Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton (Auden) Accreditation No.: SCS 0108 Certificate No: DAE4-778_May17 ### **CALIBRATION CERTIFICATE** Object DAE4 - SD 000 D04 BM - SN: 778 Calibration procedure(s) QA CAL-06.v29 Calibration procedure for the data acquisition electronics (DAE) Calibration date: May 22, 2017 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-------------------------------|---------------------|----------------------------|------------------------| | Keithley Multimeter Type 2001 | SN: 0810278 | 09-Sep-16 (No:19065) | Sep-17 | | | | | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Auto DAE Calibration Unit | SE UWS 053 AA 1001 | 05-Jan-17 (in house check) | In house check: Jan-18 | | Calibrator Box V2.1 | SE UMS 006 AA 1002 | 05-Jan-17 (in house check) | In house check: Jan-18 | | Samuel Son 1211 | 02 030 000 101 1002 | (| | Name Function Signatur Calibrated by: Adrian Gehring Technician Approved by: Fin Bomholt Deputy Technical Manager Issued: May 22, 2017 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: DAE4-778_May17 Page 1 of 5 ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. #### Methods Applied and Interpretation of Parameters • DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. Certificate No: DAE4-778_May17 Page 2 of 5 ### **DC Voltage Measurement** A/D - Converter Resolution nominal High Range: $1LSB = 6.1 \mu V$, full range = -100...+300 mVLow Range: 1LSB = 61 nV, full range = -1......+3 mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | х | Y | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 404.717 ± 0.02% (k=2) | 403.514 ± 0.02% (k=2) | 405.071 ± 0.02% (k=2) | | Low Range | 3.98763 ± 1.50% (k=2) | 3.96503 ± 1.50% (k=2) | 4.00094 ± 1.50% (k=2) | ### **Connector Angle** | Conne | ctor Angle to be used in DASY system | 270.0°±1° | |-------|---|-----------| | | - · · · · · · · · · · · · · · · · · · · | | Certificate No: DAE4-778_May17 Page 3 of 5 ### Appendix (Additional assessments outside the scope of SCS0108) 1. DC Voltage Linearity | High Range | | Reading (μV) | Difference (μV) | Error (%) | |------------|---------|--------------|-----------------|-----------| | Channel X | + Input | 199994.64 | -1.22 | -0.00 | | Channel X | + Input | 20002.84 | 1.48 | 0.01 | | Channel X | - Input | -19998.43 | 2.86 | -0.01 | | Channel Y | + Input | 199993.51 | -2.70 | -0.00 | | Channel Y | + Input | 20002.24 | 0.88 | 0.00 | | Channel Y | - Input | -19999.71 | 1.54 | -0.01 | | Channel Z | + Input | 199996.74 | 0.89 | 0.00 | | Channel Z | + Input | 19998.38 | -2.84 | -0.01 | | Channel Z | - Input | -20005.15 | -3.75 | 0.02 | | Low Range | | Reading (μV) | Difference (μV) | Error (%) | |-----------|---------|--------------|-----------------|-----------| | Channel X | + Input | 2001.64 | 0.53 | 0.03 | | Channel X | + Input | 200.99 | -0.35 | -0.17 | | Channel X | - Input | -199.14 | -0.59 | 0.30 | | Channel Y | + Input | 2000.89 | -0.14 | -0.01 | | Channel Y | + Input | 201.17 | -0.12 | -0.06 | | Channel Y | - input | -199.26 | -0.60 | 0.30 | | Channel Z | + Input | 2000.81 | -0.14 | -0.01 | | Channel Z | + Input | 199.84 | -1.33 | -0.66 | | Channel Z | - Input | -199.58 | -0.90 | 0.45 | 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | -4.36 | -6.06 | | | - 200 | 6.36 | 4.97 | | Channel Y | 200 | -1.03 | -1.77 | | | - 200 | 0.28 | -0.17 | | Channel Z | 200 | -12.38 | -12.25 | | | - 200 | 9.83 | 10.04 | ### 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (μV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | - | -0.44 | -2.21 | | Channel Y | 200 | 8.52 | 1 | 0.05 | | Channel Z | 200 | 3.63 | 7.19 | - | Certificate No: DAE4-778_May17 Page 4 of 5 ### 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 16052 | 16464 | | Channel Y | 16192 | 17676 | | Channel Z | 16439 | 15882 | ### 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10M\Omega$ | | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation
(µV) | |-----------|--------------|------------------|------------------|------------------------| | Channel X | 0.36 | -0.69 | 1.24 | 0.39 | | Channel Y | -0.04 | -1,05 | 1.13 | 0.50 | | Channel Z | -0.69 | -2.03 | 0.82 | 0.54 | ### 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance (Typical values for information) | | Zeroing (kOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | 200 | 200 | | Channel Y | 200 | 200 | | Channel Z | 200 | 200 | 8. Low Battery Alarm Voltage (Typical values for information) | Typical values | Alarm Level (VDC) | | |----------------|-------------------|--| | Supply (+ Vcc) | +7.9 | | | Supply (- Vcc) | -7.6 | | 9. Power Consumption (Typical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | |----------------|-------------------|---------------|-------------------| | Supply (+ Vcc) | +0.01 | +6 | +14 | | Supply (- Vcc) | -0.01 | -8 | -9 | Certificate No: DAE4-778_May17 Page 5 of 5 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton (Auden) Accreditation No.: SCS 0108 C Certificate No: DAE4-853 Jul17 ### **CALIBRATION CERTIFICATE** Object DAE4 - SD 000 D04 BM - SN: 853 Calibration procedure(s) QA CAL-06.v29 Calibration procedure for the data acquisition electronics (DAE) Calibration date: July 19, 2017 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory
facility: environment temperature (22 \pm 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-------------------------------|--------------------|----------------------------|------------------------| | Keithley Multimeter Type 2001 | SN: 0810278 | 09-Sep-16 (No:19065) | Sep-17 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Auto DAE Calibration Unit | SE UWS 053 AA 1001 | 05-Jan-17 (in house check) | In house check: Jan-18 | | Calibrator Box V2.1 | SETIMS 006 44 1002 | 05-Jan-17 (in house check) | In house check: Jan-18 | Calibrated by: Name Function Approved by: Eric Hainfeld Sven Kühn Laboratory Technician Deputy Manager Issued: July 19, 2017 Signature This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: DAE4-853_Jul17 Page 1 of 5 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 ### Glossary DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. ### **Methods Applied and Interpretation of Parameters** - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. Certificate No: DAE4-853_Jul17 ### **DC Voltage Measurement** A/D - Converter Resolution nominal High Range: 1LSB = 6.1μV , full range = -100...+300 mV full range = -1.....+3mV Low Range: 1LSB = 61nV, DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | X | Υ | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 402.602 ± 0.02% (k=2) | 403.267 ± 0.02% (k=2) | 403.445 ± 0.02% (k=2) | | Low Range | 3.95476 ± 1.50% (k=2) | 3.96544 ± 1.50% (k=2) | 3.96662 ± 1.50% (k=2) | ### **Connector Angle** | Connector Angle to be used in DASY system | 134.5 ° ± 1 ° | |---|---------------| | | | Certificate No: DAE4-853_Jul17 ### Appendix (Additional assessments outside the scope of SCS0108) 1. DC Voltage Linearity | High Range | | Reading (μV) | Difference (μV) | Error (%) | |------------|---------|--------------|-----------------|-----------| | Channel X | + Input | 200032.34 | -1.72 | -0.00 | | Channel X | + Input | 20007.23 | 2.14 | 0.01 | | Channel X | - Input | -20002.92 | 1.88 | -0.01 | | Channel Y | + Input | 200032,83 | -1.31 | -0,00 | | Channel Y | + Input | 20004.73 | -0.35 | -0.00 | | Channel Y | - Input | -20006,55 | -1.74 | 0.01 | | Channel Z | + Input | 200040.33 | 6.37 | 0,00 | | Channel Z | + Input | 20004.71 | -0.33 | -0.00 | | Channel Z | - Input | -20008.02 | -3.12 | 0.02 | | Low Range | | Reading (μV) | Difference (μV) | Error (%) | |-----------|---------|--------------|-----------------|-----------| | Channel X | + Input | 2001.66 | 0.35 | 0.02 | | Channel X | + Input | 201.67 | 0.28 | 0.14 | | Channel X | - Input | -198.01 | 0.61 | -0.31 | | Channel Y | + Input | 2001.27 | 0.05 | 0.00 | | Channel Y | + Input | 200.65 | -0.72 | -0.36 | | Channel Y | - Input | -199.27 | -0.58 | 0.29 | | Channel Z | + Input | 2000.81 | -0.40 | -0.02 | | Channel Z | + input | 199.74 | -1.51 | -0.75 | | Channel Z | - Input | -200.02 | -1.26 | 0.63 | ### 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|--------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | -6.81 | -8.25 | | | - 200 | 10.16 | 8.50 | | Channel Y | 200 | 4.33 | 4.41 | | | - 200 | -5.81 | -6.18 | | Channel Z | 200 | 2.40 | 2.38 | | | - 200 | -4.45 | -4.60 | 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (μV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | - | 1.24 | -2.01 | | Channel Y | 200 | 7.20 | - | 2.53 | | Channel Z | 200 | 10.31 | 4.71 | - | 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 16247 | 16895 | | Channel Y | 16088 | 16351 | | Channel Z | 16248 | 17044 | 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MΩ | | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation
(μV) | |-----------|--------------|------------------|------------------|------------------------| | Channel X | -0.70 | -1.52 | 0.31 | 0.39 | | Channel Y | -0.77 | -1.78 | 0.39 | 0.37 | | Channel Z | 0.22 | -1.06 | 1.36 | 0.47 | ### 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance (Typical values for information) | | Zeroing (kOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | 200 | 200 | | Channel Y | 200 | 200 | | Channel Z | 200 | 200 | 8. Low Battery Alarm Voltage (Typical values for information) | Typical values | Alarm Level (VDC) +7.9 | | |----------------|------------------------|--| | Supply (+ Vcc) | | | | Supply (- Vcc) | -7.6 | | 9. Power Consumption (Typical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | |----------------|-------------------|---------------|-------------------| | Supply (+ Vcc) | +0.01 | +6 | +14 | | Supply (- Vcc) | -0.01 | -8 | - 9 | Page 5 of 5 Certificate No: DAE4-853_Jul17 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton (Auden) Certificate No: EX3-3976_Jan18 ### CALIBRATION CERTIFICATE Object EX3DV4 - SN:3976 Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: January 23, 2018 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | *** | | | | |----------------------------|------------------|-----------------------------------|------------------------| | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter NRP | SN: 104778 | 04-Apr-17 (No. 217-02521/02522) | Apr-18 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-17 (No. 217-02521) | Apr-18 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-17 (No. 217-02525) | Apr-18 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 07-Apr-17 (No. 217-02528) | Apr-18 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-17 (No. ES3-3013_Dec17) | Dec-18 | | DAE4 | SN: 660 | 21-Dec-17 (No. DAE4-660_Dec17) | Dec-18 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 | | RF generator HP 8648C | SN:
US3642U01700 | 04-Aug-99 (in house check Jun-16) | In house check: Jun-18 | | Network Analyzer HP 8753E | SN: US37390585 | 18-Oct-01 (in house check Oct-17) | In house check: Oct-18 | Name Function Signature Calibrated by: Michael Weber Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: January 25, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossarv: TSL t NORMx,y,z tissue simulating liquid sensitivity in free space ConvF DCP sensitivity in TSL / NORMx,y,z diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). # Probe EX3DV4 SN:3976 Manufactured: Calibrated: November 5, 2013 January 23, 2018 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) EX3DV4- SN:3976. January 23, 2018 ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3976 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--|----------|----------|----------|-----------| | Norm (µV/(V/m) ²) ^A | 0.48 | 0.50 | 0.54 | ± 10.1 % | | DCP (mV) ^B | 101.2 | 99.0 | 102.1 | | #### **Modulation Calibration Parameters** | UID | Communication System Name | | A. | В | С | D | VR | Unc | |-----|---------------------------|---|-----|-------|-----|------|-------|--------| | | | | dB | dB√μV | | dB | mV | (k≕2) | | 0 | cw | Х | 0.0 | 0.0 | 1.0 | 0.00 | 148.0 | ±3.0 % | | | | Y | 0.0 | 0.0 | 1.0 | | 139.7 | | | | | Z | 0,0 | 0.0 | 1.0 | | 159.8 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ^B Numerical linearization parameter: uncertainty not required. Page 4 of 11 ^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value. EX3DV4-SN:3976 ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3976 ### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^{C.} | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |-----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 750 | 41.9 | 0.89 | 10.74 | 10.74 | 10.74 | 0.40 | 0.85 | ± 12.0 % | | 835 | 41.5 | 0.90 | 10.19 | 10.19 | 10.19 | 0.44 | 0.80 | ± 12.0 % | | 900 | 41.5 | 0.97 | 10.03 | 10.03 | 10.03 | 0.51 | 0.80 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 8.99 | 8.99 | 8.99 | 0.39 | 0.86 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 8.71 | 8.71 | 8.71 | 0.37 | 0.84 | ± 12.0 % | | 2000 | 40.0 | 1.40 | 8.59 | 8.59 | 8.59 | 0.39 | 0.80 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.75 | 7.75 | 7.75 | 0.34 | 0.89 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 7.54 | 7.54 | 7.54 | 0.33 | 0.89 | ± 12.0 % | | 3700 | 37.7 | 3.12 | 7.66 | 7.66 | 7.66 | 0.25 | 1.25 | ± 13.1 % | | 5250 | 35.9 | 4.71 | 5.56 | 5.56 | 5.56 | 0.35 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.97 | 4.97 | 4.97 | 0.40 | 1.80 | ± 13.1 % | | 5750 | 35.4 | 5.22 | 5.04 | 5.04 | 5.04 | 0.40 | 1.80 | ± 13.1 % | ^C Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if figuid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3976 ### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 750 | 55.5 | 0.96 | 10.37 | 10.37 | 10.37 | 0.38 | 0.92 | ± 12.0 % | | 835 | 55.2 | 0.97 | 10.08 | 10.08 | 10.08 | 0.50 | 0.80 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 8:36 | 8.36 | 8.36 | 0,44 | 0.80 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 8.09 | 8.09 | 8.09 | 0.37 | 0.84 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 7.80 | 7.80 | 7.80 | 0.35 | 0.88 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 7.37 | 7.37 | 7.37 | 0.32 | 1.01 | ± 12.0 % | | 3700 | 51,0 | 3.55 | 6.80 | 6.80 | 6.80 | 0.25 | 1.20 | ± 13.1 % | | 5250 | 48.9 | 5.36 | 4.92 | 4.92 | 4.92 | 0.35 | 1.90 | ± 13.1 % | | 5600 | 48.5 | 5.77 | 4.28 | 4.28 | 4.28 | 0.40 | 1.90 | ± 13.1 % | | 5750 | 48.3 | 5.94 | 4.46 | 4.46 | 4.46 | 0.40 | 1.90 | ± 13.1 % | ^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25,
40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. validity can be extended to ± 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is ⁴ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. EX3DV4-SN:3976 January 23, 2018 # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) EX3DV4-SN:3976 ### Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) ### Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) EX3DV4- SN:3976 January 23, 2018 ### **Conversion Factor Assessment** Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz EX3DV4-- SN:3976 January 23, 2018 ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3976 ### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | -0.5 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | Certificate No: EX3-3976_Jan18 Page 11 of 11 ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S C S Schweizerischer Kalibrierdienst Service suisse d'étatonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton (Auden) Certificate No: EX3-3925_May17 ### **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:3925 Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: May 24, 2017 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 04-Apr-17 (No. 217-02521/02522) | Apr-18 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-17 (No. 217-02521) | Apr-18 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-17 (No. 217-02525) | Apr-18 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 07-Apr-17 (No. 217-02528) | Apr-18 | | Reference Probe ES3DV2 | SN: 3013 | 31-Dec-16 (No. ES3-3013_Dec16) | Dec-17 | | DAE4 | SN: 660 | 7-Dec-16 (No. DAE4-660_Dec16) | Dec-17 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-16) | In house check: Jun-18 | | Network Analyzer HP 8753E | SN: US37390585 | 18-Oct-01 (in house check Oct-16) | In house check: Oct-17 | Calibrated by: Signature Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: May 30, 2017 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: EX3-3925_May17 Page 1 of 11 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques". June 2013 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX3-3925_May17 Page 2 of 11 May 24, 2017 EX3DV4 - SN:3925 ## Probe EX3DV4 SN:3925 Manufactured: March 8, 2013 Calibrated: May 24, 2017 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) May 24, 2017 EX3DV4-SN:3925 ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3925 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--------------------------|----------|----------|----------|-----------| | Norm $(\mu V/(V/m)^2)^A$ | 0.57 | 0.50 | 0.48 | ± 10.1 % | | DCP (mV) ^B | 96.1 | 97.8 | 100.0 | | #### **Modulation Calibration Parameters** | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Unc [€]
(k=2) | |-----|---------------------------|---|---------|------------|-----|---------|----------|---------------------------| | 0 | CW | Х | 0.0 | 0.0 | 1.0 | 0.00 | 145.7 | ±3.0 % | | | | Y | 0.0 | 0.0 | 1.0 | | 147.7 | | | | | Z | 0.0 | 0.0 | 1.0 | | 149.4 | | The reported uncertainty of measurement is stated as the standard uncertainty
of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). B Numerical linearization parameter: uncertainty not required. E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. EX3DV4- SN:3925 May 24, 2017 ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3925 ### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 750 | 41.9 | 0.89 | 10.82 | 10.82 | 10.82 | 0.48 | 0.91 | ± 12.0 % | | 835 | 41.5 | 0.90 | 10.41 | 10.41 | 10.41 | 0.52 | 0.80 | ± 12.0 % | | 900 | 41.5 | 0.97 | 10.14 | 10.14 | 10.14 | 0.48 | 0.80 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 9.00 | 9.00 | 9.00 | 0.32 | 0.85 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 8.73 | 8.73 | 8.73 | 0.34 | 0.84 | ± 12.0 % | | 2000 | 40.0 | 1.40 | 8.63 | 8.63 | 8.63 | 0.38 | 0.80 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.85 | 7.85 | 7.85 | 0.39 | 0.80 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 7.61 | 7.61 | 7.61 | 0.35 | 0.85 | ± 12.0 % | | 3500 | 37.9 | 2.91 | 7.56 | 7.56 | 7.56 | 0.24 | 1.20 | ± 13.1 % | | 5250 | 35.9 | 4.71 | 5.36 | 5.36 | 5.36 | 0.35 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.72 | 4.72 | 4.72 | 0.40 | 1.80 | ± 13.1 % | | 5750 | 35.4 | 5.22 | 4.87 | 4.87 | 4.87 | 0.40 | 1.80 | ± 13.1 % | ^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvE uncertainty for indicated target lissue parameters. the ConvF uncertainty for indicated target tissue parameters. Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. EX3DV4- SN:3925 May 24, 2017 ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3925 ### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 750 | 55.5 | 0.96 | 10.56 | 10.56 | 10.56 | 0.40 | 0.93 | ± 12.0 % | | 835 | 55.2 | 0.97 | 10.29 | 10.29 | 10.29 | 0.42 | 0.91 | ± 12.0 % | | 900 | 55.0 | 1.05 | 10.18 | 10.18 | 10.18 | 0.49 | 0.83 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 8.51 | 8.51 | 8.51 | 0.45 | 0.80 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 8.25 | 8.25 | 8.25 | 0.37 | 0.80 | ± 12.0 % | | 2000 | 53.3 | 1.52 | 8.42 | 8.42 | 8.42 | 0.40 | 0.82 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 7.94 | 7.94 | 7.94 | 0.35 | 0.85 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 7.68 | 7.68 | 7.68 | 0.32 | 0.95 | ± 12.0 % | | 3500 | 51.3 | 3.31 | 7.15 | 7.15 | 7.15 | 0.45 | 0.95 | ± 13.1 % | | 5250 | 48.9 | 5.36 | 4.59 | 4.59 | 4.59 | 0.45 | 1.90 | ± 13.1 % | | 5600 | 48.5 | 5.77 | 4.17 | 4.17 | 4.17 | 0.50 | 1.90 | ± 13.1 % | | 5750 | 48.3 | 5.94 | 4.14 | 4.14 | 4.14 | 0.50 | 1.90 | ± 13.1 % | $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. May 24, 2017 EX3DV4-SN:3925 ## Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) EX3DV4- SN:3925 May 24, 2017 ## Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) May 24, 2017 EX3DV4-SN:3925 ## Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) EX3DV4- SN:3925 May 24, 2017 ### **Conversion Factor Assessment** ### **Deviation from Isotropy in Liquid** Error (ϕ, ϑ) , f = 900 MHz EX3DV4- SN:3925 May 24, 2017 ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3925 ### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 92.4 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | 中国认可国际互认 校准 CNAS 校准 CALIBRATION CNAS L0570 Tel: +86-10-62304633-2218 E-mail: ettl@chinattl.com Fax: +86-10-62304633-2209 <u>Http://www.chinattl.cn</u> Client Sporton Certificate No: Z17-97143 ### CALIBRATION CERTIFICATE Object ES3DV3 - SN:3270 Calibration Procedure(s) FF-Z11-004-01 Calibration Procedures for Dosimetric E-field Probes Calibration date: September 25, 2017 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | | |---------------------------------|-------------|--|-----------------------|--|--| | Power Meter NRP2 | 101919 | 27-Jun-17 (CTTL, No.J17X05857) | Jun-18 | | | | Power sensor NRP-Z91 | 101547 | 27-Jun-17 (CTTL, No.J17X05857) | Jun-18 | | | | Power sensor NRP-Z91 | 101548 | 27-Jun-17 (CTTL, No.J17X05857) | Jun-18 | | | | Reference10dBAttenuator 18N50W- | | 13-Mar-16(CTTL,No.J16X01547) | Mar-18 | | | | Reference20dBAttenuator | 18N50W-20dB | 13-Mar-16(CTTL, No.J16X01548) | Mar-18 | | | | Reference Probe EX3DV4 | SN 7433 | 26-Sep-16(SPEAG,No.EX3-7433_Sep16) | Sep-17 | | | | DAE4 | SN 549 | 13-Dec-16(SPEAG, No.DAE4-549_Dec16) | Dec -17 | | | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | | | SignalGeneratorMG3700A | 6201052605 | 27-Jun-17 (CTTL, No.J17X05858) | Jun-18 | | | | Network Analyzer E5071C | MY46110673 | 13-Jan-17 (CTTL, No.J17X00285) | Jan -18 | | | | | Name | Function | Signature | | | | Calibrated by: | Yu Zongying | SAR Test Engineer | A TO | | | | Reviewed by: | Zhao Jing | SAR Test Engineer | · 是为一 | | | | Approved by: | Qi Dianyuan | SAR Project Leader | 30- | | | | | | | | | | Issued: September 27, 2017 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: ettl@chinattl.com Http://www.chinattl.cn Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,v,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters Polarization Φ Φ rotation around probe axis Polarization θ or rotation around an axis that is in the plane normal to probe axis (at measurement center), i θ =0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards: - a) IEEE Std
1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ =0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E^2 -field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics. - Ax,y,z; Bx,y,z; Cx,y,z;VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: Z17-97143 Page 2 of 11 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: ettl@chinattl.com Http://www.chinattl.cn # Probe ES3DV3 SN: 3270 Calibrated: September 25, 2017 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) Certificate No: Z17-97143 Page 3 of 11 Add: No.51 Xueyuan Road, Haidian District, Beijing. 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn ### DASY/EASY - Parameters of Probe: ES3DV3 - SN: 3270 ### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |------------------------------|----------|----------|----------|-----------| | Norm(μV/(V/m)²) ^A | 1.12 | 1.22 | 1.21 | ±10.0% | | DCP(mV) ^B | 101.7 | 105.3 | 103.1 | | ### **Modulation Calibration Parameters** | UID | Communication | | Α | В | С | D | VR | Unc ^E | |-----|---------------|---|-----|------|-----|------|-------|------------------| | | System Name | | dB | dBõV | | dB | mV | (k=2) | | 0 | cw | Х | 0.0 | 0.0 | 1.0 | 0.00 | 262.1 | ±2.5% | | | | Υ | 0.0 | 0.0 | 1.0 | | 281.1 | | | | | Z | 0.0 | 0.0 | 1.0 | | 275.2 | | The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. ^B Numerical linearization parameter: uncertainty not required. Certificate No: Z17-97143 Page 4 of 11 A The uncertainties of Norm X, Y, Z do not affect the E^2 -field uncertainty inside TSL (see Page 5 and Page 6). ^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. ## DASY/EASY - Parameters of Probe: ES3DV3 - SN: 3270 ### Calibration Parameter Determined in Head Tissue Simulating Media | f [MHz] ^C | Relative | Conductivity | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G | Unct. | |----------------------|---------------------------|--------------------|---------|---------|---------|--------------------|--------------------|--------| | . [200.12] | Permittivity ^F | (S/m) ^F | CONT. X | CONVI | OCHVI Z | Aiplia | (mm) | (k=2) | | 750 | 41.9 | 0.89 | 6.34 | 6.34 | 6.34 | 0.60 | 1.20 | ±12.1% | | 835 | 41.5 | 0.90 | 6.18 | 6.18 | 6.18 | 0.32 | 1.70 | ±12.1% | | 900 | 41.5 | 0.97 | 6.21 | 6.21 | 6.21 | 0.39 | 1.59 | ±12.1% | | 1750 | 40.1 | 1.37 | 5.24 | 5.24 | 5.24 | 0.65 | 1.26 | ±12.1% | | 1900 | 40.0 | 1.40 | 5.20 | 5.20 | 5.20 | 0.71 | 1.21 | ±12.1% | | 2000 | 40.0 | 1.40 | 4.93 | 4.93 | 4.93 | 0.67 | 1.26 | ±12.1% | | 2100 | 39.8 | 1.49 | 5.02 | 5.02 | 5.02 | 0.71 | 1.22 | ±12.1% | | 2450 | 39.2 | 1.80 | 4.75 | 4.75 | 4.75 | 0.90 | 1.15 | ±12.1% | | 2600 | 39.0 | 1.96 | 4.45 | 4.45 | 4.45 | 0.90 | 1.18 | ±12.1% | ^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. Certificate No: Z17-97143 Page 5 of 11 ^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^GAlpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. ## DASY/EASY - Parameters of Probe: ES3DV3 - SN: 3270 ### Calibration Parameter Determined in Body Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 55.5 | 0.96 | 6.31 | 6.31 | 6.31 | 0.50 | 1.35 | ±12.1% | | 835 | 55.2 | 0.97 | 6.09 | 6.09 | 6.09 | 0.43 | 1.56 | \pm 12.1% | | 1750 | 53.4 | 1.49 | 5.00 | 5.00 | 5.00 | 0.66 | 1.29 | ±12.1% | | 1900 | 53.3 | 1.52 | 4.90 | 4.90 | 4.90 | 0.72 | 1.21 | ±12.1% | | 2450 | 52.7 | 1.95 | 4.39 | 4.39 | 4.39 | 0.71 | 1.36 | ±12.1% | | 2600 | 52.5 | 2.16 | 4.19 | 4.19 | 4.19 | 0.90 | 1.15 | ±12.1% | Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. Page 6 of 11 ^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^GAlpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ±7.4% (k=2) Certificate No: Z17-97143 Page 7 of 11 # Receiving Pattern (Φ), θ=0° ondorating of Axial locatopy Addedding II. 21.270 (R-2) # Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz) Uncertainty of Linearity Assessment: ±0.9% (k=2) compensated not compensated ## **Conversion Factor Assessment** ### f=835 MHz, WGLS R9(H_convF) ### f=1750 MHz, WGLS R22(H_convF) # **Deviation from Isotropy in Liquid** Uncertainty of Spherical Isotropy Assessment: ±3.2% (K=2) Certificate No: Z17-97143 Page 10 of 11 ## DASY/EASY - Parameters of Probe: ES3DV3 - SN: 3270 ### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 166.5 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disable | |
Probe Overall Length | 337mm | | Probe Body Diameter | 10mm | | Tip Length | 10mm | | Tip Diameter | 4mm | | Probe Tip to Sensor X Calibration Point | 2mm | | Probe Tip to Sensor Y Calibration Point | 2mm | | Probe Tip to Sensor Z Calibration Point | 2mm | | Recommended Measurement Distance from Surface | 3mm | Certificate No: Z17-97143 Page 11 of 11 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Certificate No: EX3-3931_Sep17 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton (Auden) **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:3931 Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: September 29, 2017 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards ID | | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 04-Apr-17 (No. 217-02521/02522) | Apr-18 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-17 (No. 217-02521) | Apr-18 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-17 (No. 217-02525) | Apr-18 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 07-Apr-17 (No. 217-02528) | Apr-18 | | Reference Probe ES3DV2 | SN: 3013 | 31-Dec-16 (No. ES3-3013_Dec16) | Dec-17 | | DAE4 | SN: 660 | 7-Dec-16 (No. DAE4-660_Dec16) | Dec-17 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-16) | In house check: Jun-18 | | Network Analyzer HP 8753E | SN: US37390585 | 18-Oct-01 (in house check Oct-16) | In house check: Oct-17 | Calibrated by: Name Function Signature Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: October 2, 2017 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: EX3-3931_Sep17 Page 1 of 38 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Methods Applied and Interpretation of Parameters:** - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX3-3931_Sep17 Page 2 of 38 # Probe EX3DV4 SN:3931 Manufactured: July 24, 2013 Calibrated: September 29, 2017 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) EX3DV4-SN:3931 ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3931 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--|----------|----------|----------|-----------| | Norm (μV/(V/m) ²) ^A | 0.52 | 0.56 | 0.47 | ± 10.1 % | | DCP (mV) ^B | 99.3 | 95.7 | 101.5 | | **Modulation Calibration Parameters** | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Unc ^E
(k=2) | |-----|---------------------------|---|---------|------------|-----|---------|----------|---------------------------| | 0 | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 135.8 | ±3.5 % | | | | Y | 0.0 | 0.0 | 1.0 | | 139.3 | | | | | Ż | 0.0 | 0.0 | 1.0 | | 135.2 | | Note: For details on UID parameters see Appendix. #### **Sensor Model Parameters** | | C1
fF | C2
fF | α′
V⁻¹ | T1
ms.V ⁻² | T2
ms.V⁻¹ | T3
ms | T4
V ⁻² | T5
V ⁻¹ | T6 | |---|----------|----------|-----------|--------------------------|--------------|----------|-----------------------|-----------------------|-------| | X | 42.04 | 322.0 | 37.82 | 14.14 | 0.502 | 5.100 | 0.000 | 0.378 | 1.016 | | Υ | 58.44 | 440.2 | 36.37 | 26.92 | 0.702 | 5.100 | 0.085 | 0.612 | 1.012 | | Z | 57.74 | 437.1 | 36.65 | 22.79 | 0.943 | 5.100 | 0.430 | 0.567 | 1.013 | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). B Numerical linearization parameter: uncertainty not required. E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. EX3DV4- SN:3931 September 29, 2017 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3931 ### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative | Conductivity
(S/m) F | CFV | CFV | C | Alpha ^G | Depth ^G | Unc | |----------------------|---------------------------|-------------------------|---------|---------|---------|--------------------|--------------------|----------| | F (IVITZ) | Permittivity ^F | (Sim) | ConvF X | ConvF Y | ConvF Z | Alpha | (mm) | (k=2) | | 750 | 41.9 | 0.89 | 10.56 | 10.56 | 10.56 | 0.48 | 0.84 | ± 12.0 % | | 835 | 41.5 | 0.90 | 10.15 | 10.15 | 10.15 | 0.51 | 0.80 | ± 12.0 % | | 900 | 41.5 | 0.97 | 9.96 | 9.96 | 9.96 | 0.36 | 0.95 | ± 12.0 % | | 1450 | 40.5 | 1.20 | 8.83 | 8.83 | 8.83 | 0.35 | 0.80 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 8.80 | 8.80 | 8.80 | 0.37 | 0.82 |
± 12.0 % | | 1900 | 40.0 | 1.40 | 8.45 | 8.45 | 8.45 | 0.38 | 0.80 | ± 12.0 % | | 2000 | 40.0 | 1.40 | 8.39 | 8.39 | 8.39 | 0.33 | 0.84 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 7.94 | 7.94 | 7.94 | 0.32 | 0.80 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.62 | 7.62 | 7.62 | 0.37 | 0.85 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 7.38 | 7.38 | 7.38 | 0.30 | 0.98 | ± 12.0 % | | 5250 | 35.9 | 4.71 | 5.34 | 5.34 | 5.34 | 0.35 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.47 | 4.47 | 4.47 | 0.40 | 1.80 | ± 13.1 % | | 5750 | 35.4 | 5.22 | 4.95 | 4.95 | 4.95 | 0.40 | 1.80 | ± 13.1 % | ^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. Certificate No: EX3-3931_Sep17 Page 5 of 38 validity can be extended to ± 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. the ConvF uncertainty for indicated target tissue parameters. Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3931 ### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 750 | 55.5 | 0.96 | 10.34 | 10.34 | 10.34 | 0.46 | 0.80 | ± 12.0 % | | 835 | 55.2 | 0.97 | 10.09 | 10.09 | 10.09 | 0.46 | 0.80 | ± 12.0 % | | 1450 | 54.0 | 1.30 | 8.53 | 8.53 | 8.53 | 0.40 | 0.80 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 8.43 | 8.43 | 8.43 | 0.45 | 0.80 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 8.12 | 8.12 | 8.12 | 0.47 | 0.84 | ± 12.0 % | | 2300 | 52.9 | 1.81 | 7.89 | 7.89 | 7.89 | 0.48 | 0.85 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 7.69 | 7.69 | 7.69 | 0.45 | 0.80 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 7.45 | 7.45 | 7.45 | 0.32 | 0.99 | ± 12.0 % | | 5250 | 48.9 | 5.36 | 4.70 | 4.70 | 4.70 | 0.40 | 1.90 | ± 13.1 % | | 5600 | 48.5 | 5.77 | 3.99 | 3.99 | 3.99 | 0.45 | 1.90 | ± 13.1 % | | 5750 | 48.3 | 5.94 | 4.32 | 4.32 | 4.32 | 0.45 | 1.90 | ± 13.1 % | ^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^c At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. EX3DV4-SN:3931 September 29, 2017 # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) EX3DV4- SN:3931 September 29, 2017 # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) EX3DV4-SN:3931 # Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) EX3DV4- SN:3931 September 29, 2017 ## **Conversion Factor Assessment** # **Deviation from Isotropy in Liquid** Error (ϕ, ϑ) , f = 900 MHz EX3DV4-SN:3931 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3931 ### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 129.3 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | .9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | sporton Certificate No: Z17-97056 ### **CALIBRATION CERTIFICATE** Object ES3DV3 - SN:3169 Calibration Procedure(s) FF-Z11-004-01 Calibration Procedures for Dosimetric E-field Probes Calibration date: May 11, 2017 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | | <u> </u> | | | |-------------------------|--------------|--|-----------------------| | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Power Meter NRP2 | 101919 | 27-Jun-16 (CTTL, No.J16X04777) | Jun-17 | | Power sensor NRP-Z91 | 101547 | 27-Jun-16 (CTTL, No.J16X04777) | Jun-17 | | Power sensor NRP-Z91 | 101548 | 27-Jun-16 (CTTL, No.J16X04777) | Jun-17 | | Reference10dBAttenuator | 18N50W-10dB | 13-Mar-16(CTTL,No.J16X01547) | Mar-18 | | Reference20dBAttenuator | 18N50W-20dB | 13-Mar-16(CTTL, No.J16X01548) | Mar-18 | | Reference Probe EX3DV4 | SN 7433 | 26-Sep-16(SPEAG,No.EX3-7433_Sep16) | Sep-17 | | DAE4 | SN 549 | 13-Dec-16(SPEAG, No.DAE4-549_Dec16) | Dec -17 | | | | | | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | SignalGeneratorMG3700A | 6201052605 | 27-Jun-16 (CTTL, No.J16X04776) | Jun-17 | | Network Analyzer E5071C | MY46110673 | 13-Jan-17 (CTTL, No.J17X00285) | Jan -18 | | | Name | Function | Signature | | Calibrated by: | Yu Zongying | SAR Test Engineer | Day | | | 3, 3 | | Year | | Reviewed by: | Lin Hao | SAR Test Engineer | 1 2K | | | | | all's a | | Approved by: | Qi Dianyuan | SAR Project Leader | 5 63 | | | in i j uni i | | () L- | | | | Issued: May 12 | 2 2017 | Issued: May 12, 2017 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters Polarization Φ Φ rotation around probe axis Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i θ =0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### Methods Applied and Interpretation of Parameters: - *NORMx,y,z:* Assessed for E-field polarization θ =0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E^2 -field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics. - Ax, y, z; Bx, y, z; Cx, y, z; VRx, y, z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do
not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: Z17-97056 Page 2 of 11 # Probe ES3DV3 SN: 3169 Calibrated: May 11, 2017 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) Certificate No: Z17-97056 Page 3 of 11 ## DASY/EASY - Parameters of Probe: ES3DV3 - SN: 3169 ### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |------------------------------|----------|----------|----------|-----------| | Norm(µV/(V/m)²) ^A | 1.16 | 1.17 | 1.17 | ±10.0% | | DCP(mV) ^B | 102.3 | 98.9 | 96.6 | | ## **Modulation Calibration Parameters** | UID | Communication | | Α | В | С | D | VR | Unc ^E | |-----|---------------|---|-----|------|-----|------|-------|------------------| | | System Name | | dB | dBõV | | dB | mV | (k=2) | | 0 | CW | Х | 0.0 | 0.0 | 1.0 | 0.00 | 283.5 | ±2.6% | | | | Υ | 0.0 | 0.0 | 1.0 | | 283.4 | | | | | Z | 0.0 | 0.0 | 1.0 | | 278.5 | | The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. ^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6). ^B Numerical linearization parameter: uncertainty not required. ^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. ## DASY/EASY - Parameters of Probe: ES3DV3 - SN: 3169 ### Calibration Parameter Determined in Head Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 41.9 | 0.89 | 6.07 | 6.07 | 6.07 | 0.50 | 1.20 | ±12.1% | | 835 | 41.5 | 0.90 | 5.99 | 5.99 | 5.99 | 0.32 | 1.63 | ±12.1% | | 1750 | 40.1 | 1.37 | 5.33 | 5.33 | 5.33 | 0.45 | 1.51 | ±12.1% | | 1900 | 40.0 | 1.40 | 5.03 | 5.03 | 5.03 | 0.46 | 1.51 | ±12.1% | | 2450 | 39.2 | 1.80 | 4.50 | 4.50 | 4.50 | 0.90 | 1.10 | ±12.1% | | 2600 | 39.0 | 1.96 | 4.47 | 4.47 | 4.47 | 0.90 | 1.05 | ±12.1% | ^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. ## DASY/EASY - Parameters of Probe: ES3DV3 - SN: 3169 ## Calibration Parameter Determined in Body Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 55.5 | 0.96 | 6.31 | 6.31 | 6.31 | 0.50 | 1.30 | ±12.1% | | 835 | 55.2 | 0.97 | 6.05 | 6.05 | 6.05 | 0.37 | 1.65 | ±12.1% | | 1750 | 53.4 | 1.49 | 4.95 | 4.95 | 4.95 | 0.43 | 1.62 | ±12.1% | | 1900 | 53.3 | 1.52 | 4.72 | 4.72 | 4.72 | 0.61 | 1.32 | ±12.1% | | 2450 | 52.7 | 1.95 | 4.28 | 4.28 | 4.28 | 0.52 | 1.72 | ±12.1% | | 2600 | 52.5 | 2.16 | 4.17 | 4.17 | 4.17 | 0.55 | 1.60 | ±12.1% | ^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ±7.4% (k=2) Certificate No: Z17-97056 Page 7 of 11 # Receiving Pattern (Φ), θ=0° # Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz) Uncertainty of Linearity Assessment: ±0.9% (k=2) SAR[mW/cm³] 10² 10 compensated 10 not compensated 10.2 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 Http://www.chinattl.cn E-mail: cttl@chinattl.com ## **Conversion Factor Assessment** ### f=835 MHz, WGLS R9(H convF) ### f=1750 MHz, WGLS R22(H_convF) ## **Deviation from Isotropy in Liquid** Uncertainty of Spherical Isotropy Assessment: ±3.2% (K=2) ## DASY/EASY - Parameters of Probe: ES3DV3 - SN: 3169 ### **Other Probe Parameters** | Sensor Arrangement | Triangular | | | |---|------------|--|--| | Connector Angle (°) | 154.2 | | | | Mechanical Surface Detection Mode | enabled | | | | Optical Surface Detection Mode | disable | | | | Probe Overall Length | 337mm | | | | Probe Body Diameter | 10mm | | | | Tip Length | 10mm | | | | Tip Diameter | 4mm | | | | Probe Tip to Sensor X Calibration Point | 2mm | | | | Probe Tip to Sensor Y Calibration Point | 2mm | | | | Probe Tip to Sensor Z Calibration Point | 2mm | | | | Recommended Measurement Distance from Surface | 3mm | | | Certificate No: Z17-97056 Page 11 of 11