FCC RF Test Report

APPLICANT : Motorola Mobility LLC EQUIPMENT : Mobile Cellular Phone

BRAND NAME : Motorola

MODEL NAME : XT1925-6, XT1925-12, XT1925DL

FCC ID : IHDT56XD1

STANDARD : FCC Part 15 Subpart C §15.247

CLASSIFICATION : (DTS) Digital Transmission System

The product was received on Dec. 25, 2017 and testing was completed on Jan. 18, 2018. We, Sporton International (Kunshan) Inc., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International (Kunshan) Inc., the test report shall not be reproduced except in full.

Approved by: James Huang / Manager

Sporton International (Kunshan) Inc.

No.3-2 Ping-Xiang Rd, Kunshan Development Zone Kunshan City Jiangsu Province 215335 China

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: IHDT56XD1 Page Number : 1 of 39
Report Issued Date : Jan. 30, 2018
Report Version : Rev. 01

Report No.: FR7D2507B

TABLE OF CONTENTS

SU	MMAF	RY OF TEST RESULT	4
1	GENI	ERAL DESCRIPTION	5
2	1.1 1.2 1.3 1.4 1.5 1.6 1.7	Applicant Manufacturer Product Feature of Equipment Under Test Product Specification of Equipment Under Test Modification of EUT Testing Location Applicable Standards Specification of Accessory.	5 6 6 6
3	2.1 2.2 2.3 2.4 2.5 2.6	Descriptions of Test Mode Test Mode Connection Diagram of Test System Support Unit used in test configuration and system EUT Operation Test Setup Measurement Results Explanation Example	9 10 12 12
4	3.1 3.2 3.3 3.4 3.5 3.6 3.7 LIST	6dB and 99% Bandwidth Measurement	18 19 24 29 33
	PEND	ERTAINTY OF EVALUATIONIX A. CONDUCTED TEST RESULTS IX B. RADIATED SPURIOUS EMISSION	39
AP	PEND	IX C. DUTY CYCLE PLOTS	

Sporton International (Kunshan) Inc.

APPENDIX D. SETUP PHOTOGRAPHS

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: IHDT56XD1 Page Number : 2 of 39
Report Issued Date : Jan. 30, 2018
Report Version : Rev. 01

Report No.: FR7D2507B

REVISION HISTORY

Report No.: FR7D2507B

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR7D2507B	Rev. 01	Initial issue of report	Jan. 30, 2018

 Sporton International (Kunshan) Inc.
 Page Number
 : 3 of 39

 TEL: +86-512-57900158
 Report Issued Date
 : Jan. 30, 2018

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

SUMMARY OF TEST RESULT

Report No.: FR7D2507B

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(2)	6dB Bandwidth	≥ 0.5MHz	Pass	-
3.1	-	99% Bandwidth	-	Pass	-
3.2	15.247(b)(3)	Peak Output Power	≤ 30dBm	Pass	-
3.3	15.247(e)	Power Spectral Density	≤ 8dBm/3kHz	Pass	-
3.4	15.247(d)	Conducted Band Edges and Spurious Emission	≤ 20dBc	Pass	-
3.5	15.247(d)	Radiated Band Edges and Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 5.40 dB at 35.820 MHz
3.6	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 7.51 dB at 0.170 MHz
3.7	15.203 & 15.247(b)	Antenna Requirement	N/A	Pass	-

 Sporton International (Kunshan) Inc.
 Page Number
 : 4 of 39

 TEL: +86-512-57900158
 Report Issued Date
 : Jan. 30, 2018

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

1 General Description

1.1 Applicant

Motorola Mobility LLC

222 W, Merchandise Mart Plaza, Chicago IL 60654 USA

1.2 Manufacturer

Motorola Mobility LLC

222 W, Merchandise Mart Plaza, Chicago IL 60654 USA

1.3 Product Feature of Equipment Under Test

	Product Feature
Equipment	Mobile Cellular Phone
Brand Name	Motorola
Model Name	XT1925-6, XT1925-12, XT1925DL
FCC ID	IHDT56XD1
	CDMA/EV-DO/GSM/GPRS/EGPRS/WCDMA/HSPA/
	DC-HSDPA/HSPA+(16QAM uplink is not supported)/LTE
FLIT aupports Padica application	WLAN 2.4GHz 802.11b/g/n HT20
EUT supports Radios application	WLAN 5GHz 802.11a/n HT20/HT40
	Bluetooth v3.0+EDR/ Bluetooth v4.0 LE/
	Bluetooth v4.1 LE/ Bluetooth v4.2 LE
	Conducted: 351849090020632
IMEI Code	Conduction: 351884090003551
	Radiation: 351884090035585
HW Version	DVT1-B
SW Version	ali_n-userdebug 8.0.0 OPS27.55 1276 intcfg,test-keys
EUT Stage	Identical Prototype

Report No.: FR7D2507B

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

 Sporton International (Kunshan) Inc.
 Page Number
 : 5 of 39

 TEL: +86-512-57900158
 Report Issued Date
 : Jan. 30, 2018

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification				
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz			
Number of Channels	40			
Carrier Frequency of Each Channel	40 Channel(37 hopping + 3 advertising channel)			
Maximum Output Power to Antenna	2.51 dBm (0.0018 W)			
99% Occupied Bandwidth	1.051MHz			
Antenna Type / Gain	PIFA Antenna with gain -3.00 dBi			
Type of Modulation	Bluetooth LE : GFSK			

Report No.: FR7D2507B

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Sporton International (Kunshan) Inc. is accredited to ISO 17025 by National Voluntary Laboratory Accreditation Program (NVLAP code: 600155-0) and the FCC designation No. is CN5013.

Test Site	Sporton International (Kunshan) Inc.				
Test Site Location	No.3-2 Ping-Xiang Rd, Kunshan Development Zone Kunshan City Jiangsu Province 215335 China TEL: +86-512-57900158 FAX: +86-512-57900958				
Test Site No.	TH01-KS	FCC Test Firm Registration No. 630927			

Note: The test site complies with ANSI C63.4 2014 requirement.

 Sporton International (Kunshan) Inc.
 Page Number
 : 6 of 39

 TEL: +86-512-57900158
 Report Issued Date
 : Jan. 30, 2018

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

1.7 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

Report No.: FR7D2507B

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v04
- ANSI C63.10-2013

Remark:

- All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

 Sporton International (Kunshan) Inc.
 Page Number
 : 7 of 39

 TEL: +86-512-57900158
 Report Issued Date
 : Jan. 30, 2018

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

1.8 Specification of Accessory

Specification of Accessory					
	Brand Name	Motorola (Salom)	Model Name	SC-22	
AC Adapter 1(US)	Power Rating	I/P: 100-240 Vac, 500mA, O/P:	5Vdc,3000mA	or 9Vdc,1600mA or 12Vdc,1200mA	
	Brand Name	Motorola (Salom)	Model Name	SC-23	
AC Adapter 1(EU)	Power Rating	I/P: 100-240 Vac, 500mA, O/P:	5Vdc,3000mA	or 9Vdc,1600mA or 12Vdc,1200mA	
101111111111111111111111111111111111111	Brand Name	Motorola (Salom)	Model Name	SC-24	
AC Adapter 1(UK)	Power Rating	I/P: 100-240 Vac, 500mA, O/P:	5Vdc,3000mA	or 9Vdc,1600mA or 12Vdc,1200mA	
AC Adomton 4/INI	Brand Name	Motorola (Salom)	Model Name	SC-25	
AC Adapter 1(IN)	Power Rating	I/P: 100-240 Vac, 500mA, O/P:	5Vdc,3000mA	or 9Vdc,1600mA or 12Vdc,1200mA	
AC Adomton 4/AU)	Brand Name	Motorola (Salom)	Model Name	SC-26	
AC Adapter 1(AU)	Power Rating	I/P: 100-240 Vac, 500mA, O/P:	5Vdc,3000mA	or 9Vdc,1600mA or 12Vdc,1200mA	
AC Adaptor 2(US)	Brand Name	Motorola (Chenyang)	Model Name	SC-22	
AC Adapter 2(US)	Power Rating	I/P: 100-240 Vac, 500mA, O/P:	5Vdc,3000mA	or 9Vdc,1600mA or 12Vdc,1200mA	
AC Adapter 2(EU)	Brand Name	Motorola (Chenyang)	Model Name	SC-23	
AC Adapter 2(EO)	Power Rating	I/P: 100-240 Vac, 500mA, O/P:	5Vdc,3000mA	or 9Vdc,1600mA or 12Vdc,1200mA	
AC Adapter 2(UK)	Brand Name	Motorola (Chenyang)	Model Name	SC-24	
AC Adapter 2(OK)	Power Rating	I/P: 100-240 Vac, 500mA, O/P:	5Vdc,3000mA	or 9Vdc,1600mA or 12Vdc,1200mA	
AC Adapter 2(IN)	Brand Name	Motorola (Chenyang)	Model Name	SC-25	
AC Adapter 2(III)	Power Rating	I/P: 100-240 Vac, 500mA, O/P:	5Vdc,3000mA	or 9Vdc,1600mA or 12Vdc,1200mA	
AC Adapter 2(AU)	Brand Name	Motorola (Chenyang)	Model Name	SC-26	
Ac Adapter 2(Ac)	Power Rating	I/P: 100-240 Vac, 500mA, O/P:	5Vdc,3000mA	or 9Vdc,1600mA or 12Vdc,1200mA	
Battery	Brand Name	Motorola (ATL)	Model Name	HG30	
Battery	Power Rating	3.8Vdc,3000mAh	Туре	Li-ion	
Earphone 1	Brand Name	Motorola (Jiahe)	Model Name	LS-118M-12	
Lai pilone i	Signal Line Type	1.2 meter, non-shielded cable,	without ferrite co	ore	
Earphone 2	Brand Name	Motorola (Lianyun)	Model Name	TS910A-38AMS01WHR-M	
Lai pilone 2	Signal Line Type	1.2 meter, non-shielded cable,	without ferrite co	ore	
USB Cable	Brand Name	Motorola (Liqi)	Model Name	L32B-053000100-ALL	
Capie	Signal Line Type	1.0 meter, shielded cable, without	out ferrite core		

Report No.: FR7D2507B

 Sporton International (Kunshan) Inc.
 Page Number
 : 8 of 39

 TEL: +86-512-57900158
 Report Issued Date
 : Jan. 30, 2018

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

2 Test Configuration of Equipment Under Test

2.1 Descriptions of Test Mode

The RF output power was recorded in the following table:

		Bluetooth – LE RF Output Power	
Channal	nel Frequency	Data Rate / Modulation	
Chainei		GFSK	
		1Mbps	
Ch00	2402MHz	2.12 dBm	
Ch19	2440MHz	2.51 dBm	
Ch39	2480MHz	2.34 dBm	

Report No.: FR7D2507B

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction (150 kHz to 30 MHz), radiation (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). Pre-scanned tests, X, Y, Z in three orthogonal panels to determine the final configuration from all possible combinations.
- b. AC power line Conducted Emission was tested under maximum output power.

 Sporton International (Kunshan) Inc.
 Page Number
 : 9 of 39

 TEL: +86-512-57900158
 Report Issued Date
 : Jan. 30, 2018

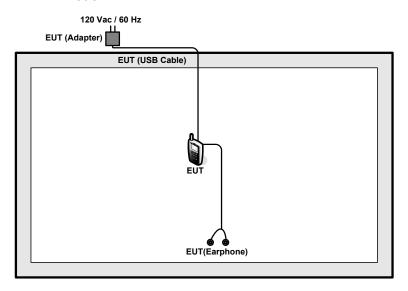
 FAX: +86-512-57900958
 Report Version
 : Rev. 01

2.2 Test Mode

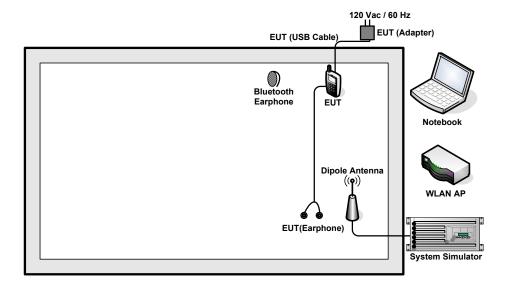
The following summary table is showing all test modes to demonstrate in compliance with the standard.

Report No.: FR7D2507B

	Summary table of Test Cases				
Took Itom	Data Rate / Modulation				
Test Item	Bluetooth – LE / GFSK				
Conducted	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps				
TCs	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps				
105	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps				
Radiated	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps				
	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps				
TCs	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps				
AC	Mode 1 : CSM 950 Idle Divistosth Link WI AN Link (2.4C) LISD Coble (Charging				
Conducted	Mode 1 : GSM 850 Idle + Bluetooth Link + WLAN Link (2.4G) + USB Cable (Charging				
Emission	from Adapter1) + Earphone 1				
Remark: For Radiated Test Cases, The tests were performed with Adapter 1, Earphone 1, and USB					
Cable.					


 Sporton International (Kunshan) Inc.
 Page Number
 : 10 of 39

 TEL: +86-512-57900158
 Report Issued Date
 : Jan. 30, 2018


 FAX: +86-512-57900958
 Report Version
 : Rev. 01

2.3 Connection Diagram of Test System

<Bluetooth - LE Tx Mode>

<AC Conducted Emission Mode>

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: IHDT56XD1 Page Number : 11 of 39
Report Issued Date : Jan. 30, 2018
Report Version : Rev. 01

Report No.: FR7D2507B

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	Anritsu	MT8820C	N/A	N/A	Unshielded,1.8m
2.	WLAN AP	D-Link	DIR-855	KA2DIR855A2	N/A	Unshielded, 1.8 m
3.	Notebook	Lenovo	G480	N/A	N/A	Shielded cable DC O/P 1.8 m Unshielded AC I/P cable1.2 m
4.	Bluetooth Earphone	Lenovo	LBH308	NA	N/A	N/A

Report No.: FR7D2507B

2.5 EUT Operation Test Setup

For Bluetooth LE function, the engineering test program was provided and enabled to make EUT continuous transmit/receive.

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss.

Offset = RF cable loss

Following shows an offset computation example with cable loss 5.5 dB.

 $Offset(dB) = RF \ cable \ loss(dB).$ = 5.5 (dB)

 Sporton International (Kunshan) Inc.
 Page Number
 : 12 of 39

 TEL: +86-512-57900158
 Report Issued Date
 : Jan. 30, 2018

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

3 Test Result

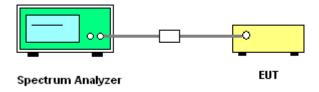
3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

3.1.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.


3.1.3 Test Procedures

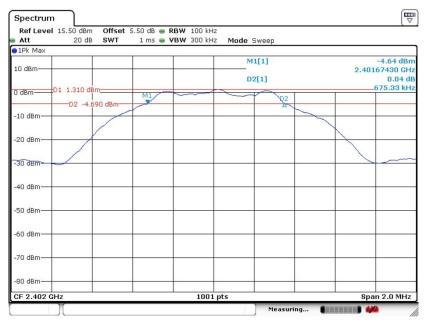
- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v04.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Report No.: FR7D2507B

- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- 5. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 30kHz and set the Video bandwidth (VBW) = 100kHz.
- 6. Measure and record the results in the test report.

3.1.4 Test Setup

 Sporton International (Kunshan) Inc.
 Page Number
 : 13 of 39


 TEL: +86-512-57900158
 Report Issued Date
 : Jan. 30, 2018

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

3.1.5 Test Result of 6dB Bandwidth

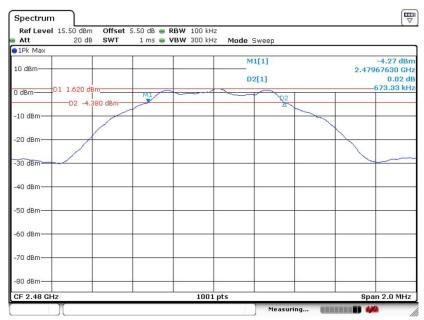
Test data refer to Appendix A.


6 dB Bandwidth Plot on Channel 00

Report No.: FR7D2507B

Date: 2.JAN.2018 11:20:36

6 dB Bandwidth Plot on Channel 19


Date: 2.JAN.2018 11:23:54

 Sporton International (Kunshan) Inc.
 Page Number
 : 14 of 39

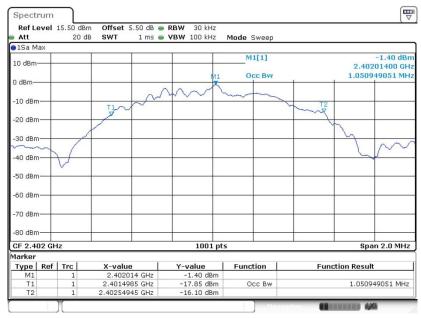
 TEL: +86-512-57900158
 Report Issued Date
 : Jan. 30, 2018

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

6 dB Bandwidth Plot on Channel 39

Date: 2.JAN.2018 11:26:57

Sporton International (Kunshan) Inc.


TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: IHDT56XD1 Page Number : 15 of 39
Report Issued Date : Jan. 30, 2018
Report Version : Rev. 01

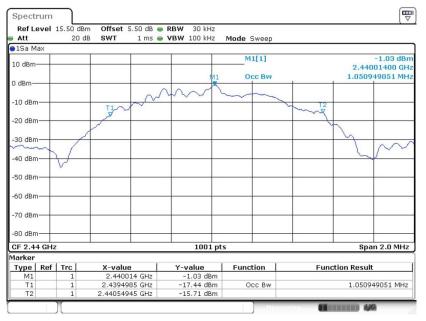
Report No.: FR7D2507B

3.1.6 Test Result of 99% Occupied Bandwidth

Test data refer to Appendix A.

99% Bandwidth Plot on Channel 00

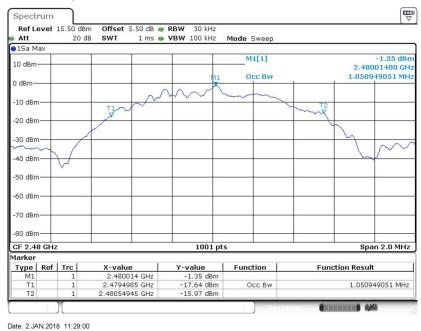
Report No.: FR7D2507B


Date: 2.JAN.2018 11:22:05

 Sporton International (Kunshan) Inc.
 Page Number
 : 16 of 39

 TEL: +86-512-57900158
 Report Issued Date
 : Jan. 30, 2018

 FAX: +86-512-57900958
 Report Version
 : Rev. 01


99% Occupied Bandwidth Plot on Channel 19

Report No.: FR7D2507B

Date: 2.JAN.2018 11:24:23

99% Occupied Bandwidth Plot on Channel 39

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

 Sporton International (Kunshan) Inc.
 Page Number
 : 17 of 39

 TEL: +86-512-57900158
 Report Issued Date
 : Jan. 30, 2018

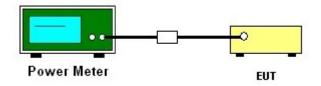
 FAX: +86-512-57900958
 Report Version
 : Rev. 01

3.2 Peak Output Power Measurement

3.2.1 Limit of Peak Output Power

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

Report No.: FR7D2507B


3.2.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.2.3 Test Procedures

- The testing follows the Measurement Procedure of FCC KDB No. 558074 DTS D01 Meas.
 Guidance v04 section 9.1.2 PKPM1 Peak power meter method.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

3.2.5 Test Result of Peak Output Power

Test data refers to Appendix A.

 Sporton International (Kunshan) Inc.
 Page Number
 : 18 of 39

 TEL: +86-512-57900158
 Report Issued Date
 : Jan. 30, 2018

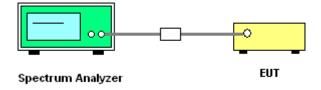
 FAX: +86-512-57900958
 Report Version
 : Rev. 01

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.

Report No.: FR7D2507B


3.3.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

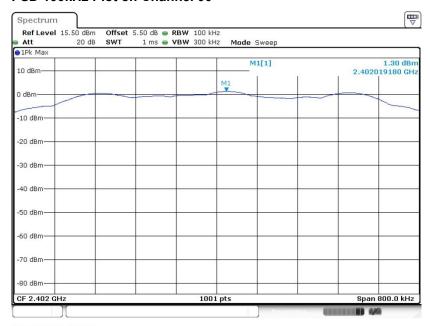
3.3.3 Test Procedures

- The testing follows Measurement Procedure 10.2 Method PKPSD of FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v04
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz. Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- 7. The Measured power density (dBm)/ 100kHz is a reference level and used as 20dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

3.3.4 Test Setup

 Sporton International (Kunshan) Inc.
 Page Number
 : 19 of 39

 TEL: +86-512-57900158
 Report Issued Date
 : Jan. 30, 2018


 FAX: +86-512-57900958
 Report Version
 : Rev. 01

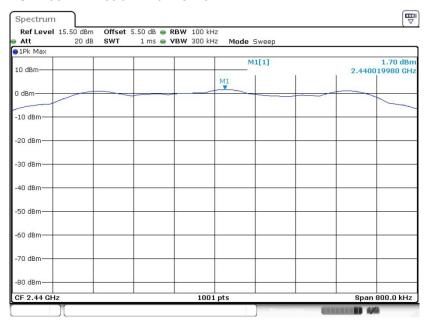
3.3.5 Test Result of Power Spectral Density

Test data refers to Appendix A.

3.3.6 Test Result of Power Spectral Density Plots (100kHz)

PSD 100kHz Plot on Channel 00

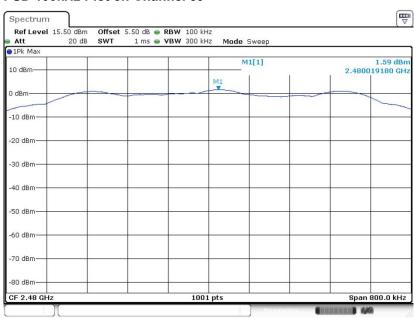
Report No.: FR7D2507B


Date: 2.JAN.2018 11:21:05

 Sporton International (Kunshan) Inc.
 Page Number
 : 20 of 39

 TEL: +86-512-57900158
 Report Issued Date
 : Jan. 30, 2018

 FAX: +86-512-57900958
 Report Version
 : Rev. 01


PSD 100kHz Plot on Channel 19

Report No.: FR7D2507B

Date: 2.JAN.2018 11:24:16

PSD 100kHz Plot on Channel 39

Date: 2.JAN.2018 11:27:22


 Sporton International (Kunshan) Inc.
 Page Number
 : 21 of 39

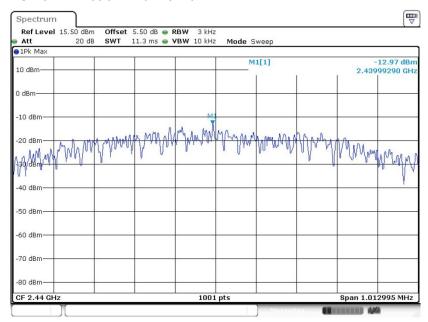
 TEL: +86-512-57900158
 Report Issued Date
 : Jan. 30, 2018

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

3.3.7 Test Result of Power Spectral Density Plots (3kHz)

PSD 3kHz Plot on Channel 00

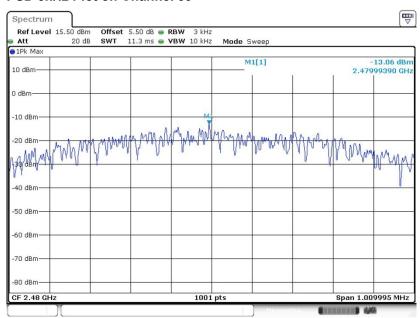
Report No.: FR7D2507B


Date: 2.JAN.2018 11:20:53

 Sporton International (Kunshan) Inc.
 Page Number
 : 22 of 39

 TEL: +86-512-57900158
 Report Issued Date
 : Jan. 30, 2018

 FAX: +86-512-57900958
 Report Version
 : Rev. 01


PSD 3kHz Plot on Channel 19

Report No.: FR7D2507B

Date: 2.JAN.2018 11:24:04

PSD 3kHz Plot on Channel 39

Date: 2.JAN.2018 11:27:10

 Sporton International (Kunshan) Inc.
 Page Number
 : 23 of 39

 TEL: +86-512-57900158
 Report Issued Date
 : Jan. 30, 2018

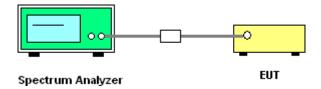
 FAX: +86-512-57900958
 Report Version
 : Rev. 01

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission

All harmonics/spurious must be at least 20 dB down from the highest emission level within the authorized band.

Report No.: FR7D2507B

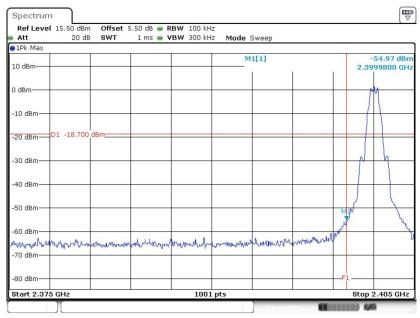

3.4.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.4.3 Test Procedure

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v04.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

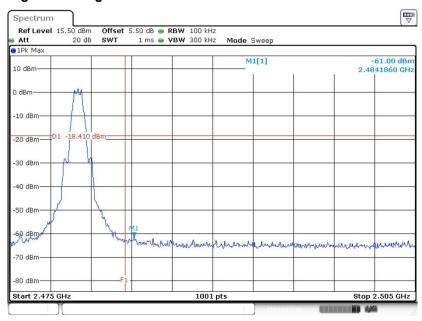
3.4.4 Test Setup


 Sporton International (Kunshan) Inc.
 Page Number
 : 24 of 39

 TEL: +86-512-57900158
 Report Issued Date
 : Jan. 30, 2018

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

3.4.5 Test Result of Conducted Band Edges Plots


Low Band Edge Plot on Channel 00

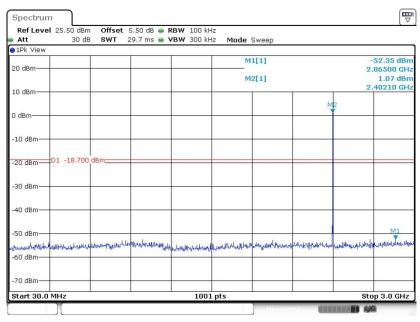
Report No.: FR7D2507B

Date: 2.JAN.2018 11:21:46

High Band Edge Plot on Channel 39

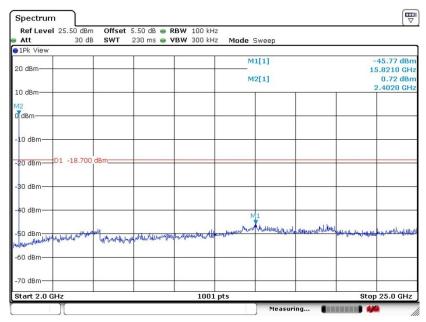
Date: 2.JAN.2018 11:28:43

 Sporton International (Kunshan) Inc.
 Page Number
 : 25 of 39


 TEL: +86-512-57900158
 Report Issued Date
 : Jan. 30, 2018

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

3.4.6 Test Result of Conducted Spurious Emission Plots

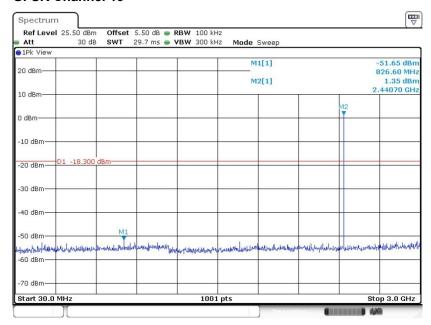

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 00

Report No.: FR7D2507B

Date: 2.JAN.2018 11:22:14

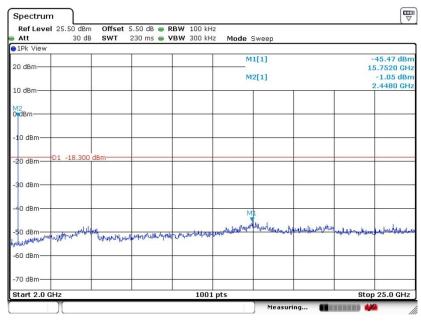
Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 00

Date: 2.JAN.2018 11:22:40


 Sporton International (Kunshan) Inc.
 Page Number
 : 26 of 39

 TEL: +86-512-57900158
 Report Issued Date
 : Jan. 30, 2018

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

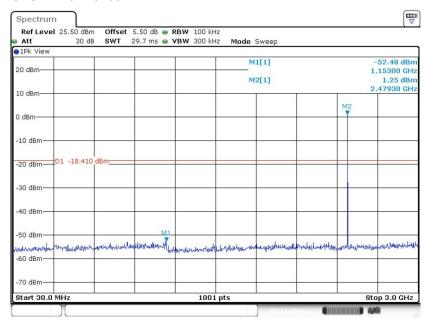

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19

Report No.: FR7D2507B

Date: 2.JAN.2018 11:24:51

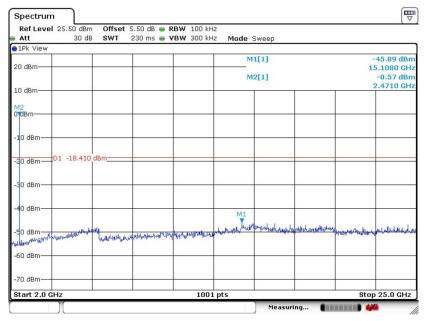
Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19

Date: 2.JAN.2018 11:25:33


 Sporton International (Kunshan) Inc.
 Page Number
 : 27 of 39

 TEL: +86-512-57900158
 Report Issued Date
 : Jan. 30, 2018

 FAX: +86-512-57900958
 Report Version
 : Rev. 01


Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 39

Report No.: FR7D2507B

Date: 2.JAN.2018 11:29:46

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 39

Date: 2.JAN.2018 11:30:10

 Sporton International (Kunshan) Inc.
 Page Number
 : 28 of 39

 TEL: +86-512-57900158
 Report Issued Date
 : Jan. 30, 2018

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

3.5 Radiated Band Edges and Spurious Emission Measurement

3.5.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Report No.: FR7D2507B

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

 Sporton International (Kunshan) Inc.
 Page Number
 : 29 of 39

 TEL: +86-512-57900158
 Report Issued Date
 : Jan. 30, 2018

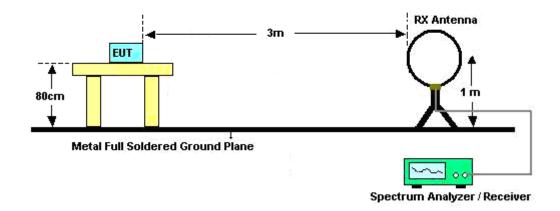
 FAX: +86-512-57900958
 Report Version
 : Rev. 01

3.5.3 Test Procedures

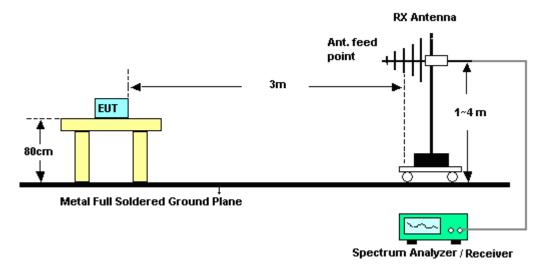
- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v04.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.

Report No.: FR7D2507B

- 3. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 7. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for $f \ge 1$ GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.


 Sporton International (Kunshan) Inc.
 Page Number
 : 30 of 39

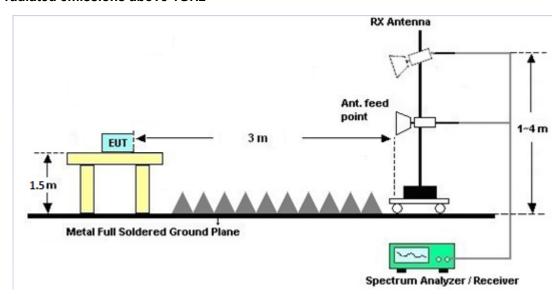
 TEL: +86-512-57900158
 Report Issued Date
 : Jan. 30, 2018


 FAX: +86-512-57900958
 Report Version
 : Rev. 01

3.5.4 Test Setup

For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz



Report No.: FR7D2507B

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: IHDT56XD1 Page Number : 31 of 39
Report Issued Date : Jan. 30, 2018
Report Version : Rev. 01

For radiated emissions above 1GHz

3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix B.

3.5.7 Duty Cycle

Please refer to Appendix C.

3.5.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix B.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: IHDT56XD1 Page Number : 32 of 39
Report Issued Date : Jan. 30, 2018
Report Version : Rev. 01

Report No.: FR7D2507B

3.6 AC Conducted Emission Measurement

3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Report No.: FR7D2507B

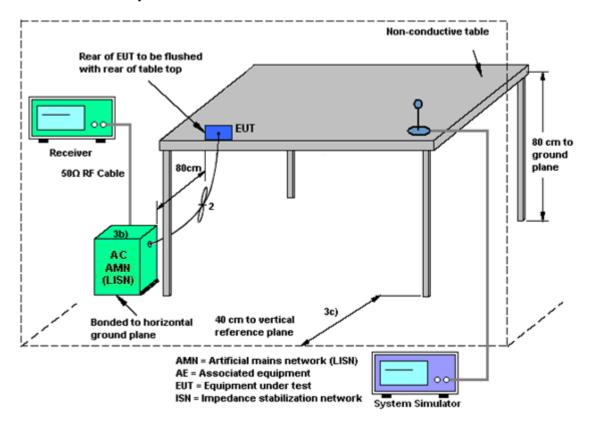
Fraguency of amission (MUz)	Conducted	limit (dBμV)
Frequency of emission (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

^{*}Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.6.3 Test Procedures


- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

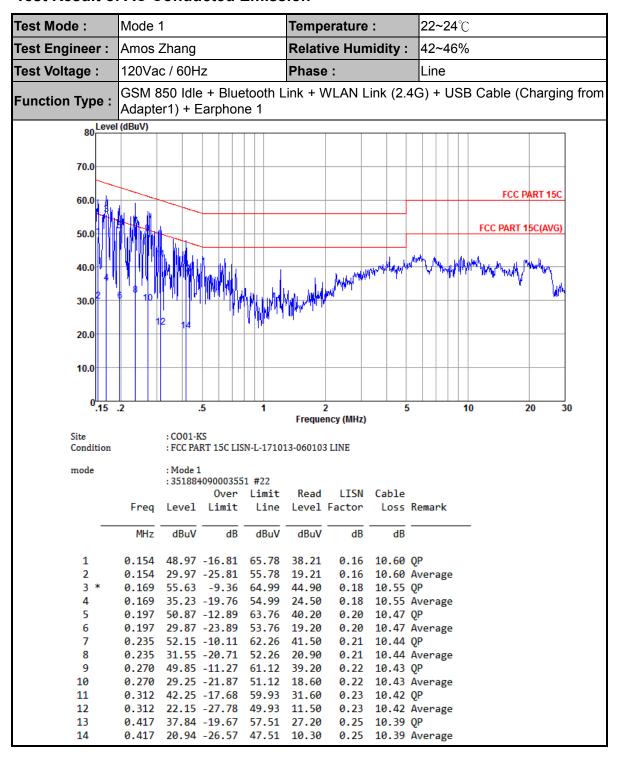
 Sporton International (Kunshan) Inc.
 Page Number
 : 33 of 39

 TEL: +86-512-57900158
 Report Issued Date
 : Jan. 30, 2018

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

3.6.4 Test Setup

Sporton International (Kunshan) Inc.Page ITEL: +86-512-57900158Report


FCC ID: IHDT56XD1

FAX: +86-512-57900958

Page Number : 34 of 39
Report Issued Date : Jan. 30, 2018
Report Version : Rev. 01

Report No.: FR7D2507B

3.6.5 Test Result of AC Conducted Emission

Report No.: FR7D2507B

 Sporton International (Kunshan) Inc.
 Page Number
 : 35 of 39

 TEL: +86-512-57900158
 Report Issued Date
 : Jan. 30, 2018

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

SPORTON LAB.	FCC RF Test Report

Test Mode :	Mode 1	T	emperature	:	22~24 ℃				
Test Engineer :			Relative Humidity :		42~46%				
Test Voltage :	120Vac / 60Hz	Р	hase :		Neutral				
Function Type : GSM 850 Idle + Bluetooth Link + WLAN Link (2.4G) + USB Cable (Charging from Adapter1) + Earphone 1									
80 Level	(dBuV)								
70.0									
60.0						FCC P	ART 15C		
50.0					-1.	FCC PART 1	5C(AVG)		
40.0	8 10 14 W		AND WASHINGTON	A TOTAL STREET	zaplowyte politikaj	New York Company of the Company of t	M		
30.0	112 17 18 1 16 20	24	1						
20.0									
10.0									
0.15	.2 .5	1	2	5	Ш.	10 2	20 30		
			Frequency (MHz)				.0		
Site Condition	: CO01-KS : FCC PART 15	C LISN-N-171013-	-060103 NEUTRAI	L					
mode	: Mode 1 : 3518840900	03551 #22							
	O	er Limit/		Cable					
	Freq Level Li		Level Factor	Loss R	ешагк	_			
	MHz dBuV	dB dBuV	dBuV dB	dB					
1		91 65.69 4		10.60 Q					
2 3 *	0.156 34.48 -21 0.170 57.43 -7		23.60 0.28 46.60 0.28	10.60 A	_				
4	0.170 37.13 -17			-					
5	0.182 50.99 -13			10.51 Q					
6 7	0.182 28.39 -25			10.51 A	_				
8	0.200 55.24 -8 0.200 35.94 -17			10.46 Q 10.46 A					
9	0.230 54.23 -8	21 62.44 4	43.50 0.28	10.45 Q	_				
10	0.230 33.03 -19			10.45 A	_				
11 12	0.246 50.32 -11 0.246 31.02 -20			10.44 Q 10.44 A					
13	0.273 52.22 -8			10.43 Q	_				
14	0.273 32.32 -18			10.43 A	_				
15 16	0.300 42.31 -17 0.300 24.91 -25			10.43 Q 10.43 A					
17		.22 58.52 3		10.43 A	_				
18	0.369 27.30 -21	22 48.52 1	16.60 0.29	10.41 Å	verage				
19 20		31 57.59 2		10.39 Q					
20		31 47.59 1 08 56.93 2		10.39 A 10.36 Q	_				
22		98 46.93 1	11.30 0.29	10.36 A					
23		31 56.00 2		10.19 Q					
24	0.651 26.69 -19	31 46.00 1	16.20 0.30	10.19 A	verage				

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: IHDT56XD1 Page Number : 36 of 39
Report Issued Date : Jan. 30, 2018
Report Version : Rev. 01

Report No. : FR7D2507B

3.7 Antenna Requirements

3.7.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

Report No.: FR7D2507B

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

 Sporton International (Kunshan) Inc.
 Page Number
 : 37 of 39

 TEL: +86-512-57900158
 Report Issued Date
 : Jan. 30, 2018

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark	
Spectrum Analyzer	R&S	FSV40	101040	10Hz~40GHz	Aug. 08, 2017	Jan. 02, 2017	Aug. 07, 2018	Conducted (TH01-KS)	
Pulse Power Senor	Anritsu	MA2411B	0917070	300MHz~40GH z	Jan. 19, 2017	Jan. 02, 2017	Jan. 18, 2018	Conducted (TH01-KS)	
Power Meter	Anritsu	ML2495A	1005002	50MHz Bandwidth	Jan. 19, 2017	Jan. 02, 2017	Jan. 18, 2018	Conducted (TH01-KS)	
EMI Receiver	R&S	ESCI7	100768	9kHz~7GHz;	Apr. 20, 2017	Jan. 17, 2018	Apr. 19, 2018	Conduction (CO01-KS)	
AC LISN	MessTec	AN3016	060103	9kHz~30MHz	Oct. 13, 2017	Jan. 17, 2018	Oct. 12, 2018	Conduction (CO01-KS)	
AC LISN (for auxiliary equipment)	MessTec	AN3016	060105	9kHz~30MHz	Oct. 13, 2017	Jan. 17, 2018	Oct. 12, 2018	Conduction (CO01-KS)	
AC Power Source	ce Chroma 61602		ABP00000 0811	AC 0V~300V, 45Hz~1000Hz	Oct. 12, 2017	Jan. 17, 2018	Oct. 11, 2018	Conduction (CO01-KS)	
EMI Test Receiver	Keysight	N9038A	MY564000 04	3Hz~8.5GHz; Max 30dBm	Oct. 19, 2017	Jan. 18, 2018	Oct. 18, 2018	Radiation (03CH03-KS)	
EXA Spectrum Analyzer	Keysight	N9010A	MY551502 44	10Hz~44GHz	Apr. 18, 2017	Jan. 18, 2018	Apr. 17, 2018	Radiation (03CH03-KS)	
Loop Antenna	R&S	HFH2-Z2	100321	9kHz~30MHz	Oct. 22, 2017	Jan. 18, 2018	Oct. 21, 2018	Radiation (03CH03-KS)	
Bilog Antenna	TeseQ	CBL6112D	35406	25MHz~2GHz	Apr. 22, 2017	Jan. 18, 2018	Apr. 21, 2018	Radiation (03CH03-KS)	
Double Ridge Horn Antenna	ETS-Lindgren	3117	75959	1GHz~18GHz	Jan. 22, 2017	Jan. 18, 2018	Jan. 21, 2018	Radiation (03CH03-KS)	
SHF-EHF Horn	Schwarzbeck	BBHA 9170	BBHA1702 49	15GHz~40GHz	Feb. 15, 2017	Jan. 18, 2018	Feb. 14, 2018	Radiation (03CH03-KS)	
Amplifier	com-power	PA-103A	161069	1MHz~1000MH z / 32 dB	Apr. 18, 2017	Jan. 18, 2018	Apr. 17, 2018	Radiation (03CH03-KS)	
Amplifier	MITEQ	TTA1840-35- HG	1887435	18GHz~40GHz	Oct. 12, 2017	Jan. 18, 2018	Oct. 11, 2018	Radiation (03CH03-KS)	
high gain Amplifier	MITEQ	AMF-7D-0010 1800-30-10P	2025788	1GHz~18GHz	Apr. 18. 2017	Jan. 18, 2018	Apr. 17, 2018	Radiation (03CH03-KS)	
Amplifier	Agilent	8449B	3008A023 70	1GHz~26.5GHz	Oct. 12, 2017	Jan. 18, 2018	Oct. 11, 2018	Radiation (03CH03-KS)	
AC Power Source	Chroma	61601	F1040900 04	N/A	NCR	Jan. 18, 2018	NCR	Radiation (03CH03-KS)	
Turn Table			060762-T	0~360 degree	NCR Jan. 18, 2018		NCR	Radiation (03CH03-KS)	
Antenna Mast	ChamPro	EM 1000-A	060762-A	1 m~4 m	NCR	Jan. 18, 2018	NCR	Radiation (03CH03-KS)	

Report No.: FR7D2507B

NCR: No Calibration Required

 Sporton International (Kunshan) Inc.
 Page Number
 : 38 of 39

 TEL: +86-512-57900158
 Report Issued Date
 : Jan. 30, 2018

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	
of 95% (U = 2Uc(y))	2.3dB

Report No.: FR7D2507B

<u>Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)</u>

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	4.6dB
01 95% (U = 2UC(y))	

<u>Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)</u>

- 1		
	Measuring Uncertainty for a Level of Confidence	4.5dB
	of 95% (U = 2Uc(y))	4.505

<u>Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)</u>

Measuring Uncertainty for a Level of Confidence	4 540
of 95% (U = 2Uc(y))	4.5dB

 Sporton International (Kunshan) Inc.
 Page Number
 : 39 of 39

 TEL: +86-512-57900158
 Report Issued Date
 : Jan. 30, 2018

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

Appendix A. Conducted Test Results

Report No.: FR7D2507B

 Sporton International (Kunshan) Inc.
 Page Number
 : A1 of A1

 TEL: +86-512-57900158
 Report Issued Date
 : Jan. 30, 2018

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

Report Number : FR7D2507B

Bluetooth Low Energy

Test Engineer:	Slient Hai	Temperature:	21~25	°C
Test Date:	2017/1/2	Relative Humidity:	51~55	%

TEST RESULTS DATA 6dB and 99% Occupied Bandwidth

Mod.	Data Rate	NTX	CH. Freq. (MHz)		99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail	
BLE	1Mbps	1	0	2402	1.05	0.68	0.50	Pass	
BLE	1Mbps	1	19	2440	1.05	0.68	0.50	Pass	
BLE	1Mbps	1	39	2480	1.05	0.67	0.50	Pass	

TEST RESULTS DATA

Peak Power Table

Mod.	Data Rate	N⊤x	CH.	Freq. (MHz)	Peak Conducted Power (dBm)	Conducted Power DG Limit (dBi) (dBm)		EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	1Mbps	1	0	2402	2.12	30.00	-3.00	-0.88	36.00	Pass
BLE	1Mbps	1	19	2440	2.51	30.00	-3.00	-0.49	36.00	Pass
BLE	1Mbps	1	39	2480	2.34	30.00	-3.00	-0.66	36.00	Pass

TEST RESULTS DATA Average Power Table (Reporting Only)

Mod.	Data Rate	N⊤×	CH.	Freq. (MHz)	Duty Factor (dB)	Average Conducted Power (dBm)
BLE	1Mbps	1	0	2402	2.04	1.88
BLE	1Mbps	1	19	2440	2.04	2.43
BLE	1Mbps	1	39	2480	2.04	2.17

TEST RESULTS DATA Peak Power Density

Mod.	Data Rate	N⊤x	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	(dBm DG (dBi)		Pass/Fail
BLE	1Mbps	1	0	2402	1.30	-13.38	-3.00	8.00	Pass
BLE	1Mbps	1	19	2440	1.70	-12.97	-3.00	8.00	Pass
BLE	1Mbps	1	39	2480	1.59	-13.06	-3.00	8.00	Pass

Note: PSD (dBm/ 100kHz) is a reference level used for Conducted Band Edges and Conducted Spurious Emission 20dBc limit.

Appendix B. Radiated Spurious Emission

2.4GHz 2400~2483.5MHz

BLE (Band Edge @ 3m)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2389.82	57.38	-16.62	74	54.73	31.7	7.59	36.64	400	0	Р	Н
		2379.42	47.97	-6.03	54	45.41	31.66	7.55	36.65	400	0	Α	Н
BLE	*	2402	94.38	-	-	91.73	31.7	7.59	36.64	400	0	Р	Н
CH 00	*	2402	93.45	-	-	90.8	31.7	7.59	36.64	400	0	Α	Н
2402MHz		2357.84	57.22	-16.78	74	54.74	31.63	7.52	36.67	297	91	Р	V
2402111112		2374.74	47.86	-6.14	54	45.3	31.66	7.55	36.65	297	91	Α	V
	*	2402	92.44	-	-	89.79	31.7	7.59	36.64	297	91	Р	V
	*	2402	92.27	-	-	89.62	31.7	7.59	36.64	297	91	Α	V
		2388.65	57.24	-16.76	74	54.6	31.7	7.59	36.65	312	17	Р	Н
		2381.11	47.81	-6.19	54	45.25	31.66	7.55	36.65	312	17	Α	Н
	*	2440	95.74	-	-	92.85	31.87	7.67	36.65	312	17	Р	Н
	*	2440	95.56	-	-	92.67	31.87	7.67	36.65	312	17	Α	Н
		2491.72	58.29	-15.71	74	55.19	32.04	7.74	36.68	312	17	Р	Н
BLE		2487.4	48.19	-5.81	54	45.16	31.99	7.72	36.68	312	17	Α	Н
CH 19 2440MHz		2368.24	57.71	-16.29	74	55.21	31.63	7.52	36.65	278	97	Р	V
244UIVII11Z		2383.06	47.86	-6.14	54	45.3	31.66	7.55	36.65	278	97	Α	V
	*	2440	94.39	-	-	91.5	31.87	7.67	36.65	278	97	Р	V
	*	2440	93.95	-	-	91.06	31.87	7.67	36.65	278	97	Α	٧
		2487.82	58.44	-15.56	74	55.34	32.04	7.74	36.68	278	97	Р	V
		2490.88	48.27	-5.73	54	45.17	32.04	7.74	36.68	278	97	Α	V

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: IHDT56XD1 Page Number : B1 of B6
Report Issued Date : Jan. 30, 2018
Report Version : Rev. 01

Report No.: FR7D2507B

	*	2480	94.08	-	-	91.05	31.99	7.72	36.68	298	4	Р	Н
	*	2480	92.86	-	-	89.83	31.99	7.72	36.68	298	4	Α	Н
		2498.02	58.45	-15.55	74	55.36	32.04	7.74	36.69	298	4	Р	Н
BLE		2483.51	48.33	-5.67	54	45.3	31.99	7.72	36.68	298	4	Α	Н
CH 39 2480MHz	*	2480	92.5	-	-	89.47	31.99	7.72	36.68	304	108	Р	٧
2400WIF12	*	2480	92.06	-	-	89.03	31.99	7.72	36.68	304	108	Α	٧
		2497.84	57.98	-16.02	74	54.89	32.04	7.74	36.69	304	108	Р	V
		2497.3	48.31	-5.69	54	45.22	32.04	7.74	36.69	304	108	Α	V

Remark

1. No other spurious found.

2. All results are PASS against Peak and Average limit line.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: IHDT56XD1 Page Number : B2 of B6
Report Issued Date : Jan. 30, 2018

Report No.: FR7D2507B

Report Version : Rev. 01

2.4GHz 2400~2483.5MHz

BLE (Harmonic @ 3m)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol
BLL	Note	(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos	Avg.	
		(101112)	(αΒμν/ιιι)	(ab)	(αΒμν/ιιι)	(αΒμΨ)	(ab/iii)	(ub)	(ab)	(CIII)	(deg /	(1 ///)	(11/4)
BLE		4806	37.02	-36.98	74	55.1	34.94	11.48	64.5	100	360	Р	Н
CH 00			002	00.00			0		0.10			-	
2402MHz		4806	37.98	-36.02	74	56.06	34.94	11.48	64.5	100	360	Р	V
		4880	36.54	-37.46	74	54.59	34.99	11.56	64.6	100	360	Р	Н
BLE CH 40		7320	39.29	-34.71	74	54.59	35.74	13.98	65.02	100	360	Р	Н
CH 19 2440MHz		4880	37.11	-36.89	74	55.16	34.99	11.56	64.6	100	360	Р	V
2440WINZ		7320	39.62	-34.38	74	54.92	35.74	13.98	65.02	100	360	Р	V
DI E		4962	36.84	-37.16	74	54.85	35.06	11.66	64.73	100	360	Р	Н
BLE CH 20		7440	38.6	-35.4	74	54.15	35.57	13.96	65.08	100	360	Р	Н
CH 39		4962	37.01	-36.99	74	55.02	35.06	11.66	64.73	100	360	Р	٧
2480MHz		7440	37.65	-36.35	74	53.2	35.57	13.96	65.08	100	360	Р	V

Remark

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: IHDT56XD1 Page Number : B3 of B6
Report Issued Date : Jan. 30, 2018

Report No.: FR7D2507B

Report Version : Rev. 01

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

Emission below 1GHz

2.4GHz BLE (LF)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		35.82	31.2	-8.8	40	37.41	25.2	0.87	32.28	100	150	Р	Н
		80.44	24.48	-15.52	40	39.92	15.5	1.31	32.25	ı	-	Р	Н
		189.08	28.42	-15.08	43.5	41.55	17.11	2.02	32.26	ı	ı	Р	Н
		209.45	26.83	-16.67	43.5	39.89	17.04	2.13	32.23	ı	ı	Р	Н
0.4011		389.87	25.71	-20.29	46	32.3	22.44	2.98	32.01	-	-	Р	Н
2.4GHz BLE		704.15	28.38	-17.62	46	28.15	27.89	4.02	31.68	-	-	Р	Н
LF		35.82	34.6	-5.4	40	40.81	25.2	0.87	32.28	100	0	Р	٧
"		59.1	30.47	-9.53	40	47.25	14.32	1.11	32.21	ı	ı	Р	V
		80.44	28.55	-11.45	40	43.99	15.5	1.31	32.25	-	-	Р	٧
		188.11	24.18	-19.32	43.5	37.31	17.12	2.01	32.26	-	-	Р	V
		359.8	25.07	-20.93	46	32.02	21.96	3.16	32.07	-	-	Р	V
		709	27.27	-18.73	46	27.17	27.75	4.04	31.69	ı	ı	Р	V
Remark		o other spurio I results are P		st limit li	ne.								

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: IHDT56XD1

Page Number : B4 of B6 Report Issued Date: Jan. 30, 2018

Report No.: FR7D2507B

: Rev. 01 Report Version

All results are PASS against limit line.

Note symbol

Report No. : FR7D2507B

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

 Sporton International (Kunshan) Inc.
 Page Number
 : B5 of B6

 TEL: +86-512-57900158
 Report Issued Date
 : Jan. 30, 2018

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

A calculation example for radiated spurious emission is shown as below:

Report No.: FR7D2507B

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

1. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

2. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

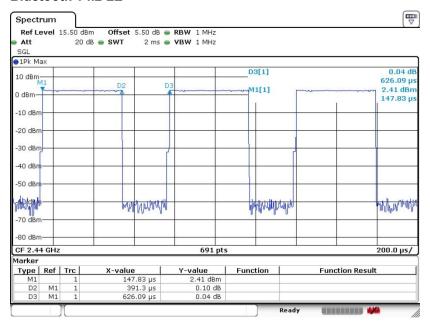
- Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- $= 43.54 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

 Sporton International (Kunshan) Inc.
 Page Number
 : B6 of B6

 TEL: +86-512-57900158
 Report Issued Date: Jan. 30, 2018

 FAX: +86-512-57900958
 Report Version: Rev. 01


 ECC ID: HBDT56YD1
 Report Templete No.: BUS ER45CRT4 3 Version 3.0

Appendix C. Duty Cycle Plots

Band	Duty Cycle(%)	T(ms)	1/T(kHz)	VBW Setting
Bluetooth v4.2 LE	62.50	0.391	2.556	3KHz

Bluetooth v4.2 LE

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: IHDT56XD1

: C1 of C1 Page Number Report Issued Date : Jan. 30, 2018 Report Version : Rev. 01

Report Template No.: BU5-FR15CBT4.2 Version 2.0

Report No.: FR7D2507B