

FCC RADIO TEST REPORT

FCC ID : IHDT56XL1

Equipment : Mobile 5G MOD

Brand Name : Motorola Model Name : MD1005G

Applicant : Motorola Mobility LLC

222 W, Merchandise Mart Plaza, Chicago IL

60654 USA

Manufacturer : Motorola Mobility LLC

222 W, Merchandise Mart Plaza, Chicago IL

60654 USA

Standard : 47 CFR Part 2, 96

The product was received on Sep. 05, 2018 and testing was started from Oct. 11, 2018 and completed on Nov. 06, 2018. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures given in ANSI / TIA-603-E and has been in compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Approved by: Jones Tsai

Ince/sus

SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory

No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

TEL: 886-3-327-3456 Page Number : 1 of 23 FAX: 886-3-328-4978 Issued Date : Dec. 25, 2018

Table of Contents

His	story o	of this test report	3
Su	mmar	ry of Test Result	4
1	Gene	eral Description	5
	1.1 1.2 1.3 1.4	Product Feature of Equipment Under Test	6 6
	1.5 1.6	Testing Location	
2		Configuration of Equipment Under Test	
	2.1 2.2 2.3 2.4 2.5	Test Mode Connection Diagram of Test System Support Unit used in test configuration Measurement Results Explanation Example Frequency List of Low/Middle/High Channels	9 9
3	Cond	ducted Test Items	11
	3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8	Measuring Instruments Conducted Output Power and EIRP Measurement Peak-to-Average Ratio EIRP Power Density Occupied Bandwidth Conducted Band Edge Measurement Conducted Spurious Emission Measurement Frequency Stability Measurement	
4		ated Test Items	
	4.1 4.2 4.3 4.4	Measuring Instruments Test Setup Test Result of Radiated Test. Radiated Spurious Emission Measurement	19 19 20
5		of Measuring Equipment	
6	Unce	ertainty of Evaluation	23
Αp	pendi	ix A. Test Results of Conducted Test	

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Report Template No.: BU5-FGLTE96 Version 2.3

Appendix B. Test Results of EIRP and Radiated Test

Page Number : 2 of 23

Issued Date : Dec. 25, 2018

Report No.: FG890514B

Report Version : 02

History of this test report

Report No.: FG890514B

Report No.	Version	Description	Issued Date
FG890514B	01	Initial issue of report	Dec. 24, 2018
FG890514B	02	Add applied standard.	Dec. 25, 2018

TEL: 886-3-327-3456 Page Number : 3 of 23 FAX: 886-3-328-4978 Issued Date : Dec. 25, 2018

Summary of Test Result

Report No.: FG890514B

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
0.0	§2.1046	Conducted Output Power	Reporting only	-
3.2	-	Effective Isotropic Radiated Power	Reporting only	-
3.3	§96.41	Peak-to-Average Ratio	Pass	
3.4	§96.41	EIRP Power Density	Pass	-
3.5	§2.1049 §96.41	Occupied Bandwidth	Reporting only	-
3.6	§2.1051 §96.41	Conducted Band Edge Measurement	Pass	-
3.7	§2.1051 §96.41	Conducted Spurious Emission	Pass	
3.8	§2.1055	Frequency Stability for Temperature & Voltage	Pass	-
4.4	§2.1051 §96.41	Radiated Spurious Emission	Pass	Under limit 7.73 dB at 29448.000 MHz

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Wii Chang

Report Producer: Natasha Hsieh

TEL: 886-3-327-3456 Page Number : 4 of 23 FAX: 886-3-328-4978 Issued Date : Dec. 25, 2018

1 **General Description**

1.1 Product Feature of Equipment Under Test

	Product Feature
Equipment	Mobile 5G MOD
Brand Name	Motorola
Model Name	MD1005G
FCC ID	IHDT56XL1
IMEI Code	Conduction : 355567090009993
IIVIEI Code	Radiation : 355567090009738
EUT supports Radios application	LTE/5G NR
HW Version	DVT2
EUT Stage	Identical Prototype

Report No.: FG890514B

Remark: The above EUT's information was declared by manufacturer.

Specification of Accessories							
USB Cable 1	Brand Name: Motorola						
SB Cable 1	Model Name: SC18C46623						

Supported Unit Used in Test Configuration and System								
	Brand Name:	Motorola						
AC Adapter 1	Model Name:	SC-22						
	Manufacturer:	Chenyang						
	Brand Name:	Motorola						
AC Adapter 2	Model Name:	SC-51						
	Manufacturer:	Salom						
Mobile Phone	Brand Name:	Motorola						
INIODITE FITOTIE	FCC ID:	IHDT56XJ1						

TEL: 886-3-327-3456 Page Number : 5 of 23 FAX: 886-3-328-4978 Issued Date : Dec. 25, 2018

1.2 Product Specification of Equipment Under Test

Standards-related Product Specification						
Tx Frequency	LTE Band 48: 3552.5 MHz ~ 5697.5 MHz					
Rx Frequency	LTE Band 48: 3552.5 MHz ~ 5697.5 MHz					
Bandwidth	LTE Band 48: 5MHz / 10MHz / 15MHz / 20MHz					
Maximum Output Power to Antenna	LTE Band 48: 22.59 dBm					
Antenna Type	Fixed Internal Antenna					
Antenna Gain	LTE Band 48: 0 dBi					
Type of Modulation	QPSK / 16QAM / 64QAM					

Report No.: FG890514B

1.3 Modification of EUT

No modifications are made to the EUT during all test items.

1.4 Emission Designator

Ľ	ΓE Band 48	QP	sĸ	16Q	AM	640	AM
BW (MHz)	Frequency Range (MHz)	Emission Designator (99%OBW)	Frequency Tolerance (ppm)	Emission Designator (99%OBW)	Frequency Tolerance (ppm)	Emission Designator (99%OBW)	Frequency Tolerance (ppm)
5	3552.5~3697.5	4M51G7D	-	4M51W7D	-	4M50W7D	-
10	3555.0~3695.0	9M05G7D	0.0063	9M07W7D	-	9M03W7D	-
15	3557.5~3692.5	13M6G7D	-	13M6W7D	-	13M5W7D	-
20	3560.0~3690.0	18M7G7D	-	18M5W7D	-	18M5W7D	-

TEL: 886-3-327-3456 Page Number : 6 of 23
FAX: 886-3-328-4978 Issued Date : Dec. 25, 2018

1.5 Testing Location

Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 1190) and the FCC designation No. TW1190 and TW0007 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC Test.

Report No.: FG890514B

Test Site	SPORTON INTERNATIONAL INC.				
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978				
Test Site No.	Sporton Site No. TH05-HY				

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	SPORTON INTERNATIONAL INC.				
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855				
Test Site No.	Sporton Site No. 03CH12-HY				

Note: The test site complies with ANSI C63.4 2014 requirement.

1.6 Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- + ANSI C63.26-2015
- ANSI / TIA-603-E
- 47 CFR Part 2, 96
- FCC KDB 971168 D01 Power Meas. License Digital Systems v03r01
- FCC KDB 940660 D01 Part 96 CBRS Eqpt v01
- FCC KDB 412172 D01 Determining ERP and EIRP v01r01

Remark:

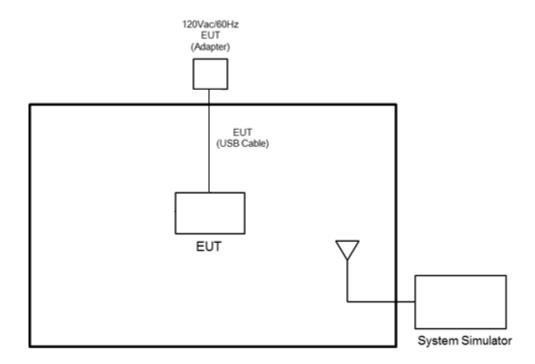
- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

TEL: 886-3-327-3456 Page Number : 7 of 23 FAX: 886-3-328-4978 Issued Date : Dec. 25, 2018

2 Test Configuration of Equipment Under Test

2.1 Test Mode

Antenna port conducted and radiated test items listed below are performed according to KDB 971168 D01 Power Meas. License Digital Systems v03r01 with maximum output power.


Report No.: FG890514B

For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (X plane) were recorded in this report.

		Bandwidth (MHz)				Modulation			RB#			Test Channel				
Test Items	Band				`	<u> </u>									1	1
		1.4	3	5	10	15	20	QPSK	16QAM	64QAM	1	Half	Full	L	M	Н
Max. Output Power	48	-	-	v	v	v	v	v	v	v	٧	v	v	v	v	v
Peak EIRP Density	48	-	-	v	v	v	v	v	v	v	٧		v	٧	v	v
26dB and 99% Bandwidth	48	-	-	v	٧	v	v	v	v	v			v	٧	v	v
Conducted Band Edge	48	-	-	v	٧	v	v	v	v	v	٧		v	٧		v
Peak-to-Aver age Ratio	48	-	-				v	v	v	v	v		v	v	v	v
Conducted Spurious Emission	48	-	-	v	v	v	v	v	v	v	v		v	v	v	v
E.R.P/ E.I.R.P	48	-	-	v	٧	v	v	v	v	v	٧			٧	v	v
Frequency Stability	48	-	-		v			v	v	v	v			v	v	v
Radiated Spurious Emission	48						W	orst Case	•					v	v	v
Remark	 The difference 	e mark e device erent R orted.	"-" mea e is inve B size/	ns that estigate offset a	this ba d from nd mod	ndwidtl 30MHz dulation	n is not z to 10 t is in ex		d. ndamenta est. Subse	ll signal for equently, o		•				nder

TEL: 886-3-327-3456 Page Number : 8 of 23
FAX: 886-3-328-4978 Issued Date : Dec. 25, 2018

2.2 Connection Diagram of Test System

Report No.: FG890514B

2.3 Support Unit used in test configuration

lte	em Equipment	Trade Name	Model No.	FCC ID	Data Cable	Power Cord
1	LTE Base Station	Anritsu	MT8820C	N/A	N/A	Unshielded, 1.8 m

2.4 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

Example:

 $Offset(dB) = RF \ cable \ loss(dB) + attenuator \ factor(dB).$ = 4.2 + 10 = 14.2 (dB)

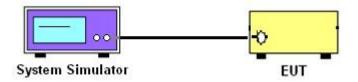
TEL: 886-3-327-3456 Page Number : 9 of 23
FAX: 886-3-328-4978 Issued Date : Dec. 25, 2018

2.5 Frequency List of Low/Middle/High Channels

	LTE Band 48 Ch	annel and Frequen	cy List	
BW [MHz]	Channel/Frequency(MHz)	Lowest	Middle	Highest
20	Channel	55340	55990	56640
20	Frequency	3560.0	3625.0	3690.0
45	Channel	55315	55990	56665
15	Frequency	3557.5	3625.0	3692.5
10	Channel	55290	55990	56690
10	Frequency	3555.0	3625.0	3695.0
5	Channel	55265	55990	56715
5	Frequency	3552.5	3625.0	3697.5

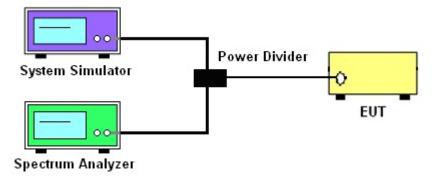
Report No.: FG890514B

TEL: 886-3-327-3456 Page Number : 10 of 23 FAX: 886-3-328-4978 Issued Date : Dec. 25, 2018

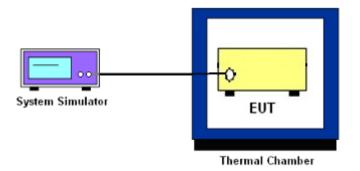

3 Conducted Test Items

3.1 Measuring Instruments

See list of measuring instruments of this test report.


3.1.1 Test Setup

3.1.2 Conducted Output Power



Report No.: FG890514B

3.1.3 Peak EIRP Density, Peak-to-Average Ratio, Occupied Bandwidth, Conducted Band-Edge and Conducted Spurious Emission

3.1.4 Frequency Stability

3.1.5 Test Result of Conducted Test

Please refer to Appendix A.

TEL: 886-3-327-3456 Page Number : 11 of 23 FAX: 886-3-328-4978 Issued Date : Dec. 25, 2018

3.2 Conducted Output Power and EIRP Measurement

3.2.1 Description of the Conducted Output Power Measurement and EIRP Measurement

A system simulator was used to establish communication with the EUT. Its parameters were set to force the EUT transmitting at maximum output power. The measured power in the radio frequency on the transmitter output terminals shall be reported.

Report No.: FG890514B

The EIRP of mobile transmitters must not exceed 1 Watts for LTE Band 48.

According to KDB 412172 D01 Power Approach,

 $EIRP = P_T + G_T - L_C$, where

 P_T = transmitter output power in dBm

 G_T = gain of the transmitting antenna in dBi

L_C = signal attenuation in the connecting cable between the transmitter and antenna in dB

3.2.2 Test Procedures

- 1. The transmitter output port was connected to the system simulator.
- 2. Set EUT at maximum power through the system simulator.
- 3. Select lowest, middle, and highest channels for each band and different modulation.
- 4. Measure and record the power level from the system simulator.

TEL: 886-3-327-3456 Page Number : 12 of 23 FAX: 886-3-328-4978 Issued Date : Dec. 25, 2018

3.3 Peak-to-Average Ratio

3.3.1 Description of the PAR Measurement

Power Complementary Cumulative Distribution Function (CCDF) curves provide a means for characterizing the power peaks of a digitally modulated signal on a statistical basis. A CCDF curve depicts the probability of the peak signal amplitude exceeding the average power level. Most contemporary measurement instrumentation include the capability to produce CCDF curves for an input signal provided that the instrument's resolution bandwidth can be set wide enough to accommodate the entire input signal bandwidth. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

Report No.: FG890514B

3.3.2 Test Procedures

The testing follows FCC KDB 971168 D01 v03r01 Section 5.7.1

- 1. The EUT was connected to spectrum and system simulator via a power divider.
- 2. Set the CCDF (Complementary Cumulative Distribution Function) option in spectrum analyzer.
- 3. The highest RF powers were measured and recorded the maximum PAPR level associated with a probability of 0.1 %.
- 4. Record the deviation as Peak to Average Ratio

TEL: 886-3-327-3456 Page Number : 13 of 23 FAX: 886-3-328-4978 Issued Date : Dec. 25, 2018

3.4 EIRP Power Density

3.4.1 Description of the EIRP Power Density

In any event, the EIRP power density shall not exceed 0.2 watt/10 megahertz in any one-megahertz slice of spectrum.

Report No.: FG890514B

3.4.2 Test Procedures

The testing follows FCC KDB 971168 D01 v03r01 Section 5.4

- 1. Set instrument center frequency to OBW center frequency.
- 2. Set span to at least 1.5 times the OBW.
- 3. Set the RBW to the specified reference bandwidth (often 1 MHz).
- 4. Set VBW ≥ 3 × RBW.
- 5. Detector = RMS (power averaging).
- 6. Ensure that the number of measurement points in the sweep $\geq 2 \times \text{span/RBW}$.
- 7. Sweep time = auto couple.
- 8. Employ trace averaging (RMS) mode over a minimum of 100 traces.
- 9. Use the peak marker function to determine the maximum amplitude level within the reference bandwidth (PSD).
- 10. Determine the EIRP by adding the effective antenna gain to the adjusted power level.

TEL: 886-3-327-3456 Page Number : 14 of 23 FAX: 886-3-328-4978 Issued Date : Dec. 25, 2018

3.5 Occupied Bandwidth

3.5.1 Description of Occupied Bandwidth Measurement

The occupied bandwidth is the width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5% of the

total mean transmitted power.

The 26 dB emission bandwidth is defined as the frequency range between two points, one above and

one below the carrier frequency, at which the spectral density of the emission is attenuated 26 dB

below the maximum in-band spectral density of the modulated signal. Spectral density (power per unit

bandwidth) is to be measured with a detector of resolution bandwidth equal to approximately 1.0% of

the emission bandwidth.

3.5.2 Test Procedures

The testing follows FCC KDB 971168 D01 v03r01 Section 4.2

1. The EUT was connected to spectrum analyzer and system simulator via a power divider.

2. The spectrum analyzer center frequency is set to the nominal EUT channel center frequency.

The span range for the spectrum analyzer shall be between two and five times the anticipated

OBW.

3. The nominal resolution bandwidth (RBW) shall be in the range of 1 to 5 % of the anticipated

OBW, and the VBW shall be at least 3 times the RBW.

4. Set the detection mode to peak, and the trace mode to max hold.

5. Determine the reference value: Set the EUT to transmit a modulated signal. Allow the trace to

stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace.

(this is the reference value)

6. Determine the "-26 dB down amplitude" as equal to (Reference Value – X).

7. Place two markers, one at the lowest and the other at the highest frequency of the envelope of

the spectral display such that each marker is at or slightly below the "-X dB down amplitude"

determined in step 6. If a marker is below this "-X dB down amplitude" value it shall be placed

as close as possible to this value. The OBW is the positive frequency difference between the

two markers.

8. Use the 99 % power bandwidth function of the spectrum analyzer and report the measured

bandwidth.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Report Template No.: BU5-FGLTE96 Version 2.3

Page Number

: 15 of 23

Issued Date

: Dec. 25, 2018

Report Version

Report No.: FG890514B

: 02

3.6 Conducted Band Edge Measurement

3.6.1 Description of Conducted Band Edge Measurement

The power of any emission outside outside the fundamental emission (whether in or outside of the authorized band) shall not exceed -13 dBm/MHz. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or less, but at least one percent of the emission bandwidth of the fundamental emission of the transmitter, provided the measured energy is integrated over a 1 MHz bandwidth.

Report No.: FG890514B

3.6.2 Test Procedures

The testing follows FCC KDB 971168 D01 v03r01 Section 6.0.

- 1. The EUT was connected to spectrum analyzer and system simulator via a power divider.
- 2. The band edges of low and high channels for the highest RF powers were measured.
- 3. Set RBW >= 1% EBW in the 1MHz band immediately outside and adjacent to the band edge.
- 4. Beyond the 1 MHz band from the band edge, RBW=1MHz was used
- 5. Set spectrum analyzer with RMS detector.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
- 7. The conducted power of any emission outside the fundamental emission (whether in or outside of the authorized band) shall not exceed -13 dBm/MHz within 0-10 megahertz above the upper SAS-assigned channel edge and within 0-10 megahertz below the lower SAS-assigned channel edge. At all frequencies greater than 10 megahertz above the upper SAS assigned channel edge and less than 10 MHz below the lower SAS assigned channel edge, the conducted power of any emission shall not exceed -25 dBm/MHz

TEL: 886-3-327-3456 Page Number : 16 of 23
FAX: 886-3-328-4978 Issued Date : Dec. 25, 2018

3.7 Conducted Spurious Emission Measurement

3.7.1 Description of Conducted Spurious Emission Measurement

96.41 (e)(2)

The conducted power of any emissions below 3530 MHz or above 3720 MHz shall not exceed -40dBm/MHz.

3.7.2 Test Procedures

The testing follows FCC KDB 971168 D01 v03r01 Section 6.0.

- 1. The EUT was connected to spectrum analyzer and system simulator via a power divider.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.
 The path loss was compensated to the results for each measurement.

Report No.: FG890514B

- 3. The middle channel for the highest RF power within the transmitting frequency was measured.
- 4. The conducted spurious emission for the whole frequency range was taken.
- 5. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz.
- 6. Set spectrum analyzer with RMS detector.
- 7. Taking the record of maximum spurious emission.
- 8. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
- 9. The limit line is -40dBm/MHz.

TEL: 886-3-327-3456 Page Number : 17 of 23 FAX: 886-3-328-4978 Issued Date : Dec. 25, 2018

3.8 Frequency Stability Measurement

3.8.1 Description of Frequency Stability Measurement

The frequency stability shall be measured by variation of ambient temperature and variation of primary supply voltage to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within ±0.00025% (±2.5ppm) of the center frequency

Report No.: FG890514B

3.8.2 Test Procedures for Temperature Variation

The testing follows FCC KDB 971168 D01 v03r01 Section 9.0.

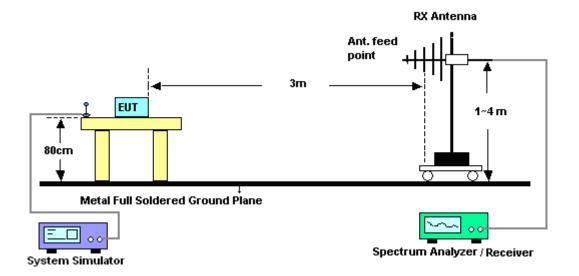
- 1. The EUT was set up in the thermal chamber and connected with the system simulator.
- With power OFF, the temperature was decreased to -30°C and the EUT was stabilized before testing. Power was applied and the maximum change in frequency was recorded within one minute.
- 3. With power OFF, the temperature was raised in 10°C step up to 50°C. The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute.

3.8.3 Test Procedures for Voltage Variation

The testing follows FCC KDB 971168 D01 v03r01 Section 9.0.

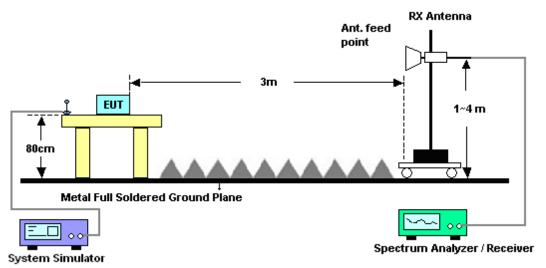
- 1. The EUT was placed in a temperature chamber at 25±5° C and connected with the system simulator.
- 2. The power supply voltage to the EUT was varied from 85% to 115% of the nominal value measured at the input to the EUT.
- 3. The variation in frequency was measured for the worst case.

TEL: 886-3-327-3456 Page Number : 18 of 23
FAX: 886-3-328-4978 Issued Date : Dec. 25, 2018


4 Radiated Test Items

4.1 Measuring Instruments

See list of measuring instruments of this test report.


4.2 Test Setup

For radiated emissions from 30MHz to 1GHz

Report No.: FG890514B

For radiated emissions above 1GHz

4.3 Test Result of Radiated Test

Please refer to Appendix B.

TEL: 886-3-327-3456 Page Number : 19 of 23 FAX: 886-3-328-4978 Issued Date : Dec. 25, 2018

4.4 Radiated Spurious Emission Measurement

4.4.1 Description of Radiated Spurious Emission Measurement

The radiated spurious emission was measured by substitution method according to ANSI / TIA-603-E.

Report No.: FG890514B

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitter power (P) by a factor of at least -40dBm / MHz.

The spectrum is scanned from 30 MHz up to a frequency including its 10th harmonic.

4.4.2 Test Procedures

The testing follows FCC KDB 971168 D01 v03r01 Section 5.8 and ANSI / TIA-603-E Section 2.2.12.

- 1. The EUT was placed on a turntable with 0.8 meter height for frequency below 1GHz and 1.5 meter height for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the receiving antenna mounted on the antenna tower.
- 3. The table was rotated 360 degrees to determine the position of the highest spurious emission.
- 4. The height of the receiving antenna is varied between 1m to 4m to search the maximum spurious emission for both horizontal and vertical polarizations.
- During the measurement, the system simulator parameters were set to force the EUT transmitting at maximum output power.
- 6. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz, taking the record of maximum spurious emission.
- A horn antenna was substituted in place of the EUT and was driven by a signal generator.
 Tune the output power of signal generator to the same emission level with EUT maximum spurious emission.

EIRP (dBm) = S.G. Power - Tx Cable Loss + Tx Antenna Gain ERP (dBm) = EIRP - 2.15

8. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

The limit line is -40dBm/MHz

TEL: 886-3-327-3456 Page Number : 20 of 23 FAX: 886-3-328-4978 Issued Date : Dec. 25, 2018

5 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
LTE Base Station	Anritsu	MT8820C	6201432821	GSM/GPRS /WCDMA/LTE	Oct. 14, 2018	Oct. 14, 2018~ Nov. 06, 2018	Oct. 13, 2019	Conducted (TH05-HY)
Base Station (Measure)	Anritsu	MT8821C	6201664755	GSM / GPRS /WCDMA / LTE FDD/TDD with 44) /LTE-3CC DLCA,2CC ULCA	Mar. 26, 2018	Oct. 14, 2018~ Nov. 06, 2018	Mar. 25, 2019	Conducted (TH05-HY)
Programmable Power Supply	GW Instek	PSS-2005	EL890094	1V~20V 0.5A~5A	Oct. 02, 2018	Oct. 14, 2018~ Nov. 06, 2018	Oct. 01, 2019	Conducted (TH05-HY)
Coupler	Warison	1-18GHz 20dB 25WSMA Directional Coupler	#B	1G~18GHz	Dec. 04, 2017	Oct. 14, 2018~ Nov. 06, 2018	Dec. 03, 2018	Conducted (TH05-HY)
Bilog Antenna	TESEQ	CBL 6111D&0080 2N1D01N-06	47020&06	30MHz to 1GHz	1GHz Nov. 20, 2017 Oct. 11, 2018~ Nov. 19, 2018		Nov. 19, 2018	Radiation (03CH12-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120D	9120D-1328	1GHz ~ 18GHz	Oct. 20, 2017	Oct. 11, 2018~ Oct. 18, 2018	Oct. 19, 2018	Radiation (03CH12-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120D	9120D-1522	1GHz ~ 18GHz	May 10, 2018	Oct. 11, 2018~ Oct. 18, 2018	May 09, 2019	Radiation (03CH12-HY)
Preamplifier	COM-POWER	PA-103	161075	10MHz~1GHz	Mar. 26, 2018	Oct. 11, 2018~ Oct. 18, 2018	Mar. 25, 2019	Radiation (03CH12-HY)
Preamplifier	Keysight	83017A	MY5327014 8	1GHz~26.5GHz	Jan. 15, 2018	Oct. 11, 2018~ Oct. 18, 2018	Jan. 14, 2019	Radiation (03CH12-HY)
Preamplifier	MITEQ	AMF-7D-001 01800-30-10 P	1590074	1GHz~18GHz	May 21, 2018	Oct. 11, 2018~ Oct. 18, 2018	May 20, 2019	Radiation (03CH12-HY)
Preamplifier	EMEC	EM18G40G	060715	18GHz ~ 40GHz	Dec. 05, 2017	Oct. 11, 2018~ Oct. 18, 2018	Dec. 04, 2018	Radiation (03CH12-HY)
Spectrum Analyzer	Keysight	N9010A	MY5420048 5	10Hz ~ 44GHz	Oct. 31, 2017	Oct. 11, 2018~ Oct. 18, 2018	Oct. 30, 2018	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY15539/4	30M-18G	Mar. 14, 2018	Oct. 11, 2018~ Oct. 18, 2018	Mar. 13, 2019	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	505134/2	30M~40GHz	Oct. 20, 2017	Oct. 11, 2018~ Oct. 18, 2018	Oct. 19, 2018	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	800740/2	30M~40GHz	Oct. 20, 2017	Oct. 11, 2018~ Oct. 18, 2018	Oct. 19, 2018	Radiation (03CH12-HY)
Controller	EMEC	EM1000	N/A	Control Turn table & Ant Mast	N/A	Oct. 11, 2018~ Oct. 18, 2018	N/A	Radiation (03CH12-HY)
Antenna Mast	EMEC	AM-BS-4500 -B	N/A	1m~4m	N/A	Oct. 11, 2018~ Oct. 18, 2018	N/A	Radiation (03CH12-HY)
Turn Table	EMEC	TT2000	N/A	0~360 Degree	N/A	Oct. 11, 2018~ Oct. 18, 2018	N/A	Radiation (03CH12-HY)

Report No.: FG890514B

TEL: 886-3-327-3456 Page Number : 21 of 23 FAX: 886-3-328-4978 Issued Date : Dec. 25, 2018

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA91705 84	18GHz ~ 40GHz	Nov. 27, 2017	Oct. 11, 2018~ Oct. 18, 2018	Nov. 26, 2018	Radiation (03CH12-HY)
EMI Test Receiver	Rohde & Schwarz	ESU26	100390	20Hz~26.5GHz	Dec. 25, 2017	Oct. 11, 2018~ Oct. 18, 2018	Dec. 24, 2018	Radiation (03CH12-HY)
Signal Generator	Rohde & Schwarz	SMF100A	101107	100kHz~40GHz	May 21, 2018	Oct. 11, 2018~ Oct. 18, 2018	May 20, 2019	Radiation (03CH12-HY)
Software	Audix	E3 6.2009-8-24	RK-000989	N/A	N/A	Oct. 11, 2018~ Oct. 18, 2018	N/A	Radiation (03CH12-HY)
Filter	Wainwright	WLJ4-1000- 1530-6000-4 0ST	SN3	1.53 GHz Lowpass	Mar. 21, 2018	Oct. 11, 2018~ Oct. 18, 2018	Mar. 20, 2019	Radiation (03CH12-HY)
Filter	Woken	WHKX8-527 2.5-6750-18 000-40ST	SN2	6.75G Highpass	Mar. 21, 2018	Oct. 11, 2018~ Oct. 18, 2018	Mar. 20, 2019	Radiation (03CH12-HY)
Notch Filter	Wainwright	WRCD1800/ 2000-20/40- 10SSK	SN1	LTE Band 25	Aug. 23, 2018	Oct. 11, 2018~ Oct. 18, 2018	Aug. 22, 2019	Radiation (03CH12-HY)
Notch Filter	Wainwright	WTRCD10-1 710-1785-20 -40-40SSK	SN1	1710-1785	May 22, 2018	Oct. 11, 2018~ Oct. 18, 2018	May 21, 2019	Radiation (03CH12-HY)
Notch Filter	Wainwright	WRCT/800/9 60-0.2/40-8S SK	SN11	GSM850	Aug. 23, 2018	Oct. 11, 2018~ Oct. 18, 2018	Aug. 22, 2019	Radiation (03CH12-HY)
Notch Filter	Wainwright	WRCT698/7 98-10/40 8SSK	SN1	AWS Band	Nov. 08, 2017	Oct. 11, 2018~ Oct. 18, 2018	Nov. 07, 2018	Radiation (03CH12-HY)

6 Uncertainty of Evaluation

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of	5.10
Confidence of 95% (U = 2Uc(y))	3110

Report No.: FG890514B

Uncertainty of Radiated Emission Measurement (1 GHz ~ 18 GHz)

	-
Measuring Uncertainty for a Level of	5.20
Confidence of 95% (U = 2Uc(y))	5.20

Uncertainty of Radiated Emission Measurement (18 GHz ~ 40 GHz)

Measuring Uncertainty for a Level of	4.70
Confidence of 95% (U = 2Uc(y))	4.70

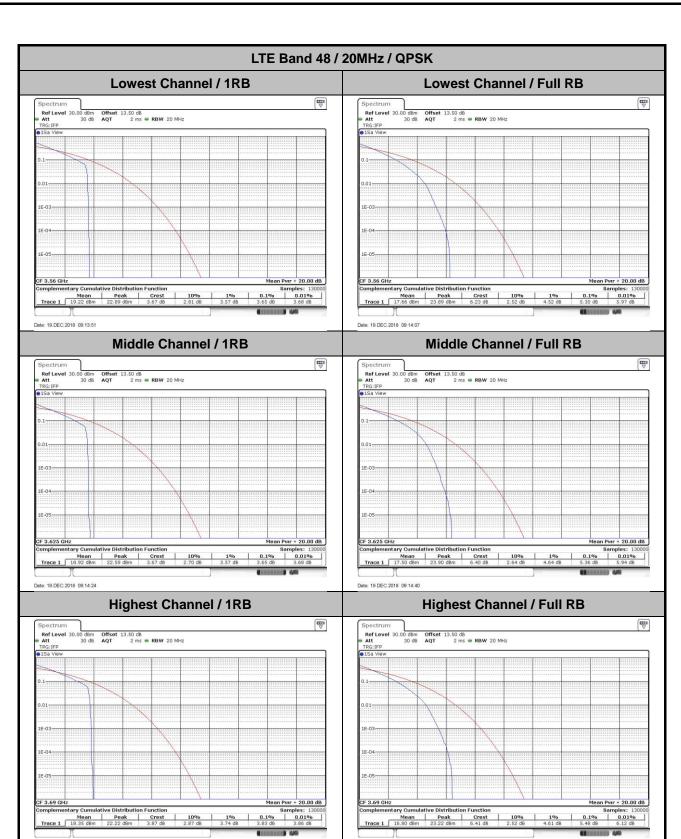
TEL: 886-3-327-3456 Page Number : 23 of 23 FAX: 886-3-328-4978 Issued Date : Dec. 25, 2018

Appendix A. Test Results of Conducted Test

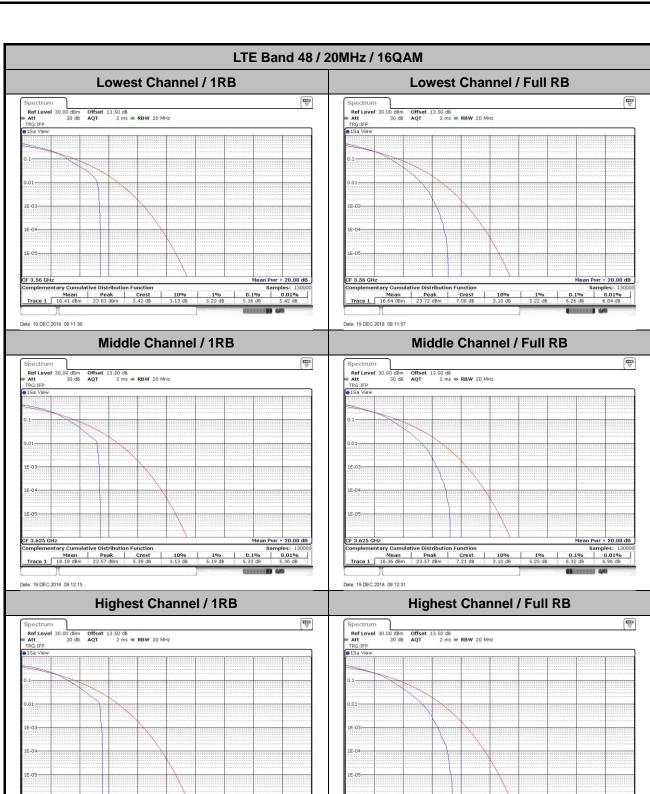
Conducted Output Power(Average power)

		LTE	Band 48 Ma	ximum Average Po	wer [dBm]	
BW [MHz]	RB Size	RB Offset	Mod	Lowest	Middle	Highest
20	1	0		21.60	21.96	22.16
20	1	49		21.27	21.50	21.60
20	1	99		21.62	21.98	21.96
20	50	0	QPSK	21.09	21.40	21.55
20	50	24		20.93	21.26	21.29
20	50	50		21.15	21.52	21.46
20	100	0		18.60	18.98	19.00
20	1	0		20.97	21.34	21.50
20	1	49		20.55	20.91	20.99
20	1	99		21.05	21.37	21.38
20	50	0	16-QAM	20.15	20.49	20.58
20	50	24		19.99	20.32	20.33
20	50	50		20.19	20.55	20.49
20	100	0		17.66	18.02	18.06
20	1	0		19.78	20.16	20.30
20	1	49		19.34	19.66	19.77
20	1	99		19.77	20.19	20.14
20	50	0	64-QAM	19.18	19.52	19.57
20	50	24		18.97	19.33	19.38
20	50	50		19.17	19.57	19.49
20	100	0		16.67	17.06	17.08
15	1	0		21.57	21.98	22.05
15	1	37		21.08	21.51	21.52
15	1	74		21.58	21.98	22.00
15	36	0	QPSK	20.91	21.31	21.35
15	36	20		20.82	21.25	21.21
15	36	39		20.95	21.37	21.28
15	75	0		19.41	19.85	19.85
15	1	0		20.90	21.38	21.42
15	1	37		20.58	20.98	20.97
15	1	74		20.90	21.38	21.31
15	36	0	16-QAM	19.90	20.33	20.37
15	36	20		19.87	20.27	20.25
15	36	39		19.95	20.37	20.31
15	75	0		18.50	18.91	18.91
15	1	0		19.71	20.16	20.23
15	1	37		19.27	19.66	19.75
15	1	74		19.77	20.16	20.12
15	36	0	64-QAM	19.00	19.42	19.42
15	36	20		18.97	19.31	19.31
15	36	39		18.92	19.44	19.38
15	75	0		17.50	17.91	17.93

		LTE	Band 48 Ma	ximum Average Po	wer [dBm]	
BW [MHz]	RB Size	RB Offset	Mod	Lowest	Middle	Highest
10	1	0		21.95	22.43	22.48
10	1	25		21.35	21.81	21.86
10	1	49		22.13	22.59	22.48
10	25	0	QPSK	20.74	21.20	21.18
10	25	12		20.72	21.07	21.02
10	25	25		20.87	21.30	21.24
10	50	0		20.84	21.24	21.19
10	1	0		21.27	21.78	21.83
10	1	25		20.70	21.18	21.09
10	1	49		21.50	21.96	21.94
10	25	0	16-QAM	19.76	20.27	20.26
10	25	12		19.73	20.14	20.03
10	25	25		19.89	20.33	20.29
10	50	0		19.87	20.38	20.30
10	1	0		20.15	20.62	20.65
10	1	25		19.57	20.01	20.01
10	1	49		20.40	20.78	20.73
10	25	0	64-QAM	18.88	19.33	19.33
10	25	12		18.79	19.20	19.20
10	25	25		19.00	19.44	19.41
10	50	0		18.90	19.32	19.27
5	1	0		21.44	21.88	21.88
5	1	12		21.37	21.83	21.76
5	1	24		21.55	22.06	21.92
5	12	0	QPSK	20.51	20.92	20.97
5	12	7		20.54	20.99	21.01
5	12	13		20.63	21.03	21.01
5	25	0		20.53	21.07	20.98
5	1	0		20.72	21.22	21.80
5	1	12		20.59	21.18	21.13
5	1	24		20.82	21.34	21.35
5	12	0	16-QAM	19.54	20.09	20.05
5	12	7		19.67	20.08	20.01
5	12	13		19.63	20.12	20.05
5	25	0		19.64	20.14	20.05
5	1	0		19.63	20.08	20.14
5	1	12		19.48	20.12	19.99
5	1	24		19.75	20.28	20.18
5	12	0	64-QAM	18.80	19.12	19.11
5	12	7		18.77	19.19	19.12
5	12	13		18.75	19.18	19.08
5	25	0		18.71	19.05	19.11


LTE Band 48

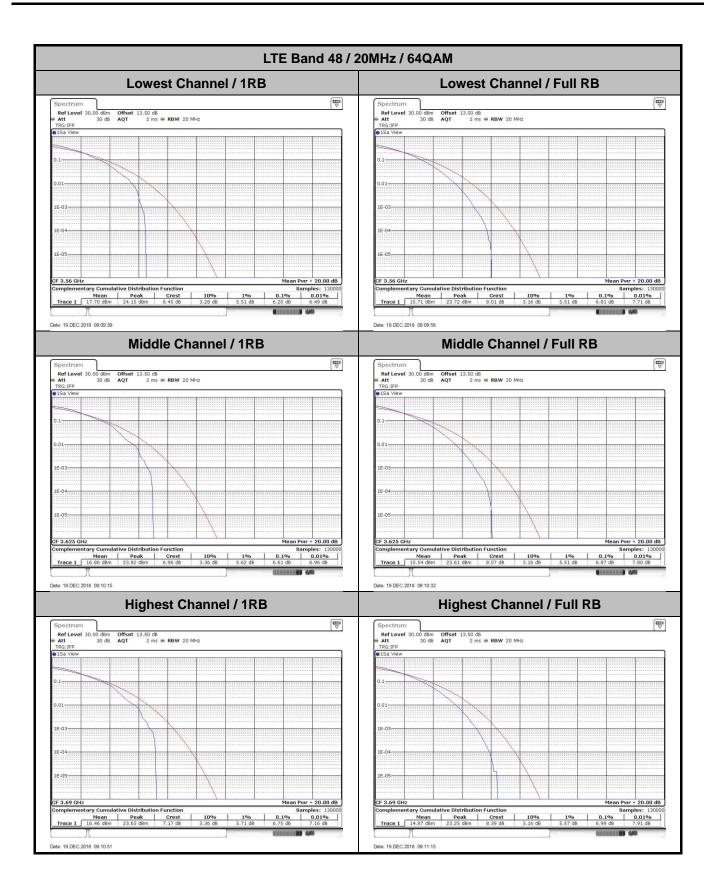
Peak-to-Average Ratio


Mode		LTE Band	48 / 20MHz		
Mod.	QP	SK	160	QAM	Limit: 13dB
RB Size	1RB	Full RB	1RB	Full RB	Result
Lowest CH	3.65	5.30	5.36	6.26	
Middle CH	3.65	5.36	5.33	6.32	PASS
Highest CH	3.83	5.48	5.51	6.38	
Mode		LTE Band	48 / 20MHz		
Mod.	64C	AM			Limit: 13dB
RB Size	1RB	Full RB			Result
Lowest CH	6.20	6.81	-	-	
Middle CH	6.61	6.87	-	-	PASS
Highest CH	6.75	6.99	-	-	

Report No. : FG890514B

TEL: 886-3-327-3456 Page Number : A48-1 of 71

TEL: 886-3-327-3456 Page Number : A48-2 of 71


TEL: 886-3-327-3456 Page Number : A48-3 of 71

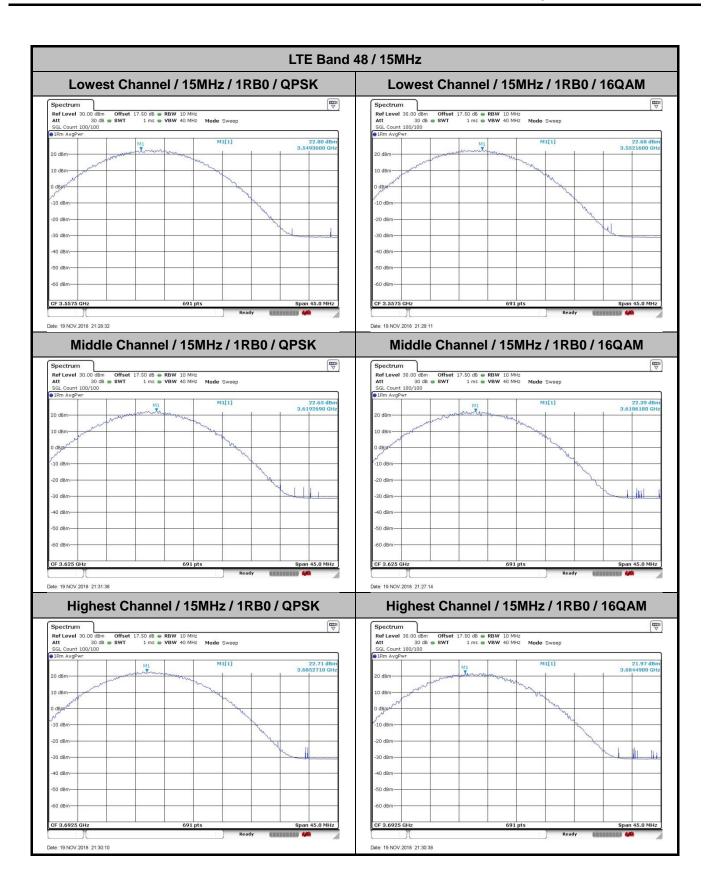
| Samples: 130000 | 1% | 0.1% | 0.01% | | 5.36 dB | 5.51 dB | 5.57 dB Samples: 130000 1% 0.1% 0.01% 5.30 dB 6.38 dB 7.07 dB

FAX: 886-3-328-4978

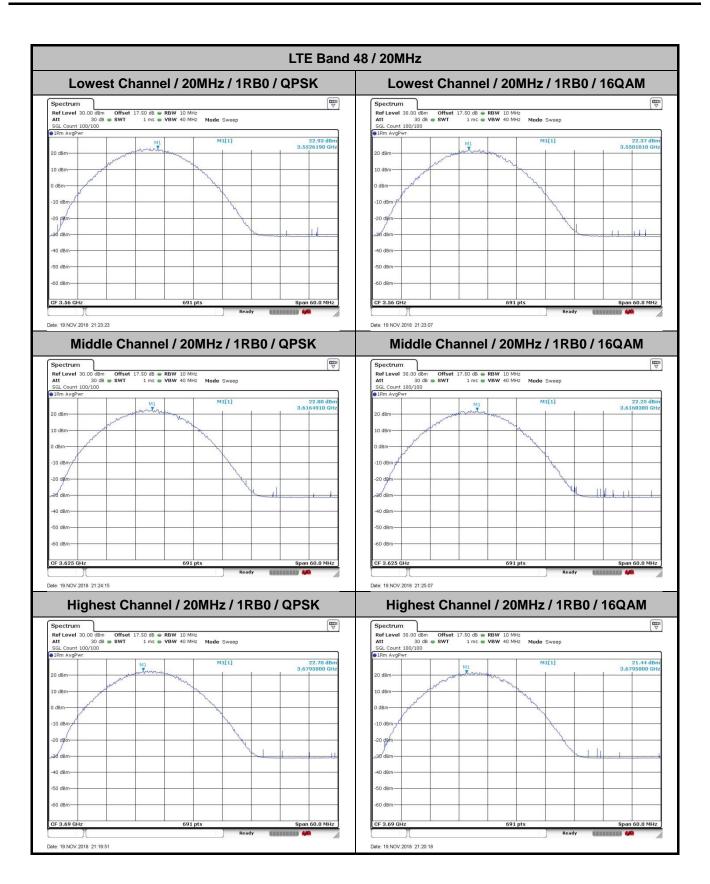
 Mean
 Peak
 Crest

 Trace 1
 17.67 dBm
 23.24 dBm
 5.57 dB

TEL: 886-3-327-3456 Page Number : A48-4 of 71


EIRP Power Density

Mode			LTE	E Band 4	l8 : Cond	ducted P	ower De	ensity (d	Bm/10M	Hz)		
BW	1.4	ИHz	3M	Hz	5M	lHz	10MHz		15MHz		20MHz	
Mod.	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM
Lowest CH	-	-	-	-	21.37	20.65	21.81	21.11	22.8	22.68	22.93	22.37
Middle CH	-	-	-	-	21.23	20.63	21.67	21.19	22.63	22.39	22.8	22.25
Highest CH	-	-	-	-	21.11	20.61	21.66	21.01	22.71	21.97	22.7	21.44
Mode			LTE	E Band 4	8 : Cond	ducted P	ower De	ensity (d	Bm/10M	Hz)		
BW	1.4	ИHz	3M	Hz	5M	5MHz		ИHz	15MHz		20MHz	
Mod.	64QAM		64QAM		64QAM		64QAM		64QAM		64QAM	
Lowest CH	-	-	-	-	19.46	-	19.98	-	21.68	-	21.46	-
Middle CH	-	-	-	-	19.41	-	20.01	-	22.25	-	21.94	-
Highest CH	-	-	-	-	19.31	-	19.81	-	21.33	-	21.62	-


Report No. : FG890514B

Mode				LTE Bar	d 48 : E	IRP Pow	er Densi	ity (dBm	/10MHz)			
BW	1.4	ИHz	3MHz		5MHz		101	ИHz	15MHz		20MHz	
Mod.	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM
Lowest CH	-	-		-	21.37	20.65	21.81	21.11	22.8	22.68	22.93	22.37
Middle CH	-	-	-	-	21.23	20.63	21.67	21.19	22.63	22.39	22.8	22.25
Highest CH	-	-	-	-	21.11	20.61	21.66	21.01	22.71	21.97	22.7	21.44
Mode		LTE Band 48 : EIRP Power Density (dBm/10MHz)										
BW	1.4	ИHz	3MHz		5MHz		10MHz		15MHz		20MHz	
Mod.	64QAM		64QAM		64QAM		64QAM		64QAM		64QAM	
Lowest CH	-	-	•	-	19.46	-	19.98	-	21.68	-	21.46	-
Middle CH	-	-	-	-	19.41	-	20.01	-	22.25	-	21.94	-
Highest CH	-	-	-	-	19.31	-	19.81	-	21.33	-	21.62	-
Antenna Gain						0.00	dBi					
Limit						23dBm	10MHz					
Result						Pa	ss					

TEL: 886-3-327-3456 Page Number : A48-5 of 71

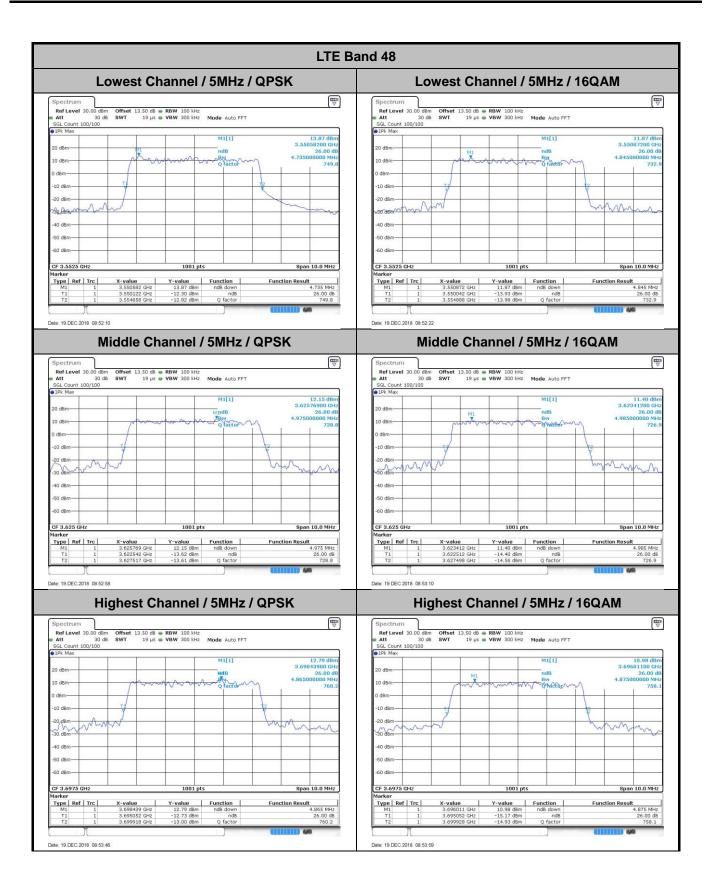
TEL: 886-3-327-3456 Page Number : A48-6 of 71

TEL: 886-3-327-3456 Page Number : A48-7 of 71

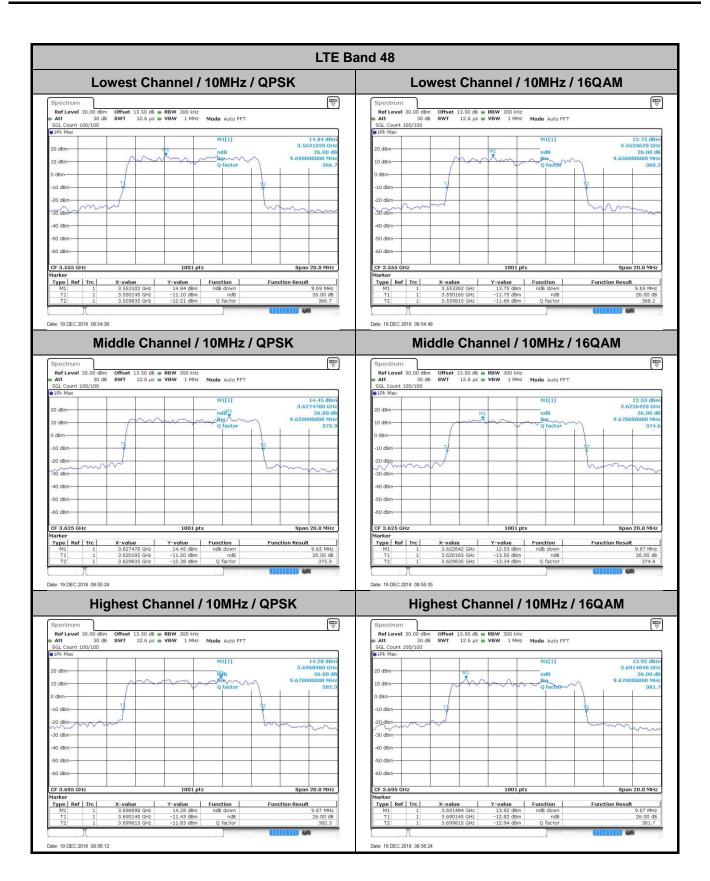
LTE Band 48 / 15MHz LTE Band 48 / 20MHz Lowest Channel / 15MHz / 1RB0 / 64QAM Lowest Channel / 20MHz / 1RB0 / 64QAM 21.68 dBn 3.5532020 GH Date: 19.NOV.2018 22:21:22 Middle Channel / 15MHz / 1RB0 / 64QAM Middle Channel / 20MHz / 1RB0 / 64QAM | Spectrum | Ref Level | 30.00 dBm | Offset | 17.50 dB | RBW | 10 MHz | Att | 30 dB | SWT | 1 ms | VBW | 40 MHz | Mode | Sweep SGL Count 100/100 1Rm AvgPwr -30 dBm Highest Channel / 20MHz / 1RB0 / 64QAM Highest Channel / 15MHz / 1RB0 / 64QAM | Spectrum | | Ref Level | 30.00 dBm | Offset | 17.50 dB | RBW | 10 MHz | Att | 30 dB | SWT | 1 ms | VBW | 40 MHz | Mode | Sweep
 Ref Level
 30.00 dBm
 Offset
 17.50 dB @ RBW
 10 MHz

 Att
 30 dB @ SWT
 1 ms @ VBW
 40 MHz
 Mode
 Sweep
 30 dl SGL Count 100/100 SGL Count 100/100 • 1Rm AvgPwr -40 dBm Date: 19.NOV.2018 22:18:08

Report No.: FG890514B


TEL: 886-3-327-3456 Page Number : A48-8 of 71

26dB Bandwidth


Mode		LTE Band 48 : 26dB BW(MHz)											
BW	1.40	ИHz	3M	lHz	5N	5MHz		10MHz		ЛHz	20MHz		
Mod.	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	
Lowest CH	-	-	-	-	4.74	4.84	9.69	9.65	14.51	14.24	20.26	20.26	
Middle CH	-	-	-	-	4.97	4.99	9.65	9.67	14.27	14.39	20.26	20.06	
Highest CH	-	-	-	-	4.87	4.88	9.67	9.67	14.39	14.27	20.34	20.10	
Mode					LTE Ba	and 48 : :	26dB BV	V(MHz)					
BW	1.4	ЛHz	3M	lHz	5N	lHz	101	ЛHz	15MHz		20MHz		
Mod.	64QAM		64QAM		64QAM		64QAM		64QAM		64QAM		
Lowest CH	-	-	-	-	4.83	-	9.71	-	14.39	-	20.14	-	
Middle CH	-	-	-	-	4.84	-	9.79	-	14.48	-	20.30	-	
Highest CH	-	-	-	-	4.82	-	9.67	-	14.63	-	20.18	-	

Report No. : FG890514B

TEL: 886-3-327-3456 Page Number: A48-9 of 71

TEL: 886-3-327-3456 Page Number : A48-10 of 71 FAX: 886-3-328-4978

TEL: 886-3-327-3456 Page Number : A48-11 of 71 FAX: 886-3-328-4978

LTE Band 48 Lowest Channel / 15MHz / QPSK Lowest Channel / 15MHz / 16QAM Ref Level 30.00 dbm Offset 13.50 db • RBW 300 kHz

Att 30 db SWT 12.6 µs • VBW 1 MHz Mode Auto FFT

SGL Count 100/100 M1[1] 12.15 dB M1[1] 11.21 dBr 10 dBm 245 249. -10 dBm -50 dBm -60 dBm
 X-value
 Y-value
 Function

 3.559628 GHz
 12.15 dBm
 ndB down

 3.559247 GHz
 -13.72 dBm
 ndB

 3.564753 GHz
 -14.06 dBm
 Q factor

 X-value
 Y-value
 Function

 3.553184 GHz
 11.21 dBm
 nd8 down

 3.550367 GHz
 -15.16 dBm
 nd8

 3.564603 GHz
 -14.90 dBm
 Q factor
 Type | Ref | Trc | Middle Channel / 15MHz / QPSK Middle Channel / 15MHz / 16QAM
 Ref Level
 30.00 dBm
 Offset
 13.50 dB
 RBW
 300 kHz

 Att
 30 dB
 SWT
 12.6 µs
 VBW
 1 MHz
 Mode
 Auto FFT
 12.60 dBi 3.6204750 GF 26.00 d 14.266000000 MF 253. 11.16 dBn 3.6216130 GH: 26.00 dE 14.386000000 MH: 251.6 an Cara -40 dBm 40 dBm CF 3.625 GH Span 30.0 MHz Span 30.0 MHz Type Ref Trc Type | Ref | Trc | Function m nd8 down Date: 19.DEC.2018 08:57:49 Date: 19 DEC 2018 08:58:01 Highest Channel / 15MHz / QPSK Highest Channel / 15MHz / 16QAM Ref Level 30.00 dBm Offset 13.50 dB • RBW 300 kHz

• Att 30 db • SWT 12.6 µs • VBW 1 MHz Mode Auto FFT

• IPk Max 13.50 dB **RBW** 300 kHz 12.6 µs **VBW** 1 MHz **Mode** Auto FFT 12.10 dBn 3.6916310 GH 26.00 dt 14.386000000 MH 256.0 11.01 dBm 3.6984640 GHz M1[1] M1[1] 20 dBm 26.00 de 14.266000000 MH: 259.3 d8m--30 dBm 30 dBm-40 dBm -50 d8m 50 d8m CF 3.6925 GHz Function Result 14.266 MHz 26.00 dB 259.3
 X-value
 Y-value
 Function

 3.691631 GHz
 12.10 dBm
 ndB down

 3.685277 GHz
 -14.24 dBm
 ndB

 3.699663 GHz
 -13.81 dBm
 Q factor
 Type | Ref | Trc | Function Result 14,386 MHz Date: 19.DEC:2018 08:58:37 Date: 19.DEC:2018 08:58:50

Report No.: FG890514B

TEL: 886-3-327-3456 Page Number : A48-12 of 71 FAX: 886-3-328-4978

LTE Band 48 Lowest Channel / 20MHz / QPSK Lowest Channel / 20MHz / 16QAM Ref Level 30.00 dbm Offset 13.50 db = RBW 1 MHz Att 30 db SWT 5.7 µs = VBW 3 MHz Mode Auto FFT SGL Count 100/100 41Pk Max
 Ref Level 30.00 dBm
 Offset
 13.50 dB ⇒ RBW
 1 MHz

 Att
 30 dB
 SWT
 5.7 μs
 9 VBW
 3 MHz
 Mode
 Auto FFT

 SGL Count 100/100
 40.00 mg
 40.00 mg</t M1[1] 14.17 dB M1[1] 12.86 dBr 10 dBm 175 175. -10 dBm -50 dBm -60 dBm
 X-value
 Y-value
 Function

 3,556563 GHz
 14.17 dBm
 ndB down

 3,54981 GHz
 -12.48 dBm
 ndB

 3,57007 GHz
 -11.59 dBm
 Q factor

 X-value
 Y-value
 Function

 3.559761 GHz
 12.86 dBm
 nd8 down

 3.54995 GHz
 -12.87 dBm
 nd8

 3.57011 GHz
 -13.65 dBm
 Q factor
 Middle Channel / 20MHz / QPSK Middle Channel / 20MHz / 16QAM
 Ref Level
 30.00 dBm
 Offset
 13.50 dB
 RBW
 1 MHz

 Att
 30 dB
 SWT
 5.7 μs
 VBW
 3 MHz
 Mode
 Auto FFT
 14.08 dBr 3.6175270 GH 26.00 d 20.260000000 MH 178. 180 -20 dBm CF 3.625 GH Span 40.0 MHz
 Y-value
 Function

 2
 14.08 dBm
 ndB down

 2
 -12.27 dBm
 ndB

 z
 -12.27 dBm
 Q factor
 Type | Ref | Trc | Function ndB down Date: 19.DEC.2018 09:00:14 Date: 19.DEC.2018 09:00:26 Highest Channel / 20MHz / QPSK Highest Channel / 20MHz / 16QAM 00 dBm Offset 30 dB SWT 13.50 dB **RBW** 1 MHz 5.7 µs **WBW** 3 MHz **Mode** Auto FFT 12.98 dBm 3.6871630 GH; 26.00 dE 20.340000000 MH. 181.: 12.92 dBm 3.6869230 cu-20 dBm d8m-40 dBm 50 d8m 50 d8m CF 3.69 GH
 X-value
 Y-value
 Function

 3.686923 GHz
 12.92 dBm
 ndB down

 3.67997 GHz
 -12.98 dBm
 ndB

 3.70007 GHz
 -13.08 dBm
 Q factor

 X-value
 Y-value
 Function

 3.687163 GHz
 12.98 dBm
 ndB down

 3.67977 GHz
 -13.70 dBm
 ndB

 3.70011 GHz
 -12.59 dBm
 Q factor
 Function Result 20.34 MHz Type Ref Trc Type Ref Trc **Function Result** Date: 19.DEC:2018 09:01:03 Date: 19.DEC.2018 09:01:15

Report No.: FG890514B

TEL: 886-3-327-3456 Page Number : A48-13 of 71 FAX: 886-3-328-4978

LTE Band 48 Lowest Channel / 5MHz / 64QAM Lowest Channel / 10MHz / 64QAM M1[1] 10.78 dB M1[1] 12.18 dBr 10 dBm 734 366. -10 dBmnon -40 dBm -50 dBm -60 dBm -60 dBm
 X-value
 Y-value
 Function

 3.55266 GHz
 10.78 dBm
 nd8 down

 3.550072 GHz
 -14.71 dBm
 nd8

 3.554908 GHz
 -15.73 dBm
 Q factor

 X-value
 Y-value
 Function

 3.557098 GHz
 12.18 d8m
 nd8 down

 3.550185 GHz
 -13.30 d8m
 nd8

 3.559895 GHz
 -14.16 d8m
 Q factor
 Type | Ref | Trc | Middle Channel / 5MHz / 64QAM Middle Channel / 10MHz / 64QAM Ref Level 30.00 dBm
Att 30 dB
SGL Count 100/100
1Pk Max 12.88 dBr 3.62317200 GH 26.00 d 4.845000000 MH 747. 12.79 dBn 3.6257390 GH: 26.00 dE 9.790000000 MH: 370.3 -40 dBm CF 3.625 GH Span 10.0 MHz Span 20.0 MHz Type | Ref | Trc | Type | Ref | Trc | Function m nd8 down Date: 19.DEC:2018 09:02:03 Date: 19.DEC 2018 09:03:16 Highest Channel / 5MHz / 64QAM Highest Channel / 10MHz / 64QAM SGL Count 100/100 00 dBm Offset 30 dB SWT .50 dB • RBW 100 kHz 19 µs • VBW 300 kHz Mode Auto FFT 13.50 dB **RBW** 300 kHz 12.6 µs **VBW** 1 MHz **Mode** Auto FFT 11.10 dBn 3.69825900 GP M1[1] M1[1] 12.01 dBm 3.6971580 GHz 20 dBm 3.6971580 GH: 26.00 dE 9.670000000 MH: 382. d8m--20 dBm-40 dBm 50 d8m CF 3.695 GH
 X-value
 Y-value
 Function

 3.698259 GHz
 11.10 dBm
 ndB down

 3.698052 GHz
 -15.14 dBm
 ndB

 3.699868 GHz
 -15.41 dBm
 Q factor
 Function Result 4.815 MHz Type | Ref | Trc | **Function Result** Date: 19.DEC.2018 09:02:27 Date: 19.DEC:2018 09:03:40

Report No.: FG890514B

TEL: 886-3-327-3456 Page Number : A48-14 of 71 FAX: 886-3-328-4978

Date: 19.DEC:2018 09:04:53

FAX: 886-3-328-4978

LTE Band 48 Lowest Channel / 15MHz / 64QAM Lowest Channel / 20MHz / 64QAM 10.70 dB 13.25 dBr 10 dBm 247. 176. -10 dBm--10 dBm 50 d8m -50 dBm -60 dBm -60 dBm-
 X-value
 Y-value
 Function

 3.551306 GHz
 10.70 dBm
 nd8 down

 3.550137 GHz
 -14.97 dBm
 nd8

 3.5504573 GHz
 -15.82 dBm
 Q factor

 X-value
 Y-value
 Function

 3.561918 GHz
 13.25 dBm
 nd8 down

 3.54999 GHz
 -12.23 dBm
 nd8

 3.57003 GHz
 -13.20 dBm
 Q factor
 Type | Ref | Trc | Middle Channel / 15MHz / 64QAM Middle Channel / 20MHz / 64QAM 9.62 dBr 3.6214340 GH 26.00 d 14.476000000 MH 250. 3.6265980 GH 26.00 dl 20.300000000 MH 178. -20 dBm -40 dBm CF 3.625 GH Span 30.0 MHz Span 40.0 MHz X-value Y-value 3.626598 GHz 11.65 dBm 3.61481 GHz -14.14 dBm 3.63511 GHz -13.96 dBm Type | Ref | Trc |
 Y-value
 Function

 2
 9.62 dBm
 ndB down

 2
 -17.50 dBm
 ndB

 z
 -15.91 dBm
 Q factor
 Date: 19.DEC:2018 09:04:29 Date: 19.DEC 2018 09:05:41 Highest Channel / 15MHz / 64QAM Highest Channel / 20MHz / 64QAM 00 dBm Offset 30 dB SWT 13.50 dB **RBW** 300 kHz 12.6 µs **VBW** 1 MHz **Mode** Auto FFT 9.13 dBn 3.6915410 GH 26.00 dt 14.625000000 MH 252. 11.45 dBm 3.6921580 GHz 20 dBm 3.6921580 GH: 26.00 dE 20.180000000 MH: 183.0 d8m--20 dBr -20 dBm ANTHAL C 40 dBn 40 dBm -50 d8m 50 d8m CF 3.69 GH Function Result 20.18 MHz 26.00 dB 183.0
 X-value
 Y-value
 Function

 3.691541 GHz
 9.13 dBm
 nd8 down

 3.685037 GHz
 -16.79 dBm
 nd8

 3.699663 GHz
 -17.32 dBm
 Q factor
 Type | Ref | Trc | Function Result 14.625 MHz

Report No.: FG890514B

TEL: 886-3-327-3456 Page Number: A48-15 of 71

Date: 19.DEC.2018 09:06:06

Occupied Bandwidth

Mode	LTE Band 48 : 99%OBW(MHz)											
BW	1.4MHz		3MHz		5MHz		10MHz		15MHz		20MHz	
Mod.	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM
Lowest CH	-	-	-	-	4.51	4.50	9.05	9.01	13.55	13.43	18.34	18.42
Middle CH	-	-	-	-	4.49	4.51	9.01	9.07	13.55	13.52	18.66	18.50
Highest CH	-	-	-	-	4.49	4.51	9.03	9.01	13.43	13.55	18.34	18.42
Mode	LTE Band 48 : 99%OBW(MHz)											
BW	1.4MHz		3MHz		5MHz		10MHz		15MHz		20MHz	
Mod.	64QAM		64QAM		64QAM		64QAM		64QAM		64QAM	
Lowest CH	-	-	-	-	4.48	-	9.03	-	13.43	-	18.38	-
Middle CH	-	-	-	-	4.49	-	9.01	-	13.52	-	18.34	-
Highest CH	-	-	-	-	4.50	-	9.01	-	13.43	-	18.54	-

Report No.: FG890514B

TEL: 886-3-327-3456 Page Number : A48-16 of 71

LTE Band 48 Lowest Channel / 5MHz / QPSK Lowest Channel / 5MHz / 16QAM Ref Level 30.00 dBm Offset 13.50 dB = RBW 100 kHz

Att 30 dB SWT 19 µs = VBW 300 kHz

Mode Auto FFT

SGL Count 100/100

PP: Max 12.93 dBn 3.55291000 GH 4.495504496 MH M1[1] M1[1] 10 dBm--10 dBm--10 dBm -20 dBm-150 48mm SQ dBm 40 dBm 50 d8m -50 d8m--60 dBm -60 dBm-
 Marker
 Trc
 X-value
 Y-value
 Function

 M1
 1
 3.55291 GHz
 12.93 dbm
 12.93 dbm

 T1
 1
 3.5529243 GHz
 7.21 dbm
 Occ Bw

 T2
 1
 3.5547378 GHz
 6.34 dbm
 Occ Bw

 X-value
 Y-value
 Function
 Function Result

 3.550622 GHz
 12.90 dbm
 9.50 dbm
 4.50549

 3.550423 GHz
 8.64 dbm
 Occ BW
 4.50549

 3.5547478 GHz
 9.17 dbm
 4.50549
 Type | Ref | Trc | Date: 19.DEC.2018 08:51:58 Middle Channel / 5MHz / QPSK Middle Channel / 5MHz / 16QAM
 Ref Level
 30.00 dBm
 Offset
 13.50 dB
 RBW
 100 kHz

 Att
 30 dB
 SWT
 19 µs
 VBW
 300 kHz
 Mode
 Auto FFT
 SGL Count 100/100 13.40 dBi 3.62450000 GF 4.485514486 MF TO THE MEDICE -40 dBm 40 dBm -50 dBm -50 d8m CF 3.625 GHz 1001 pts Span 10.0 MHz Span 10.0 MHz
 X-value
 Y-value
 Function

 3.6245 GHz
 13.40 dBm

 3.6227522 GHz
 6.97 dBm
 Occ Bw

 3.6272378 GHz
 7.86 dBm
 Type | Ref | Trc | **Function Result Function Result** 4.485514486 MHz 4.505494505 MHz Date: 19.DEC:2018 08:52:35 Date: 19 DEC 2018 08:52:46 Highest Channel / 5MHz / QPSK Highest Channel / 5MHz / 16QAM SGL Count 100/100 1Pk Max 11.48 dBn 3.69732000 GH: 4.505494505 MH; M1[1] 12.66 dBn 3.69540200 GH 4.485514486 MH 20 dBm d8m--10 dBm-90 dBm 40 dBm 40 dBm -50 d8m 50 d8m CF 3.6975 GHz Span 10.0 MHz Type | Ref | Trc | 4.485514486 MHz 4.505494505 MHz Date: 19.DEC:2018 08:53:22 Date: 19.DEC:2018 08:53:34

Report No.: FG890514B

TEL: 886-3-327-3456 Page Number : A48-17 of 71 FAX: 886-3-328-4978