

RF EXPOSURE EVALUATION REPORT

FCC ID	: IHDT56XL1
Equipment	: Mobile 5G MOD
Brand Name	: Motorola
Applicant	: Motorola Mobility LLC 222 W,Merchandise Mart Plaza, Chicago IL 60654 USA
Manufacturer	: Motorola Mobility LLC 222 W,Merchandise Mart Plaza, Chicago IL 60654 USA
Standard	: FCC 47 CFR Part 2 (2.1093)

We, SPORTON INTERNATIONAL INC have been evaluated in accordance with 47 CFR Part 2.1091 for the device and pass the limit.

The test results in this variant report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Gua Unang.

Approved by: Cona Huang / Deputy Manager

SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

Table of Contents

Summary Guidance Applied Equipment Under Test (EUT) Information	5 5 6 6 7 8
3.1 General Information	5 6 6 7 8
	6 6 7 8
	6 6 7 8
4.1 Uncontrolled Environment	6 7 8
4.2 Controlled Environment	8
5. System Description and Setup	
5.1 EUmmWave Probe / E-Field 5G Probe	-
5.2 Data Acquisition Electronics (DAE)	
5.3 Scan configuration	
6. Test Equipment List1	0
7. System Verification Source1	
8. Power Density System Verification1	
9. System Verification Results1	2
10. EIRP Power	
11. Sensor Detector Test Procedure1	
12. Power Density Measurement Evaluation	
12.1 Computation of the Electric Field Polarization Ellipse	
12.2 Total Field and Power Flux Density Reconstruction	
12.3 Test Positions	
13. RF Exposure Evaluation Results	
14. Simultaneous Transmission Analysis	
15. Uncertainty Assessment	6
16. References	1

Appendix A. Plots of System Performance Check
Appendix B. Plots of Power Density Measurement
Appendix C. DASY Calibration Certificate
Appendix D. Simultaneous Transmission analysis
Appendix E. Antenna Location & Test Setup Photos

Report No.	Version	Description	Issued Date			
FA890514B	01	Initial issue of report	Dec. 28, 2018			
FA890514B	02	Updated sensor verification procedure in section 11	Feb. 01, 2019			
FA890514B	03	added the description for test positions	Feb. 07, 2019			

History of this test report

1. <u>Summary</u>

The maximum measured average power density found during testing for Motorola Mobility LLC, Mobile 5G MOD, are as follows.

	Standalone transmission					
	Highest Total Power Density, averaging over 4cm ² (mW/cm ²)	Limit (FCC part 1.310) (mW/cm ²)	Summation of Exposure Ratio			
5GNR n261	0.499	1	0.998			

2. Guidance Applied

The Power Density testing specification, method, and procedure for this device is in accordance with the following standards:

- FCC 47 CFR Part 2.1091
- FCC 47 CFR Part 2.1093
- FCC KDB 865664 D02 SAR Reporting v01r02
- FCC KDB 447498 D01 General RF Exposure Guidance v06
- FCC KDB 648474 D04 SAR Evaluation Considerations for Wireless Handsets v01r03
- TCBC workshop notes
- IEC Draft TR 63170

3. Equipment Under Test (EUT) Information

3.1 General Information

	Product Feature & Specification				
Equipment Name	Mobile 5G MOD				
Brand Name	Motorola				
FCC ID	IHDT56XL1				
HW Version	DVT2				
HW Version	PPZ29.67				
EUT Stage	Identical Prototype				
	LTE				
Wireless Technology and Frequency Range	LTE Band 2: 1850.7 MHz ~ 1909.3 MHz LTE Band 4: 1710.7 MHz ~ 1754.3 MHz LTE Band 5: 824.7 MHz ~ 848.3 MHz LTE Band 13: 779.5 MHz ~ 784.5 MHz LTE Band 66: 1710.7 MHz ~ 1779.3 MHz LTE Band 48: 3552.5 MHz ~ 3697.5 MHz				
Modulation	LTE: QPSK, 16QAM, 64QAM				
	5GNR				
Wireless Technology and Frequency Range	5G NR n261: 27.5GHz~28.35GHz				
Modulation	5GNR n261: QPSK, 16QAM, and 64QAM for CP-OFDM				
Supported Channel Bandwidth	50MHz/100MHz				
Maximum Number of contiguous CC	4CC				
Maximum Aggregated Bandwidth	400MHz				
Max. Uplink Transmission Duty Cycle	100%				
Antenna Information	Supports dual-polarization MIMO (2×2 uplink (UL) and 2×2 downlink (DL)) This device has 4 antenna array modules , only one module can be turned on and transmit at a time.				
5GNR Operation	Non-Standalone (NSA) Mode				
EN-DC combination	DC_2_n261, DC_4_n261, DC_5_n261, DC_13_n261, DC_66_n261				
 Remark: The MOD is snapped onto the smartphone IHDT56XJ1, and supports multiple antenna transmission, therefore need to consider simultaneous transmission analysis for SAR and PD, the WWAN and WLAN SAR test results were referring to the report of FCC ID: IHDT56XL1 (Sporton SAR Report No. FA851503). Power density is evaluated with the MOD attached on the phone. For 5G n261 operation, the device has 4 array modules and only one will transmit at a time. The device has implements the sensor 					

2. For 5G n261 operation, the device has 4 array modules and only one will transmit at a time. The device has implements the sensor to detect the human proximity, once the sensor detects and is triggered, the associated antenna array module will disable the transmission and switch to one of the other 3 array module. Detailed illustration of the sensor implementation is in the operation description.

3. For front facing array module (Array Module 2), when earpiece signal from phone indicates operation at head, this array module would be disabled, therefore head exposure condition evaluation is not required.

Reviewed by: <u>Eric Huang</u> Report Producer: <u>Wan Liu</u>

4. RF Exposure Limits

4.1 Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

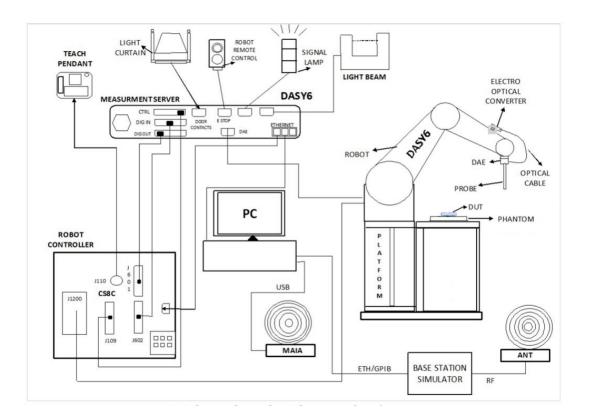
4.2 Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure his or her exposure by leaving the area or by some other appropriate means.

The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure above 6GHz to radio frequency (RF) radiation as specified in §1.1310.

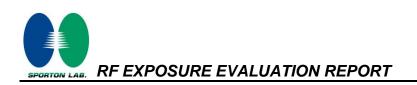
General Population Basic restriction for power density for frequencies between 1.5GHz and 100 GHz is 1.0 mW/cm² = 10 W/m^2

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)
	(A) Limits for O	ccupational/Controlled Expos	sures	80
0.3-3.0	614	1.63	*(100)	6
3.0-30	1842/	f 4.89/1	f *(900/f2)	6
30-300	61.4	0.163	1.0	6
300-1500			f/300	6
1500-100,000			5	6
	(B) Limits for Gene	ral Population/Uncontrolled	Exposure	
0.3-1.34	614	1.63	*(100)	30
1.34-30 824		f 2.19/1	f *(180/f2)	30
30-300	27.5	0.073	0.2	30
300-1500			f/1500	30
1500-100,000			1.0	30


Table 1

5. System Description and Setup

The system to be used for the near field power density measurement


- SPEAG DASY6 system
- SPEAG cDASY6 5G module software
- EUmmWV2 probe
- 5G Phantom cover

5.1 EUmmWave Probe / E-Field 5G Probe

The probe design allows measurements at distances as small as 2 mm from the sensors to the surface of the device under test (DUT). The typical sensor to probe tip distance is 1.5 mm.

Frequency	750 MHz – 110 GHz			
Probe Overall Length	320 mm			
Probe Body Diameter	8.0 mm			
Tip Length	23.0 mm			
Tip Diameter	8.0 mm			
Probe's two dipoles length	0.9 mm – Diode loaded			
Dynamic Range	< 20 V/m - 10000 V/m with PRE-10 (min < 50 V/m - 3000 V/m)			
Position Precision	< 0.2 mm			
Distance between diode sensors and probe's tip	1.5 mm			
Minimum Mechanical separation between probe tip and a Surface	0.5 mm			
Applications	E-field measurements of 5G devices and other mm-wave transmitters operating above 10GHz in < 2 mm distance from device (free-space) Power density, H-field and far-field analysis using total field reconstruction.			
Compatibility	cDASY6 + 5G-Module SW1.0 and higher			
	sensor 1.5mm calibrated device			

5.2 Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

5.3 Scan configuration

Fine-resolution scans on 2 different planes are performed to reconstruct the E- and H-fields as well as the power density; the z-distance between the 2 planes is set to $\lambda/4$.

The (x, y) grid step is also set $\lambda/4$, the grid extent is set to sufficiently large to identify the field pattern and the peak.

6. <u>Test Equipment List</u>

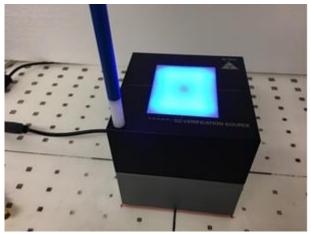
Manufacturer	Nome of Equipment	Turne/Madal	Serial Number	Calibration		
	Name of Equipment	Type/Model	Serial Number	Last Cal.	Due Date	
SPEAG	5G Verification Source	30 GHz	1007	Apr. 06, 2018	Apr. 05, 2019	
SPEAG	5G Verification Source	30 GHz	1009	Jun. 29, 2018	Jun. 28, 2019	
SPEAG	EUmmWV Probe Tip Protection	EUmmWV2	9388	Apr. 10, 2018	Apr. 09, 2019	
SPEAG	EUmmWV Probe Tip Protection	EUmmWV2	9390	Jun. 28, 2018	Jun. 27, 2019	
SPEAG	Data Acquisition Electronics	DAE4	918	Jun. 20, 2018	Jun. 19, 2019	
SPEAG	Data Acquisition Electronics	DAE4	778	May. 25, 2018	May. 24, 2019	
SPEAG	Data Acquisition Electronics	DAE4	1326	Sep. 18, 2018	Sep. 17, 2019	
TESTO	Hygro meter	608-H1	34913631	Aug. 27, 2018	Aug. 26, 2019	
Rohde & Schwarz	Spectrum Analyzer	FSV40	101408	Jul. 30, 2018	Jul. 29, 2019	
Custom Microwave	Standard Horn antenna	M15RH	V91113-A	NCR	NCR	

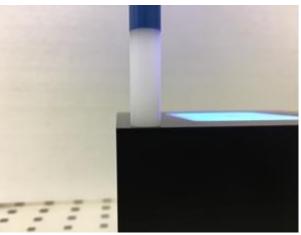
7. System Verification Source

The System Verification sources at 30 GHz and above comprise horn-antennas and very stable signal generators.

Model	Ka-band horn antenna
Calibrated frequency:	30 GHz at 10mm from the case surface
Frequency accuracy	± 100 MHz
E-field polarization	linear
Harmonics	-20 dBc
Total radiated power	14 dBm
Power stability	0.05 dB
Power consumption	5 W
Size	00 x 100 x 100 mm
Weight	1 kg

SPORTON LAB. RF EXPOSURE EVALUATION REPORT


8. Power Density System Verification


The system performance check verifies that the system operates within its specifications.

The EUT is replaced by a calibrated source, the same spatial resolution, measurement region and the test separation used in the calibration was applied to system check. Through visual inspection into the measured power density distribution, both spatially (shape) and numerically (level) have no noticeable difference. The measured results should be within 10% of the calibrated targets.

Frequency [GHz]	Grid step	Grid extent X/Y [mm]	Measurement points
10	$0.25 \left(\frac{\lambda}{4}\right)$	120/120	16×16
30	$0.25 \ (\frac{\tilde{\lambda}}{4})$	60/60	24×24
60	$0.25 \ (\frac{\lambda}{4})$	32.5/32.5	26×26
90	$0.25 \ (\frac{\lambda}{4})$	30/30	36×36

Settings for measurement of verification sources

Verification Setup photo

9. System Verification Results

Date	Frequency (GHz)	5G Verification Source	Probe S/N	DAE S/N	Distance (mm)	Measured 4 cm ² (W/m ²)	Targeted 4 cm ² (W/m ²)	Deviation (%)
2018/12/11	30GHz	30GHz-1007	9388	918	10	36.3	33.6	8.04
2018/12/16	30GHz	30GHz-1009	9390	778	10	39.9	41.3	-3.39
2018/12/18	30GHz	30GHz-1007	9388	1326	10	33.4	33.6	-0.6

10. <u>EIRP Power</u>

The beam configurations for PD measurement are identified from the simulation report, the EIRP reported in this section is for reference only

Bandwidth	antenna module	Beam ID 1	Beam ID 2	Frequency (GHz)	RB allocation	Modulation	Maximum Average EIRP [dBm]
		33	157	27.925	1RB_0 offset	QPSK, CP-OFDM	23.54
100 MU-	0	49	177	27.925	1RB_0 offset	QPSK, CP-OFDM	21.67
100 MHz	0	31	161	27.925	1RB_0 offset	QPSK, CP-OFDM	22.35
		61	189	27.925	1RB_0 offset	QPSK, CP-OFDM	21.28

Bandwidth	antenna module	Beam ID 1	Beam ID 2	Frequency (GHz)	RB allocation	modulation	Maximum Average EIRP [dBm]
		26	153	27.925	1RB_0 offset	QPSK, CP-OFDM	22.41
100 MHz	1	28	155	27.925	1RB_0 offset	QPSK, CP-OFDM	22.42
		44	172	27.925	1RB_0 offset	QPSK, CP-OFDM	22.36

Bandwidth	antenna module	Beam ID 1	Beam ID 2	Frequency (GHz)	RB allocation	Modulation	Maximum Average EIRP [dBm]
		59	186	27.925	1RB_0 offset	QPSK, CP-OFDM	19.09
		43	167	27.925	1RB_0 offset	QPSK, CP-OFDM	18.94
100 MHz	2	42	169	27.925	1RB_0 offset	QPSK, CP-OFDM	18.21
	2	56	187	27.925	1RB_0 offset	QPSK, CP-OFDM	16.27
		41	168	27.925	1RB_0 offset	QPSK, CP-OFDM	15.91
		43	167	27.925	1RB_0 offset	QPSK, CP-OFDM	18.94

Bandwidth	antenna module	Beam ID 1	Beam ID 2	Frequency (GHz)	RB allocation	Modulation	Maximum Average EIRP [dBm]
		36	164	27.925	1RB_0 offset	QPSK, CP-OFDM	19.33
		62	190	27.925	1RB_0 offset	QPSK, CP-OFDM	19.01
		52	180	27.925	1RB_0 offset	QPSK, CP-OFDM	19.86
		54	182	27.925	1RB_0 offset	QPSK, CP-OFDM	19.45
100 MHz	3	53	181	27.925	1RB_0 offset	QPSK, CP-OFDM	18.16
		38	165	27.925	1RB_0 offset	QPSK, CP-OFDM	18.25
		34	162	27.925	1RB_0 offset	QPSK, CP-OFDM	19.18
		37	166	27.925	1RB_0 offset	QPSK, CP-OFDM	19.08
		35	163	27.925	1RB_0 offset	QPSK, CP-OFDM	19.72

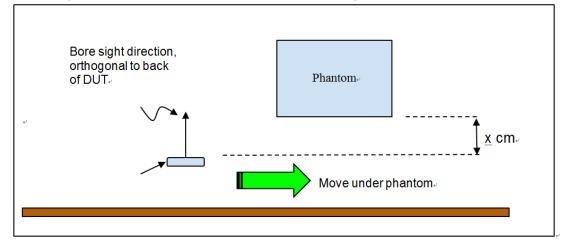
SPORTON LAB. RF EXPOSURE EVALUATION REPORT

Report No. : FA890514B

	NR Band n261 Module 0 (Beam ID 33, 157) Maximum Average EIRP [dBm]									
BW [MHz]	RB Size	RB Offset	Mod	Lowest frequency 27.525 GHz	Middle frequency 27.925 GHz	Highest frequency 28.325GHz				
50	1	0	QPSK	24.05	23.51	23.62				
50	32	0	GLOV	24.18	23.66	24.07				
50	1	0	16-QAM	23.12	22.29	22.02				
50	32	0	16-QAIVI	23.42	22.81	22.68				
50	1	0	64-QAM	21.53	21.03	20.10				
50	32	0	64-QAIVI	21.27	20.91	21.28				
BW [MHz]	RB Size	RB Offset	Mod	Lowest frequency 27.55 GHz	Middle frequency 27.925 GHz	Highest frequency 28.3 GHz				
100	1	0	QPSK	24.78	23.54	23.44				
100	66	0	QFON	24.36	23.88	23.46				
100	1	0	16-QAM	23.45	22.20	22.40				
100	66	0		23.24	22.90	22.23				
100	1	0	64-QAM	22.02	20.51	20.26				
100	66	0	04-QAIVI	21.29	20.96	20.37				
BW [MHz]	RB Size	RB Offset	Mod	Lowest frequency 27.70 GHz	Middle frequency 27.925 GHz	Highest frequency 28.15 GHz				
400	66	0	QPSK	22.63	22.67	21.92				
400	66	0	16-QAM	21.52	21.66	20.41				
400	66	0	64-QAM	18.99	19.08	18.22				

	NR Band n261 Module 1 (Beam ID 28, 155) Maximum Average EIRP [dBm]								
BW [MHz]	RB Size	RB Offset	Mod	Lowest frequency 27.525 GHz	Middle frequency 27.925 GHz	Highest frequency 28.325GHz			
50	1	0		23.18	21.92	20.16			
50	32	0	QPSK	22.96	21.86	20.50			
50	1	0	16-QAM	22.50	21.25	19.53			
50	32	0	16-QAIVI	21.75	20.87	19.27			
50	1	0	C4 OAM	20.20	19.00	17.29			
50	32	0	64-QAM	19.79	18.87	17.39			
BW [MHz]	RB Size	RB Offset	Mod	Lowest frequency 27.55 GHz	Middle frequency 27.925 GHz	Highest frequency 28.3 GHz			
100	1	0	QPSK	22.62	22.42	21.30			
100	66	0	QFON	22.37	22.43	20.96			
100	1	0	16-QAM	22.36	21.43	20.71			
100	66	0	16-QAIVI	21.56	21.20	20.25			
100	1	0	64-QAM	19.97	18.97	18.44			
100	66	0	64-QAIVI	19.46	19.18	18.26			
BW [MHz]	RB Size	RB Offset	Mod	Lowest frequency 27.70 GHz	Middle frequency 27.925 GHz	Highest frequency 28.15 GHz			
400	66	0	QPSK	19.37	18.61	18.46			
400	66	0	16-QAM	18.67	17.73	17.25			
400	66	0	64-QAM	16.06	15.15	14.85			

Report No. : FA890514B


	NR Band n261 Module 2 (Beam ID 59, 186) Maximum Average EIRP [dBm]									
BW [MHz]	RB Size	RB Offset	Mod	Lowest frequency 27.525 GHz	Middle frequency 27.925 GHz	Highest frequency 28.325GHz				
50	1	0	QPSK	20.17	19.31	16.20				
50	32	0	QFON	20.06	19.13	16.37				
50	1	0	16-QAM	19.90	18.73	15.73				
50	32	0	10-QAIVI	19.37	18.17	15.33				
50	1	0	64-QAM	17.79	16.43	13.48				
50	32	0	04-QAIVI	17.71	16.22	13.58				
BW [MHz]	RB Size	RB Offset	Mod	Lowest frequency 27.55 GHz	Middle frequency 27.925 GHz	Highest frequency 28.3 GHz				
100	1	0	QPSK	20.34	19.09	16.54				
100	66	0	QF ON	19.90	19.03	16.46				
100	1	0	16-QAM	19.79	18.71	15.92				
100	66	0		19.10	17.93	15.52				
100	1	0	64-QAM	17.58	16.41	13.67				
100	66	0	04-QAIVI	17.10	16.12	13.56				
BW [MHz]	RB Size	RB Offset	Mod	Lowest frequency 27.70 GHz	Middle frequency 27.925 GHz	Highest frequency 28.15 GHz				
400	66	0	QPSK	19.73	18.61	18.46				
400	66	0	16-QAM	18.67	17.73	17.25				
400	66	0	64-QAM	16.06	15.15	14.85				

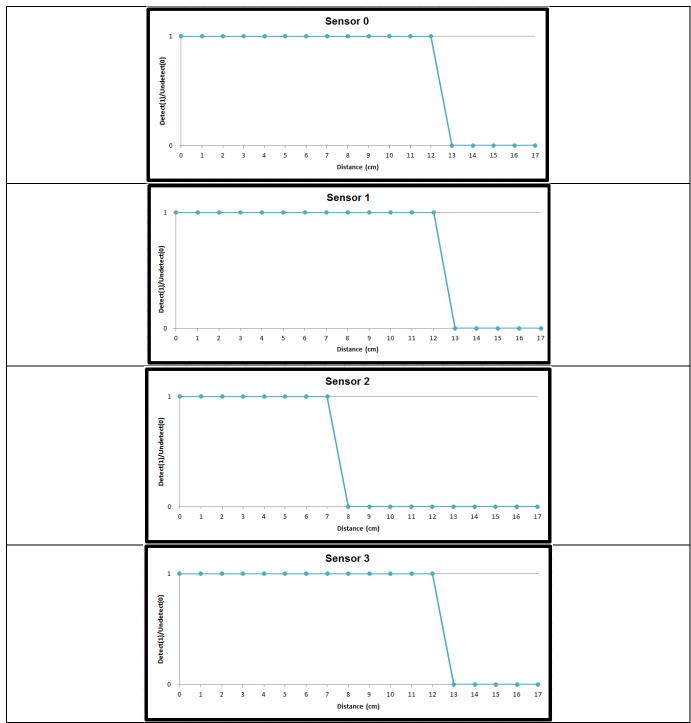
	NR Band n261 Module 3 (Beam ID 35, 163) Maximum Average EIRP [dBm]									
BW [MHz]	RB Size	RB Offset	Mod	Lowest frequency 27.525 GHz	Middle frequency 27.925 GHz	Highest frequency 28.325GHz				
50	1	0	QPSK	22.55	21.41	18.59				
50	32	0	QFON	22.63	21.09	18.09				
50	1	0	16-QAM	22.01	20.92	17.98				
50	32	0	10-QAW	21.72	20.08	16.99				
50	1	0	64-QAM	19.92	18.65	15.72				
50	32	0	64-QAIVI	19.89	18.25	15.06				
BW [MHz]	RB Size	RB Offset	Mod	Lowest frequency 27.55 GHz	Middle frequency 27.925 GHz	Highest frequency 28.3 GHz				
100	1	0	QPSK	21.79	19.72	17.16				
100	66	0	QFON	21.76	20.19	17.65				
100	1	0	16-QAM	21.25	19.09	16.66				
100	66	0	16-QAIVI	20.83	19.06	16.75				
100	1	0	64-QAM	19.11	16.80	14.24				
100	66	0	04-QAIVI	18.94	17.12	14.84				
BW [MHz]	RB Size	RB Offset	Mod	Lowest frequency 27.70 GHz	Middle frequency 27.925 GHz	Highest frequency 28.15 GHz				
400	66	0	QPSK	21.26	19.74	19.48				
400	66	0	16-QAM	19.72	18.68	17.92				
400	66	0	64-QAM	19.67	15.60	14.51				

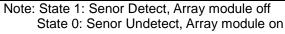
11. <u>Sensor Detector Test Procedure</u>

- 1. The device has implements the sensor to detect the human proximity, once the sensor detects and is triggered, the associated antenna array module will disable the transmission and switch to one of the other 3 array module. Detailed illustration of the sensor implementation is in the operation description.
- 2. The device under test is mounted on a support that can hold it at the desired test orientation and test distance, and the device on its mount is then slid under the flat phantom filled with normal temperature water, while the control software is monitored to determine if/when the sensor is triggered. The basic setup is illustrated in below figure.
- 3. All tests are performed with the 5G Mod attached to the host phone device.

The procedure for testing is as follows:

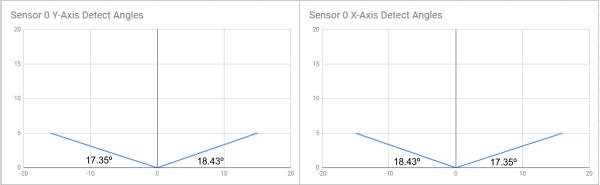
- 1. Adjust the height of the 5G Mod on the platform
- 2. Place the platform w/ the 5G Mod away from the Flat Phantom
- 3. Move the platform w/ 5G Mod under the center of Flat Phantom
- 4. Check the sensor state, mmwave array module ON/OFF state
- 5. Repeated above procedure in 1 cm steps until the sensor release.
- 6. This basic test procedure was applied at multiple spacings, in 1 cm increments, starting from a large spacing and reducing to a small spacing, and starting from a small spacing, and increasing to a large spacing. In this way the minimum detection distance was established for each module, and any hysteresis effects were taken into account. Steps of 1 cm were employed, rather than smaller steps of 3 or 1 mm as are commonly used to test capacitive proximity sensors, because of the much larger operational range of the thermal sensor. Note that using a larger step size of 1 cm produces a more conservative result, i.e. the smallest detection distance so found is equal to or less than that which would be found if using smaller step sizes like 1 mm.
- 7. Additionally, the test procedure was followed at a close distance of 5 mm from the device, to establish the extents of the angular cone of detection of each sensor, which was used to establish the measurement inclusion and exclusion zones in those measurement planes. Testing at this close spacing (corresponding to the actual measurement planes) is a more conservative means of establishing these characteristics of the sensor.


Result:


Right/Left/Back array module will turn off at detection distance of 12cm, Front array module turns off at detection distance of 7cm. Test separation of 7cm was chosen conservatively for ALL array module

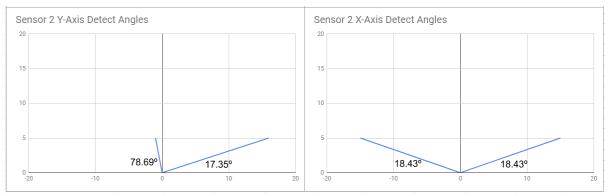
Report No. : FA890514B

Sensor Trigger Distance	<u>e</u>		
Sensor	Location	Sensor Detect Distance (mm)	Sensor Undetect Distance (mm)
Sensor 0 (Array Module 0)	Right Side	12	13
Sensor 1 (Array Module 1)	Left Side	12	13
Sensor 2 (Array Module 2)	Top Front	7	8
Sensor 3 (Array Module 3)	Top Rear	12	13

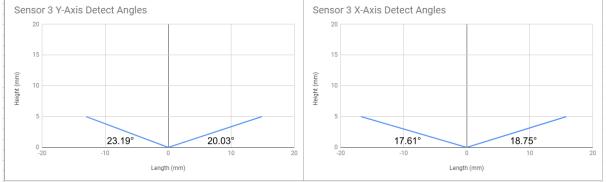



RF EXPOSURE EVALUATION REPORT

These angular results are summarized in the table below:


Amb. Temp.: 2	OC Obj. Temp. 30C	Y-Axis (At 5mm)	X-Axis (/	At 5mm)
Unit 1 N5GV260099 w/ Phone	Location of sensor (eg. Bot Right, Top Left)	-Y (Deg)	+Y (Deg)	-X (Deg)	+X (Deg)
Sensor 0	Right Side	17.4	18.4	18.4	17.4
Sensor 1	Left Side	21.0	19.7	19.7	18.4
Sensor 2	Top Front	78.7	17.4	18.4	18.4
Sensor 3	Top Rear	23.2	20.0	17.6	18.8

Measured angular responses of Sensor 0 at the 5 mm test separation distance.


Measured angular responses of Sensor 1 at the 5 mm test separation distance.

Measured angular responses of Sensor 2 at the 5 mm test separation distance.

Report No. : FA890514B

Measured angular responses of Sensor 3 at the 5 mm test separation distance.

SPORTON LAB. RF EXPOSURE EVALUATION REPORT

12. Power Density Measurement Evaluation

- 1. The 5G NR n261 signal under testing was configured by test Qualcomm software, and the test tool can be used and set the relevant 5G radio parameters (e.g. TX carrier, polarization, band, channel, bandwidth and output power etc.)
- 2. The device was configured to transmit maximum power and at 100% duty cycle, for each RB configuration/modulation/bandwidth/channel to be tested
- 3. Since the device Supports dual-polarization MIMO (2 × 2 uplink (UL) and 2 × 2 downlink (DL), therefore the device under test was configured beam pair testing at a time.
- 4. According to manufacturer simulation test results for different antenna modules and exposure planes, limited worst cases were selected for power density measurement.
- 5. This device support 5GNR n261.The frequency range is 27.5GHz to 28.35GHz. The maximum supporting bandwidth is 400MHz for UL. The modulation type is QPSK, 16QAM, and 64QAM for CP-OFDM for both of DL and UL and the Subcarrier spacing is120 kHz.
- 6. According to TCBC Workshop in October 2018, 4 cm² averaging area may now be considered.
- 7. The power density test separation distance and test conditions were confirmed by FCC in the lab KDB inquiry. The device implements the sensor detection, so that for some device orientations the PD test at default test separation was skipped and PD was tested at larger distance which represents the sensor detection range
- 8. Above 6 GHz, Maximum Permissible Exposure (MPE) limits apply to portable exposure conditions according to 47 CFR §2.1093.

12.1 Computation of the Electric Field Polarization Ellipse

For the numerical description of an arbitrarily oriented ellipse in three-dimensional space, five parameters are needed: the semi-major axis (a), the semi-minor axis (b), two angles describing the orientation of the normal vector of the ellipse (\emptyset , θ), and one angle describing the tilt of the semi-major axis (ψ). For the two extreme cases, i.e., circular and linear polarizations, three parameters only (a, \emptyset and θ) are sufficient for the description of the incident field.

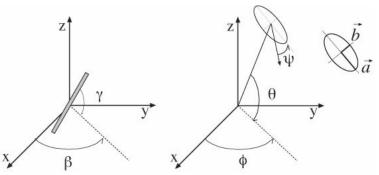


Illustration of the angles used for the numerical description of the sensor and the orientation of an ellipse in 3-D space.

For the reconstruction of the ellipse parameters from measured data, the problem can be reformulated as a nonlinear search problem. The semi-major and semi-minor axes of an elliptical field can be expressed as functions of the three angles (\emptyset , θ and ψ). The parameters can be uniquely determined towards minimizing the error based on least-squares for the given set of angles and the measured data. In this way, the number of free parameters is reduced from five to three, which means that at least three sensor readings are necessary to gain sufficient information for the reconstruction of the ellipse parameters. However, to suppress the noise and increase the reconstruction accuracy, it is desirable that the system of equations be over determined. The solution to use a probe consisting of two sensors angled by r_1 and r_2 toward the probe axis and to perform measurements at three angular positions of the probe, i.e., at β_1 , β_2 and β_3 , results in over-determinations by a factor of two. If there is a need for more information or increased accuracy, more rotation angles can be added. The reconstruction of the ellipse parameters can be separated into linear and non-linear parts that are best solved by the Givens algorithm combined with a downhill simplex algorithm. To minimize the mutual coupling, sensor angles are set with a shift of 90 degree ($r_2 = r_1 + 90$ degree), and to simplify, the first rotation angle of the probe (β_1) can be set to 0 degree

12.2 Total Field and Power Flux Density Reconstruction

Computation of the power density in general requires knowledge of the electric and magnetic field amplitudes and phases in the plane of incidence. Reconstruction of these quantities from pseudo-vector E-field measurements is feasible, as they are constrained by Maxwell's equations. SPEAG have developed a reconstruction approach based on the Gerchberg-Saxton algorithm, which benefits from the availability of the E-field polarization ellipse information obtained with the EUmmWV2 probe.

The average of the reconstructed power density is evaluated over a circular area in each measurement plane. Two average power density values can be computed, the average total power density and the average incident power density, and the average total power density is used to determine compliance.

- $|Re{S}|$ is the total Poynting vector
- $\mathbf{n} \cdot Re\{S\}$ is the normal Poything vector

The software post-processing reports to values, "S avg tot" and "S avg inc". "S avg tot" represents average total power density (all three xyz components included), and "S avg inc" represents average normal power density. The average total power density "S avg tot" is reported to determine the device compliance.

12.3 Test Positions

			Меа	surement	Plane			
Module	Back @ 5 mm	Left @ 5 mm	Right @ 5 mm	Top @ 5 mm	Bottom @ 5 mm	Front @ 5 mm	Front @ 2 mm	Comment
0	Yes	No	Yes	Yes	Yes	No	Yes	Principal plane excluded by prox sensor
1	Yes	Yes	No	Yes	No	No	Yes	Principal plane excluded by prox sensor; bottom plane excluded due to very low PD due to large distance
2	Yes	Yes	Yes	Yes	No	Yes	No	Principal plane 2mm test separation excluded by talk position logic; bottom plane excluded due to very low PD due to large distance
3	No	Yes	Yes	Yes	No	No	Yes	Principal plane excluded by prox sensor; bottom plane excluded due to very low PD due to large distance

			Measur	ement Plane				
Module	Back @ 70 mm	Left @ 70 mm	Right @ 70 mm	Top @ 70 mm	Bottom @ 70 mm	Front @ 70 mm	Comment	
0	No	Yes	No	No	No	No		
1	No	No	Yes	No	No	No	Principle plane is measured at conservative	
2	No	No	No	No	No	Yes	prox sensor release distance.	
3	Yes	No	No	No	No	No		

13. <u>RF Exposure Evaluation Results</u>

- 1. The test position/separation and the area to scan for each test is selected and identified in the simulation report, details in illustrated in the simulation report exhibit and the operational description.
- 2. For each array module, power density for different combinations of RB/modulation/bandwidth and
- also low/middle/high channel was executed at the worst position.
- 3. The test positions are defined per the front view of phone+Mod. Note that for the measurements, "right" and "left" are referenced with respect to viewing from the front, display side of the phone+Mod, but it contrasts with the reference used in the simulation reports which the reference is from the back view of the Mod"
- 4. 2 mm "Test separation" means 0.5 mm between probe-housing tip and DUT, with 1.5 mm from probe-housing tip to center of sensing elements.
- 5. The page 5 and 6 in the appendix is for the measurement which partially overlaps device footprint due to sensor cone exclusion, the 4 cm2[^] averaging causes a further reduction of the displayed PD area.

Plot No.	Bandwidth of 1CC		Antenna module		Beam ID 2	Frequency	Exposure Conditions	Test separation	RB allocation	Modulation	Measured E peak (V/m)	Measured H peak (A/m)	Measured 4cm^2 Average Normal PD (W/m^2)	Measured 4cm^2 Average Total PD (W/m^2)
	100 MHz	1cc	0	33	157	27.925	Front Surface	2mm	1RB_0 offset	QPSK	13.2	0.033	0.068	0.089
	100 MHz	1cc	0	49	177	27.925	Front Surface	2mm	1RB_0 offset	QPSK	26.8	0.058	0.087	0.115
	100 MHz	1cc	0	49	177	27.925	Back Surface	5mm	1RB_0 offset	QPSK	97.7	0.254	1.65	2.47
	100 MHz	1cc	0	33	157	27.925	Left side	70mm	1RB_0 offset	QPSK	45	0.119	4.77	4.78
	100 MHz	1cc	0	49	177	27.925	Right Side	5mm	1RB_0 offset	QPSK	10.6	0.036	0.089	0.099
	100 MHz	1cc	0	31	161	27.925	Right Side	5mm	1RB_0 offset	QPSK	11	0.03	0.152	0.166
	100 MHz	1cc	0	49	177	27.925	Top side	5mm	1RB_0 offset	QPSK	9.55	0.032	0.098	0.112
	100 MHz	1cc	0	61	189	27.925	Bottom side	5mm	1RB_0 offset	QPSK	15.9	0.052	0.414	0.483
	100 MHz	1cc	0	33	157	27.925	Left side	70 mm	32 RB_0 offset	QPSK	44.8	0.119	4.78	4.82
01	100 MHz	1cc	0	33	157	27.925	Left side	70 mm	66 RB_0 offset	QPSK	45.3	0.12	4.98	4.99
	100 MHz	1cc	0	33	157	27.925	Left side	70 mm	66 RB_0 offset	16QAM	40.9	0.108	4.03	4.04
	100 MHz	1cc	0	33	157	27.925	Left side	70 mm	66 RB_0 offset	64QAM	33	0.09	2.61	2.64
	50MHz	1cc	0	33	157	27.925	Left side	70 mm	32 RB_0 offset	QPSK	45	0.119	4.84	4.87
	100 MHz	4cc (contiguous)	0	33	157	27.925	Left side	70 mm	66 RB_0 offset	QPSK	34	0.09	2.78	2.79
	100 MHz	1cc	0	33	157	27.55	Left side	70 mm	66 RB_0 offset	QPSK	45.3	0.119	4.78	4.8
	100 MHz	1cc	0	33	157	28.3	Left side	70 mm	66 RB_0 offset	QPSK	43.9	0.117	4.74	4.79

Plot No.	Bandwidth of 1CC	Carrier aggregation	Antenna module	Beam ID 1	Beam ID 2	Frequency	Exposure Conditions	Test separation	RB allocation	Modulation	Measured E peak (V/m)		Measured 4cm^2 Average Normal PD (W/m^2)	Measured 4cm^2 Average Total PD (W/m^2)
	100 MHz	1cc	1	26	153	27.925	Front Surface	2mm	1RB_0 offset	QPSK	23.4	0.065	0.24	0.259
	100 MHz	1cc	1	26	153	27.925	Back Surface	5mm	1RB_0 offset	QPSK	61.4	0.15	0.823	1.13
	100 MHz	1cc	1	26	153	27.925	Left side	5mm	1RB_0 offset	QPSK	7.56	0.028	0.050	0.055
	100 MHz	1cc	1	28	155	27.925	Right Side	70mm	1RB_0 offset	QPSK	28.2	0.076	1.86	1.87
	100 MHz	1cc	1	44	172	27.925	Top side	5mm	1RB_0 offset	QPSK	16.1	0.045	0.477	0.522
	100 MHz	1cc	1	28	155	27.925	Right Side	70mm	32 RB_0 offset	QPSK	31	0.082	2.18	2.2
	100 MHz	1cc	1	28	155	27.925	Right Side	70mm	66 RB_0 offset	QPSK	29.8	0.081	2.04	2.05
	100 MHz	1cc	1	28	155	27.925	Right Side	70mm	32 RB_0 offset	16QAM	28.1	0.075	1.79	1.8
	100 MHz	1cc	1	28	155	27.925	Right Side	70mm	32 RB_0 offset	64QAM	24.9	0.064	1.13	1.14
	50MHz	1cc	1	28	155	27.925	Right Side	70mm	16 RB_0 offset	QPSK	30.7	0.08	2.14	2.15
	100 MHz	4cc (contiguous)	1	28	155	27.925	Right Side	70mm	32 RB_0 offset	QPSK	20.1	0.055	0.962	0.966
02	100 MHz	1cc	1	28	155	27.55	Right Side	70mm	32 RB_0 offset	QPSK	32.6	0.088	2.46	2.48
	100 MHz	1cc	1	28	155	28.3	Right Side	70mm	32 RB_0 offset	QPSK	26	0.071	1.57	1.58

SPORTON LAB. RF EXPOSURE EVALUATION REPORT

Report No. : FA890514B

Plot No.	Bandwidth of 1CC	Carrier aggregation	Antenna module	Beam ID 1	Beam ID 2	Frequency	Exposure Conditions	Test separation	RB allocation	Modulation	Measured E peak (V/m)	Measured H peak (A/m)	Measured 4cm^2 Average Normal PD (W/m^2)	Measured 4cm^2 Average Total PD (W/m^2)
	100 MHz	1cc	2	59	186	27.925	Front Surface	70mm	1RB_0 offset	QPSK	10.8	0.033	0.150	0.157
	100 MHz	1cc	2	41	168	27.925	Front Surface	5mm	1RB_0 offset	QPSK	25.8	0.057	0.117	0.137
	100 MHz	1cc	2	43	167	27.925	Back Surface	5mm	1RB_0 offset	QPSK	28.6	0.078	1.27	1.29
	100 MHz	1cc	2	42	169	27.925	Left side	5mm	1RB_0 offset	QPSK	11.1	0.035	0.141	0.155
	100 MHz	1cc	2	56	187	27.925	Right Side	5mm	1RB_0 offset	QPSK	36.4	0.097	1.37	1.49
	100 MHz	1cc	2	41	168	27.925	Top side	5mm	1RB_0 offset	QPSK	54.9	0.147	1.34	1.67
	100 MHz	1cc	2	43	167	27.925	Top side	5mm	1RB_0 offset	QPSK	56.1	0.141	1.68	1.79
	100 MHz	1cc	2	43	167	27.925	Top side	5mm	32 RB_0 offset	QPSK	59	0.147	1.73	1.91
	100 MHz	1cc	2	43	167	27.925	Top side	5mm	66 RB_0 offset	QPSK	57.7	0.146	1.64	1.84
	100 MHz	1cc	2	43	167	27.925	Top side	5mm	32 RB_0 offset	16QAM	53.5	0.136	1.44	1.61
	100 MHz	1cc	2	43	167	27.925	Top side	5mm	32 RB_0 offset	64QAM	43.2	0.112	1.01	1.11
	50MHz	1cc	2	43	167	27.925	Top side	5mm	16 RB_0 offset	QPSK	62.5	0.155	1.85	2.07
	100 MHz	4cc (contiguous)	2	43	167	27.925	Top side	5mm	32 RB_0 offset	QPSK	46.1	0.12	1.12	1.19
03	100 MHz	1cc	2	43	167	27.55	Top side	5mm	32 RB_0 offset	QPSK	70.2	0.173	2.5	2.75
	100 MHz	1cc	2	43	167	28.3	Top side	5mm	32 RB_0 offset	QPSK	50.8	0.128	1.25	1.42

Plot No.	Bandwidth of 1CC	Carrier aggregation	Antenna module	Beam ID 1	Beam ID 2	Frequency	Exposure Conditions	Test separation	RB allocation	Modulation	Measured E peak (V/m)	Measured H peak (A/m)	Measured 4cm^2 Average Normal PD (W/m^2)	Measured 4cm^2 Average Total PD (W/m^2)
	100 MHz	1cc	3	36	164	27.925	Front Surface	2 mm	1RB_0 offset	QPSK	17.3	0.048	0.319	0.385
	100 MHz	1cc	3	62	190	27.925	Back Surface	70 mm	1RB_0 offset	QPSK	14.9	0.052	0.380	0.408
	100 MHz	1cc	3	52	180	27.925	Back Surface	70 mm	1RB_0 offset	QPSK	21.2	0.057	0.896	0.916
	100 MHz	1cc	3	35	163	27.925	Back Surface	70 mm	1RB_0 offset	QPSK	20.5	0.055	0.824	0.850
	100 MHz	1cc	3	54	182	27.925	Left side	5 mm	1RB_0 offset	QPSK	21.8	0.059	0.880	0.896
	100 MHz	1cc	3	53	181	27.925	Left side	5 mm	1RB_0 offset	QPSK	19.5	0.055	0.510	0.674
	100 MHz	1cc	3	54	182	27.925	Right Side	5mm	1RB_0 offset	QPSK	18	0.058	0.638	0.674
	100 MHz	1cc	3	38	165	27.925	Right Side	5mm	1RB_0 offset	QPSK	19.1	0.056	0.799	0.823
	100 MHz	1cc	3	62	190	27.925	Top side	5mm	1RB_0 offset	QPSK	40.9	0.107	1.93	2.02
	100 MHz	1cc	3	34	162	27.925	Top side	5mm	1RB_0 offset	QPSK	42	0.113	1.95	2.17
	100 MHz	1cc	3	37	166	27.925	Top side	5mm	1RB_0 offset	QPSK	41.3	0.116	2.99	3.23
	100 MHz	1cc	3	37	166	27.925	Top side	5mm	32 RB_0 offset	QPSK	43.9	0.118	3.66	3.99
	100 MHz	1cc	3	37	166	27.925	Top side	5mm	66 RB_0 offset	QPSK	43.1	0.116	3.64	3.9
	100 MHz	1cc	3	37	166	27.925	Top side	5mm	32 RB_0 offset	16QAM	39.5	0.103	2.99	3.23
	100 MHz	1cc	3	37	166	27.925	Top side	5mm	32 RB_0 offset	64QAM	32.3	0.09	1.98	2.11
04	50MHz	1cc	3	37	166	27.925	Top side	5mm	16 RB_0 offset	QPSK	46	0.119	3.68	4.05
	100 MHz	4cc (contiguous)	3	37	166	27.925	Top side	5mm	32 RB_0 offset	QPSK	38.5	0.108	1.61	1.81
	100 MHz	1cc	3	37	166	27.55	Top side	5mm	32 RB_0 offset	QPSK	41.4	0.121	1.93	2.42
	100 MHz	1cc	3	37	166	28.3	Top side	5mm	32 RB_0 offset	QPSK	39.7	0.1	2.35	2.63

14. Simultaneous Transmission Analysis

Simultaneous configuration	Supported
Mod WWAN LTE Bands+5GNR n261	yes
Phone WLAN 2.4GHz/5GHz+Mod LTE Bands + 5GNR n261	yes
Phone WWAN LTE bands+ phone WLAN 2.4GHz/5GHz+ Mod LTE Bands + 5GNR n261	yes
Phone WWAN CDMA bands+ phone WLAN 2.4GHz/5GHz+ Mod LTE Bands + 5GNR n261	yes

General Note:

- 1. The WWAN / WLAN and Bluetooth SAR test results were referring the report of FCC ID: IHDT56XL1 (Sporton SAR Report No. FA890514), and phone report of FCC ID: IHDT56XJ1 (Sporton SAR Report No. FA851503).
- 2. Considering 5G NR n261 with WWAN / WLAN and Bluetooth can transmit simultaneously, the basic restrictions are on SAR and power density, and summation of these quantities should follow below formula and the simultaneous transmission analysis was following below step and the detail analysis refer to appendix D:
 - i) Use the standalone SAR according original report to collocate with 5G NR n261 power density at each exposure positions, if the result < 1, additional analysis is not necessary.
 - ii) If this ratio is larger than 1, use surface single point SAR measurements and treat as 1-gram measurements with 1.6 W/kg as the limit. Use these measurement for the point by point summation and confirm the ratio summation does not exceed 1

$$\sum_{i = 100 \text{ kHz}}^{10 \text{ GHz}} \frac{SAR_i}{SAR_L} + \sum_{i > 10 \text{ GHz}}^{300 \text{ GHz}} \frac{S_i}{S_L} \le 1$$

Test Engineer: Aaron Chen, Tom Jiang, Thomas Wang, Kurt Liu and Nick Yu

15. Uncertainty Assessment

The budget is valid for evaluation distances > $\lambda/2\pi$. For specific tests and configurations, the Uncertainty could be considerably smaller.

Preliminary Module mmWave Uncertainty Budget Evaluation Distances to the Antennas > λ / 2π											
Error Description	Uncertainty Value (± dB)	Probability	Divisor	(Ci)	Standard Uncertainty (±dB)	(Vi) Veff					
Measurement System											
Probe Calibration	0.49	N	1	1	0.49	∞					
Hemispherical Isotropy	0.50	R	1.732	1	0.29	∞					
Linearity	0.20	R	1.732	0	0.12	∞					
System Detection Limits	0.04	R	1.732	1	0.02	∞					
Modulation Response	0.40	R	1.732	1	0.23	∞					
Readout Electronics	0.03	N	1	1	0.03	∞					
Response Time	0.00	R	1.732	1	0.00	∞					
Integration Time	0.00	R	1.732	1	0.00	∞					
RF Ambient Noise	0.2	R	1.732	1	0.12	∞					
RF Ambient Reflections	0.21	R	1.732	1	0.12	∞					
Probe Positioner	0.04	R	1.732	1	0.02	∞					
Probe Positioning	0.30	R	1.732	1	0.17	∞					
Savg Reconstruction	0.60	R	1.732	1	0.35	∞					
Test Sample Related											
Power Drift	0.2	R	1.732	1	0.12	∞					
Input Power	0	N	1	0	0.00	∞					
	Combined Std. Un	certainty			0.76 dB	∞					
	Coverage Factor f	or 95 %			K=2						
	Expanded STD Un	certainty			1.52 dB						

SPORTON LAB. RF EXPOSURE EVALUATION REPORT

16. <u>References</u>

- [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"
- [2] FCC KDB 447498 D01 v06, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Oct 2015
- [3] FCC KDB 865664 D02 v01r02, "RF Exposure Compliance Reporting and Documentation Considerations" Oct 2015.
- [4] FCC KDB 648474 D04 v01r03, "SAR Evaluation Considerations for Wireless Handsets", Oct 2015.


Appendix A. Plots of System Performance Check

The plots are shown as follows.

Appendix B. Plots of SAR Measurement

The plots are shown as follows.

Report No. : FA890514B

The DASY calibration certificates are shown as follows.