

Report No. : FC890437

FCC TEST REPORT

FCC ID	:	IHDT56XN2
Equipment	:	Mobile Cellular Phone
Brand Name	:	Motorola
Model Name	:	XT1965-2
Applicant	:	Motorola Mobility LLC
		222 W,Merchandise Mart Plaza, Chicago IL 60654 USA
Manufacturer	:	Motorola Mobility LLC
		222 W,Merchandise Mart Plaza, Chicago IL 60654 USA
Standard	:	FCC 47 CFR FCC Part 15 Subpart B

The product was received on Sep. 04, 2018 and testing was started from Sep. 11, 2018 and completed on Sep. 29, 2018. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures given in ANSI C63.4-2014 and has been in compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

6nes/sau

Approved by: Jones Tsai SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

Table of Contents

His	tory o	f this test report	.3
Sur	nmary	v of Test Result	.4
1.	Gene	ral Description	.5
	1.1. 1.2. 1.3. 1.4. 1.5.	Product Feature of Equipment Under Test Modification of EUT Product Specification of Equipment Under Test Test Location Applicable Standards	6 7 9
2.	Test	Configuration of Equipment Under Test	10
	2.1. 2.2. 2.3. 2.4.	Test Mode Connection Diagram of Test System Support Unit used in test configuration and system EUT Operation Test Setup	12 13
3.	Test	Result	15
	3.1. 3.2.	Test of AC Conducted Emission Measurement Test of Radiated Emission Measurement	17
4.	List o	f Measuring Equipment	19
5.	Unce	rtainty of Evaluation	21
Apj	oendix	A. AC Conducted Emission Test Result	

Appendix B. Radiated Emission Test Result

History of this test report

Report No.	Version	Description	Issued Date
FC890437	01	Initial issue of report	Oct. 04, 2018

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.107	AC Conducted Emission	Pass	Under limit 5.95 dB at 0.483 MHz
3.2	15.109	Radiated Emission	Pass	Under limit 3.02 dB at 30.270 MHz for Quasi-Peak

Reviewed by: Louis Wu Report Producer: Wii Chang

1. General Description

1.1. Product Feature of Equipment Under Test

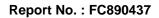
	Product Featu	ire	
Equipment	Mobile Cellula	r Phone	
Brand Name	Motorola		
Model Name	XT1965-2		
Sample 1	Dual SIM		
Sample 2	Single SIM		
FCC ID	IHDT56XN2		
		IMEI 1: 355577090033497	
	Conducted :	IMEI 2: 355577090033505	
IMEI Code		IMEI: 355576090002700	
INIELCODE		IMEI 1: 355577090033430	
	Radiation :	IMEI 2: 355577090033448	
		IMEI: 355576090002791	
	GSM/EGPRS/	WCDMA/HSPA/LTE/GNSS/NFC/FM	
	WLAN 11b/g/n	/ac HT20/VHT20	
EUT supports Radios application	WLAN 11a/n HT20/HT40		
	WLAN 11ac VHT20/VHT40/VHT80		
	Bluetooth BR/	EDR/LE	
HW Version	DVT1-B		
EUT Stage	Identical Proto	type	

Remark: The above EUT's information was declared by manufacturer.

Accessory List				
	Brand Name : Motorola			
AC Adapter 1	Model Name : SC-31			
	Manufacturer : Salom			
	Brand Name : Motorola			
AC Adapter 1	Model Name : SC-32			
-	Manufacturer : Salom			
	Brand Name : Motorola			
AC Adapter 1	Model Name : SC-37			
-	Manufacturer : Salom			
	Brand Name : Motorola			
AC Adapter 1	Model Name : SC-36			
-	Manufacturer : Salom			
	Brand Name : Motorola			
AC Adapter 1	Model Name : SC-32			
-	Manufacturer : Salom			
	Brand Name : Motorola			
AC Adapter 2	Model Name : SC-31			
-	Manufacturer : Acbel			
	Brand Name : Motorola			
AC Adapter 2	Model Name : SC-32			
-	Manufacturer : Acbel			
	Brand Name : Motorola			
AC Adapter 2	Model Name : SC-36			
-	Manufacturer : Acbel			
	Brand Name : Motorola			
AC Adapter 2	Model Name : SC-37			
-	Manufacturer : Acbel			
	Brand Name : Motorola			
Battery	Model Name : JG40			
-	Manufacturer : Amperex			
	Brand Name : Motorola			
Earphone	Model Name : SH38C37773			
•	Manufacturer : Lyand			
	Brand Name : Cabletech			
USB Cable 1	Model Name : SC18C37155			
	Brand Name : Luxshare			
USB Cable 2	Model Name : SC18C37156			
	Brand Name : Saibao			
USB Cable 3	Model Name : SC18C37157			

1.2. Modification of EUT

No modifications are made to the EUT during all test items.



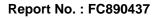
1.3. Product Specification of Equipment Under Test

Standards-related Product Specification			
Tx Frequency	GSM850: 824.2 MHz ~ 848.8 MHz GSM1900: 1850.2 MHz ~ 1909.8 MHz WCDMA Band V: 826.4 MHz ~ 846.6 MHz WCDMA Band IV : 1712.4 MHz ~ 1752.6 MHz WCDMA Band II: 1852.4 MHz ~ 1907.6 MHz LTE Band 2: 1850.7 MHz ~ 1909.3 MHz LTE Band 4: 1710.7 MHz ~ 1754.3 MHz LTE Band 5: 824.7 MHz ~ 848.3 MHz LTE Band 5: 824.7 MHz ~ 848.3 MHz LTE Band 7: 2502.5 MHz ~ 2567.5 MHz LTE Band 12: 699.7 MHz ~ 715.3 MHz LTE Band 12: 699.7 MHz ~ 713.5 MHz LTE Band 66: 1710.7 MHz ~ 1779.3 MHz 802.11b/g/n: 2412 MHz ~ 2462 MHz 802.11a/n: 5180 MHz ~ 5240 MHz; 5260 MHz ~ 5320 MHz; 5500 MHz ~ 5580 MHz and 5660 MHz ~ 5700 MHz ; 5745 MHz ~ 5825 MHz Bluetooth: 2402 MHz ~ 2480 MHz NFC : 13.56 MHz		
Rx Frequency	GSM850: 869.2 MHz ~ 893.8 MHz GSM1900: 1930.2 MHz ~ 1989.8 MHz WCDMA Band V: 871.4 MHz ~ 891.6 MHz WCDMA Band IV : 2112.4 MHz ~ 2152.6 MHz WCDMA Band II: 1932.4 MHz ~ 1987.6 MHz LTE Band 2: 1930.7 MHz ~ 1989.3 MHz LTE Band 4: 2110.7 MHz ~ 2154.3 MHz LTE Band 5: 869.7 MHz ~ 893.3 MHz LTE Band 5: 869.7 MHz ~ 893.3 MHz LTE Band 7: 2622.5 MHz ~ 2687.5 MHz LTE Band 12: 729.7 MHz ~ 745.3 MHz LTE Band 12: 729.7 MHz ~ 743.5 MHz LTE Band 66: 2110.7 MHz ~ 2199.3 MHz 802.11b/g/n: 2412 MHz ~ 2462 MHz 802.11a/n: 5180 MHz ~ 5240 MHz; 5500 MHz ~ 5320 MHz; 5500 MHz ~ 5580 MHz and 5660 MHz ~ 5700 MHz ; 5745 MHz ~ 5825 MHz Bluetooth: 2402 MHz ~ 2480 MHz GNSS : 1559 MHz ~ 1610 MHz (GPS/Glonass/Galileo) NFC : 13.56 MHz FM : 88 MHz ~ 108 MHz		

Product Sp	pecification subjective to this Test Standard
Antenna Type / Gain	WWAN : Main : Fixed Internal Antenna Aux. : Fixed Internal Antenna WLAN : Internal Antenna Bluetooth : Internal Loop Antenna NFC: Loop antenna GPS/Glonass/Galileo: Internal Antenna FM : Using earphone as antenna
Type of Modulation	GSM: GMSK GPRS: GMSK EDGE(MCS 0-4): GMSK / (MCS 5-9): 8PSK WCDMA: QPSK (Uplink) HSDPA: 64QAM (Downlink) HSUPA: QPSK (Uplink) LTE: QPSK / 16QAM / 64QAM 802.11b : DSSS (DBPSK / DQPSK / CCK) 802.11a/g/n: OFDM (BPSK / QPSK / 16QAM / 64QAM) 802.11ac: OFDM (BPSK / QPSK / 16QAM / 64QAM / 256QAM) Bluetooth LE : GFSK Bluetooth (1Mbps): GFSK Bluetooth (2Mbps): π /4-DQPSK Bluetooth (3Mbps): 8-DPSK GNSS: BPSK NFC: ASK FM

1.4. Test Location

Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code : 1190) and the FCC designation No. TW1093 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC Test.


Test Site	SPORTON INTERNATIONAL INC.		
Test Site Location	Vo.52, Huaya 1st Rd., Guishan Dist., ^r aoyuan City, Taiwan (R.O.C.) ^r EL: +886-3-327-3456 ^r AX: +886-3-328-4978		
Test Site No.	Sporton	Site No.	
	CO05-HY	03CH10-HY	

1.5. Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC 47 CFR FCC Part 15 Subpart B
- ANSI C63.4-2014

Remark: All test items were verified and recorded according to the standards and without any deviation during the test.

2. Test Configuration of Equipment Under Test

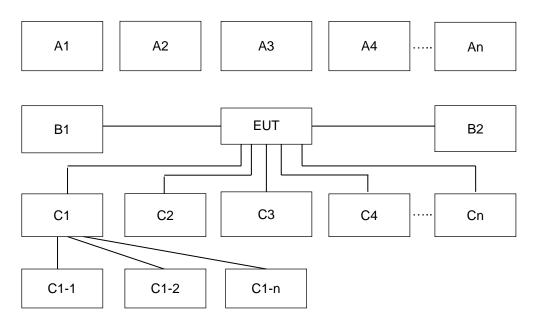
2.1. Test Mode

The EUT has been associated with peripherals pursuant to ANSI C63.4-2014 and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (30MHz to the 5th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower).

Test Items		Function Type				
	Mode 1:	GSM850 Idle + Bluetooth Idle + WLAN Idle + MPEG4 + Earphone + USB Cable 1 Type C (Charging from Adapter 1) + Battery < 10% + SIM 1 for Sample 1				
	Mode 2:	WCDMA Band V Idle + Bluetooth Idle + WLAN Idle + NFC On + Earphone + USB Cable 2 Type C (Charging from Adapter 2) + Battery 50% + SIM 2 for Sample 1				
	Mode 3:	GSM1900 Idle + Bluetooth Idle + WLAN Idle + Camera (Front) + Earphone + USB Cable 3 Type C (Charging from Adapter 1) + Battery > 90% + SIM 1 for Sample 1				
	Mode 4:	WCDMA Band II Idle + Bluetooth Idle + WLAN Idle + Camera (Back) + Earphone + USB Cable 1 Type C (Charging from Adapter 2) + Battery < 10% + SIM 1 for Sample 1				
	Mode 5:	WCDMA Band II Idle + Bluetooth Idle + WLAN Link + Wireless Display + Earphone + USB Cable 2 Type C (Charging from Adapter 1) + Battery 50% + SIM 1 for Sample 1				
AC Conducted Emission Mode	Mode 6:	GSM850 Idle + Bluetooth Idle + WLAN Idle + MPEG4 + Earphone + USB Cable 1 Type C (Charging from Adapter 1) + Battery < 10% for Sample 2				
	Mode 7:	FM Rx (88 MHz) + Earphone + USB Cable 1 Type C (Charging from Adapter 1) + Battery < 10% for Sample 1				
	Mode 8:	FM Rx (98 MHz) + Earphone + USB Cable 2 Type C (Charging from Adapter 2) + Battery 50% for Sample 1				
	Mode 9:	FM Rx (108 MHz) + Earphone + USB Cable 3 Type C (Charging from Adapter 1) + Battery > 90% for Sample 1				
		:FM Rx (108 MHz) + Earphone + USB Cable 3 Type C (Charging from Adapter 1) + Battery > 90% for Sample 2				
		:GSM850 Idle + Bluetooth Idle + WLAN Idle + Earphone + USB Cable 1 Type C (Data Link with Notebook) + Battery < 10% + SIM 1 for Sample 1				
	Mode 12	:WCDMA Band V Idle + Bluetooth Idle + WLAN Idle + Earphone + USB Cable 2 Type C (Data Link with Notebook) + Battery 50% + SIM 2 for Sample 1				
	Mode 13	:GSM1900 Idle + Bluetooth Idle + WLAN Idle + Earphone + USB Cable 3 Type C (Data Link with Notebook) + Battery > 90% + SIM 1 for Sample 1				
	Mode 14	:GSM1900 Idle + Bluetooth Idle + WLAN Idle + Earphone + USB Cable 3 Type C (Data Link with Notebook) + Battery > 90% for Sample 2				

Test Items		Function Type				
	Mode 1:	GSM850 Idle + Bluetooth Idle + WLAN Idle + MPEG4 + Earphone + USB Cable 1 Type C (Charging from Adapter 1) + Battery < 10% + SIM 1 for Sample 1				
	Mode 2:	WCDMA Band V Idle + Bluetooth Idle + WLAN Idle + NFC On + Earphone + USB Cable 2 Type C (Charging from Adapter 2) + Battery 50% + SIM 2 for Sample 1				
	Mode 3:	GSM1900 Idle + Bluetooth Idle + WLAN Idle + Camera (Front) + Earphone + USB Cable 3 Type C (Charging from Adapter 1) + Battery > 90% + SIM 1 for Sample 1				
	Mode 4:	WCDMA Band II Idle + Bluetooth Idle + WLAN Idle + Camera (Back) + Earphone + USB Cable 1 Type C (Charging from Adapter 2) + Battery < 10% + SIM 1 for Sample 1				
	Mode 5:	WCDMA Band II Idle + Bluetooth Idle + WLAN Link + Wireless Display + Earphone + USB Cable 2 Type C (Charging from Adapter 1) + Battery 50% + SIM 1 for Sample 1				
Radiated	Mode 6:	WCDMA Band II Idle + Bluetooth Idle + WLAN Link + Wireless Display + Earphone + USB Cable 2 Type C (Charging from Adapter 1) + Battery 50% for Sample 2				
	Mode 7:	FM Rx (88 MHz) + Earphone + USB Cable 1 Type C (Charging from Adapter 1) + Battery < 10% for Sample 1				
	Mode 8:	FM Rx (98 MHz) + Earphone + USB Cable 2 Type C (Charging from Adapter 2) + Battery 50% for Sample 1				
	Mode 9:	FM Rx (108 MHz) + Earphone + USB Cable 3 Type C (Charging from Adapter 1) + Battery > 90% for Sample 1				
	Mode 10	:FM Rx (88 MHz) + Earphone + USB Cable 1 Type C (Charging from Adapter 1) + Battery < 10% for Sample 2				
	Mode 11	:GSM850 Idle + Bluetooth Idle + WLAN Idle + Earphone + USB Cable * Type C (Data Link with Notebook) + Battery < 10% + SIM 1 for Sample *				
	Mode 12	:WCDMA Band V Idle + Bluetooth Idle + WLAN Idle + Earphone + USE Cable 2 Type C (Data Link with Notebook) + Battery 50% + SIM 2 fo Sample 1				
	Mode 13	:GSM1900 Idle + Bluetooth Idle + WLAN Idle + Earphone + USB Cable 3 Type C (Data Link with Notebook) + Battery > 90% + SIM 1 for Sample				
	Mode 14	:GSM850 Idle + Bluetooth Idle + WLAN Idle + Earphone + USB Cable 7 Type C (Data Link with Notebook) + Battery < 10% for Sample 2				


1. The worst case of AC is mode 13; only the test data of this mode was reported.

2. The worst case of RE is mode 5; only the test data of this mode was reported.

3. Data Linking with Notebook means data application transferred mode between EUT and Notebook.

2.2. Connection Diagram of Test System

		Test Setup								
No.	Wireless Station	Connection Turns	Test Mode							
NO.	Wireless Station	Connection Type	1	2	3	4	5	6	7	
A1	BT Earphone	Bluetooth	Х	Х	Х	Х	Х	Х		
A2	System Simulator	GSM/UMTS/CDMA/ WCDMA/LTE/FM	X	x	x	x	х	x	x	
A3	AP router	WiFi	Х	Х	Х	Х	Х	Х		
A4	LCD Monitor	Wireless Display	-	-	-	-	Х	-		
A5	Notebook	WiFi	-	-	-	-	Х	-		
No.	Power Source	Connection Type	1	2	3	4	5	6	7	
B1	AC : 120V/60Hz	AC Power Cable	Х	Х	Х	Х	Х	Х	Х	
B2	Power from system	AC Power Cable								
No.	Setup Peripherals	Connection Type	1	2	3	4	5	6	7	
C1	Earphone	Earphone jack	Х	Х	Х	Х	Х	Х	Х	
C2	SD card	SD I/O interface without Cable	X	x	x	x	х	x	x	
C3	Notebook	USB Cable								
C3-1	IPod	USB Cable to C1								
C3-2	Notebook	RJ-45 Cable to C1								
C3-3	AP router	RJ-45 Cable to C1								

		Test Setup							
No.	Wireless Station	Connection Type			Те	st Mo	de		
NO.	wireless Station	Connection Type	8	9	10	11	12	13	14
A1	BT Earphone	Bluetooth				Х	Х	Х	Х
A2	System Simulator	GSM/UMTS/CDMA/ WCDMA/LTE/FM	Х	x	x	х	х	х	х
A3	AP router	WiFi				Х	Х	Х	Х
A4	LCD Monitor	Wireless Display							
A5	Notebook	WiFi							
No.	Power Source	Connection Type	8	9	10	11	12	13	14
B1	AC : 120V/60Hz	AC Power Cable	Х	Х	Х				
B2	Power from system	AC Power Cable				Х	Х	Х	Х
No.	Setup Peripherals	Connection Type	8	9	10	11	12	13	14
C1	Earphone	Earphone jack	Х	Х	Х	Х	Х	Х	Х
C2	SD card	SD I/O interface without Cable	Х	x	x	х	х	х	x
C3	Notebook	USB Cable				Х	Х	Х	Х
C3-1	IPod	USB Cable to C3				Х	Х	Х	Х
C3-2	Notebook	RJ-45 Cable to C3				Х	Х	Х	Х
C3-3	AP router	RJ-45 Cable to C3				Х	Х	Х	Х

2.3. Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	R&S	CMU 200	N/A	N/A	Unshielded, 1.8 m
2.	System Simulator	Anritsu	MT8820C	N/A	N/A	Unshielded, 1.8 m
3.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded, 1.8 m
4.	Bluetooth Earphone	Sony Ericsson	MW600	PY700A2029	N/A	N/A
5.	Notebook	DELL	Latitude 5480	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
6.	SD Card	Transcend	MicroSD HC	FCC DoC	N/A	N/A
7.	SD Card	SanDisk	MicroSD HC	FCC DoC	N/A	N/A
8.	iPod	Apple	A1199	FCC DoC	Unshielded, 1.2 m	N/A

2.4. EUT Operation Test Setup

The EUT was in GSM or WCDMA idle mode during the testing. The EUT was synchronized with the BCCH, and had been continuous receiving mode by setting paging reorganization of the system simulator.

At the same time, the EUT was attached to the Bluetooth earphone or WLAN AP, and the following programs installed in the EUT were programmed during the test:

- 1. Data application is transferred between Laptop and EUT via USB cable.
- 2. Execute "Video player" to play MPEG4 files.
- 3. Turn on camera to capture images.
- 4. Turn on NFC function.
- 5. Turn on FM function.
- 6. Picture synchronization on LCD Monitor via Wireless Display.
- 7. EUT links with Notebook and executes ping.

3. Test Result

3.1. Test of AC Conducted Emission Measurement

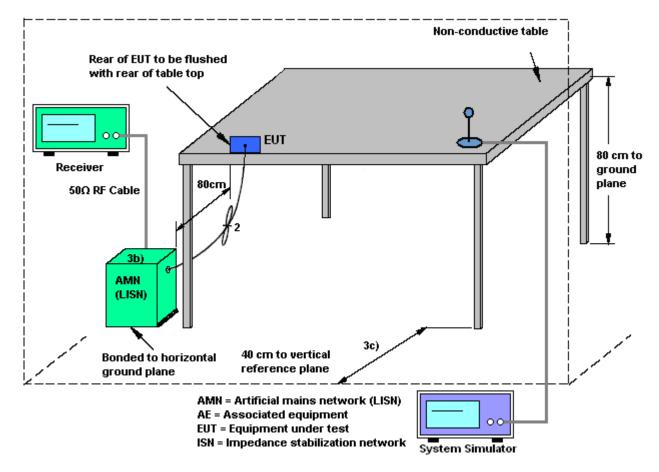
3.1.1 Limits of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission	Conducted	limit (dBuV)
(MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

3.1.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.1.3 Test Procedure

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.1.4 Test Setup

3.1.5 Test Result of AC Conducted Emission

Please refer to Appendix A.

TEL : 886-3-327-3456	Page Number	: 16 of 21
FAX : 886-3-328-4978	Issued Date	: Oct. 04, 2018
Report Template No.: BU5-FD15B Version 2.0	Report Version	: 01

3.2. Test of Radiated Emission Measurement

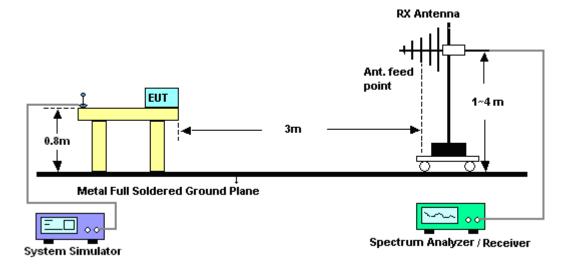
3.2.1. Limit of Radiated Emission

The emissions from an unintentional radiator shall not exceed the field strength levels specified in the following table:

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.2.2. Measuring Instruments

Refer a test equipment and calibration data table in this test report.


3.2.3. Test Procedures

- 1. The EUT was placed on a turntable with 0.8 meter above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. The table was rotated 360 degrees to determine the position of the highest radiation.
- 4. The antenna is a Bi-Log antenna and its height is adjusted between one to four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.
- 5. For each suspected emission, the EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
- Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode (RBW=120kHz/VBW=300kHz for frequency below 1GHz; RBW=1MHz VBW=3MHz (Peak), RBW=1MHz/VBW=10Hz (Average) for frequency above 1GHz).
- 7. If the emission level of the EUT in peak mode was 3 dB lower than the limit specified, peak values of EUT will be reported. Otherwise, the emission will be repeated by using the quasi-peak method and reported.
- 8. Emission level (dB μ V/m) = 20 log Emission level (μ V/m)
- 9. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level



3.2.4. Test Setup of Radiated Emission

For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz

3.2.5. Test Result of Radiated Emission

Please refer to Appendix B.

TEL : 886-3-327-3456	Page Number	: 18 of 21
FAX : 886-3-328-4978	Issued Date	: Oct. 04, 2018
Report Template No.: BU5-FD15B Version 2.0	Report Version	: 01

4. List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Sep. 11, 2018~ Sep. 19, 2018	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102388	9KHz~3.6GHz	Dec. 08, 2017	Sep. 11, 2018~ Sep. 19, 2018	Dec. 07, 2018	Conduction (CO05-HY)
Hygrometer	Testo	608-H1	34913912	N/A	Mar. 06, 2018	Sep. 11, 2018~ Sep. 19, 2018	Mar. 05, 2019	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Nov. 30, 2017	Sep. 11, 2018~ Sep. 19, 2018	Nov. 29, 2018	Conduction (CO05-HY)
Software	Rohde & Schwarz	EMC32 V10.30	N/A	N/A	N/A	Sep. 11, 2018~ Sep. 19, 2018	N/A	Conduction (CO05-HY)
LF Cable	HUBER + SUHNER	RG-214/U	LF01	N/A	Jan. 03, 2018	Sep. 11, 2018~ Sep. 19, 2018	Jan. 02, 2019	Conduction (CO05-HY)
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100851	N/A	Jan. 03, 2018	Sep. 11, 2018~ Sep. 19, 2018	Jan. 02, 2019	Conduction (CO05-HY)
Amplifier	SONOMA	310N	187311	9kHz~1GHz	Oct. 19, 2017	Sep. 15, 2018~ Sep. 29, 2018	Oct. 18, 2018	Radiation (03CH10-HY)
Bilog Antenna	TESEQ	CBL 6111D&00800 N1D01N-06	35413&02	30MHz~1GHz	Dec. 18, 2017	Sep. 15, 2018~ Sep. 29, 2018	Dec. 17, 2018	Radiation (03CH10-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-132 5	1GHz ~ 18GHz	Sep. 27, 2017	Sep. 15, 2018~ Sep. 18, 2018	Sep. 26, 2018	Radiation (03CH10-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-152 2	1GHz ~ 18GHz	Sep. 07, 2018	Sep. 29, 2018	Sep. 06, 2019	Radiation (03CH10-HY)
Hygrometer	TECPEL	DTM-303B	TP140320	N/A	Oct. 12, 2017	Sep. 15, 2018~ Sep. 29, 2018	Oct. 11, 2018	Radiation (03CH10-HY)
Preamplifier	Keysight	83017A	MY532700 78	1GHz~26.5GHz	Oct. 25, 2017	Sep. 15, 2018~ Sep. 29, 2018	Oct. 24, 2018	Radiation (03CH10-HY)
Spectrum Analyzer	Keysight	N9010A	MY542004 85	10Hz ~ 44GHz	Oct. 31, 2017	Sep. 15, 2018~ Sep. 29, 2018	Oct. 30, 2018	Radiation (03CH10-HY)
Preamplifier	Jet-Power	JAP00101800 -30-10P	160118550 004	1GHz~18GHz	Apr. 17, 2018	Sep. 15, 2018~ Sep. 29, 2018	Apr. 16, 2019	Radiation (03CH10-HY)

: 20 of 21

: 01

: Oct. 04, 2018

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Controller	EMEC	EM 1000	N/A	Control Turn	N/A	Sep. 15, 2018~	N/A	Radiation
				table & Ant Mast		Sep. 29, 2018		(03CH10-HY)
Antenna Mast	EMEC	AM-BS-4500-	N/A	1~4m	N/A	Sep. 15, 2018~	N/A	Radiation
Antenna Wast	ENEO	В	11/7	1411	IN/73	Sep. 29, 2018	IN/A	(03CH10-HY)
Turn Table	EMEC	TT 2200	N/A	0~360 Degree	N/A	Sep. 15, 2018~	N/A	Radiation
		11 2200	IN/A	0~300 Degree	N/A	Sep. 29, 2018	N/A	(03CH10-HY)
Software	Audix	E3	RK-00104	N/A	N/A	Sep. 15, 2018~	N/A	Radiation
Soltwale	Audix	6.2009-8-24	2	N/A	N/A	Sep. 29, 2018	N/A	(03CH10-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104 / 102	MY11692/ 4PE, MY11693/ 4PE, MY2855/2	30M-1G	Nov. 14, 2017	Sep. 15, 2018~ Sep. 29, 2018	Nov. 13, 2018	Radiation (03CH10-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104 / 102	MY11692/ 4PE, MY11693/ 4PE, MY2855/2	1G-18G	Nov. 14, 2017	Sep. 15, 2018~ Sep. 29, 2018	Nov. 13, 2018	Radiation (03CH10-HY)
EMI Test Receiver	Agilent	N9038A (MXE)	MY532900 53	20Hz to 26.5GHz	Jan. 16, 2018	Sep. 15, 2018~ Sep. 29, 2018	Jan. 15, 2019	Radiation (03CH10-HY)

5. Uncertainty of Evaluation

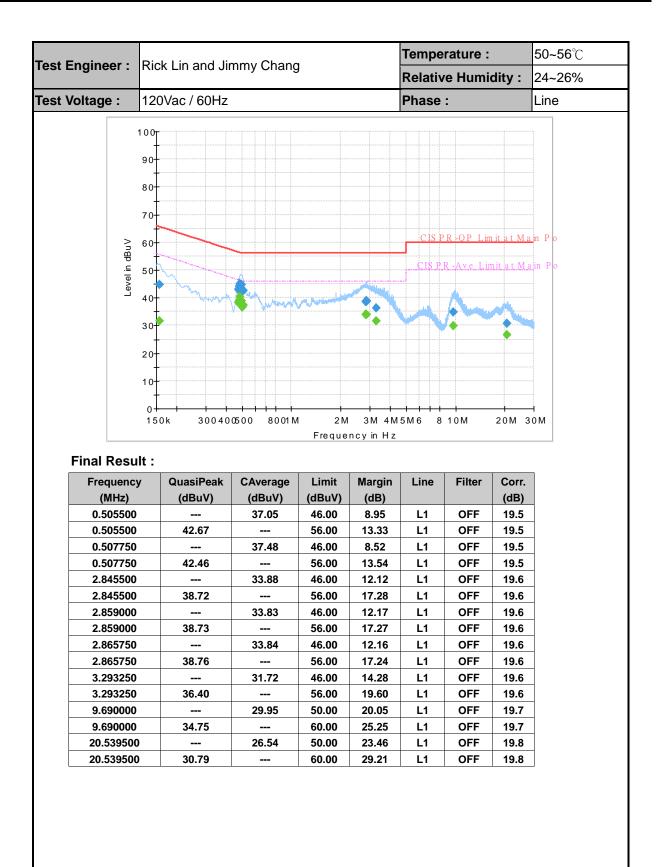
Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

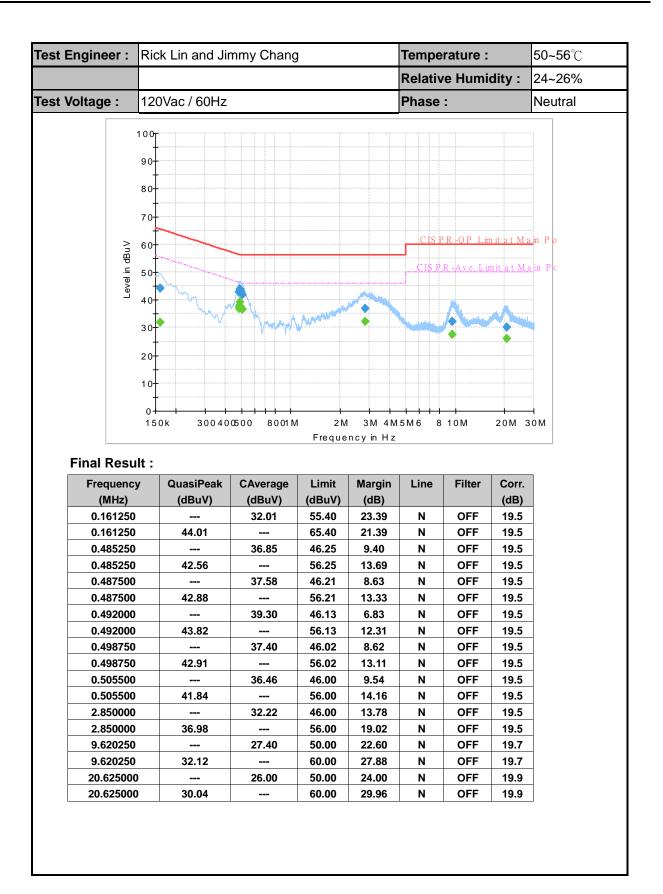
Measuring Uncertainty for a Level of Confidence	2.20
of 95% (U = 2Uc(y))	2.20

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

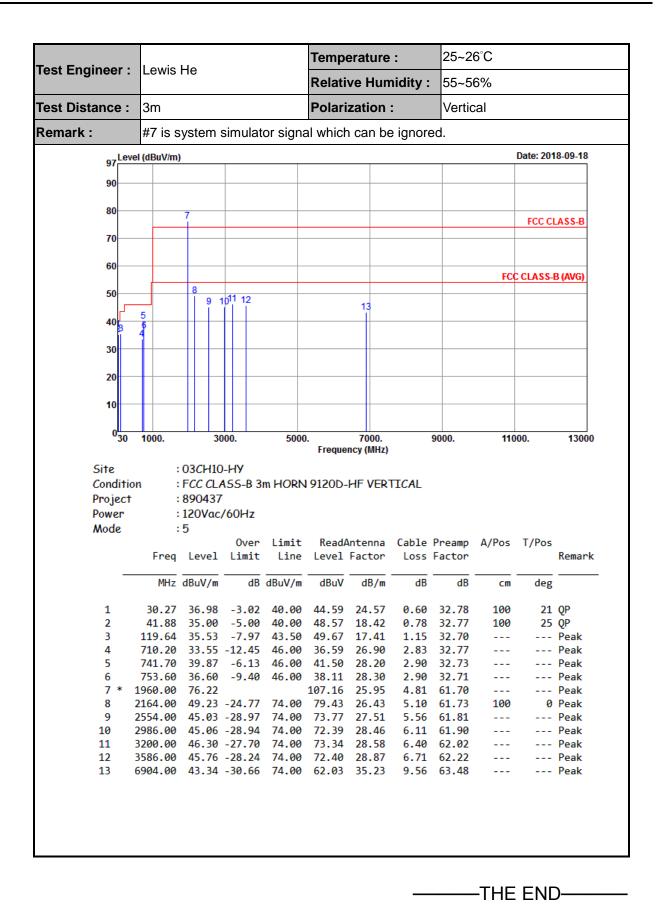
Measuring Uncertainty for a Level of Confidence	5.70
of 95% (U = 2Uc(y))	5.70

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)


Measuring Uncertainty for a Level of Confidence	5,50
of 95% (U = 2Uc(y))	5.50


Appendix A. AC Conducted Emission Test Results

est Engineer	. Ric	k Lin and Jir	nmy Chang			Tempe	rature :		50~56°€
st Engineer)		Relativ	e Humi	dity :	24~26%
est Voltage :	120)Vac / 60Hz				Phase	:		Line
	100 1	,							***
	90-	,							
	80-	,							
	70-								
	≥ 60					C IS P	R-OP Lin	<u>nitat Ma</u>	in Po
	Level in dBu <						R-Ave Lir		
	.⊑ 50- 		<u>A</u>			15F_	K-AVE LII	<u>n 11 ;a t 1V1 a</u>	in Po
	ے 40	munor		A Busieles			<u> </u>		
	ł			/					
	30						•		
	20-								
	ł								
	10-								
	0+	- 1 1 1	+ + + + +		- 1 1	+ + + + +	-1		-
	0 15	0k 30040	0500 8001 M			5M6 8	10 M	20M 3	н ОМ
	15	0k 30040	0500 8001 M		3M 4M ncy in Hz	5M6 8	10M	20M 3	OM
Final Re	15		0500 8001 M	Freque		5M6 8	10M	20M 3	- 0 M
Freque	15 esult : ency	QuasiPeak	CAverage	Freque Limit	ncy in Hz Margin	5M6 8	10M Filter	Corr.	O M
Freque (MH:	15 esult : ency z)		CAverage (dBuV)	Freque Limit (dBuV)	ncy in Hz Margin (dB)	Line	Filter	Corr. (dB)	ом
Freque (MHz 0.1567	15 esult : ency z) 750	QuasiPeak (dBuV) 	CAverage	Freque Limit (dBuV) 55.63	Margin (dB) 24.11	Line L1	Filter	Corr. (dB) 19.5	
Freque (MH:	15 esult : ency z) 750 750	QuasiPeak	CAverage (dBuV) 31.52	Freque Limit (dBuV)	ncy in Hz Margin (dB)	Line	Filter	Corr. (dB)	
Freque (MH; 0.1567 0.1567	15 esult : ency z) 750 750 000	QuasiPeak (dBuV) 44.63	CAverage (dBuV) 31.52 	Freque Limit (dBuV) 55.63 65.63	Margin (dB) 24.11 21.00	Line L1 L1	Filter OFF OFF	Corr. (dB) 19.5 19.5	O M
Freque (MH: 0.1567 0.1567 0.4740 0.4740 0.4807	15 escult : ency z) 750 750 000 000 750	QuasiPeak (dBuV) 44.63 	CAverage (dBuV) 31.52 	Freque Limit (dBuV) 55.63 65.63 46.44 56.44 46.33	Margin (dB) 24.11 21.00 8.04 13.32 7.35	Line L1 L1 L1	Filter OFF OFF OFF OFF	Corr. (dB) 19.5 19.5 19.5 19.5 19.5	ом
Freque (MHz 0.1567 0.1567 0.4740 0.4740 0.4807 0.4807	15 esult : ency z) 750 750 000 000 750 750	QuasiPeak (dBuV) 44.63 43.12	CAverage (dBuV) 31.52 38.40 38.98 	Freque Limit (dBuV) 55.63 65.63 46.44 56.44 46.33 56.33	Margin (dB) 24.11 21.00 8.04 13.32 7.35 12.19	Line L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF	Corr. (dB) 19.5 19.5 19.5 19.5 19.5 19.5 19.5	
Freque (MHz 0.1567 0.1567 0.4740 0.4740 0.4807 0.4807 0.4830	15 esult : ency z) 750 750 000 750 750 000	QuasiPeak (dBuV) 44.63 43.12 44.14 	CAverage (dBuV) 31.52 38.40 	Freque Limit (dBuV) 55.63 65.63 46.44 56.44 46.33 56.33 46.29	Margin (dB) 24.11 21.00 8.04 13.32 7.35 12.19 5.95	Line L1 L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF OFF	Corr. (dB) 19.5 19.5 19.5 19.5 19.5 19.5 19.5	
Freque (MH: 0.1567 0.1567 0.4740 0.4740 0.4740 0.4807 0.4807 0.4830 0.4830	15 esult : ency z) 750 750 000 000 750 750 000 000 000	QuasiPeak (dBuV) 44.63 43.12 44.14 45.07	CAverage (dBuV) 31.52 38.40 38.98 40.34 	Freque Limit (dBuV) 55.63 65.63 46.44 56.44 46.33 56.33 46.29 56.29	Margin (dB) 24.11 21.00 8.04 13.32 7.35 12.19 5.95 11.22	Line L1 L1 L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF OFF OFF	Corr. (dB) 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5	
Freque (MH: 0.1567 0.1567 0.4740 0.4740 0.4807 0.4807 0.4830 0.4830 0.4830	15 escult : ency z) 750 750 000 750 750 750 750 000 000 500	QuasiPeak (dBuV) 44.63 43.12 44.14 45.07 	CAverage (dBuV) 31.52 38.40 38.98 40.34 38.46	Freque Limit (dBuV) 55.63 65.63 46.44 56.44 46.33 56.33 46.29 56.29 46.21	Margin (dB) 24.11 21.00 8.04 13.32 7.35 12.19 5.95 11.22 7.75	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF OFF OFF	Corr. (dB) 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5	
Freque (MH: 0.1567 0.1567 0.4740 0.4740 0.4807 0.4807 0.4830 0.4830	15 escult : ency z) 750 750 000 750 750 750 000 000 500 500	QuasiPeak (dBuV) 44.63 43.12 44.14 45.07	CAverage (dBuV) 31.52 38.40 38.98 40.34 	Freque Limit (dBuV) 55.63 65.63 46.44 56.44 46.33 56.33 46.29 56.29 46.21 56.21	Margin (dB) 24.11 21.00 8.04 13.32 7.35 12.19 5.95 11.22 7.75 12.11	Line L1 L1 L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF OFF OFF	Corr. (dB) 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5	
Freque (MH: 0.1567 0.1567 0.4740 0.4740 0.4807 0.4807 0.4830 0.4830 0.4835 0.4835	15 esult : ency z) 750 750 000 750 750 750 000 000 500 500	QuasiPeak (dBuV) 44.63 43.12 44.14 45.07 44.10	CAverage (dBuV) 31.52 38.40 38.98 40.34 38.46 	Freque Limit (dBuV) 55.63 65.63 46.44 56.44 46.33 56.33 46.29 56.29 46.21	Margin (dB) 24.11 21.00 8.04 13.32 7.35 12.19 5.95 11.22 7.75	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF OFF OFF OFF	Corr. (dB) 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5	
Freque (MH: 0.1567 0.4740 0.4740 0.4807 0.4807 0.4830 0.4830 0.4830 0.4835 0.4875 0.4875 0.4920	15 esult : ency z) 750 750 000 000 750 000 000 500 500 000 0	QuasiPeak (dBuV) 44.63 43.12 44.14 45.07 44.10 	CAverage (dBuV) 31.52 38.40 38.98 40.34 38.46 38.80	Freque Limit (dBuV) 55.63 65.63 46.44 56.44 46.33 56.33 46.29 56.29 46.21 56.21 46.13	Margin (dB) 24.11 21.00 8.04 13.32 7.35 12.19 5.95 11.22 7.75 12.11 7.33	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF OFF OFF OFF OFF	Corr. (dB) 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5	
Freque (MH: 0.1567 0.1567 0.4740 0.4740 0.4807 0.4807 0.4830 0.4830 0.4830 0.4830 0.4830 0.4835 0.4820 0.4920 0.4925 0.4965	15 esult : ency z) 750 750 750 750 750 750 750 750 750 000 500 5	QuasiPeak (dBuV) 44.63 43.12 44.14 45.07 44.10 44.84	CAverage (dBuV) 31.52 38.40 38.98 40.34 38.46 38.80 	Freque Limit (dBuV) 55.63 65.63 46.44 56.44 46.33 56.33 46.29 56.29 46.21 56.21 46.13 56.13 46.06 56.06	Margin (dB) 24.11 21.00 8.04 13.32 7.35 12.19 5.95 11.22 7.75 12.11 7.33 11.29 7.03 11.32	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF OFF OFF OFF OFF	Corr. (dB) 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5	
Freque (MH: 0.1567 0.1567 0.4740 0.4807 0.4807 0.4830 0.4830 0.4830 0.4835 0.4875 0.4875 0.4920 0.4920 0.4965 0.4965	15 escult : ency z) 750 750 750 750 750 750 750 000 500 500	QuasiPeak (dBuV) 44.63 43.12 44.14 44.10 44.84 44.84 	CAverage (dBuV) 31.52 38.40 38.98 40.34 38.46 38.80 38.80 39.03 39.03	Freque Limit (dBuV) 55.63 65.63 46.44 56.44 46.33 56.33 46.29 56.29 46.21 56.21 46.13 56.13 46.06 56.06 46.00	Margin (dB) 24.11 21.00 8.04 13.32 7.35 12.19 5.95 11.22 7.75 12.11 7.33 11.29 7.03 11.32 9.58	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	Corr. (dB) 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5	
Freque (MH: 0.1567 0.4740 0.4740 0.4807 0.4807 0.4830 0.4830 0.4835 0.4875 0.4875 0.4875 0.4920 0.4965	15 escult : ency z) 750 750 750 750 750 750 750 750 000 500 5	QuasiPeak (dBuV) 44.63 43.12 44.14 44.10 44.84 44.84 	CAverage (dBuV) 31.52 38.40 38.98 40.34 38.46 38.46 38.80 39.03 	Freque Limit (dBuV) 55.63 65.63 46.44 56.44 46.33 56.33 46.29 56.29 46.21 56.21 46.13 56.13 46.06 56.06	Margin (dB) 24.11 21.00 8.04 13.32 7.35 12.19 5.95 11.22 7.75 12.11 7.33 11.29 7.03 11.32	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	Corr. (dB) 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5	



Appendix B. Radiated Emission Test Result

Toot Engineer					Temperature : Relative Humidity : Polarization :			25~2	25~26°C 55~56% Horizontal			
Test Engineer :								55~5				
Test Distance :								Horiz				
Remark :	#8 is system simulator signal which can be ignored.											
97	el (dBuV/m)									Date: 201	8-09-18	
90												
80		8								FCC CL	ASS-B	
70												
60												
00									FCO	CCLASS-	3 (AVG)	
50	7	9 10				12 13		_				
40 ³ 5	6		11			12						
24												
30												
20												
10												
	1000.	30	000.	5000).	7000.		9000.	110	00.	13000	
10 0 ₃₀	1000.	30	000.	5000		7000. ncy (MHz)		9000.	110	00.	13000	
0 ₃₀ Site	:	03CH10	ו-⊦ ⊦ו		Freque	ncy (MHz)			110	00.	13000	
0 ₃₀ Site Condition	: n :	03CH10 FCC CL4	-НУ 455-В 3			ncy (MHz)	IZONT		110	00.	13000	
0 ₃₀ Site	: n :	03CH10	I-НУ 455-В 3		Freque	ncy (MHz)	IZONT		110	00.	13000	
0 ₃₀ Site Condition Project	: n : :	03CH10 FCC CLA 890437	1-HY 455-B 3 /60Hz	m HORN	Freque	ncy (MHz) HF HOR		AL			13000	
0 <mark>30</mark> Site Condition Project Power	: n : : :	03CH10 FCC CLA 890437 120Vac, 5	-HY 455-B3 /60Hz 0ver	m HORN Limit	Freque I 9120D- ReadA	ncy (MHz) HF HOR Antenna	Cable	AL				
0 <mark>30</mark> Site Condition Project Power	: n : : : Freq	03CH10 FCC CLA 890437 120Vac, 5 Level	-HY ASS-B3 /60Hz Over Limit	m HORN Limit Line	Freque 9120D- ReadA Level	ncy (MHz) HF HOR Intenna Factor	Cable	AL Preamp Factor			13000 Remark	
0 <mark>30</mark> Site Condition Project Power	: n : : : Freq	03CH10 FCC CLA 890437 120Vac, 5	-HY ASS-B3 /60Hz Over Limit	m HORN Limit	Freque I 9120D- ReadA	ncy (MHz) HF HOR Antenna	Cable	AL				
0 <mark>30</mark> Site Condition Project Power	n : : : Freq MHz	03CH10 FCC CL4 890437 120Vac, 5 Level dBuV/m	-HY ASS-B3 /60Hz Over Limit dB	m HORN Limit Line dBuV/m	Freque	ncy (MHz) HF HOR Intenna Factor dB/m	Cable Loss dB 1.00	AL Preamp Factor dB 32.73	A/Pos	T/Pos deg		
0 ₃₀ Site Condition Project Power Mode 1 2	: n : : Freq MHz 77.79 158.25	03CH10 FCC CL4 890437 120Vac, 5 Level dBuV/m 28.75 33.15	-HY 455-B 3 /60Hz 0ver Limit dB -11.25 -10.35	m HORN Limit Line dBuV/m 40.00 43.50	Freque 19120D- ReadA Level dBuV 47.19 47.35	HF HOR Antenna Factor dB/m 13.12 16.73	Cable Loss dB 1.00 1.33	Preamp Factor dB 32.73 32.67	A/Pos 	T/Pos 	Remark Peak Peak	
0 ₃₀ Site Condition Project Power Mode	: n : : Freq MHz 77.79 158.25	03CH10 FCC CL4 890437 120Vac, 5 Level dBuV/m 28.75 33.15 38.49	-HY 455-B 3 /60Hz 0ver Limit dB -11.25 -10.35 -7.51	m HORN Limit Line dBuV/m 40.00 43.50 46.00	Freque 9120D- ReadA Level dBuV 47.19	HF HOR Antenna Factor dB/m 13.12 16.73 19.07	Cable Loss dB 1.00 1.33 1.83	AL Preamp Factor dB 32.73	A/Pos cm	T/Pos deg 	Remark Peak	
Site Condition Project Power Mode 1 2 3 4 5	n : : : : : : : : : : : : : : : : : : :	03CH10 FCC CL4 890437 120Vac, 5 Level dBuV/m 28.75 33.15 38.49 34.80 37.15	-HY 455-B 3 /60Hz 0ver Limit -11.25 -10.35 -7.51 -11.20 -8.85	m HORN Limit Line dBuV/m 40.00 43.50 46.00 46.00 46.00	Freque 19120D- ReadA Level dBuV 47.19 47.35 49.79 45.69 44.10	ncy (MHz) HF HOR Antenna Factor dB/m 13.12 16.73 19.07 19.42 22.98	Cable Loss dB 1.00 1.33 1.83 1.88 2.24	AL Preamp Factor dB 32.73 32.67 32.59 32.59 32.59 32.62	A/Pos 	T/Pos deg 	Remark Peak Peak Peak Peak Peak Peak	
Site Condition Project Power Mode 1 2 3 4 5 6	n : : : : : : : : : : : : : : : : : : :	03CH10 FCC CL4 890437 120Vac, 5 Level dBuV/m 28.75 33.15 38.49 34.80 37.15 41.73	-HY 455-B 3 /60Hz 0ver Limit -11.25 -10.35 -7.51 -11.20 -8.85 -4.27	m HORN Limit Line dBuV/m 40.00 43.50 46.00 46.00 46.00	Freque 19120D- ReadA Level dBuV 47.19 47.35 49.79 45.69 44.10 42.76	ncy (MHz) HF HOR Antenna Factor dB/m 13.12 16.73 19.07 19.42 22.98 28.20	Cable Loss dB 1.00 1.33 1.83 1.88 2.24 2.90	AL Preamp Factor dB 32.73 32.67 32.59 32.59 32.59 32.62 32.73	A/Pos 	T/Pos deg 0	Remark Peak Peak Peak Peak Peak Peak Peak	
Site Condition Project Power Mode 1 2 3 4 5 6 7	n : Freq MHz 77.79 158.25 296.76 316.80 444.90 741.70 1470.00	03CH10 FCC CL4 890437 120Vac, 5 Level dBuV/m 28.75 33.15 38.49 34.80 37.15 41.73 44.67	-HY 455-B 3 /60Hz 0ver Limit -11.25 -10.35 -7.51 -11.20 -8.85 -4.27	m HORN Limit Line dBuV/m 40.00 43.50 46.00 46.00 46.00	Freque 19120D- ReadA Level dBuV 47.19 47.35 49.79 45.69 44.10 42.76 76.77	ncy (MHz) HF HOR Antenna Factor dB/m 13.12 16.73 19.07 19.42 22.98 28.20 25.46	Cable Loss dB 1.00 1.33 1.83 1.88 2.24 2.90 4.13	Preamp Factor dB 32.73 32.67 32.59 32.59 32.59 32.62 32.73 61.69	A/Pos 	T/Pos deg 0 	Remark Peak Peak Peak Peak Peak Peak Peak Pea	
Site Condition Project Power Mode 1 2 3 4 5 6 7 2 8 * 2	n : : : : : : : : : : : : : : : : : : :	03CH10 FCC CL4 890437 120Vac, 5 Level dBuV/m 28.75 33.15 38.49 34.80 37.15 41.73 44.67 75.95	-HY 455-B 3 /60Hz 0ver Limit -11.25 -10.35 -7.51 -11.20 -8.85 -4.27 -29.33	m HORN Limit Line dBuV/m 40.00 43.50 46.00 46.00 46.00 74.00	Freque 19120D- ReadA Level dBuV 47.19 47.35 49.79 45.69 44.10 42.76 76.77 106.89	ncy (MHz) HF HOR Antenna Factor dB/m 13.12 16.73 19.07 19.42 22.98 28.20	Cable Loss dB 1.00 1.33 1.83 1.88 2.24 2.90	Preamp Factor dB 32.73 32.67 32.59 32.59 32.62 32.73 61.69 61.70	A/Pos 	T/Pos deg 0 	Remark Peak Peak Peak Peak Peak Peak Peak	
Site Condition Project Power Mode 1 2 3 4 5 6 7 5 6 7 8 * 1 9	n : Freq 77.79 158.25 296.76 316.80 444.90 741.70 1470.00 1960.00	03CH10 FCC CL4 890437 120Vac, 5 Level dBuV/m 28.75 33.15 38.49 34.80 37.15 41.73 44.67 75.95 45.50	-HY ASS-B 3 /60Hz 0ver Limit -11.25 -10.35 -7.51 -11.20 -8.85 -4.27 -29.33 -28.50	m HORN Limit Line dBuV/m 40.00 43.50 46.00 46.00 46.00	Freque 19120D- ReadA Level dBuV 47.19 47.35 49.79 45.69 44.10 42.76 76.77 106.89 75.51	ncy (MHz) HF HOR Antenna Factor dB/m 13.12 16.73 19.07 19.42 22.98 28.20 25.46 25.95	Cable Loss dB 1.00 1.33 1.83 1.88 2.24 2.90 4.13 4.81 5.15	Preamp Factor dB 32.73 32.67 32.59 32.59 32.62 32.73 61.69 61.70	A/Pos 	T/Pos deg 0 	Remark Peak Peak Peak Peak Peak Peak Peak Pea	
Site Condition Project Power Mode 1 2 3 4 5 6 7 8 8 8 9 10	n : Freq 77.79 158.25 296.76 316.80 444.90 741.70 1470.00 1960.00 2200.00	03CH10 FCC CL4 890437 120Vac, 5 Level dBuV/m 28.75 33.15 38.49 34.80 37.15 41.73 44.67 75.95 45.50 46.49	-HY ASS-B 3 /60Hz 0ver Limit -11.25 -10.35 -7.51 -11.20 -8.85 -4.27 -29.33 -28.50	m HORN Limit Line dBuV/m 40.00 43.50 46.00 46.00 46.00 74.00 74.00 74.00	Freque 19120D- ReadA Level dBuV 47.19 47.35 49.79 45.69 44.10 42.76 76.77 106.89 75.51	ncy (MHz) HF HOR Antenna Factor 13.12 16.73 19.07 19.42 22.98 28.20 25.46 25.95 26.58	Cable Loss dB 1.00 1.33 1.83 1.88 2.24 2.90 4.13 4.81 5.15 5.84	AL Preamp Factor dB 32.73 32.67 32.59 32.62 32.73 61.69 61.70 61.74	A/Pos cm 100 	T/Pos deg 0 0	Remark Peak Peak Peak Peak Peak Peak Peak Pea	
Site Condition Project Power Mode 1 2 3 4 5 6 7 8 8 8 9 10 11 12	n : Freq 77.79 158.25 296.76 316.80 444.90 741.70 1470.00 1960.00 2200.00 2786.00	03CH10 FCC CL4 890437 120Vac, 5 Level dBuV/m 28.75 33.15 38.49 34.80 37.15 41.73 44.67 75.95 45.50 46.49 42.82 43.09	-HY ASS-B 3 /60Hz 0ver Limit -11.25 -10.35 -7.51 -11.20 -8.85 -4.27 -29.33 -28.50 -27.51 -31.18 -30.91	m HORN Limit Line dBuV/m 40.00 43.50 46.00 46.00 46.00 74.00 74.00 74.00 74.00 74.00	Freque 19120D- ReadA Level dBuV 47.19 47.35 49.79 45.69 44.10 42.76 76.77 106.89 75.51 74.49 69.46 62.08	ncy (MHz) HF HOR Antenna Factor dB/m 13.12 16.73 19.07 19.42 22.98 28.20 25.46 25.95 26.58 28.02 28.87 35.05	Cable Loss dB 1.00 1.33 1.83 1.88 2.24 2.90 4.13 4.81 5.15 5.84 6.71 9.35	AL Preamp Factor dB 32.73 32.67 32.59 32.62 32.73 61.69 61.70 61.74 61.86 62.22 63.39	A/Pos cm 100 100	T/Pos deg 0 0 0	Remark Peak Peak Peak Peak Peak Peak Peak Pea	

