FCC RF Test Report

APPLICANT : Motorola Mobility LLC EQUIPMENT : Mobile Cellular Phone

BRAND NAME : Motorola

MODEL NAME : XT1921-2

FCC ID : IHDT56XC4

STANDARD : FCC Part 15 Subpart C §15.247

CLASSIFICATION : (DSS) Spread Spectrum Transmitter

This is a variant report. The product was received on Dec. 20, 2017 and testing was completed on Jan. 23, 2018. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by: Joseph Lin / Supervisor

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL INC.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: IHDT56XC4 Page Number : 1 of 18
Report Issued Date : Feb. 23, 2018
Report Version : Rev. 01

1190

Report No.: FR7D2018-02A

TABLE OF CONTENTS

RE	10121V	N HISTORY	3
SUI	MMAR	Y OF TEST RESULT	4
1	GENE	ERAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Manufacturer	5
	1.3	Product Feature of Equipment Under Test	5
	1.4	Product Specification of Equipment Under Test	6
	1.5	Modification of EUT	6
	1.6	Testing Location	7
	1.7	Applicable Standards	7
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	8
	2.1	Carrier Frequency Channel	8
	2.2	Test Mode	9
	2.3	Connection Diagram of Test System	10
	2.4	Support Unit used in test configuration and system	
	2.5	EUT Operation Test Setup	10
3	TEST	RESULT	11
	3.1	Output Power Measurement	11
	3.2	Radiated Band Edges and Spurious Emission Measurement	12
	3.3	Antenna Requirements	16
4	LIST	OF MEASURING EQUIPMENT	17
5	UNCE	RTAINTY OF EVALUATION	18
API	PENDI	X A. CONDUCTED TEST RESULTS	
API	PENDI	X B. RADIATED SPURIOUS EMISSION	
API	PENDI	X C. RADIATED SPURIOUS EMISSION PLOTS	
API	PENDI	X D. DUTY CYCLE PLOTS	

APPENDIX E. ORIGINAL REPORT

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: IHDT56XC4 Page Number : 2 of 18
Report Issued Date : Feb. 23, 2018
Report Version : Rev. 01

Report No.: FR7D2018-02A

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR7D2018-02A	Rev. 01	Initial issue of report	Feb. 23, 2018

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: IHDT56XC4 Page Number : 3 of 18
Report Issued Date : Feb. 23, 2018
Report Version : Rev. 01

Report No.: FR7D2018-02A

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
-	15.247(a)(1)	Number of Channels	≥ 15Chs	Not Required	-
-	15.247(a)(1)	Hopping Channel Separation	≥ 2/3 of 20dB BW	Not Required	-
-	15.247(a)(1)	Dwell Time of Each Channel	≤ 0.4sec in 31.6sec period	Not Required	-
-	15.247(a)(1)	20dB Bandwidth	NA	Not Required	-
-	-	99% Bandwidth	-	Not Required	-
3.1	15.247(b)(1)	Peak Output Power	≤ 125 mW	Pass	-
-	15.247(d)	Conducted Band Edges	≤ 20dBc	Not Required	-
-	15.247(d)	Conducted Spurious Emission	≤ 20dBc	Not Required	-
		Radiated Band Edges			Under limit
3.2	15.247(d)	and Radiated Spurious	15.209(a) & 15.247(d)	Pass	6.99 dB at
		Emission			31.080 MHz
-	15.207	AC Conducted Emission	15.207(a)	Not Required	-
3.3	15.203 & 15.247(b)	Antenna Requirement	N/A	Pass	-

Remark:

- This is a variant report which can be referred Product Equality Declaration. All the test cases
 were performed on original report which can be referred to Sporton Report Number
 FR7D2018A. Based on the original report, the test cases were verified.
- 2. Not required means after assessing, test items are not necessary to carry out.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: IHDT56XC4 Page Number : 4 of 18
Report Issued Date : Feb. 23, 2018
Report Version : Rev. 01

Report No.: FR7D2018-02A

1 General Description

1.1 Applicant

Motorola Mobility LLC

222 W. Merchandise Mart Plaza, Chicago IL 60654, USA

1.2 Manufacturer

Motorola Mobility LLC

222 W. Merchandise Mart Plaza, Chicago IL 60654, USA

1.3 Product Feature of Equipment Under Test

Product Feature				
Equipment	Mobile Cellular Phone			
Brand Name	Motorola			
Model Name	XT1921-2			
FCC ID	IHDT56XC4			
IMEI Code	IMEI 1: 351840090009840			
INIEI Code	IMEI 2: 351840090009741			
	GSM/EGPRS/WCDMA/HSPA/LTE/FM/GNSS			
EUT supports Radios application	WLAN 11b/g/n HT20			
Lo i supports nadios application	WLAN 11a/n HT20/HT40			
	Bluetooth BR/EDR/LE			
HW Version	DVT1B			
EUT Stage	Identical Prototype			

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

Accessory List					
AC Adapter 1	Brand Name: Motorola				
AC Adapter 1	Model Name: C-P56				
AC Adapter 2	Brand Name: Motorola				
AC Adapter 2	Model Name: C-P56				
Battery	Brand Name: Motorola				
Battery	Model Name: GK40				
USB Cable	Brand Name: Saibao				
USB Cable	Model Name: SWT-A083A				

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: IHDT56XC4 Page Number : 5 of 18
Report Issued Date : Feb. 23, 2018
Report Version : Rev. 01

Report No.: FR7D2018-02A

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification			
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz		
Number of Channels	79		
Carrier Frequency of Each Channel	2402+n*1 MHz; n=0~78		
Maximum Output Power to Antenna	Bluetooth BR(1Mbps) : 12.17 dBm (0.0165 W) Bluetooth EDR (2Mbps) : 12.25 dBm (0.0168 W) Bluetooth EDR (3Mbps) : 12.51 dBm (0.0178 W)		
Antenna Type / Gain	PIFA Antenna with gain -3.2 dBi		
Type of Modulation	Bluetooth BR (1Mbps) : GFSK Bluetooth EDR (2Mbps) : π /4-DQPSK Bluetooth EDR (3Mbps) : 8-DPSK		

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: IHDT56XC4 Page Number : 6 of 18
Report Issued Date : Feb. 23, 2018
Report Version : Rev. 01

Report No.: FR7D2018-02A

1.6 Testing Location

Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 1190) and the FCC designation No. TW1190 and TW0007 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC Test.

Test Site	SPORTON INTERNATIONAL INC.
	No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park,
Test Site Location	Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.
Test Site Location	TEL: +886-3-327-3456
	FAX: +886-3-328-4978
Toot Cito No	Sporton Site No.
Test Site No.	TH05-HY

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	SPORTON INTERNATIONAL INC.
	No.58, Aly. 75, Ln. 564, Wenhua 3rd Rd. Guishan Dist,
Test Site Location	Taoyuan City, Taiwan (R.O.C.)
rest Site Location	TEL: +886-3-327-0868
	FAX: +886-3-327-0855
Took Cita No	Sporton Site No.
Test Site No.	03CH13-HY

Note: The test site complies with ANSI C63.4 2014 requirement.

1.7 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- ANSI C63.10-2013

Remark:

- All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: IHDT56XC4 Page Number : 7 of 18
Report Issued Date : Feb. 23, 2018
Report Version : Rev. 01

Report No.: FR7D2018-02A

Test Configuration of Equipment Under Test 2

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: IHDT56XC4

Page Number : 8 of 18 Report Issued Date: Feb. 23, 2018 Report Version : Rev. 01

Report Template No.: BU5-FR15CBT Version 2.0

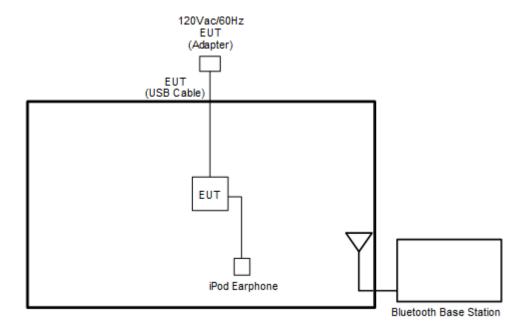
2.2 Test Mode

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated:, radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (X plane) were recorded in this report, and the worst mode of radiated spurious emissions is Bluetooth 3Mbps mode, and recorded in this report.

The following summary table is showing all test modes to demonstrate in compliance with the standard.

	Summary table of Test Cases
Radiated	Bluetooth EDR 3Mbps 8-DPSK
Test Cases	Mode 1: CH00_2402 MHz

Remark:


- 1. For radiated test cases, the worst mode data rate 3Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and the conducted spurious emissions and conducted band edge measurement for each data rate are no worse than 3Mbps, and no other significantly frequencies found in conducted spurious emission.
- 2. All the radiated test cases were performance with Adapter 1.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: IHDT56XC4 Page Number : 9 of 18
Report Issued Date : Feb. 23, 2018
Report Version : Rev. 01

Report No.: FR7D2018-02A

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Bluetooth Base Station	R&S	CBT32	N/A	N/A	Unshielded, 1.8 m
2.	iPod Earphone	Apple	N/A	Verification	Unshielded, 1.0 m	N/A

2.5 EUT Operation Test Setup

The RF test items, utility "QRCT" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to contact with base station to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: IHDT56XC4 Page Number : 10 of 18
Report Issued Date : Feb. 23, 2018
Report Version : Rev. 01

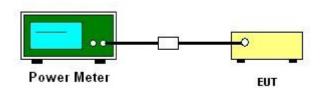
Report Template No.: BU5-FR15CBT Version 2.0

3 Test Result

3.1 Output Power Measurement

3.1.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts. The power limit for 1Mbps, 2Mbps, 3Mbps and AFH modes are 0.125 watts.


3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.1.4 Test Setup

3.1.5 Test Result of Peak Output Power

Please refer to Appendix A.

3.1.6 Test Result of Average Output Power (Reporting Only)

Please refer to Appendix A.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: IHDT56XC4 Page Number : 11 of 18
Report Issued Date : Feb. 23, 2018
Report Version : Rev. 01

Report No.: FR7D2018-02A

3.2 Radiated Band Edges and Spurious Emission Measurement

3.2.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.2.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: IHDT56XC4 Page Number : 12 of 18
Report Issued Date : Feb. 23, 2018
Report Version : Rev. 01

Report No.: FR7D2018-02A

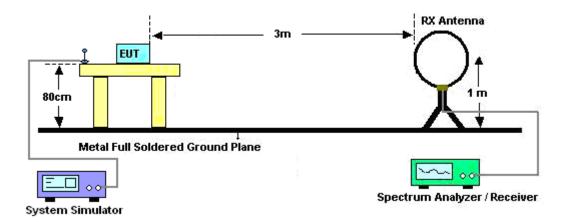
3.2.3 Test Procedures

- The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c).

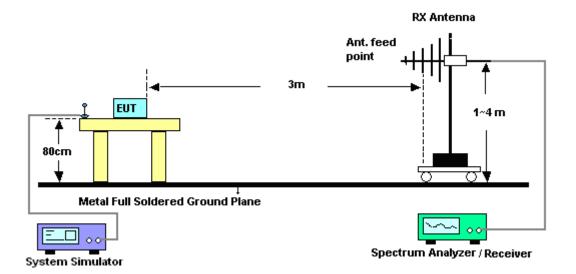
Duty cycle = On time/100 milliseconds

On time = $N_1^*L_1 + N_2^*L_2 + ... + N_{n-1}^*LN_{n-1} + N_n^*L_n$

Where N_1 is number of type 1 pulses, L_1 is length of type 1 pulses, etc.

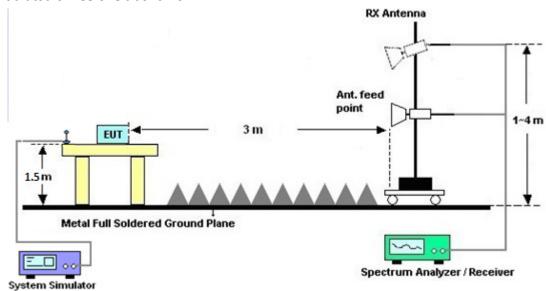

Average Emission Level = Peak Emission Level + 20*log(Duty cycle)

- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 8. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.


Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (-24.76dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.

3.2.4 Test Setup

For radiated emissions below 30MHz


For radiated emissions from 30MHz to 1GHz

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: IHDT56XC4 Page Number : 14 of 18
Report Issued Date : Feb. 23, 2018
Report Version : Rev. 01

Report No.: FR7D2018-02A

For radiated emissions above 1GHz

3.2.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.2.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix B and C.

3.2.7 Duty Cycle

Please refer to Appendix D.

3.2.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix B and C.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: IHDT56XC4 Page Number : 15 of 18
Report Issued Date : Feb. 23, 2018
Report Version : Rev. 01

Report No.: FR7D2018-02A

3.3 Antenna Requirements

3.3.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.3.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.3.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: IHDT56XC4 Page Number : 16 of 18
Report Issued Date : Feb. 23, 2018
Report Version : Rev. 01

Report No.: FR7D2018-02A

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark	
Power Meter	Agilent	E4416A	GB412923 44	N/A	Dec. 20, 2017	Jan. 02, 2018	Dec. 19, 2018	Conducted (TH05-HY)	
Power Sensor	Agilent	E9327A	US404415 48	50MHz~18GHz	Dec. 20, 2017	Jan. 02, 2018	Dec. 19, 2018	Conducted (TH05-HY)	
Spectrum Analyzer	Rohde & Schwarz	FSP40	100055	9kHz~40GHz	Jun. 20, 2017	Jan. 02, 2018	Jun. 19, 2018	Conducted (TH05-HY)	
BT Base Station(Measure)	Rohde & Schwarz	CBT	101136	BT 3.0	Sep. 20, 2017	Jan. 02, 2018	Sep. 19, 2018	Conducted (TH05-HY)	
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100315	9 kHz~30 MHz	Nov. 10, 2017	Jan. 04, 2018 ~ Jan. 23, 2018	Nov. 09, 2019	Radiation (03CH13-HY)	
Amplifier	MITEQ	TTA1840-35- HG	1871923	18GHz~40GHz, VSWR : 2.5:1 max	Jul. 18, 2017	Jan. 04, 2018 ~ Jan. 23, 2018	Jul. 17, 2018	Radiation (03CH13-HY)	
Amplifier	Sonoma-Instru ment	310 N	187282	9KHz~1GHz	Dec. 21, 2016	Jan. 04, 2018 ~ Jan. 23, 2018	Dec. 20, 2018	Radiation (03CH13-HY)	
Bilog Antenna	TESEQ	CBL 6111D&00800 N1D01N-06	35414&AT- N0602	30MHz to 1GHz	Oct. 14, 2017	Jan. 04, 2018 ~ Jan. 23, 2018	Oct. 13, 2018	Radiation (03CH13-HY)	
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-124 1	1GHz ~ 18GHz	Jun. 15, 2017	Jan. 04, 2018 ~ Jan. 23, 2018	Jun. 14, 2018	Radiation (03CH13-HY)	
Preamplifier	MITEQ	AMF-7D-0010 1800-30-10P	1590074	1GHz~18GHz	May 22, 2017	Jan. 04, 2018 ~ Jan. 23, 2018	May 21, 2018	Radiation (03CH13-HY)	
Preamplifier	Keysight	83017A	MY532702 64	1GHz ~ 26.5GHz	Dec. 05, 2017	Jan. 04, 2018 ~ Jan. 23, 2018	Dec. 04, 2018	Radiation (03CH13-HY)	
Spectrum Analyzer	Keysight	N9010A	MY553705 26	N/A	Mar. 15, 2017	Jan. 04, 2018 ~ Jan. 23, 2018	Mar. 14, 2018	Radiation (03CH13-HY)	
Antenna Mast	EMEC	AM-BS-4500- B	N/A	1m~4m	N/A	Jan. 04, 2018 ~ Jan. 23, 2018	N/A	Radiation (03CH13-HY)	
Turn Table	EMEC	TT2000	N/A	0~360 Degree	N/A	Jan. 04, 2018 ~ Jan. 23, 2018	N/A	Radiation (03CH13-HY)	
EMI Test Receiver	Agilent	N9038A(MXE)	MY554201 70	554201 20Hz to Mar 03 2017 Jan. 04, 2018 ~ Mar 02 2018		Mar. 02, 2018	Radiation (03CH13-HY)		
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA9170 584	18GHz- 40GHz	Nov. 27, 2017	Jan. 04, 2018 ~ Jan. 23, 2018	Nov. 26, 2018	Radiation (03CH13-HY)	

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: IHDT56XC4 Page Number : 17 of 18
Report Issued Date : Feb. 23, 2018
Report Version : Rev. 01

Report Template No.: BU5-FR15CBT Version 2.0

5 Uncertainty of Evaluation

<u>Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)</u>

Measuring Uncertainty for a Level of Confidence	4.00
of 95% (U = 2Uc(y))	4.90

<u>Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)</u>

Measuring Uncertainty for a Level of Confidence	5.40
of 95% (U = 2Uc(y))	5.40

<u>Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)</u>

Measuring Uncertainty for a Level of Confidence	4.30
of 95% (U = 2Uc(y))	4.30

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: IHDT56XC4 Page Number : 18 of 18
Report Issued Date : Feb. 23, 2018
Report Version : Rev. 01

Report Template No.: BU5-FR15CBT Version 2.0

Report Number : FR7D2018-02A

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Reece Lin	Temperature:	21~25	°C
Test Date:	2018/1/2	Relative Humidity:	51~54	%

TEST RESULTS DATA Peak Power Table

DH	CH.	NTX	Peak Power (dBm)	Power Limit (dBm)	Test Result
	0	1	12.17	20.97	Pass
DH1	39	1	11.23	20.97	Pass
	78	1	11.24	20.97	Pass
	0	1	12.25	20.97	Pass
2DH1	39	1	11.28	20.97	Pass
	78	1	11.30	20.97	Pass
	0	1	12.51	20.97	Pass
3DH1	39	1	11.52	20.97	Pass
	78	1	11.58	20.97	Pass

TEST RESULTS DATA Average Power Table (Reporting Only)

DH	CH.	Average Power (dBm)	Duty Factor (dB)		
	0	1	12.00	1.83	
DH3	39	1	11.05	1.83	
	78	1	11.10	1.83	
	0	1	10.23	5.07	
2DH1	39	1	9.37	5.07	
	78	1	9.23	5.07	
	0	1	10.29	5.12	
3DH1	39	39 1 9.43		5.12	
	78	1	9.31	5.12	

Appendix B. Radiated Spurious Emission

Toot Engineer		Temperature :	24.1~24.3°C
Test Engineer :	Bill Chang and Wilson Wu	Relative Humidity :	50~52%

2.4GHz 2400~2483.5MHz

BT (Band Edge @ 3m)

вт	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	($dB\mu V/m$)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2374.05	42.67	-31.33	74	41.02	26.84	4.8	29.99	301	249	Р	Н
		2374.05	17.91	-36.09	54	-	-	-	-	-	-	Α	Н
	*	2402	107.85	-	-	106.1	26.89	4.85	29.99	301	249	Р	Н
	*	2402	83.09	-	-	-	-	-	-	-	-	Α	Н
D.T.													Н
BT													Н
CH00 2402MHz		2389.59	43.44	-30.56	74	41.71	26.89	4.83	29.99	400	59	Р	٧
2402IVINZ		2389.59	18.68	-35.32	54	-	-	-	-	-	-	Α	٧
	*	2402	105.04	-	-	103.29	26.89	4.85	29.99	400	59	Р	٧
	*	2402	80.28	-	-	-	-	-	-	-	-	Α	٧
													٧
													V

TEL: 886-3-327-3456 FAX: 886-3-328-4978

^{2.} All results are PASS against Peak and Average limit line.

2.4GHz 2400~2483.5MHz

Report No.: FR7D2018-02A

BT (Harmonic @ 3m)

ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)		Avg. (P/A)	
ВТ		4804	48.08	-25.92	74	66	31.53	7.3	57.27	100	0	Р	Н
		4804	23.32	-30.68	54	-	-	-	-	-	-	Α	Н
													Н
													Н
CH 00 2402MHz		4804	44.81	-29.19	74	62.73	31.53	7.3	57.27	100	0	Р	٧
2402WITZ		4804	20.05	-33.95	54	-	-	-	-	-	-	Α	V
													٧
													٧
Remark		o other spurious					1		ı	1	1	ı	1
	2. All	I results are PA	SS against F	Peak and	Average lim	it line.							

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Emission below 1GHz 2.4GHz BT (LF)

BT Note Frequency Level Over Limit Read Antenna Cable Preamp Ant Table Peak Pol. Limit Line Level **Factor** Loss Factor Pos Pos Avg. (MHz) $(dB\mu V/m) | (dB) | (dB\mu V/m)$ (dBµV) (dB/m) (dB) (dB) (cm) (deg) (P/A) (H/V) 30.54 Ρ 22.13 -17.87 40 30.2 23.7 0.59 32.34 Н Ρ 95.88 18.94 -24.56 43.5 34.82 15.28 1 32.29 Η 145.29 20.29 -23.21 43.5 34.45 16.89 1.19 32.28 Ρ Н Ρ 563.2 26.44 -19.56 46 30.24 25.95 2.36 32.21 Η Ρ 729.1 31.91 -14.09 34 27.27 2.66 32.12 Н 46 100 0 30.25 Ρ 978.3 33.78 -20.22 54 31.1 3.08 30.8 Η Н Н Н Η Н 2.4GHz Н BT 31.08 33.01 41.08 100 Ρ ٧ -6.99 40 23.7 0.59 32.34 0 LF Ρ ٧ 44.58 24.1 -15.9 40 39.11 16.55 0.74 32.33 Ρ ٧ 99.12 26.76 -16.74 43.5 42.24 15.68 32.29 1 Р ٧ 686.4 28.58 -17.42 46 31.7 26.33 2.62 32.18 _ Ρ ٧ 836.2 30.88 -15.12 46 31.35 28.38 2.84 31.82 Ρ 975.5 33.83 -20.17 54 30.33 31.1 3.08 30.83 ٧ ٧ ٧ ٧ ٧ ٧ ٧

Remark

- 1. No other spurious found.
- 2. All results are PASS against limit line.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Page Number : B3 of B5

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

TEL: 886-3-327-3456 FAX: 886-3-328-4978

A calculation example for radiated spurious emission is shown as below:

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

1. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

2. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

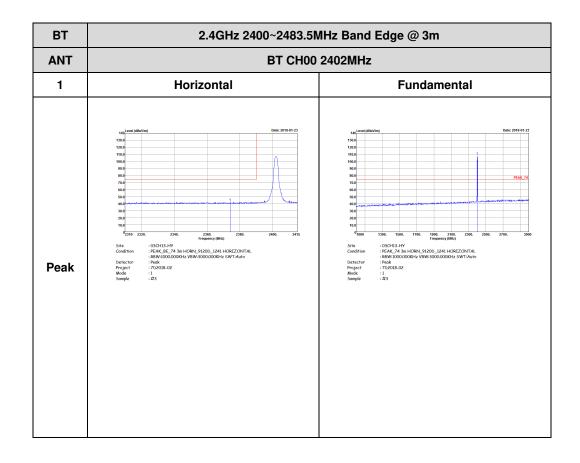
For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- $= 43.54 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978


Appendix C. Radiated Spurious Emission Plots

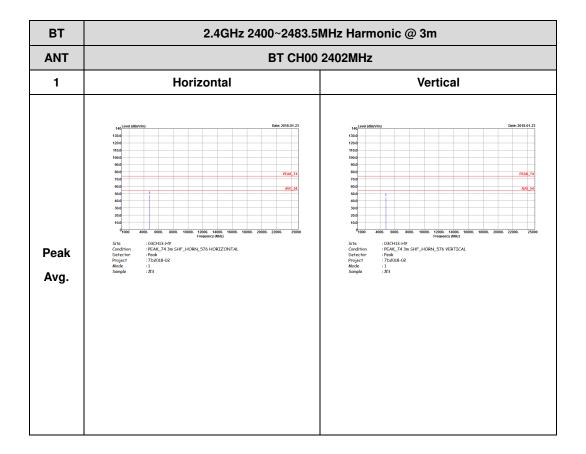
Test Engineer :	Bill Chang and Wilson Wu	Temperature :	24.1~24.3°C
		Relative Humidity :	50~52%

Note symbol

-L	Low channel location
-R	High channel location

2.4GHz 2400~2483.5MHz BT (Band Edge @ 3m)

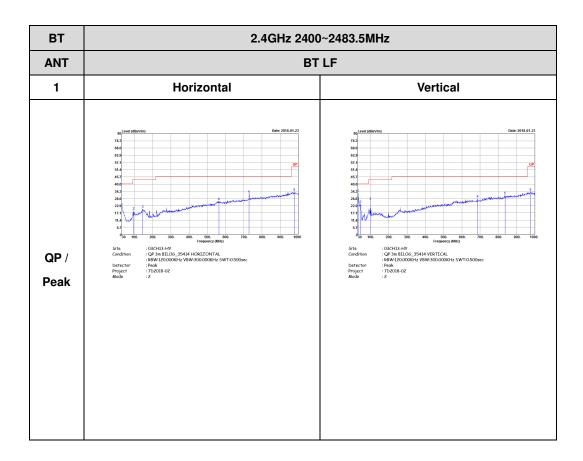
TEL: 886-3-327-3456 FAX: 886-3-328-4978


TEL: 886-3-327-3456 FAX: 886-3-328-4978

Report No.: FR7D2018-02A

2.4GHz 2400~2483.5MHz

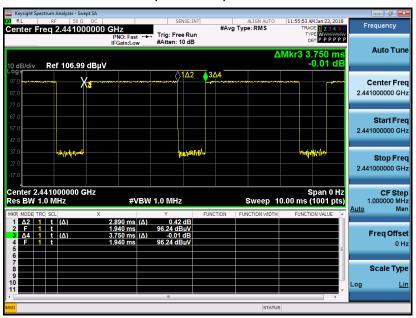
BT (Harmonic @ 3m)



TEL: 886-3-327-3456 FAX: 886-3-328-4978

Report No. : FR7D2018-02A

Emission below 1GHz 2.4GHz BT (LF)


TEL: 886-3-327-3456 FAX: 886-3-328-4978

Report No. : FR7D2018-02A

Appendix D. Duty Cycle Plots

3DH5 on time (One Pulse) Plot on Channel 39

on time (Count Pulses) Plot on Channel 39

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = $2 \times 2.89 / 100 = 5.78 \%$
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.76 dB
- 3. **3DH5** has the highest duty cycle worst case and is reported.

Duty Cycle Correction Factor Consideration for AFH mode:

Bluetooth normal hopping rate is 1600Hz and reduced to 800Hz in AFH mode; due to the reduced number of hopping frequencies, with the same packet configuration the dwell time in each channel frequency within 100msec period is longer in AFH mode than normal mode.

In AFH mode, the minimum hopping frequencies are 20, to get the longest dwell time DH5 packet is observed; the period to have DH5 packet completing one hopping sequence is

2.89 ms x 20 channels = 57.8 ms

There cannot be 2 complete hopping sequences within 100ms period, considering the random hopping behavior, maximum 2 hops can be possibly observed within the period. [100ms / 57.6ms] = 2 hops

Thus, the maximum possible ON time:

2.89 ms x 2 = 5.78 ms

Worst case Duty Cycle Correction factor, which is derived from the maximum possible ON time,

 $20 \times log(5.78 \text{ ms/}100\text{ms}) = -24.76 \text{ dB}$

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Appendix E. Original Report

Please refer to Sporton report number FR7D2018A.

Report No.: FR7D2018-02A

SPORTON INTERNATIONAL INC. Page Number : E1 of E1

TEL: 886-3-327-3456 FAX: 886-3-328-4978