ericsson	MW600	PY7DDA-2029	N/A	N/A
4.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded, 1.8 m
5.	LCD Monitor	DELL	U2410	FCC DoC	Shielded, 1.6 m	Unshielded, 1.8 m
6.	iPod	Apple	A1285	FCC DoC	Shielded, 1.0 m	N/A
7.	Wireless Display	Google	N/A	N/A	N/A	N/A
8.	Notebook	DELL	Latitude E6320	FCC DoC/ Contains FCC ID: QDS-BRCM1054	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
9.	Notebook	DELL	Latitude 5480	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
10.	SD Card	Transcend	MicroSD HC	FCC DoC	N/A	N/A
11.	SD Card	SanDisk	MicroSD HC	FCC DoC	N/A	N/A

2.4. EUT Operation Test Setup

The EUT was in GSM or WCDMA idle mode during the testing. The EUT was synchronized with the BCCH, and had been continuous receiving mode by setting paging reorganization of the system simulator.

At the same time, the EUT was attached to the Bluetooth earphone or WLAN AP, and the following programs installed in the EUT were programmed during the test:

- 1. Data application is transferred between Laptop and EUT via USB cable.
- 2. Execute "Video player" to play MPEG4 files.
- 3. Turn on camera to capture images.
- 4. Turn on NFC function.
- 5. Turn on FM function.
- 6. Picture synchronization on LCD Monitor via Wireless Display.
- 7. EUT links with Notebook and executes ping.

3. Test Result

3.1. Test of AC Conducted Emission Measurement

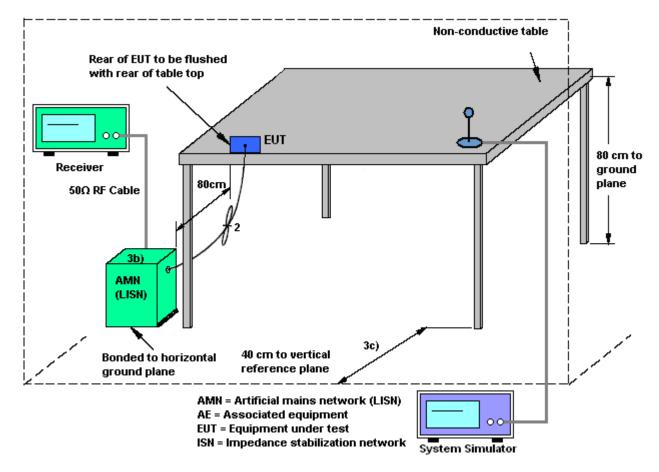
3.1.1 Limits of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission	Conducted limit (dBuV)					
(MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				

*Decreases with the logarithm of the frequency.

3.1.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.1.3 Test Procedure

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.1.4 Test Setup

3.1.5 Test Result of AC Conducted Emission

Please refer to Appendix A.

TEL : 886-3-327-3456	Page Number	: 16 of 21
FAX : 886-3-328-4978	Issued Date	: Oct. 22, 2018
Report Template No.: BU5-FD15B Version 2.0	Report Version	: 01

3.2. Test of Radiated Emission Measurement

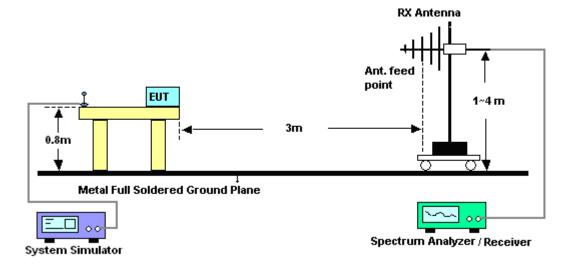
3.2.1. Limit of Radiated Emission

The emissions from an unintentional radiator shall not exceed the field strength levels specified in the following table:

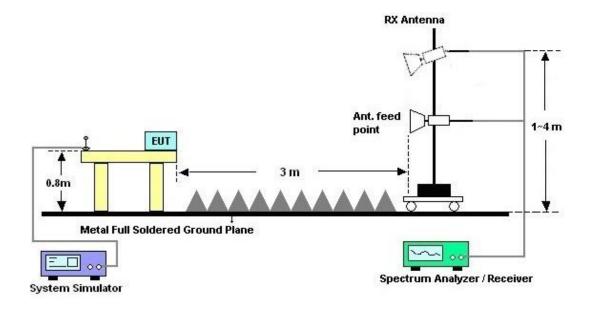
Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.2.2. Measuring Instruments

Refer a test equipment and calibration data table in this test report.


3.2.3. Test Procedures

- 1. The EUT was placed on a turntable with 0.8 meter above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. The table was rotated 360 degrees to determine the position of the highest radiation.
- 4. The antenna is a Bi-Log antenna and its height is adjusted between one to four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.
- 5. For each suspected emission, the EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
- Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode (RBW=120kHz/VBW=300kHz for frequency below 1GHz; RBW=1MHz VBW=3MHz (Peak), RBW=1MHz/VBW=10Hz (Average) for frequency above 1GHz).
- 7. If the emission level of the EUT in peak mode was 3 dB lower than the limit specified, peak values of EUT will be reported. Otherwise, the emission will be repeated by using the quasi-peak method and reported.
- 8. Emission level (dB μ V/m) = 20 log Emission level (μ V/m)
- 9. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level



3.2.4. Test Setup of Radiated Emission

For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz

3.2.5. Test Result of Radiated Emission

Please refer to Appendix B.

4. List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Sep. 18, 2018~ Sep. 26, 2018	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102388	9KHz~3.6GHz	Dec. 08, 2017	Sep. 18, 2018~ Sep. 26, 2018	Dec. 07, 2018	Conduction (CO05-HY)
Hygrometer	Testo	608-H1	34913912	N/A	Mar. 06, 2018	Sep. 18, 2018~ Sep. 26, 2018	Mar. 05, 2019	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Nov. 30, 2017	Sep. 18, 2018~ Sep. 26, 2018	Nov. 29, 2018	Conduction (CO05-HY)
Software	Rohde & Schwarz	EMC32 V10.30	N/A	N/A	N/A	Sep. 18, 2018~ Sep. 26, 2018	N/A	Conduction (CO05-HY)
LF Cable	HUBER + SUHNER	RG-214/U	LF01	N/A	Jan. 03, 2018	Sep. 18, 2018~ Sep. 26, 2018	Jan. 02, 2019	Conduction (CO05-HY)
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100851	N/A	Jan. 03, 2018	Sep. 18, 2018~ Sep. 26, 2018	Jan. 02, 2019	Conduction (CO05-HY)
Amplifier	SONOMA	310N	187311	9kHz~1GHz	Oct. 19, 2017	Sep. 27, 2018~ Sep. 29, 2018	Oct. 18, 2018	Radiation (03CH10-HY)
Bilog Antenna	TESEQ	CBL 6111D&00800 N1D01N-06	35413&02	30MHz~1GHz	Dec. 18, 2017	Sep. 27, 2018~ Sep. 29, 2018	Dec. 17, 2018	Radiation (03CH10-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-152 2	1GHz ~ 18GHz	Sep. 07, 2018	Sep. 27, 2018~ Sep. 29, 2018	Sep. 06, 2019	Radiation (03CH10-HY)
Hygrometer	TECPEL	DTM-303B	TP140320	N/A	Oct. 12, 2017	Sep. 27, 2018~ Sep. 29, 2018	Oct. 11, 2018	Radiation (03CH10-HY)
Preamplifier	Keysight	83017A	MY532700 78	1GHz~26.5GHz	Oct. 25, 2017	Sep. 27, 2018~ Sep. 29, 2018	Oct. 24, 2018	Radiation (03CH10-HY)
Spectrum Analyzer	Keysight	N9010A	MY542004 85	10Hz ~ 44GHz	Oct. 31, 2017	Sep. 27, 2018~ Sep. 29, 2018	Oct. 30, 2018	Radiation (03CH10-HY)
Preamplifier	Jet-Power	JAP00101800 -30-10P	160118550 004	1GHz~18GHz	Apr. 17, 2018	Sep. 27, 2018~ Sep. 29, 2018	Apr. 16, 2019	Radiation (03CH10-HY)

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Controller	EMEC	EM 1000	N/A	Control Turn table & Ant Mast	N/A	Sep. 27, 2018~ Sep. 29, 2018	N/A	Radiation (03CH10-HY)
Antenna Mast	EMEC	AM-BS-4500- B	N/A	1~4m	N/A	Sep. 27, 2018~ Sep. 29, 2018	N/A	Radiation (03CH10-HY)
Turn Table	EMEC	TT 2200	N/A	0~360 Degree	N/A	Sep. 27, 2018~ Sep. 29, 2018	N/A	Radiation (03CH10-HY)
Software	Audix	E3 6.2009-8-24	RK-00104 2	N/A	N/A	Sep. 27, 2018~ Sep. 29, 2018	N/A	Radiation (03CH10-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104 / 102	MY11692/ 4PE, MY11693/ 4PE, MY2855/2	30M-1G	Nov. 14, 2017	Sep. 27, 2018~ Sep. 29, 2018	Nov. 13, 2018	Radiation (03CH10-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104 / 102	MY11692/ 4PE, MY11693/ 4PE, MY2855/2	1G-18G	Nov. 14, 2017	Sep. 27, 2018~ Sep. 29, 2018	Nov. 13, 2018	Radiation (03CH10-HY)
EMI Test Receiver	Agilent	N9038A (MXE)	MY532900 53	20Hz to 26.5GHz	Jan. 16, 2018	Sep. 27, 2018~ Sep. 29, 2018	Jan. 15, 2019	Radiation (03CH10-HY)

5. Uncertainty of Evaluation

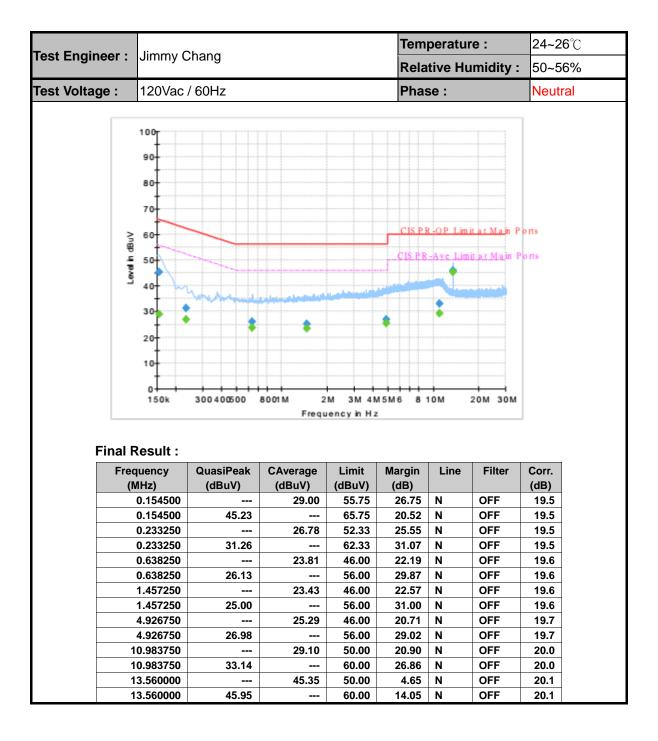
Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2 20
of 95% (U = 2Uc(y))	2.20

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

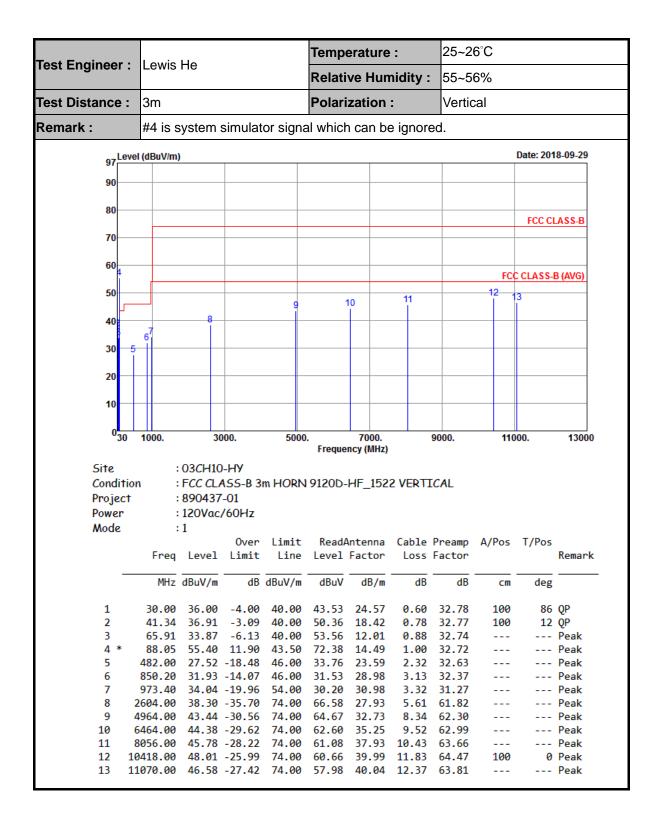
Measuring Uncertainty for a Level of Confidence	5.70
of 95% (U = 2Uc(y))	5.70

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)


Measuring Uncertainty for a Level of Confidence	5.50
of 95% (U = 2Uc(y))	5.50

Appendix A. AC Conducted Emission Test Results

Engineer (limmy	bong			Tem	peratu		24~26°(
Engineer :	Jimmy C				Rela	tive Hu	umidity	: 50~56%
/oltage :	120Vac	/ 60Hz			Phas	se :		Line
	100- 90-							
	80-							
Ş	60				CISP	R-OP Lin	<u>n it at Ma</u> in	P o rts
Level h dBuV	50				CIS P	B-Ave Li	m <u>itat Ma</u> in	Ports
د	40	S-million		and the second				
	20	• •	*		*			
	10							
		300 4 005 00	8001 M	2M 3M 4	M5M6 8	10M	20M 30M	а
	10	300 4 005 00		2M 3M 4 uency in H		10M	20M 30M	и
Final R	10	300 400500				10M	20M 30M	a
Freq	10 0 150k	QuasiPeak	Freq	uency in H Limit	z Margin	10M	20M 30M	Corr.
Freq (M	10 0 150k Result : uency IHz)	QuasiPeak (dBuV)	Freq CAverage (dBuV)	Limit (dBuV)	z Margin (dB)	Line	Filter	Corr. (dB)
Freq (M	10 0 150k	QuasiPeak	Freq	uency in H Limit	z Margin	Line L1	Filter OFF	Corr. (dB) 19.5
Freq (M	10 0 150k Cesult : uency IHz) 0.159000	QuasiPeak (dBuV) 	Freq CAverage (dBuV) 28.19	Limit (dBuV) 55.52	z Margin (dB) 27.33 21.99	Line	Filter	Corr. (dB)
Freq (M ()	10 0 150k esult : uency IHz) 0.159000 0.159000	QuasiPeak (dBuV) 43.53	Freq CAverage (dBuV) 28.19 	Limit (dBuV) 55.52 65.52	z Margin (dB) 27.33	Line L1 L1	Filter OFF OFF	Corr. (dB) 19.5 19.5
Freq (M (0) (0) (0)	10 0 150k esult : uency IHz) 0.159000 0.159000 0.233250	QuasiPeak (dBuV) 43.53 	Freq (dBuV) 28.19 26.60	Limit (dBuV) 55.52 65.52 52.33	z Margin (dB) 27.33 21.99 25.73	Line L1 L1 L1	Filter OFF OFF OFF	Corr. (dB) 19.5 19.5 19.5
Freq (M (0) (0) (0) (0) (0) (0)	Cesult : uency Hz) 0.159000 0.233250 0.233250	QuasiPeak (dBuV) 43.53 31.40	Freq (dBuV) 28.19 26.60 	Limit (dBuV) 55.52 65.52 52.33 62.33	z Margin (dB) 27.33 21.99 25.73 30.93	Line L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF	Corr. (dB) 19.5 19.5 19.5 19.5
Freq (M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 0 150k esult : uency Hz) 0.159000 0.233250 0.233250 0.442500	QuasiPeak (dBuV) 43.53 31.40 	Freq (dBuV) 28.19 26.60 24.51	Limit (dBuV) 55.52 65.52 52.33 62.33 47.02	z Margin (dB) 27.33 21.99 25.73 30.93 22.51	Line L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF	Corr. (dB) 19.5 19.5 19.5 19.5 19.5 19.5
Freq (M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 0 150k eesult : uency Hz) 0.159000 0.233250 0.233250 0.442500 0.442500	QuasiPeak (dBuV) 43.53 31.40 27.39	Freq (dBuV) 28.19 26.60 24.51 	Limit (dBuV) 55.52 65.52 52.33 62.33 47.02 57.02	Z Margin (dB) 27.33 21.99 25.73 30.93 22.51 29.63 23.04 31.48	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF OFF OFF	Corr. (dB) 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.6 19.6
Freq (M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 0 150k aesult : uency Hz) 0.159000 0.233250 0.233250 0.442500 0.442500 0.888000	QuasiPeak (dBuV) 43.53 31.40 27.39 	Freq (dBuV) 28.19 26.60 24.51 22.96	Limit (dBuV) 55.52 65.52 52.33 62.33 47.02 57.02 46.00	z Margin (dB) 27.33 21.99 25.73 30.93 22.51 29.63 23.04	Line L1 L1 L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF OFF	Corr. (dB) 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5
Freq (M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 0 150k aesult : uency Hz) 0.159000 0.233250 0.233250 0.442500 0.442500 0.888000 0.888000	QuasiPeak (dBuV) 43.53 31.40 27.39 24.52	Freq (dBuV) 28.19 26.60 24.51 22.96 	Limit (dBuV) 55.52 65.52 52.33 62.33 47.02 57.02 46.00 56.00 50.00 60.00	Z Margin (dB) 27.33 21.99 25.73 30.93 22.51 29.63 23.04 31.48	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF OFF OFF	Corr. (dB) 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.6 19.6
Freq (M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	aesult : uency Hz) 0.159000 0.233250 0.442500 0.442500 0.888000 0.888000 5.070750	QuasiPeak (dBuV) 43.53 31.40 27.39 24.52 	Freq (dBuV) 28.19 26.60 24.51 22.96 22.96	Limit (dBuV) 55.52 65.52 52.33 62.33 47.02 57.02 46.00 56.00 50.00	z Margin (dB) 27.33 21.99 25.73 30.93 22.51 29.63 23.04 31.48 24.12	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF OFF OFF OFF	Corr. (dB) 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.6 19.6 19.7
Freq (M (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)	aesult : uency Hz) 0.159000 0.233250 0.442500 0.442500 0.442500 0.888000 0.888000 5.070750 5.070750	QuasiPeak (dBuV) 43.53 31.40 27.39 24.52 28.26	Freq (dBuV) 28.19 26.60 24.51 22.96 25.88 	Limit (dBuV) 55.52 65.52 52.33 62.33 47.02 57.02 46.00 56.00 50.00 60.00	Z Margin (dB) 27.33 21.99 25.73 30.93 22.51 29.63 23.04 31.48 24.12 31.74	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF OFF OFF OFF OFF	Corr. (dB) 19.5 19.5 19.5 19.5 19.5 19.5 19.6 19.6 19.7 19.7
Freq (M (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)	aesult : uency IHz) 0.159000 0.159000 0.233250 0.442500 0.442500 0.888000 0.888000 0.888000 5.070750 5.070750 0.686750	QuasiPeak (dBuV) 43.53 31.40 27.39 24.52 28.26 	Freq (dBuV) 28.19 26.60 24.51 22.96 25.88 25.88 29.48	Limit (dBuV) 55.52 65.52 52.33 62.33 47.02 57.02 46.00 56.00 50.00 60.00 50.00	z Margin (dB) 27.33 21.99 25.73 30.93 22.51 29.63 23.04 31.48 24.12 31.74 20.52	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	Corr. (dB) 19.5 19.5 19.5 19.5 19.5 19.5 19.6 19.6 19.7 19.7 19.9



Appendix B. Radiated Emission Test Result

Test Engineer :		Цо			Temp	erature	:	25~2	6°C			
rest Engineer .	Lewis					Relative Humidity : Polarization :			55~56% Horizontal			
Test Distance :	3m											
Remark :	#3 is s	#3 is system simulator signal which can be ignored.										
97	vel (dBuV/m)									Date: 201	8-09-29	
90												
80										FCC CI	ASS-B	
70										100 01		
60 3									FCI	CCLASS-I		
50									12		5 (113)	
				9		10 U	11		Ĩ	13		
40	-											
30	6											
30												
20												
10												
10 0 ₃₀	1000.	30	000.	5000		7000. ncy (MHz)		9000.	110	000.	13000	
030				5000				9000.	110	000.	13000	
	:	03CH10)-НУ	5000 m HORN	Freque	ncy (MHz)				000.	13000	
0 ₃₀ Site Conditi Project	: on :	03CH10)-НУ 455-В 3		Freque	ncy (MHz)				000.	13000	
0 ₃₀ Site Conditio Project Power	: on : :	03CH10 FCC CL/ 890437 120Vac,)-HY 455-B 3 '-01		Freque	ncy (MHz)				000.	13000	
0 ₃₀ Site Conditi Project	: on : :	03CH10 FCC CL/ 890437)-HY 455-B 3 7-01 /60Hz	m HORN	Freque 9120D-	ncy (MHz) HF_152	2 HORI	ZONTAL	-		13000	
0 ₃₀ Site Conditio Project Power	: on : : :	03CH10 FCC CL/ 890437 120Vac, 1	0-HY 455-B3 7-01 /60Hz 0ver	m HORN Limit	Freque 9120D- ReadA	ncy (MHz) HF_152 Intenna	2 HORI	ZONTAL Preamp	-		13000 Remark	
0 ₃₀ Site Conditio Project Power	on : : : : : : : : :	03CH10 FCC CL/ 890437 120Vac, 1 Level)-HY ASS-B3 7-01 /60Hz Over Limit	m HORN Limit Line	Freque 9120D- ReadA Level	ncy (MHz) HF_152 Intenna Factor	2 HORI Cable Loss	ZONTAL Preamp Factor	-			
0 ₃₀ Site Conditio Project Power	on : : : : : : : : :	03CH10 FCC CL/ 890437 120Vac, 1)-HY ASS-B3 7-01 /60Hz Over Limit	m HORN Limit	Freque 9120D- ReadA	ncy (MHz) HF_152 Intenna	2 HORI Cable	ZONTAL Preamp	-			
0 ₃₀ Site Conditio Project Power	on : : : : : : : : : : : : : : : : : : :	03CH10 FCC CL/ 890437 120Vac, 1 Level dBuV/m)-HY ASS-B3 -01 /60Hz Over Limit 	m HORN Limit Line	Freque 9120D- ReadA Level dBuV	ncy (MHz) HF_152 Intenna Factor	2 HORI Cable Loss dB	ZONTAL Preamp Factor	A/Pos	T/Pos deg		
0 ₃₀ Site Conditio Project Power Mode	on : : : : : : : : : : : : : : : : : : :	03CH10 FCC CL/ 890437 120Vac, 1 Level dBuV/m 25.13	0-HY 455-B3 -01 /60Hz 0ver Limit 	m HORN Limit Line dBuV/m	Freque 9120D- Read/ Level dBuV 33.64	HF_152 HF_152 Intenna Factor dB/m 23.58	2 HORT	ZONTAL Preamp Factor dB	A/Pos	T/Pos deg	Remark	
0 ₃₀ Site Conditio Project Power Mode 1 2 3 *	on : : : : : : : : : : : : : : : : : : :	03CH10 FCC CL/ 890437 120Vac, 1 Level dBuV/m 25.13 29.28 54.80	0-HY 455-B3 -01 /60Hz 0ver Limit -14.87 -10.72 11.30	m HORN Limit Line dBuV/m 40.00 40.00 43.50	Freque 9120D- Read/ Level dBuV 33.64 48.86 71.78	HF_152 HF_152 Intenna Factor dB/m 23.58 12.12 14.49	2 HORI Cable Loss dB 0.60 0.88 1.00	2ONTAL Preamp Factor dB 32.77 32.74 32.72	A/Pos 100 	T/Pos 	Remark Peak Peak Peak	
0 ₃₀ Site Conditio Project Power Mode 1 2 3 * 4	on : : : : : : : : : : : : : : : : : : :	03CH10 FCC CL/ 890437 120Vac, 1 Level dBuV/m 25.13 29.28 54.80 28.40	0-HY 455-B3 -01 /60Hz 0ver Limit -14.87 -10.72 11.30 -15.10	m HORN Limit Line dBuV/m 40.00 43.50 43.50	Freque 9120D- Read/ Level dBuV 33.64 48.86 71.78 44.36	HF_152 HF_152 Intenna Factor dB/m 23.58 12.12 14.49 15.46	2 HORI Cable Loss dB 0.60 0.88 1.00 1.05	ZONTAL Preamp Factor dB 32.77 32.74 32.72 32.71	A/Pos cm 100 	T/Pos deg 0 	Remark Peak Peak Peak Peak	
0 ₃₀ Site Conditio Project Power Mode 1 2 3 * 4 5	on : : : : : : : : : : : : : : : : : : :	03CH10 FCC CL/ 890437 120Vac, 1 Level dBuV/m 25.13 29.28 54.80 28.40 28.31	0-HY ASS-B 3 -01 /60Hz Uver Limit -14.87 -10.72 11.30 -15.10 -17.69	m HORN Limit Line dBuV/m 40.00 40.00 43.50 43.50 46.00	Freque 9120D- Read/ Level dBuV 33.64 48.86 71.78 44.36 38.44	HF_152 HF_152 Intenna Factor 0B/m 23.58 12.12 14.49 15.46 20.13	2 HORI Cable Loss dB 0.60 0.88 1.00 1.05 1.92	ZONTAL Preamp Factor dB 32.77 32.74 32.72 32.71 32.59	A/Pos 100 	T/Pos deg 0 	Remark Peak Peak Peak Peak Peak Peak	
0 ₃₀ Site Conditio Project Power Mode 1 2 3 * 4	on : : : : : : : : : : : : : : : : : : :	03CH10 FCC CL/ 890437 120Vac, 1 Level dBuV/m 25.13 29.28 54.80 28.40 28.31 31.47	0-HY 455-B3 -01 /60Hz 0ver Limit -14.87 -10.72 11.30 -15.10	m HORN Limit Line dBuV/m 40.00 40.00 43.50 43.50 43.50 46.00	Freque 9120D- Read/ Level dBuV 33.64 48.86 71.78 44.36	HF_152 HF_152 Intenna Factor 0B/m 23.58 12.12 14.49 15.46 20.13	2 HORI Cable Loss dB 0.60 0.88 1.00 1.05	ZONTAL Preamp Factor dB 32.77 32.74 32.72 32.71	A/Pos cm 100 	T/Pos deg 0 	Remark Peak Peak Peak Peak	
030 Site Conditio Project Power Mode 1 2 3 * 4 5 6 7 8	on : : : : : : : : : : : : : : : : : : :	03CH10 FCC CL/ 890437 120Vac, 1 Level dBuV/m 25.13 29.28 54.80 28.40 28.31 31.47 34.16 38.76	0-HY ASS-B 3 -01 /60Hz 0ver Limit -14.87 -10.72 11.30 -15.10 -17.69 -14.53 -19.84 -35.24	m HORN Limit Line dBuV/m 40.00 40.00 43.50 43.50 43.50 46.00 54.00 54.00 74.00	Freque 9120D- Read/ Level dBuV 33.64 48.86 71.78 44.36 38.44 31.24 30.32 66.30	HF_152 HF_152 ntenna Factor dB/m 23.58 12.12 14.49 15.46 20.13 28.88 31.10 28.42	2 HORT Cable Loss dB 0.60 0.88 1.00 1.05 1.92 3.09 3.32 5.91	Preamp Factor dB 32.77 32.74 32.72 32.71 32.59 32.40 31.39 61.87	A/Pos cm 100 	T/Pos deg 0 	Remark Peak Peak Peak Peak Peak Peak Peak Pea	
030 Site Conditio Project Power Mode 1 2 3 * 4 5 6 7 8 9	on : : : : : : : : : : : : : : : : : : :	03CH10 FCC CL/ 890437 120Vac, 1 Level 25.13 29.28 54.80 28.40 28.31 31.47 34.16 38.76 42.34	0-HY ASS-B 3 -01 /60Hz 0ver Limit -14.87 -10.72 11.30 -15.10 -17.69 -14.53 -19.84 -35.24 -31.66	m HORN Limit Line dBuV/m 40.00 40.00 43.50 43.50 43.50 46.00 54.00 74.00 74.00	Freque 9120D- Read/ Level dBuV 33.64 48.86 71.78 44.36 38.44 31.24 30.32 66.30 63.79	HF_152 HF_152 ntenna Factor dB/m 23.58 12.12 14.49 15.46 20.13 28.88 31.10 28.42 32.43	2 HORT Cable Loss dB 0.60 0.88 1.00 1.05 1.92 3.09 3.32 5.91 8.42	Preamp Factor dB 32.77 32.74 32.72 32.71 32.59 32.40 31.39 61.87 62.30	A/Pos cm 100 	T/Pos deg 0 	Remark Peak Peak Peak Peak Peak Peak Peak Pea	
030 Site Conditio Project Power Mode 1 2 3 * 4 5 6 7 8 9 10	on : : : : : : : : : : : : : : : : : : :	03CH10 FCC CL/ 890437 120Vac, 1 Level 25.13 29.28 54.80 28.40 28.31 31.47 34.16 38.76 42.34 45.23	0-HY ASS-B 3 -01 /60Hz 0ver Limit -14.87 -10.72 11.30 -15.10 -17.69 -14.53 -19.84 -35.24 -31.66 -28.77	m HORN Limit Line dBuV/m 40.00 40.00 43.50 43.50 43.50 46.00 54.00 74.00 74.00 74.00	Freque 9120D- Read/ Level dBuV 33.64 48.86 71.78 44.36 38.44 31.24 30.32 66.30 63.79 62.48	HF_152 HF_152 ntenna Factor dB/m 23.58 12.12 14.49 15.46 20.13 28.88 31.10 28.42 32.43 36.64	2 HORT Cable Loss dB 0.60 0.88 1.00 1.05 1.92 3.09 3.32 5.91 8.42 9.64	Preamp Factor dB 32.77 32.74 32.72 32.71 32.59 32.40 31.39 61.87 62.30 63.53	A/Pos cm 100 	T/Pos deg 0 	Remark Peak Peak Peak Peak Peak Peak Peak Pea	
030 Site Conditio Project Power Mode 1 2 3 * 4 5 6 7 8 9 10 11	on : : : : : : : : : : : : : : : : : : :	03CH10 FCC CL/ 890437 120Vac, 1 Level dBuV/m 25.13 29.28 54.80 28.30 28.40 28.31 31.47 34.16 38.76 42.34 45.23 45.63	0-HY ASS-B 3 -01 /60Hz 0ver Limit -14.87 -10.72 11.30 -15.10 -17.69 -14.53 -19.84 -35.24 -31.66	m HORN Limit Line dBuV/m 40.00 40.00 43.50 43.50 43.50 46.00 54.00 74.00 74.00 74.00	Freque 9120D- Read/ Level dBuV 33.64 48.86 71.78 44.36 38.44 31.24 30.32 66.30 63.79 62.48 60.89	HF_152 HF_152 ntenna Factor dB/m 23.58 12.12 14.49 15.46 20.13 28.88 31.10 28.42 32.43	2 HORT Cable Loss dB 0.60 0.88 1.00 1.05 1.92 3.09 3.32 5.91 8.42 9.64 10.38	Preamp Factor dB 32.77 32.74 32.72 32.71 32.59 32.40 31.39 61.87 62.30	A/Pos cm 100 	T/Pos deg 0 	Remark Peak Peak Peak Peak Peak Peak Peak Pea	

