

Schweizerischer Kalibrierdienst S

Service suisse d'étalonnage С

Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Sporton (Auden) Client

Certificate No: D750V3-1012\_May17

| bject                                                                                                                                                                                                                                                | D750V3 - SN:101                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| alibration procedure(s)                                                                                                                                                                                                                              | QA CAL-05.v9<br>Calibration proce                                                                                                                       | dure for dipole validation kits abo                                                                                                                                                                                                                                                                                   | ove 700 MHz                                                                                                                                                           |
| Calibration date:                                                                                                                                                                                                                                    | May 22, 2017                                                                                                                                            |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                       |
|                                                                                                                                                                                                                                                      |                                                                                                                                                         | ional standards, which realize the physical un<br>robability are given on the following pages ar                                                                                                                                                                                                                      |                                                                                                                                                                       |
|                                                                                                                                                                                                                                                      |                                                                                                                                                         | ry facility: environment temperature (22 $\pm$ 3)°(                                                                                                                                                                                                                                                                   |                                                                                                                                                                       |
| Calibration Equipment used (M&1                                                                                                                                                                                                                      |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                       |
| Primary Standards                                                                                                                                                                                                                                    | ID #                                                                                                                                                    | Cal Date (Certificate No.)                                                                                                                                                                                                                                                                                            | Scheduled Calibration                                                                                                                                                 |
| ower meter NRP                                                                                                                                                                                                                                       | SN: 104778                                                                                                                                              | 04-Apr-17 (No. 217-02521/02522)                                                                                                                                                                                                                                                                                       | Apr-18                                                                                                                                                                |
| ower sensor NRP-Z91                                                                                                                                                                                                                                  | SN: 103244                                                                                                                                              | 04-Apr-17 (No. 217-02521)                                                                                                                                                                                                                                                                                             | Apr-18                                                                                                                                                                |
| ower sensor NRP-Z91                                                                                                                                                                                                                                  | SN: 103245                                                                                                                                              | 04-Apr-17 (No. 217-02522)                                                                                                                                                                                                                                                                                             | Apr-18                                                                                                                                                                |
|                                                                                                                                                                                                                                                      | SN: 5058 (20k)                                                                                                                                          | 07-Apr-17 (No. 217-02528)                                                                                                                                                                                                                                                                                             | Apr-18                                                                                                                                                                |
| eterence 20 ob Attenuator                                                                                                                                                                                                                            |                                                                                                                                                         | 07-Apr-17 (No. 217-02529)                                                                                                                                                                                                                                                                                             | Apr-18                                                                                                                                                                |
|                                                                                                                                                                                                                                                      | SN: 5047.2 / 06327                                                                                                                                      | 0 pi (                                                                                                                                                                                                                                                                                                                | Ahi-10                                                                                                                                                                |
| ype-N mismatch combination                                                                                                                                                                                                                           | SN: 5047.2706327<br>SN: 7460                                                                                                                            | 19-May-17 (No. EX3-7460_May17)                                                                                                                                                                                                                                                                                        | May-18                                                                                                                                                                |
| ype-N mismatch combination<br>eference Probe EX3DV4                                                                                                                                                                                                  |                                                                                                                                                         | •                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                     |
| ype-N mismatch combination<br>Reference Probe EX3DV4<br>DAE4                                                                                                                                                                                         | SN: 7460                                                                                                                                                | 19-May-17 (No. EX3-7460_May17)                                                                                                                                                                                                                                                                                        | May-18                                                                                                                                                                |
| ype-N mismatch combination<br>leference Probe EX3DV4<br>DAE4<br>Secondary Standards                                                                                                                                                                  | SN: 7460<br>SN: 601                                                                                                                                     | 19-May-17 (No. EX3-7460_May17)<br>28-Mar-17 (No. DAE4-601_Mar17)                                                                                                                                                                                                                                                      | May-18<br>Mar-18                                                                                                                                                      |
| ype-N mismatch combination<br>Reference Probe EX3DV4<br>DAE4<br>Secondary Standards<br>Power meter EPM-442A                                                                                                                                          | SN: 7460<br>SN: 601<br>ID #<br>SN: GB37480704<br>SN: US37292783                                                                                         | 19-May-17 (No. EX3-7460_May17)<br>28-Mar-17 (No. DAE4-601_Mar17)<br>Check Date (in house)                                                                                                                                                                                                                             | May-18<br>Mar-18<br>Scheduled Check<br>In house check: Oct-18<br>In house check: Oct-18                                                                               |
| ype-N mismatch combination<br>Reference Probe EX3DV4<br>DAE4<br>Secondary Standards<br>Power meter EPM-442A<br>Power sensor HP 8481A                                                                                                                 | SN: 7460<br>SN: 601<br>ID #<br>SN: GB37480704                                                                                                           | 19-May-17 (No. EX3-7460_May17)         28-Mar-17 (No. DAE4-601_Mar17)         Check Date (in house)         07-Oct-15 (in house check Oct-16)         07-Oct-15 (in house check Oct-16)         07-Oct-15 (in house check Oct-16)                                                                                     | May-18<br>Mar-18<br>Scheduled Check<br>In house check: Oct-18<br>In house check: Oct-18<br>In house check: Oct-18                                                     |
| ype-N mismatch combination<br>leference Probe EX3DV4<br>PAE4<br>Recondary Standards<br>Power meter EPM-442A<br>Power sensor HP 8481A<br>Power sensor HP 8481A                                                                                        | SN: 7460<br>SN: 601<br>ID #<br>SN: GB37480704<br>SN: US37292783                                                                                         | 19-May-17 (No. EX3-7460_May17)<br>28-Mar-17 (No. DAE4-601_Mar17)<br>Check Date (in house)<br>07-Oct-15 (in house check Oct-16)<br>07-Oct-15 (in house check Oct-16)<br>07-Oct-15 (in house check Oct-16)<br>15-Jun-15 (in house check Oct-16)                                                                         | May-18<br>Mar-18<br>Scheduled Check<br>In house check: Oct-18<br>In house check: Oct-18<br>In house check: Oct-18<br>In house check: Oct-18                           |
| ype-N mismatch combination<br>leference Probe EX3DV4<br>DAE4<br>Secondary Standards<br>Power meter EPM-442A<br>Power sensor HP 8481A<br>Power sensor HP 8481A<br>RF generator R&S SMT-06                                                             | SN: 7460<br>SN: 601<br>ID #<br>SN: GB37480704<br>SN: US37292783<br>SN: MY41092317                                                                       | 19-May-17 (No. EX3-7460_May17)         28-Mar-17 (No. DAE4-601_Mar17)         Check Date (in house)         07-Oct-15 (in house check Oct-16)         07-Oct-15 (in house check Oct-16)         07-Oct-15 (in house check Oct-16)                                                                                     | May-18<br>Mar-18<br>Scheduled Check<br>In house check: Oct-18<br>In house check: Oct-18<br>In house check: Oct-18                                                     |
| Reference 20 dB Attenuator<br>Fype-N mismatch combination<br>Reference Probe EX3DV4<br>DAE4<br>Secondary Standards<br>Power meter EPM-442A<br>Power sensor HP 8481A<br>Power sensor HP 8481A<br>RF generator R&S SMT-06<br>Network Analyzer HP 8753E | SN: 7460<br>SN: 601<br>ID #<br>SN: GB37480704<br>SN: US37292783<br>SN: MY41092317<br>SN: 100972                                                         | 19-May-17 (No. EX3-7460_May17)<br>28-Mar-17 (No. DAE4-601_Mar17)<br>Check Date (in house)<br>07-Oct-15 (in house check Oct-16)<br>07-Oct-15 (in house check Oct-16)<br>07-Oct-15 (in house check Oct-16)<br>15-Jun-15 (in house check Oct-16)                                                                         | May-18<br>Mar-18<br>Scheduled Check<br>In house check: Oct-18<br>In house check: Oct-18<br>In house check: Oct-18<br>In house check: Oct-18                           |
| Type-N mismatch combination<br>Reference Probe EX3DV4<br>DAE4<br>Secondary Standards<br>Power meter EPM-442A<br>Power sensor HP 8481A<br>Power sensor HP 8481A<br>RF generator R&S SMT-06<br>Network Analyzer HP 8753E                               | SN: 7460<br>SN: 601<br>ID #<br>SN: GB37480704<br>SN: US37292783<br>SN: MY41092317<br>SN: 100972<br>SN: 100972<br>SN: US37390585                         | 19-May-17 (No. EX3-7460_May17)         28-Mar-17 (No. DAE4-601_Mar17)         Check Date (in house)         07-Oct-15 (in house check Oct-16)         07-Oct-15 (in house check Oct-16)         07-Oct-15 (in house check Oct-16)         15-Jun-15 (in house check Oct-16)         18-Oct-01 (in house check Oct-16) | May-18<br>Mar-18<br>Scheduled Check<br>In house check: Oct-18<br>In house check: Oct-18<br>In house check: Oct-18<br>In house check: Oct-18<br>In house check: Oct-17 |
| Type-N mismatch combination<br>Reference Probe EX3DV4<br>DAE4<br>Secondary Standards<br>Power meter EPM-442A<br>Power sensor HP 8481A<br>Power sensor HP 8481A<br>RF generator R&S SMT-06<br>Network Analyzer HP 8753E                               | SN: 7460<br>SN: 601<br>ID #<br>SN: GB37480704<br>SN: US37292783<br>SN: MY41092317<br>SN: 100972<br>SN: 100972<br>SN: US37390585<br>Name<br>Leif Klysner | 19-May-17 (No. EX3-7460_May17)<br>28-Mar-17 (No. DAE4-601_Mar17)<br>Check Date (in house)<br>07-Oct-15 (in house check Oct-16)<br>07-Oct-15 (in house check Oct-16)<br>15-Jun-15 (in house check Oct-16)<br>18-Oct-01 (in house check Oct-16)<br>Function<br>Laboratory Technician                                    | May-18<br>Mar-18<br>Scheduled Check<br>In house check: Oct-18<br>In house check: Oct-18<br>In house check: Oct-18<br>In house check: Oct-18<br>In house check: Oct-17 |
| ype-N mismatch combination<br>Reference Probe EX3DV4<br>DAE4<br>Gecondary Standards<br>Power meter EPM-442A<br>Power sensor HP 8481A<br>Power sensor HP 8481A<br>RF generator R&S SMT-06<br>Retwork Analyzer HP 8753E                                | SN: 7460<br>SN: 601<br>ID #<br>SN: GB37480704<br>SN: US37292783<br>SN: MY41092317<br>SN: 100972<br>SN: US37390585<br>Name                               | 19-May-17 (No. EX3-7460_May17)<br>28-Mar-17 (No. DAE4-601_Mar17)<br>Check Date (in house)<br>07-Oct-15 (in house check Oct-16)<br>07-Oct-15 (in house check Oct-16)<br>15-Jun-15 (in house check Oct-16)<br>18-Oct-01 (in house check Oct-16)<br>Function                                                             | May-18<br>Mar-18<br>Scheduled Check<br>In house check: Oct-18<br>In house check: Oct-18<br>In house check: Oct-18<br>In house check: Oct-18<br>In house check: Oct-17 |

Certificate No: D750V3-1012\_May17

# Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

## Glossary:

| TSL   | tissue simulating liquid        |
|-------|---------------------------------|
| ConvF | sensitivity in TSL / NORM x,y,z |
| N/A   | not applicable or not measured  |

# Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

# Additional Documentation:

e) DASY4/5 System Handbook

# Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D750V3-1012\_May17

### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.10.0    |
|------------------------------|------------------------|-------------|
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 15 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5  mm     |             |
| Frequency                    | 750 MHz ± 1 MHz        |             |

#### Head TSL parameters

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 41.9         | 0.89 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 41.0 ± 6 %   | 0.91 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

# SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL   | Condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 2.10 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 8.22 W/kg ± 17.0 % (k=2) |
|                                                         |                    |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |

| SAR for nominal Head TSL parameters                     | normalized to 1W   | 5.35 W/kg ± 16.5 % (k=2) |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 1.36 W/kg                |
| SAR averaged over 10 cm <sup>°</sup> (10 g) of Head TSL | condition          |                          |

#### **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity    | Conductivity     |
|-----------------------------------------|-----------------|-----------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 55.5            | 0.96 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | $55.3 \pm 6 \%$ | 0.96 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        | ·               |                  |

#### SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL                   | Condition                       |                          |
|-------------------------------------------------------------------------|---------------------------------|--------------------------|
| SAR measured                                                            | 250 mW input power              | 2.18 W/kg                |
| SAR for nominal Body TSL parameters                                     | normalized to 1W                | 8.71 W/kg ± 17.0 % (k=2) |
|                                                                         |                                 |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL                 | condition                       |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL<br>SAR measured | condition<br>250 mW input power | 1.43 W/kg                |

Certificate No: D750V3-1012\_May17

# Appendix (Additional assessments outside the scope of SCS 0108)

# Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 55.2 Ω + 1.4 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 25.8 dB       |

# Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 50.6 Ω - 2.3 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 32.6 dB       |

# General Antenna Parameters and Design

| Electrical Delay (one direction) | 1.035 ns |
|----------------------------------|----------|
|                                  |          |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

## **Additional EUT Data**

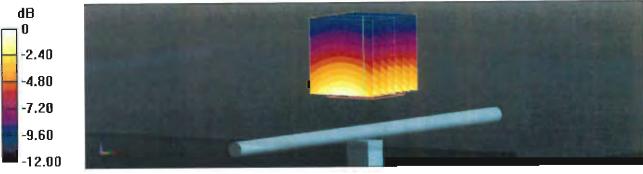
| Manufactured by | SPEAG              |
|-----------------|--------------------|
| Manufactured on | September 29, 2009 |

# **DASY5 Validation Report for Head TSL**

Date: 22.05.2017

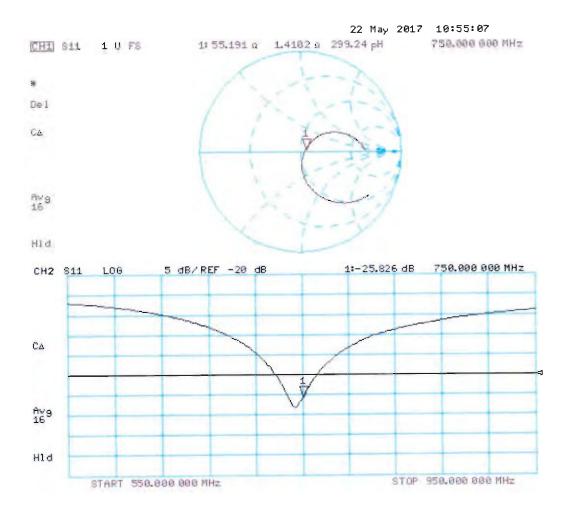
Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1012


Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz;  $\sigma = 0.91$  S/m;  $\epsilon_r = 41$ ;  $\rho = 1000$  kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7460; ConvF(10.05, 10.05, 10.05); Calibrated: 19.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)


# Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 59.26 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.23 W/kg SAR(1 g) = 2.1 W/kg; SAR(10 g) = 1.36 W/kg Maximum value of SAR (measured) = 2.85 W/kg



0 dB = 2.85 W/kg = 4.55 dBW/kg

# Impedance Measurement Plot for Head TSL

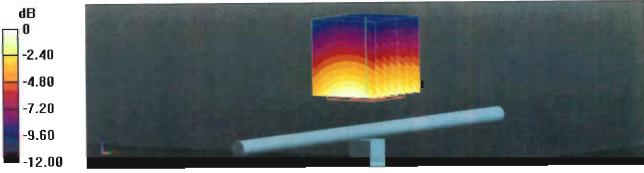


# **DASY5 Validation Report for Body TSL**

Date: 22.05.2017

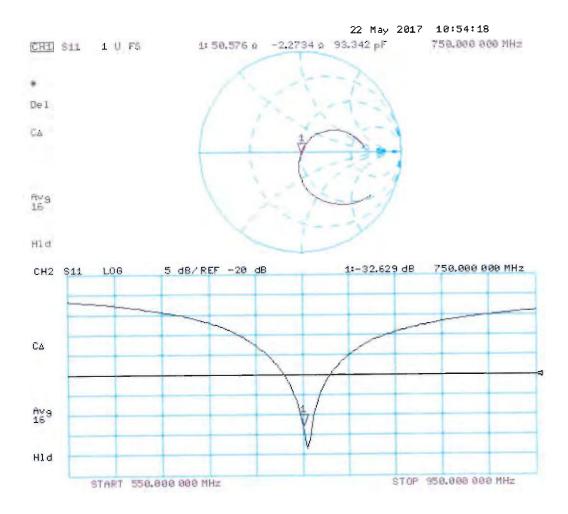
Test Laboratory: SPEAG, Zurich, Switzerland

## DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1012


Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz;  $\sigma = 0.96$  S/m;  $\epsilon_r = 55.3$ ;  $\rho = 1000$  kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7460; ConvF(9.81, 9.81, 9.81); Calibrated: 19.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)


# Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 57.73 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 3.27 W/kg SAR(1 g) = 2.18 W/kg; SAR(10 g) = 1.43 W/kg Maximum value of SAR (measured) = 2.86 W/kg



0 dB = 2.86 W/kg = 4.56 dBW/kg

# Impedance Measurement Plot for Body TSL





Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- C Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Sporton-TW (Auden) Client

Certificate No: D835V2-499\_Mar17

S

# **CALIBRATION CERTIFICATE**

| Object                          | D835V2 - SN:499                   |                                                                                                                                                      |                                 |
|---------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Calibration procedure(s)        | QA CAL-05.v9<br>Calibration proce | dure for dipole validation kits ab                                                                                                                   | ove 700 MHz                     |
| Calibration date:               | March 21, 2017                    |                                                                                                                                                      |                                 |
| The measurements and the uncer  | tainties with confidence p        | onal standards, which realize the physical un<br>robability are given on the following pages a<br>ry facility: environment temperature (22 $\pm$ 3)° | nd are part of the certificate. |
| Calibration Equipment used (M&T |                                   |                                                                                                                                                      |                                 |
| Primary Standards               | ID #                              | Cal Date (Certificate No.)                                                                                                                           | Scheduled Calibration           |
| Power meter NRP                 | SN: 104778                        | 06-Apr-16 (No. 217-02288/02289)                                                                                                                      |                                 |
| Power sensor NRP-Z91            | SN: 103244                        | 06-Apr-16 (No. 217-02288)                                                                                                                            | Apr-17                          |
| Power sensor NRP-Z91            | SN: 103245                        | 06-Apr-16 (No. 217-02289)                                                                                                                            | Apr-17                          |
| Reference 20 dB Attenuator      | SN: 5058 (20k)                    | 05-Арт-16 (No. 217-02292)                                                                                                                            | Apr-17                          |
| Type-N mismatch combination     | SN: 5047.2 / 06327                | 05-Apr-16 (No. 217-02295)                                                                                                                            | Apr-17                          |
| Reference Probe EX3DV4          | SN: 7349                          | 31-Dec-16 (No. EX3-7349_Dec16)                                                                                                                       | Dec-17                          |
| DAE4                            | SN: 601                           | 04-Jan-17 (No. DAE4-601_Jan17)                                                                                                                       | Jan-18                          |
| Secondary Standards             | ID #                              | Check Date (in house)                                                                                                                                | Scheduled Check                 |
| Power meter EPM-442A            | SN: GB37480704                    | 07-Oct-15 (in house check Oct-16)                                                                                                                    | In house check: Oct-18          |
| Power sensor HP 8481A           | SN: US37292783                    | 07-Oct-15 (in house check Oct-16)                                                                                                                    | In house check: Oct-18          |
| Power sensor HP 8481A           | SN: MY41092317                    | 07-Oct-15 (in house check Oct-16)                                                                                                                    | In house check: Oct-18          |
| RF generator R&S SMT-06         | SN: 100972                        | 15-Jun-15 (in house check Oct-16)                                                                                                                    | In house check: Oct-18          |
| Network Analyzer HP 8753E       | SN: US37390585                    | 18-Oct-01 (in house check Oct-16)                                                                                                                    | In house check: Oct-17          |
|                                 | Name                              | Function                                                                                                                                             | Signature                       |
| Calibrated by:                  | Leif Klysner                      | Laboratory Technician                                                                                                                                | Saf The                         |
| Approved by:                    | Katja Pokovic                     | Technical Manager                                                                                                                                    | Jol 14                          |
|                                 |                                   | n full without written approval of the laborator                                                                                                     | Issued: March 23, 2017          |

# **Calibration Laboratory of**

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossarv:

| TSL   | tissue simulating liquid        |
|-------|---------------------------------|
| ConvF | sensitivity in TSL / NORM x,y,z |
| N/A   | not applicable or not measured  |

#### **Calibration is Performed According to the Following Standards:**

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

# Additional Documentation:

e) DASY4/5 System Handbook

# Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.8.8     |
|------------------------------|------------------------|-------------|
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 15 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm      |             |
| Frequency                    | 835 MHz ± 1 MHz        |             |

#### **Head TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity                  |
|-----------------------------------------|-----------------|--------------|-------------------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 41.5         | 0.90 mho/m                    |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 40.7 ± 6 %   | $0.94 \text{ mho/m} \pm 6 \%$ |
| Head TSL temperature change during test | < 0.5 °C        |              |                               |

### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL                   | Condition          |                          |
|-------------------------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                                            | 250 mW input power | 2.45 W/kg                |
| SAR for nominal Head TSL parameters                                     | normalized to 1W   | 9.45 W/kg ± 17.0 % (k=2) |
|                                                                         |                    |                          |
| CAD events in a 10 cm <sup>3</sup> (10 c) of Hood TSI                   |                    |                          |
| SAR averaged over 10 cm <sup>2</sup> (10 g) of head 15L                 | condition          |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL<br>SAR measured | 250 mW input power | 1.58 W/kg                |

#### Body TSL parameters

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 55.2         | 0.97 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 54.4 ± 6 %   | 1.01 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 2.50 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 9.67 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 1.63 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 6.35 W/kg ± 16.5 % (k=2) |

# Appendix (Additional assessments outside the scope of SCS 0108)

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 52.0 Ω - 4.9 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 25.7 dB       |

#### Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 47.5 Ω ~ 7.0 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 22.4 dB       |

# **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.390 ns |
|----------------------------------|----------|
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

# Additional EUT Data

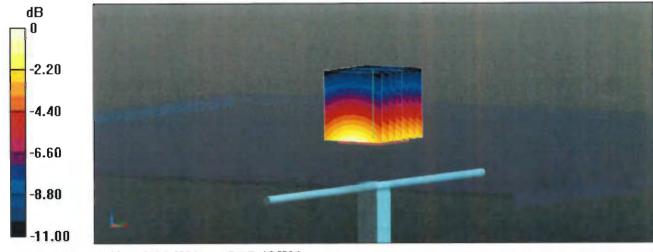
| Manufactured by | SPEAG         |
|-----------------|---------------|
| Manufactured on | July 10, 2003 |

### **DASY5 Validation Report for Head TSL**

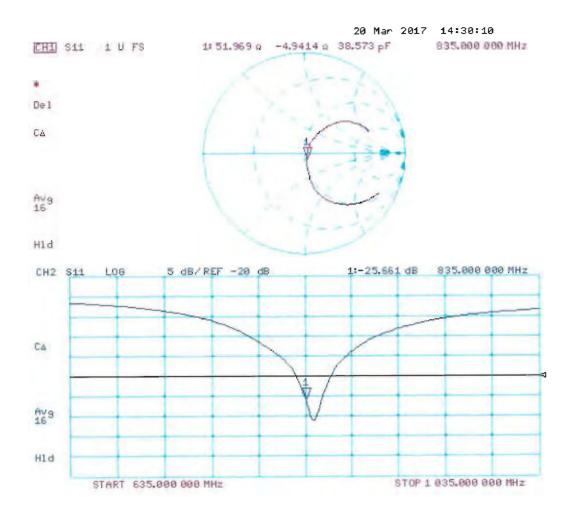
Date: 21.03.2017

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:499


Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz;  $\sigma = 0.94$  S/m;  $\epsilon_r = 40.7$ ;  $\rho = 1000$  kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(9.72, 9.72, 9.72); Calibrated: 31.12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.01.2017
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

#### Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 63.11 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 3.69 W/kg SAR(1 g) = 2.45 W/kg; SAR(10 g) = 1.58 W/kg Maximum value of SAR (measured) = 3.29 W/kg



0 dB = 3.29 W/kg = 5.17 dBW/kg

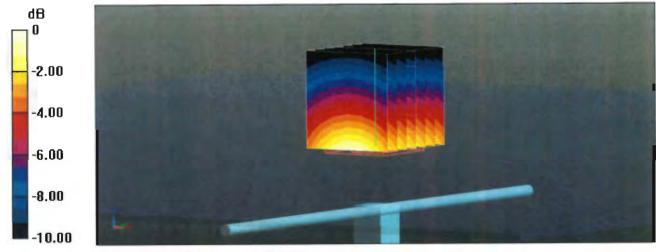


# **DASY5 Validation Report for Body TSL**

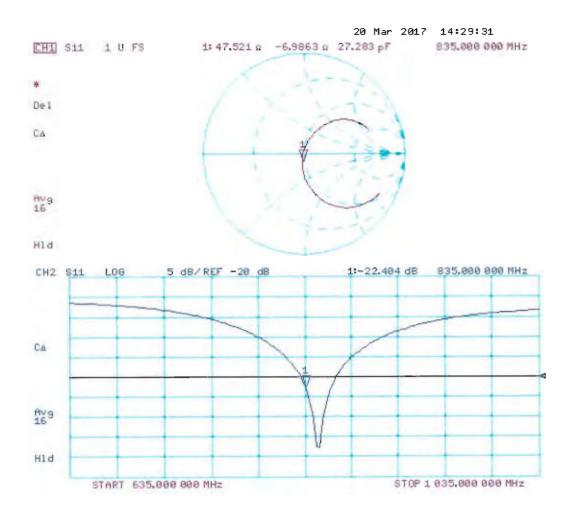
Date: 20.03.2017

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:499


Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz;  $\sigma = 1.01$  S/m;  $\epsilon_r = 54.4$ ;  $\rho = 1000$  kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(9.73, 9.73, 9.73); Calibrated: 31.12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.01.2017
- Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

#### Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 61.02 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 3.74 W/kg SAR(1 g) = 2.5 W/kg; SAR(10 g) = 1.63 W/kg Maximum value of SAR (measured) = 3.32 W/kg



0 dB = 3.32 W/kg = 5.21 dBW/kg





Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

S

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Client Sporton (Auden)

Certificate No: D1750V2-1068\_Nov17

# CALIBRATION CERTIFICATE

|                                                                                                                                | D1750V2 - SN:10                                                                            | 068                                                                                                                                                                                               |                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Calibration procedure(s)                                                                                                       | QA CAL-05.v9<br>Calibration proce                                                          | dure for dipole validation kits abo                                                                                                                                                               | ove 700 MHz                                                                                                                                 |
|                                                                                                                                |                                                                                            |                                                                                                                                                                                                   |                                                                                                                                             |
| Calibration date:                                                                                                              | November 15, 2017                                                                          |                                                                                                                                                                                                   |                                                                                                                                             |
|                                                                                                                                |                                                                                            | ional standards, which realize the physical un<br>robability are given on the following pages an                                                                                                  |                                                                                                                                             |
|                                                                                                                                |                                                                                            | ry facility: environment temperature (22 $\pm$ 3)°(                                                                                                                                               | C and humidity < 70%.                                                                                                                       |
| Calibration Equipment used (M&T<br>Primary Standards                                                                           | E critical for calibration)                                                                | Cal Date (Certificate No.)                                                                                                                                                                        | Scheduled Calibration                                                                                                                       |
| Power meter NRP                                                                                                                | SN: 104778                                                                                 | 04-Apr-17 (No. 217-02521/02522)                                                                                                                                                                   | Apr-18                                                                                                                                      |
| Power sensor NRP-Z91                                                                                                           | SN: 103244                                                                                 | 04-Apr-17 (No. 217-02521)                                                                                                                                                                         | Apr-18                                                                                                                                      |
| Power sensor NRP-Z91                                                                                                           | SN: 103245                                                                                 | 04-Apr-17 (No. 217-02522)                                                                                                                                                                         | Apr-18                                                                                                                                      |
| Reference 20 dB Attenuator                                                                                                     | SN: 5058 (20k)                                                                             | 07-Apr-17 (No. 217-02528)                                                                                                                                                                         | Apr-18                                                                                                                                      |
| Type-N mismatch combination                                                                                                    | SN: 5047.2 / 06327                                                                         | 07-Apr-17 (No. 217-02529)                                                                                                                                                                         | Apr-18                                                                                                                                      |
| Reference Probe EX3DV4                                                                                                         | SN: 7349                                                                                   | 31-May-17 (No. EX3-7349_May17)                                                                                                                                                                    | May-18                                                                                                                                      |
| DAE4                                                                                                                           | SN: 601                                                                                    | 26-Oct-17 (No. DAE4-601_Oct17)                                                                                                                                                                    | Oct-18                                                                                                                                      |
|                                                                                                                                |                                                                                            |                                                                                                                                                                                                   |                                                                                                                                             |
| Secondary Standards                                                                                                            | ID #                                                                                       | Check Date (in house)                                                                                                                                                                             | Scheduled Check                                                                                                                             |
|                                                                                                                                | ID #<br>SN: GB37480704                                                                     | Check Date (in house)<br>07-Oct-15 (in house check Oct-16)                                                                                                                                        | Scheduled Check<br>In house check: Oct-18                                                                                                   |
| Power meter EPM-442A                                                                                                           |                                                                                            |                                                                                                                                                                                                   |                                                                                                                                             |
| Secondary Standards<br>Power meter EPM-442A<br>Power sensor HP 8481A<br>Power sensor HP 8481A                                  | SN: GB37480704                                                                             | 07-Oct-15 (in house check Oct-16)                                                                                                                                                                 | In house check: Oct-18                                                                                                                      |
| Power meter EPM-442A<br>Power sensor HP 8481A<br>Power sensor HP 8481A                                                         | SN: GB37480704<br>SN: US37292783                                                           | 07-Oct-15 (in house check Oct-16)<br>07-Oct-15 (in house check Oct-16)                                                                                                                            | In house check: Oct-18<br>In house check: Oct-18                                                                                            |
| Power meter EPM-442A<br>Power sensor HP 8481A<br>Power sensor HP 8481A<br>RF generator R&S SMT-06                              | SN: GB37480704<br>SN: US37292783<br>SN: MY41092317                                         | 07-Oct-15 (in house check Oct-16)<br>07-Oct-15 (in house check Oct-16)<br>07-Oct-15 (in house check Oct-16)                                                                                       | In house check: Oct-18<br>In house check: Oct-18<br>In house check: Oct-18                                                                  |
| Power meter EPM-442A<br>Power sensor HP 8481A<br>Power sensor HP 8481A<br>RF generator R&S SMT-06<br>Network Analyzer HP 8753E | SN: GB37480704<br>SN: US37292783<br>SN: MY41092317<br>SN: 100972                           | 07-Oct-15 (in house check Oct-16)<br>07-Oct-15 (in house check Oct-16)<br>07-Oct-15 (in house check Oct-16)<br>15-Jun-15 (in house check Oct-16)                                                  | In house check: Oct-18<br>In house check: Oct-18<br>In house check: Oct-18<br>In house check: Oct-18<br>In house check: Oct-18<br>Signature |
| Power meter EPM-442A<br>Power sensor HP 8481A<br>Power sensor HP 8481A<br>RF generator R&S SMT-06<br>Network Analyzer HP 8753E | SN: GB37480704<br>SN: US37292783<br>SN: MY41092317<br>SN: 100972<br>SN: US37390585         | 07-Oct-15 (in house check Oct-16)<br>07-Oct-15 (in house check Oct-16)<br>07-Oct-15 (in house check Oct-16)<br>15-Jun-15 (in house check Oct-16)<br>18-Oct-01 (in house check Oct-17)             | In house check: Oct-18<br>In house check: Oct-18<br>In house check: Oct-18<br>In house check: Oct-18<br>In house check: Oct-18              |
| Power sensor HP 8481A                                                                                                          | SN: GB37480704<br>SN: US37292783<br>SN: MY41092317<br>SN: 100972<br>SN: US37390585<br>Name | 07-Oct-15 (in house check Oct-16)<br>07-Oct-15 (in house check Oct-16)<br>07-Oct-15 (in house check Oct-16)<br>15-Jun-15 (in house check Oct-16)<br>18-Oct-01 (in house check Oct-17)<br>Function | In house check: Oct-18<br>In house check: Oct-18<br>In house check: Oct-18<br>In house check: Oct-18<br>In house check: Oct-18<br>Signature |





- S Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

# Glossarv:

| TSL   | tissue simulating liquid        |
|-------|---------------------------------|
| ConvF | sensitivity in TSL / NORM x,y,z |
| N/A   | not applicable or not measured  |

# Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

# Additional Documentation:

e) DASY4/5 System Handbook

# Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed • point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole • positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the • nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.10.0    |
|------------------------------|------------------------|-------------|
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 10 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm      |             |
| Frequency                    | 1750 MHz ± 1 MHz       |             |

# Head TSL parameters

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 40.1         | 1.37 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 39.7 ± 6 %   | 1.35 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        | <u></u>      |                  |

# SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 9.11 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 36.7 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 4.80 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 19.3 W/kg ± 16.5 % (k=2) |

# **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 53.4         | 1.49 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 52.5 ± 6.%   | 1.49 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

# SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 9.33 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 37.2 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 4.94 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 19.7 W/kg ± 16.5 % (k=2) |

# Appendix (Additional assessments outside the scope of SCS 0108)

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 51.6 Ω + 3.7 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 28.0 dB       |

#### Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 47.4 Ω + 2.6 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 28.4 dB       |

#### **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.221 ns |
|----------------------------------|----------|
|                                  |          |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### Additional EUT Data

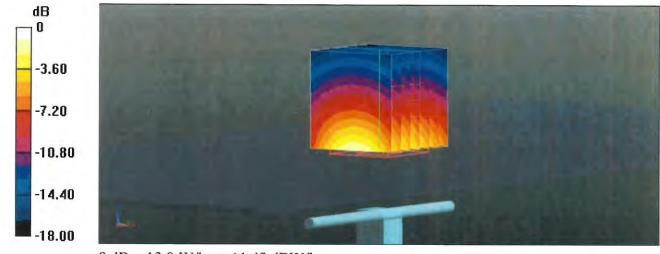
| Manufactured by | SPEAG.        |
|-----------------|---------------|
| Manufactured on | June 15, 2010 |

# **DASY5 Validation Report for Head TSL**

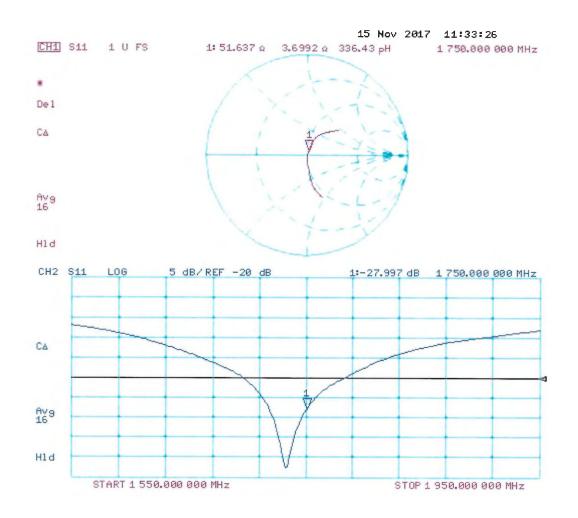
Date: 15.11.2017

Test Laboratory: SPEAG, Zurich, Switzerland

# DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1068


Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz;  $\sigma = 1.35$  S/m;  $\epsilon_r = 39.7$ ;  $\rho = 1000$  kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.73, 8.73, 8.73); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

# Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 105.7 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 17.2 W/kg SAR(1 g) = 9.11 W/kg; SAR(10 g) = 4.8 W/kg Maximum value of SAR (measured) = 13.9 W/kg



0 dB = 13.9 W/kg = 11.43 dBW/kg

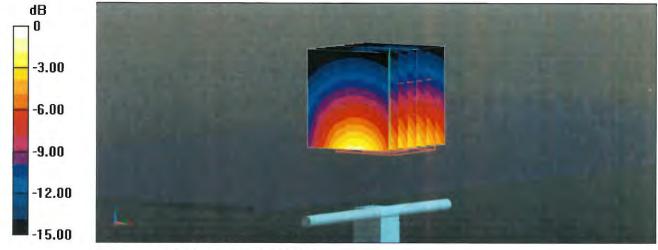


# **DASY5 Validation Report for Body TSL**

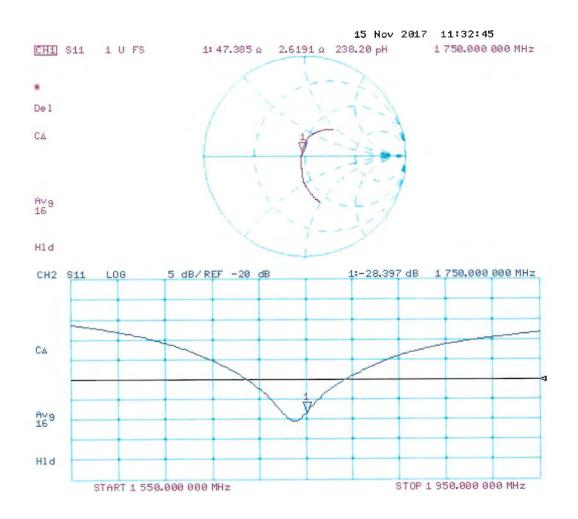
Date: 15.11.2017

Test Laboratory: SPEAG, Zurich, Switzerland

# DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1068


Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz;  $\sigma$  = 1.49 S/m;  $\epsilon_r$  = 52.5;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.46, 8.46, 8.46); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

#### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.55 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 16.7 W/kg SAR(1 g) = 9.33 W/kg; SAR(10 g) = 4.94 W/kg Maximum value of SAR (measured) = 13.6 W/kg



0 dB = 13.6 W/kg = 11.34 dBW/kg





Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage

C Servizio svizzero di taratura

S **Swiss Calibration Service** 

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Sporton (Auden) Client

| Certificate No: | D1900V2-5d041 | Sep17 |
|-----------------|---------------|-------|

# CALIBRATION CERTIFICATE

| Calibration procedure(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | QA CAL-05.v9<br>Calibration proce |                                                                                                                                                        |                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   | dure for dipole validation kits abo                                                                                                                    | ove 700 MHz                    |
| Calibration date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | September 28, 2                   | 017                                                                                                                                                    |                                |
| The measurements and the unce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rtainties with confidence p       | ional standards, which realize the physical un<br>robability are given on the following pages ar<br>ny facility: environment temperature (22 $\pm$ 3)° | d are part of the certificate. |
| Calibration Equipment used (M&T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                                                                                                                                        |                                |
| Primary Standards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ID #                              | Cal Date (Certificate No.)                                                                                                                             | Scheduled Calibration          |
| Power meter NRP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SN: 104778                        | 04-Apr-17 (No. 217-02521/02522)                                                                                                                        | Apr-18                         |
| Power sensor NRP-Z91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SN: 103244                        | 04-Apr-17 (No. 217-02521)                                                                                                                              | Apr-18                         |
| ower sensor NRP-Z91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SN: 103245                        | 04-Apr-17 (No. 217-02522)                                                                                                                              | Apr-18                         |
| eference 20 dB Attenuator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SN: 5058 (20k)                    | 07-Apr-17 (No. 217-02528)                                                                                                                              | Apr-18                         |
| ype-N mismatch combination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SN: 5047.2 / 06327                | 07-Apr-17 (No. 217-02529)                                                                                                                              | Apr-18                         |
| Reference Probe EX3DV4<br>DAE4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SN: 7349<br>SN: 601               | 31-May-17 (No. EX3-7349_May17)<br>28-Mar-17 (No. DAE4-601_Mar17)                                                                                       | May-18<br>Mar-18               |
| Secondary Standards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ID #                              | Check Date (in house)                                                                                                                                  | Scheduled Check                |
| Power meter EPM-442A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SN: GB37480704                    | 07-Oct-15 (in house check Oct-16)                                                                                                                      | In house check: Oct-18         |
| Power sensor HP 8481A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SN: US37292783                    | 07-Oct-15 (in house check Oct-16)                                                                                                                      | In house check: Oct-18         |
| Power sensor HP 8481A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SN: MY41092317                    | 07-Oct-15 (in house check Oct-16)                                                                                                                      | In house check: Oct-18         |
| RF generator R&S SMT-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SN: 100972                        | 15-Jun-15 (in house check Oct-16)                                                                                                                      | In house check: Oct-18         |
| Network Analyzer HP 8753E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SN: US37390585                    | 18-Oct-01 (in house check Oct-16)                                                                                                                      | In house check: Oct-17         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Name                              | Function                                                                                                                                               | Signature                      |
| Construction from a survey of the survey of | Leif Klysner                      | Laboratory Technician                                                                                                                                  | Ser Hly                        |
| Calibrated by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                                                                                                                                        |                                |

# **Calibration Laboratory of**

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland



Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### **Glossary:**

| TSL   | tissue simulating liquid        |
|-------|---------------------------------|
| ConvF | sensitivity in TSL / NORM x,y,z |
| N/A   | not applicable or not measured  |

# Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

# Additional Documentation:

e) DASY4/5 System Handbook

# Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed • point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.10.0                              |
|------------------------------|------------------------|---------------------------------------|
| Extrapolation                | Advanced Extrapolation |                                       |
| Phantom                      | Modular Flat Phantom   | , , , , , , , , , , , , , , , , , , , |
| Distance Dipole Center - TSL | 10 mm                  | with Spacer                           |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm      |                                       |
| Frequency                    | 1900 MHz ± 1 MHz       |                                       |

#### Head TSL parameters

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 40.0         | 1.40 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 39.0 ± 6 %   | 1.38 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 10.1 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 40.5 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 5.27 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 21.1 W/kg ± 16.5 % (k=2) |

#### **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 53.3         | 1.52 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 54.3 ± 6 %   | 1.47 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 9.92 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 40.7 W/kg ± 17.0 % (k≔2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 5.27 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 21.4 W/kg ± 16.5 % (k=2) |

# Appendix (Additional assessments outside the scope of SCS 0108)

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 52.9 Ω + 6.0 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 23.7 dB       |

#### Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 47.2 Ω + 6.6 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 22.7 dB       |

#### **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.201 ns |
|----------------------------------|----------|
|                                  |          |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

# Additional EUT Data

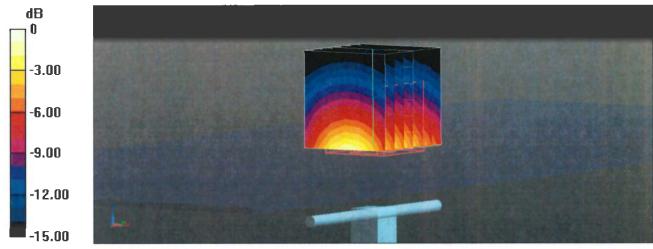
| Manufactured by | SPEAG         |
|-----------------|---------------|
| Manufactured on | July 04, 2003 |

# **DASY5 Validation Report for Head TSL**

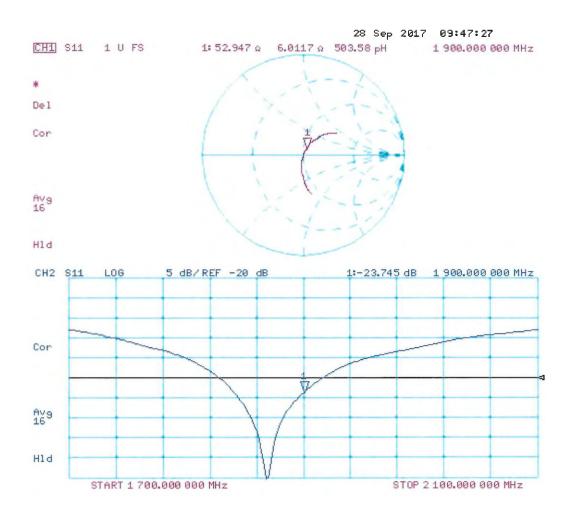
Date: 28.09.2017

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d041


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz;  $\sigma$  = 1.38 S/m;  $\epsilon_r$  = 39;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.43, 8.43, 8.43); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

#### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 109.6 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 19.3 W/kg SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.27 W/kg Maximum value of SAR (measured) = 15.6 W/kg



0 dB = 15.6 W/kg = 11.93 dBW/kg

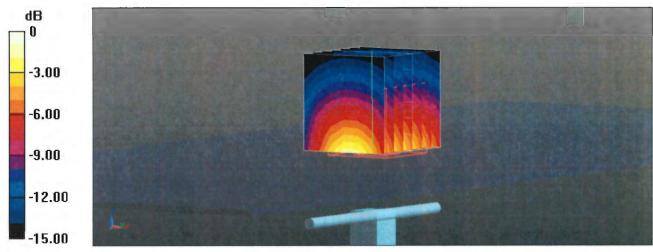


# **DASY5 Validation Report for Body TSL**

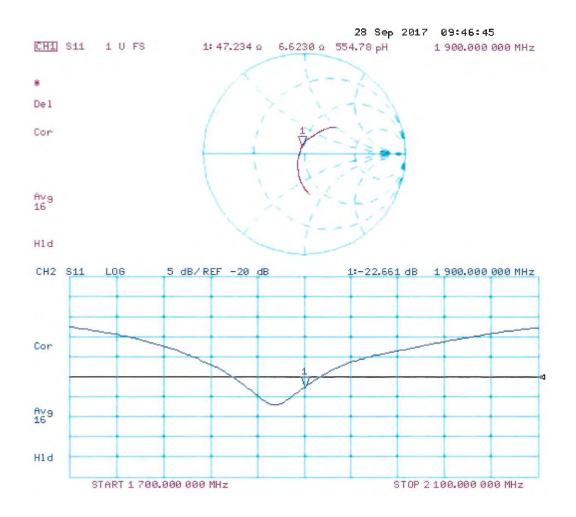
Date: 28.09.2017

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d041


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz;  $\sigma$  = 1.47 S/m;  $\epsilon_r$  = 54.3;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.2, 8.2, 8.2); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 103.7 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 17.6 W/kg SAR(1 g) = 9.92 W/kg; SAR(10 g) = 5.27 W/kg Maximum value of SAR (measured) = 14.4 W/kg



0 dB = 14.4 W/kg = 11.58 dBW/kg





Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage C
  - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Certificate No: D2300V2-1023\_Aug17

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Client SGS-TW (Auden)

# SAL IDA

| The measurements and the uncert                                                                                                                                                               | August 17, 2017<br>nts the traceability to nati<br>tainties with confidence p<br>ed in the closed laborato             | edure for dipole validation kits about the physical unprobability are given on the following pages are physical to probability: environment temperature $(22 \pm 3)^{\circ}$ | nits of measurements (SI).<br>Ind are part of the certificate. |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| This calibration certificate document<br>The measurements and the uncert<br>full calibrations have been conducted<br>Calibration Equipment used (M&TE<br>Primary Standards<br>Power meter NRP | nts the traceability to nati<br>tainties with confidence p<br>ed in the closed laborato<br>E critical for calibration) | probability are given on the following pages an<br>ry facility: environment temperature (22 ± 3)°(                                                                           | nd are part of the certificate.                                |
| The measurements and the uncert<br>All calibrations have been conducte<br>Calibration Equipment used (M&TE<br>Primary Standards<br>Power meter NRP                                            | tainties with confidence p<br>ed in the closed laborato<br>E critical for calibration)                                 | probability are given on the following pages an<br>ry facility: environment temperature (22 ± 3)°(                                                                           | nd are part of the certificate.                                |
| All calibrations have been conducte<br>Calibration Equipment used (M&TE<br>Primary Standards<br>Power meter NRP                                                                               | ed in the closed laborato<br>E critical for calibration)                                                               | ry facility: environment temperature (22 ± 3)°(                                                                                                                              |                                                                |
| Primary Standards<br>Power meter NRP                                                                                                                                                          | 1                                                                                                                      |                                                                                                                                                                              |                                                                |
| ower meter NRP                                                                                                                                                                                | ID #                                                                                                                   |                                                                                                                                                                              |                                                                |
| Power meter NRP                                                                                                                                                                               |                                                                                                                        | Cal Date (Certificate No.)                                                                                                                                                   | Scheduled Calibration                                          |
| ower sensor NRP-Z91                                                                                                                                                                           | SN: 104778                                                                                                             | 04-Apr-17 (No. 217-02521/02522)                                                                                                                                              | Apr-18                                                         |
|                                                                                                                                                                                               | SN: 103244                                                                                                             | 04-Apr-17 (No. 217-02521)                                                                                                                                                    | Apr-18                                                         |
| ower sensor NRP-Z91                                                                                                                                                                           | SN: 103245                                                                                                             | 04-Apr-17 (No. 217-02522)                                                                                                                                                    | Apr-18                                                         |
| eference 20 dB Attenuator                                                                                                                                                                     | SN: 5058 (20k)                                                                                                         | 07-Apr-17 (No. 217-02528)                                                                                                                                                    | Apr-18                                                         |
| pe-N mismatch combination                                                                                                                                                                     | SN: 5047.2 / 06327                                                                                                     | 07-Apr-17 (No. 217-02529)                                                                                                                                                    | Apr-18                                                         |
| eference Probe EX3DV4                                                                                                                                                                         | SN: 7349                                                                                                               | 31-May-17 (No. EX3-7349_May17)                                                                                                                                               | May-18                                                         |
| AE4                                                                                                                                                                                           | SN: 601                                                                                                                | 28-Mar-17 (No. DAE4-601_Mar17)                                                                                                                                               | Mar-18                                                         |
| econdary Standards                                                                                                                                                                            | ID #                                                                                                                   | Check Date (in house)                                                                                                                                                        | Scheduled Check                                                |
| ower meter EPM-442A                                                                                                                                                                           | SN: GB37480704                                                                                                         | 07-Oct-15 (in house check Oct-16)                                                                                                                                            | In house check: Oct-18                                         |
| ower sensor HP 8481A                                                                                                                                                                          | SN: US37292783                                                                                                         | 07-Oct-15 (in house check Oct-16)                                                                                                                                            | In house check: Oct-18                                         |
| ower sensor HP 8481A                                                                                                                                                                          | SN: MY41092317                                                                                                         | 07-Oct-15 (in house check Oct-16)                                                                                                                                            | In house check: Oct-18                                         |
| F generator R&S SMT-06                                                                                                                                                                        | SN: 100972                                                                                                             | 15-Jun-15 (in house check Oct-16)                                                                                                                                            | In house check: Oct-18                                         |
| letwork Analyzer HP 8753E                                                                                                                                                                     | SN: US37390585                                                                                                         | 18-Oct-01 (in house check Oct-16)                                                                                                                                            | In house check: Oct-17                                         |
|                                                                                                                                                                                               | Name                                                                                                                   | Function                                                                                                                                                                     | Signature                                                      |
| alibrated by:                                                                                                                                                                                 | Michael Weber                                                                                                          | Laboratory Technician                                                                                                                                                        | MIII                                                           |
|                                                                                                                                                                                               |                                                                                                                        |                                                                                                                                                                              | Milles<br>Letter                                               |
|                                                                                                                                                                                               | Katja Pokovic                                                                                                          | Technical Manager                                                                                                                                                            | 101                                                            |

# Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage С

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossarv:

| TSL   | tissue simulating liquid        |
|-------|---------------------------------|
| ConvF | sensitivity in TSL / NORM x,y,z |
| N/A   | not applicable or not measured  |

# Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

# Additional Documentation:

e) DASY4/5 System Handbook

# Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. • No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. •
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna • connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.10.0    |
|------------------------------|------------------------|-------------|
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 10 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm      |             |
| Frequency                    | 2300 MHz ± 1 MHz       |             |

#### **Head TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 39.5         | 1.67 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 38.3 ± 6 %   | 1.70 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL                   | Condition                       |                          |
|-------------------------------------------------------------------------|---------------------------------|--------------------------|
| SAR measured                                                            | 250 mW input power              | 12.0 W/kg                |
| SAR for nominal Head TSL parameters                                     | normalized to 1W                | 47.2 W/kg ± 17.0 % (k=2) |
|                                                                         | <u> </u>                        |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head 1SL                 | condition                       |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL<br>SAR measured | condition<br>250 mW input power | 5.74 W/kg                |

#### **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 52.9         | 1.81 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 52.3 ± 6 %   | 1.86 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 11.8 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 46.4 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 5.68 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 22.5 W/kg ± 16.5 % (k=2) |

# Appendix (Additional assessments outside the scope of SCS 0108)

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 48.4 Ω - 3.1 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 29.0 dB       |

#### Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 44.9 Ω - 2.2 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 24.7 dB       |

# General Antenna Parameters and Design

| Electrical Delay (one direction) 1.171 ns | Electrical Delay (one direction) | 1.171 ns |
|-------------------------------------------|----------------------------------|----------|
|-------------------------------------------|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

### Additional EUT Data

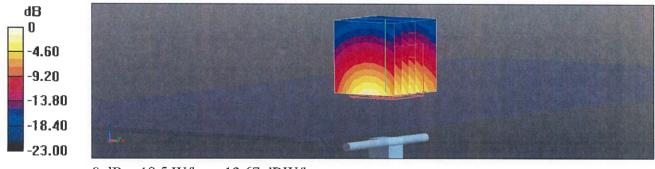
| Manufactured by | SPEAG          |
|-----------------|----------------|
| Manufactured on | March 30, 2009 |

## **DASY5 Validation Report for Head TSL**

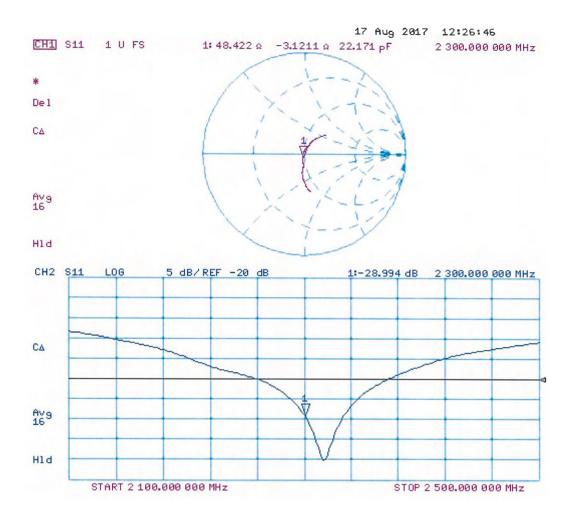
Date: 17.08.2017

Test Laboratory: SPEAG, Zurich, Switzerland

## DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN: 1023


Communication System: UID 0 - CW; Frequency: 2300 MHz Medium parameters used: f = 2300 MHz;  $\sigma = 1.7$  S/m;  $\epsilon_r = 38.3$ ;  $\rho = 1000$  kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.31, 8.31, 8.31); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 109.5 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 23.6 W/kg **SAR(1 g) = 12 W/kg; SAR(10 g) = 5.74 W/kg** Maximum value of SAR (measured) = 18.5 W/kg



0 dB = 18.5 W/kg = 12.67 dBW/kg

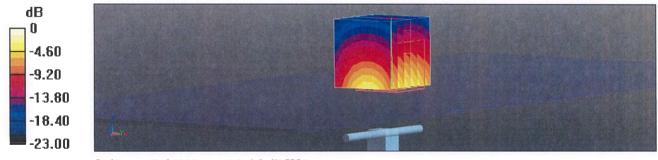


## **DASY5 Validation Report for Body TSL**

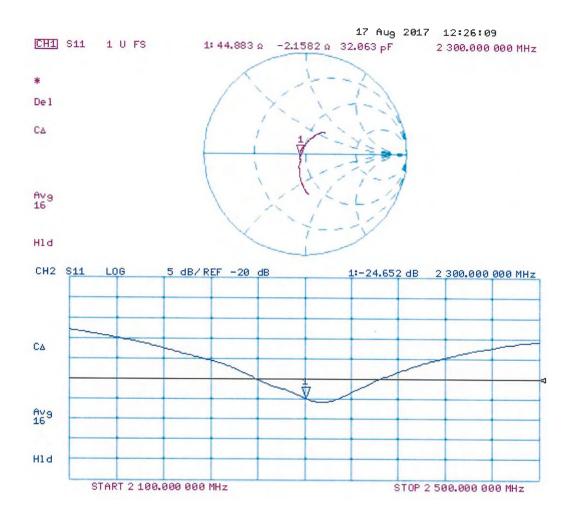
Date: 17.08.2017

Test Laboratory: SPEAG, Zurich, Switzerland

## DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN: 1023


Communication System: UID 0 - CW; Frequency: 2300 MHz Medium parameters used: f = 2300 MHz;  $\sigma$  = 1.86 S/m;  $\epsilon_r$  = 52.3;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.22, 8.22, 8.22); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 102.2 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 22.3 W/kg SAR(1 g) = 11.8 W/kg; SAR(10 g) = 5.68 W/kg Maximum value of SAR (measured) = 17.6 W/kg



0 dB = 17.6 W/kg = 12.46 dBW/kg







Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Sporton Client

Fax: +86-10-62304633-2504 http://www.chinattl.cn

æ BRATION LABORATORY

In Collaboration with

**Certificate No:** 

Z17-97148

## **CALIBRATION CERTIFICATE**

Object

D2450V2 - SN: 736

September 18, 2017

Calibration Procedure(s)

FF-Z11-003-01 Calibration Procedures for dipole validation kits

Calibration date:

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards               | ID#               | Cal Date(Calibrated by, Certificate No.)        | Scheduled Calibration |
|---------------------------------|-------------------|-------------------------------------------------|-----------------------|
| Power Meter NRVD                | 102196            | 02-Mar-17 (CTTL, No.J17X01254)                  | Mar-18                |
| Power sensor NRV-Z5             | 100596            | 02-Mar-17 (CTTL, No.J17X01254)                  | Mar-18                |
| Reference Probe EX3DV4          | SN 7433           | 26-Sep-16(SPEAG,No.EX3-7433_Sep16)              | Sep-17                |
| DAE4                            | SN 1331           | 19-Jan-17(CTTL-SPEAG,No.Z17-97015)              | Jan-18                |
| Secondary Standards             | ID #              | Cal Date(Calibrated by, Certificate No.)        | Scheduled Calibration |
| Signal Generator E4438C         | MY49071430        | 13-Jan-17 (CTTL, No.J17X00286)                  | Jan-18                |
| Network Analyzer E5071C         | MY46110673        | 13-Jan-17 (CTTL, No.J17X00285)                  | Jan-18                |
| Jan 199                         | Name              | Function                                        | Signature             |
| Calibrated by:                  | Zhao Jing         | SAR Test Engineer                               | and the second        |
| Reviewed by:                    | Yu Zongying       | SAR Test Engineer                               | that                  |
| Approved by:                    | Qi Dianyuan       | SAR Project Leader                              | an                    |
|                                 |                   | Issued: Septe                                   | ember 21, 2017        |
| This calibration certificate sh | all not be reproc | luced except in full without written approval o | f the laboratory.     |



In Collaboration with S D E A G CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2079Fax: +86-10-62304633-2504E-mail: cttl@chinattl.comhttp://www.chinattl.cn

## Glossary:

| TSL   | tissue simulating liquid       |
|-------|--------------------------------|
| ConvF | sensitivity in TSL / NORMx,y,z |
| N/A   | not applicable or not measured |

## Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

## Additional Documentation:

e) DASY4/5 System Handbook

## Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.



S D C ALIBRATION LABORATORY

In Collaboration with

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2079E-mail: cttl@chinattl.comhttp://www.chinattl.cn

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY52                   | 52.10.0.1446 |
|------------------------------|--------------------------|--------------|
| Extrapolation                | Advanced Extrapolation   |              |
| Phantom                      | Triple Flat Phantom 5.1C |              |
| Distance Dipole Center - TSL | 10 mm                    | with Spacer  |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm        |              |
| Frequency                    | 2450 MHz ± 1 MHz         |              |

#### Head TSL parameters

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 39.2         | 1.80 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 38.7 ± 6 %   | 1.79 mho/m ± 6 % |
| Head TSL temperature change during test | <1.0 °C         |              |                  |

## SAR result with Head TSL

| SAR averaged over 1 $cm^3$ (1 g) of Head TSL   | Condition          |                           |
|------------------------------------------------|--------------------|---------------------------|
| SAR measured                                   | 250 mW input power | 13.1 mW / g               |
| SAR for nominal Head TSL parameters            | normalized to 1W   | 52.4 mW /g ± 18.8 % (k=2) |
| SAR averaged over 10 $cm^3$ (10 g) of Head TSL | Condition          |                           |
| SAR measured                                   | 250 mW input power | 6.08 mW / g               |
| SAR for nominal Head TSL parameters            | normalized to 1W   | 24.3 mW /g ± 18.7 % (k=2) |

### **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 52.7         | 1.95 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 52.5 ± 6 %   | 1.98 mho/m ± 6 % |
| Body TSL temperature change during test |                 |              |                  |

## SAR result with Body TSL

| SAR averaged over 1 $cm^3$ (1 g) of Body TSL   | Condition          |                           |
|------------------------------------------------|--------------------|---------------------------|
| SAR measured                                   | 250 mW input power | 12.8 mW / g               |
| SAR for nominal Body TSL parameters            | normalized to 1W   | 50.8 mW /g ± 18.8 % (k=2) |
| SAR averaged over 10 $cm^3$ (10 g) of Body TSL | Condition          |                           |
| SAR measured                                   | 250 mW input power | 5.94 mW / g               |
| SAR for nominal Body TSL parameters            | normalized to 1W   | 23.6 mW /g ± 18.7 % (k=2) |



 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 http://www.chinattl.cn

#### Appendix (Additional assessments outside the scope of CNAS L0570)

## Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 52.7Ω+ 4.59jΩ |
|--------------------------------------|---------------|
| Return Loss                          | - 25.7dB      |

#### Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 49.2Ω+ 4.46jΩ |
|--------------------------------------|---------------|
| Return Loss                          | - 26.8dB      |

#### General Antenna Parameters and Design

| Electrical Delay (one direction) | 1.269 ns |
|----------------------------------|----------|
|                                  |          |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### Additional EUT Data

| ctured by | SPEAG |
|-----------|-------|
|-----------|-------|



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

е

CALIBRATION LABORATORY

-

In Collaboration with

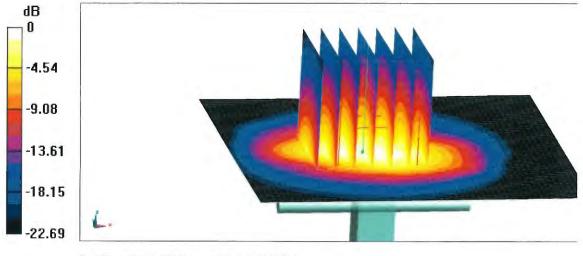
**DASY5 Validation Report for Head TSL** 

Test Laboratory: CTTL, Beijing, China

Date: 09.18.2017

**DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 736** Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz;  $\sigma = 1.788$  S/m;  $\epsilon r = 38.67$ ;  $\rho = 1000$  kg/m3 Phantom section: Left Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:


- Probe: EX3DV4 SN7433; ConvF(7.45, 7.45, 7.45); Calibrated: 9/26/2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 1/19/2017
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

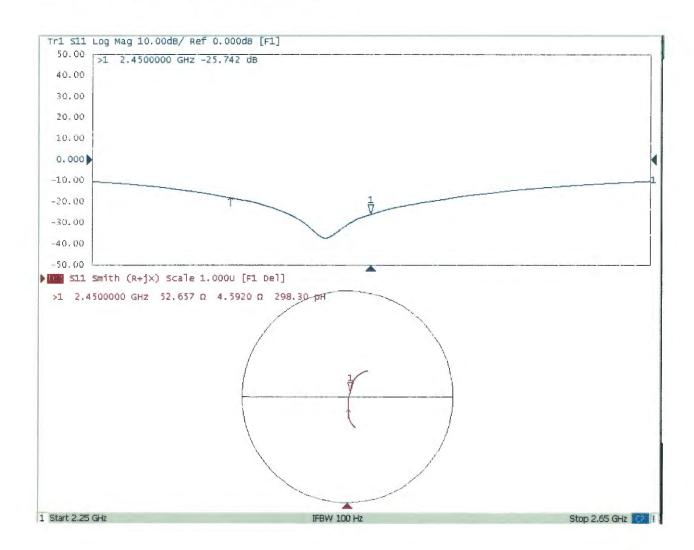
**Dipole Calibration**/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 102.3 V/m; Power Drift = -0.03 dBPeak SAR (extrapolated) = 27.8 W/kg

SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.08 W/kg

Maximum value of SAR (measured) = 22.1 W/kg




0 dB = 22.1 W/kg = 13.44 dBW/kg



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 http://www.chinattl.cn

## Impedance Measurement Plot for Head TSL





Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

е

CALIBRATION LABORATORY

**~** 

In Collaboration with

DASY5 Validation Report for Body TSL

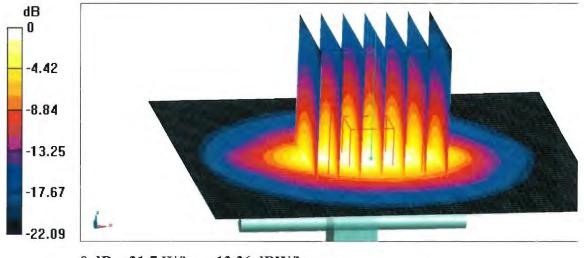
Test Laboratory: CTTL, Beijing, China

Date: 09.18.2017

**DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 736** Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz;  $\sigma = 1.983$  S/m;  $\varepsilon_r = 52.51$ ;  $\rho = 1000$  kg/m<sup>3</sup> Phantom section: Center Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN7433; ConvF(7.46, 7.46, 7.46); Calibrated: 9/26/2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 1/19/2017
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

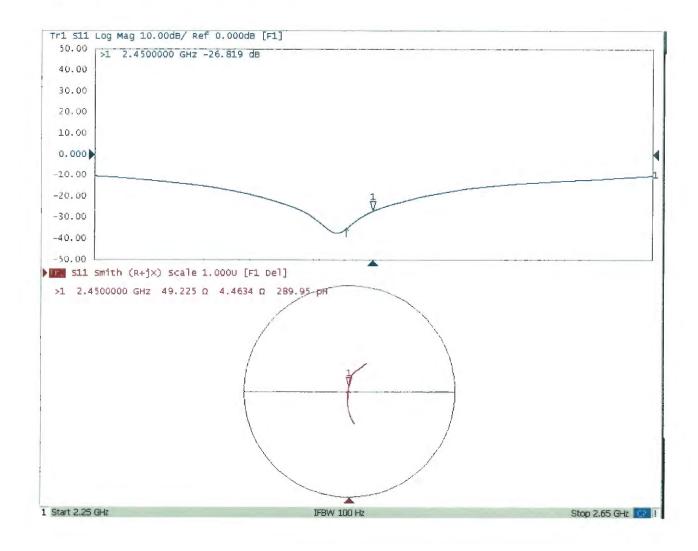

**Dipole Calibration**/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 99.56 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 27.1 W/kg

SAR(1 g) = 12.8 W/kg; SAR(10 g) = 5.94 W/kg

Maximum value of SAR (measured) = 21.7 W/kg




0 dB = 21.7 W/kg = 13.36 dBW/kg



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2079E-mail: cttl@chinattl.comhttp://www.chinattl.cn

## Impedance Measurement Plot for Body TSL







(II

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Sporton

**Certificate No:** Z17-97149

# **CALIBRATION CERTIFICATE**

Object

D2600V2 - SN: 1008

September 18, 2017

In Collaboration with

e

http://www.chinattl.cn

Calibration Procedure(s)

Client

FF-Z11-003-01 Calibration Procedures for dipole validation kits

Calibration date:

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards               | ID #              | Cal Date(Calibrated by, Certificate No.)        | Scheduled Calibration |
|---------------------------------|-------------------|-------------------------------------------------|-----------------------|
| Power Meter NRVD                | 102196            | 02-Mar-17 (CTTL, No.J17X01254)                  | Mar-18                |
| Power sensor NRV-Z5             | 100596            | 02-Mar-17 (CTTL, No.J17X01254)                  | Mar-18                |
| Reference Probe EX3DV4          | SN 7433           | 26-Sep-16(SPEAG,No.EX3-7433_Sep16)              | Sep-17                |
| DAE4                            | SN 1331           | 19-Jan-17(CTTL-SPEAG,No.Z17-97015)              | Jan-18                |
| Secondary Standards             | ID #              | Cal Date(Calibrated by, Certificate No.)        | Scheduled Calibration |
| Signal Generator E4438C         | MY49071430        | 13-Jan-17 (CTTL, No.J17X00286)                  | Jan-18                |
| Network Analyzer E5071C         | MY46110673        | 13-Jan-17 (CTTL, No.J17X00285)                  | Jan-18                |
|                                 | Name              | Function                                        | Signature             |
| Calibrated by:                  | Zhao Jing         | SAR Test Engineer                               | AL                    |
| Reviewed by:                    | Yu Zongying       | SAR Test Engineer                               | - Anto -              |
| Approved by:                    | Qi Dianyuan       | SAR Project Leader                              | ach                   |
|                                 |                   | Issued: Septe                                   | ember 20, 2017        |
| This calibration certificate sh | all not be reproc | luced except in full without written approval o | of the laboratory.    |



S D C A G CALIBRATION LABORATORY

In Collaboration with

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2079E-mail: cttl@chinattl.comFax: +86-10-62304633-2504http://www.chinattl.cn

## **Glossary:**

| TSL   | tissue simulating liquid       |
|-------|--------------------------------|
| ConvF | sensitivity in TSL / NORMx,y,z |
| N/A   | not applicable or not measured |

## Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

## Additional Documentation:

e) DASY4/5 System Handbook

## Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.



S D C A G CALIBRATION LABORATORY

In Collaboration with

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2079Fax: +86-10-62304633-2504E-mail: cttl@chinattl.comhttp://www.chinattl.cn

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY52                   | 52.10.0.1446 |
|------------------------------|--------------------------|--------------|
| Extrapolation                | Advanced Extrapolation   |              |
| Phantom                      | Triple Flat Phantom 5.1C |              |
| Distance Dipole Center - TSL | 10 mm                    | with Spacer  |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm        |              |
| Frequency                    | 2600 MHz ± 1 MHz         |              |

#### Head TSL parameters

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 39.0         | 1.96 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 39.8 ± 6 %   | 1.95 mho/m ± 6 % |
| Head TSL temperature change during test | <1.0 °C         |              |                  |

### SAR result with Head TSL

| SAR averaged over 1 $cm^3$ (1 g) of Head TSL   | Condition          |                           |
|------------------------------------------------|--------------------|---------------------------|
| SAR measured                                   | 250 mW input power | 14.1 mW / g               |
| SAR for nominal Head TSL parameters            | normalized to 1W   | 56.8 mW /g ± 18.8 % (k=2) |
| SAR averaged over 10 $cm^3$ (10 g) of Head TSL | Condition          |                           |
| SAR measured                                   | 250 mW input power | 6.32 mW / g               |
| SAR for nominal Head TSL parameters            | normalized to 1W   | 25.4 mW /g ± 18.7 % (k=2) |

#### **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 52.5         | 2.16 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 52.7 ± 6 %   | 2.15 mho/m ± 6 % |
| Body TSL temperature change during test | <1.0 °C         |              |                  |

## SAR result with Body TSL

| SAR averaged over 1 $cm^3$ (1 g) of Body TSL   | Condition          |                           |
|------------------------------------------------|--------------------|---------------------------|
| SAR measured                                   | 250 mW input power | 13.7 mW / g               |
| SAR for nominal Body TSL parameters            | normalized to 1W   | 55.0 mW /g ± 18.8 % (k=2) |
| SAR averaged over 10 $cm^3$ (10 g) of Body TSL | Condition          |                           |
| SAR measured                                   | 250 mW input power | 6.10 mW / g               |
| SAR for nominal Body TSL parameters            | normalized to 1W   | 24.5 mW /g ± 18.7 % (k=2) |



 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 http://www.chinattl.cn

## Appendix(Additional assessments outside the scope of CNAS L0570)

## Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 48.5Ω- 3.12jΩ |  |
|--------------------------------------|---------------|--|
| Return Loss                          | - 29.1dB      |  |

#### Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 46.4Ω- 2.58jΩ |
|--------------------------------------|---------------|
| Return Loss                          | - 26.7dB      |

#### General Antenna Parameters and Design

| Electrical Delay (one direction) | 1.256 ns |  |
|----------------------------------|----------|--|
|                                  |          |  |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### Additional EUT Data

| Manufactured by | SPEAG |  |
|-----------------|-------|--|
|                 |       |  |



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2079Fax: +86-10-62304633-2504E-mail: cttl@chinattl.comhttp://www.chinattl.cn

In Collaboration with

e

CALIBRATION LABORATORY

-

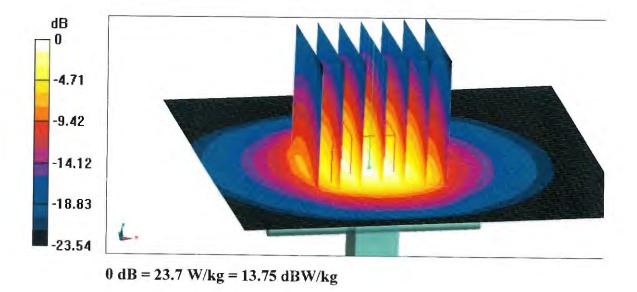
DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1008 Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz;  $\sigma = 1.947$  S/m;  $\epsilon r = 39.75$ ;  $\rho = 1000$  kg/m3 Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration:

- Probe: EX3DV4 SN7433; ConvF(7.19, 7.19, 7.19); Calibrated: 9/26/2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 1/19/2017
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)


**Dipole Calibration**/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 102.7 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 30.2 W/kg

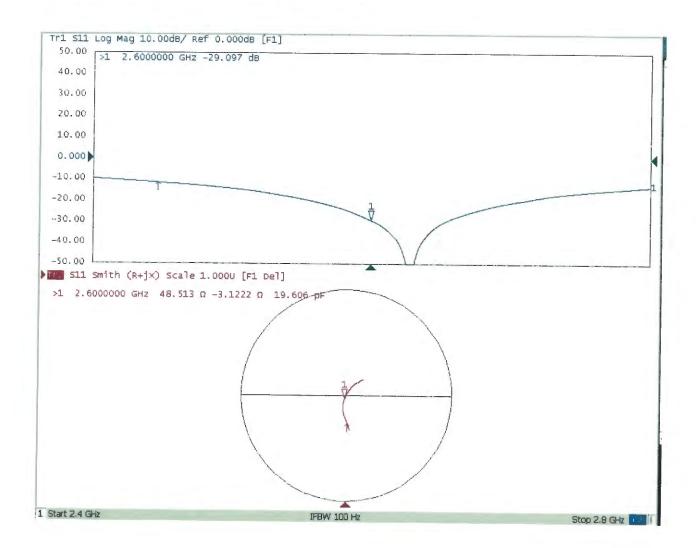
SAR(1 g) = 14.1 W/kg; SAR(10 g) = 6.32 W/kg

Maximum value of SAR (measured) = 23.7 W/kg



Date: 09.18.2017




Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

е

а

g

## Impedance Measurement Plot for Head TSL





Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

In Collaboration with

0

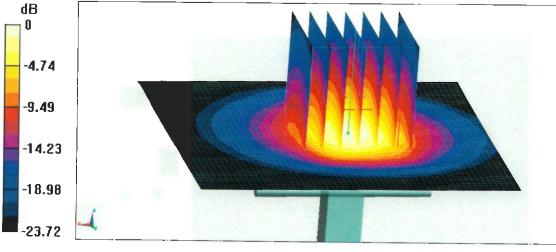
e

CALIBRATION LABORATORY

**DASY5 Validation Report for Body TSL** Test Laboratory: CTTL, Beijing, China DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1008 Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz;  $\sigma = 2.147 \text{ S/m}$ ;  $\varepsilon_r = 52.74$ ;  $\rho = 1000 \text{ kg/m}^3$ Phantom section: Center Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN7433; ConvF(7.22, 7.22, 7.22); Calibrated: 9/26/2016; •
- Sensor-Surface: I.4mm (Mechanical Surface Detection) •
- Electronics: DAE4 Sn1331; Calibrated: 1/19/2017
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 •
- Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 • (7417)


Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 98.13 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 30.1 W/kg

SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.1 W/kg

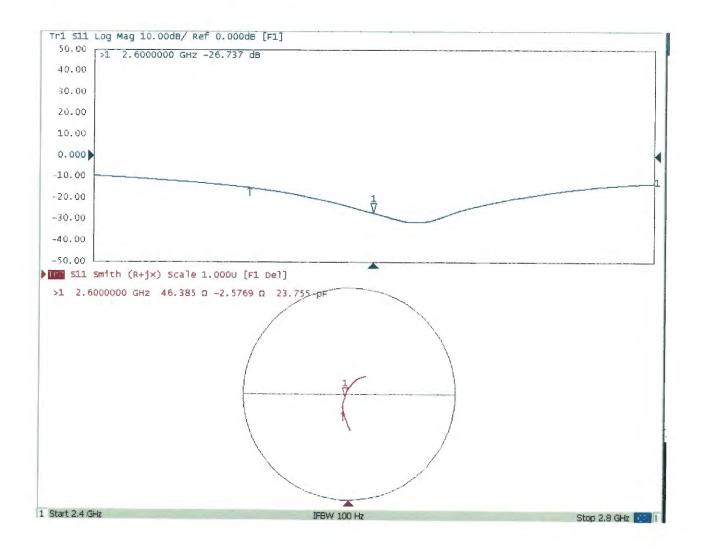
Maximum value of SAR (measured) = 23.6 W/kg



0 dB = 23.6 W/kg = 13.73 dBW/kg

Certificate No: Z17-97149

Date: 09.18.2017




 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 http://www.chinattl.cn

## Impedance Measurement Plot for Body TSL



#### **Calibration Laboratory of** Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland



Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage

C Servizio svizzero di taratura S

**Swiss Calibration Service** 

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Client Sporton (Auden)

Certificate No: D5GHzV2-1171\_Jul17

## CALIBRATION CERTIFICATE

| Object                            | D5GHzV2 – SN:                     | 1171                                                                                              |                        |
|-----------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------|------------------------|
| Calibration procedure(s)          | QA CAL-22.v2<br>Calibration proce | edure for dipole validation kits bet                                                              | tween 3-6 GHz          |
| Calibration date:                 | July 18, 2017                     |                                                                                                   |                        |
|                                   |                                   | ional standards, which realize the physical ur<br>probability are given on the following pages ar |                        |
|                                   |                                   |                                                                                                   |                        |
| All calibrations have been conduc | ted in the closed laborato        | ry facility: environment temperature (22 $\pm$ 3)°                                                | C and humidity < 70%.  |
| Calibration Equipment used (M&T   | E critical for calibration)       |                                                                                                   |                        |
| Primary Standards                 | ID #                              | Cal Date (Certificate No.)                                                                        | Scheduled Calibration  |
| ower meter NRP                    | SN: 104778                        | 04-Apr-17 (No. 217-02521/02522)                                                                   | Apr-18                 |
| ower sensor NRP-Z91               | SN: 103244                        | 04-Apr-17 (No. 217-02521)                                                                         | Apr-18                 |
| ower sensor NRP-Z91               | SN: 103245                        | 04-Apr-17 (No. 217-02522)                                                                         | Apr-18                 |
| Reference 20 dB Attenuator        | SN: 5058 (20k)                    | 07-Apr-17 (No. 217-02528)                                                                         | Apr-18                 |
| ype-N mismatch combination        | SN: 5047.2 / 06327                | 07-Apr-17 (No. 217-02529)                                                                         | Apr-18                 |
| Reference Probe EX3DV4            | SN: 3503                          | 31-Dec-16 (No. EX3-3503_Dec16)                                                                    | Dec-17                 |
| DAE4                              | SN: 601                           | 28-Mar-17 (No. DAE4-601_Mar17)                                                                    | Mar-18                 |
| Secondary Standards               | ID #                              | Check Date (in house)                                                                             | Scheduled Check        |
| Power meter EPM-442A              | SN: GB37480704                    | 07-Oct-15 (in house check Oct-16)                                                                 | In house check: Oct-18 |
| ower sensor HP 8481A              | SN: US37292783                    | 07-Oct-15 (in house check Oct-16)                                                                 | In house check: Oct-18 |
| Power sensor HP 8481A             | SN: MY41092317                    | 07-Oct-15 (in house check Oct-16)                                                                 | In house check: Oct-18 |
| RF generator R&S SMT-06           | SN: 100972                        | 15-Jun-15 (in house check Oct-16)                                                                 | In house check: Oct-18 |
| Network Analyzer HP 8753E         | SN: US37390585                    | 18-Oct-01 (in house check Oct-16)                                                                 | In house check: Oct-17 |
|                                   | Name                              | Function                                                                                          | Signature              |
| Calibrated by:                    | Johannes Kurikka                  | Laboratory Technician                                                                             | Jun 100                |
| Approved by:                      | Katja Pokovic                     | Technical Manager                                                                                 | ally                   |
|                                   |                                   |                                                                                                   | Issued: July 20, 2017  |

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

**Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



Schweizerischer Kalibrierdienst S

Service suisse d'étalonnage

С Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

## Glossarv:

| TSL   | tissue simulating liquid        |
|-------|---------------------------------|
| ConvF | sensitivity in TSL / NORM x,y,z |
| N/A   | not applicable or not measured  |

## Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

## **Additional Documentation:**

e) DASY4/5 System Handbook

## Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole • positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

## **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                                                    | V52.10.0                         |
|------------------------------|----------------------------------------------------------|----------------------------------|
| Extrapolation                | Advanced Extrapolation                                   |                                  |
| Phantom                      | Modular Flat Phantom V5.0                                |                                  |
| Distance Dipole Center - TSL | 10 mm                                                    | with Spacer                      |
| Zoom Scan Resolution         | dx, dy = 4.0 mm, dz = 1.4 mm                             | Graded Ratio = 1.4 (Z direction) |
| Frequency                    | 5250 MHz ± 1 MHz<br>5600 MHz ± 1 MHz<br>5750 MHz ± 1 MHz |                                  |

## Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.9         | 4.71 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 36.2 ± 6 %   | 4.56 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

## SAR result with Head TSL at 5250 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 8.11 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 81.2 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.33 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 23.3 W/kg ± 19.5 % (k=2) |

## Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.5         | 5.07 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 35.7 ± 6 %   | 4.92 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL at 5600 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                            |
|-------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                          | 100 mW input power | 8.49 W/kg                  |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 84.9 W / kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.44 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 24.4 W/kg ± 19.5 % (k=2) |

# Head TSL parameters at 5750 MHz The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.4         | 5.22 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 35.5 ± 6 %   | 5.08 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

## SAR result with Head TSL at 5750 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 8.23 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 82.2 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 $cm^3$ (10 g) of Head TSL | condition          |                          |
|------------------------------------------------|--------------------|--------------------------|
| SAR measured                                   | 100 mW input power | 2.34 W/kg                |
| SAR for nominal Head TSL parameters            | normalized to 1W   | 23.4 W/kg ± 19.5 % (k=2) |

## Body TSL parameters at 5250 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.9         | 5.36 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 47.3 ± 6 %   | 5.52 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

## SAR result with Body TSL at 5250 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 7.86 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 78.1 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.20 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 21.8 W/kg ± 19.5 % (k=2) |

## Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.5         | 5.77 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 46.7 ± 6 %   | 5.99 mho/m ± 6 % |
| Body TSL temperature change during test | < 0,5 °C        |              |                  |

## SAR result with Body TSL at 5600 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 8.15 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 81.0 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.30 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 22.8 W/kg ± 19.5 % (k=2) |

# Body TSL parameters at 5750 MHz The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.3         | 5.94 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 46.4 ± 6 %   | 6.20 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

## SAR result with Body TSL at 5750 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 7.92 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 78.7 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.21 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 21.9 W/kg ± 19.5 % (k=2) |

## Appendix (Additional assessments outside the scope of SCS 0108)

## Antenna Parameters with Head TSL at 5250 MHz

| Impedance, transformed to feed point | 50.0 Ω - 8.5 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 21.4 dB       |

#### Antenna Parameters with Head TSL at 5600 MHz

| Impedance, transformed to feed point | 55.9 Ω - 3.3 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 24.0 dB       |

#### Antenna Parameters with Head TSL at 5750 MHz

| Impedance, transformed to feed point | 55.3 Ω - 3.4 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 24.5 dB       |

## Antenna Parameters with Body TSL at 5250 MHz

| Impedance, transformed to feed point | 49.3 Ω - 7.3 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 22.6 dB       |

#### Antenna Parameters with Body TSL at 5600 MHz

| Impedance, transformed to feed point | 56.0 Ω - 4.0 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 23.3 dB       |

#### Antenna Parameters with Body TSL at 5750 MHz

| Impedance, transformed to feed point | 56.1 Ω - 4.0 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 23.2 dB       |

#### General Antenna Parameters and Design

| Electrical Delay (one direction) | 1.207 ns |
|----------------------------------|----------|
|                                  |          |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

## Additional EUT Data

| Manufactured by | SPEAG             |
|-----------------|-------------------|
| Manufactured on | December 09, 2013 |

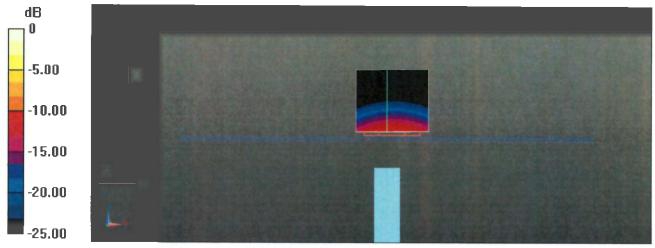
## **DASY5 Validation Report for Head TSL**

Date: 18.07.2017

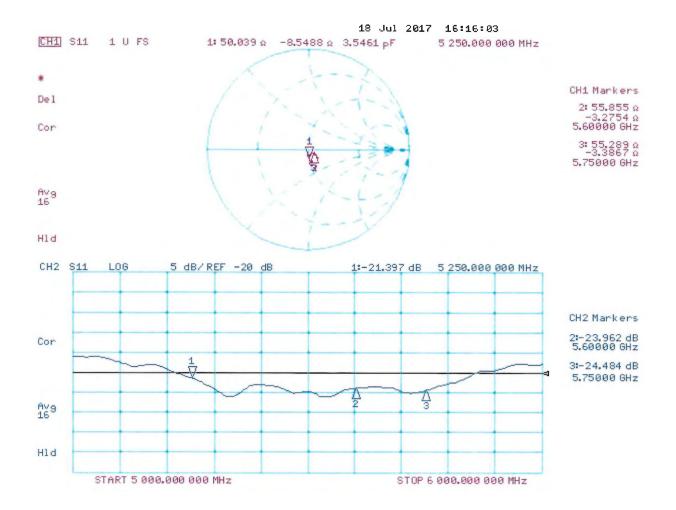
Test Laboratory: SPEAG, Zurich, Switzerland

## DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1171

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz;  $\sigma$  = 4.56 S/m;  $\epsilon_r$  = 36.2;  $\rho$  = 1000 kg/m<sup>3</sup>, Medium parameters used: f = 5600 MHz;  $\sigma$  = 4.92 S/m;  $\epsilon_r$  = 35.7;  $\rho$  = 1000 kg/m<sup>3</sup>, Medium parameters used: f = 5750 MHz;  $\sigma$  = 5.08 S/m;  $\epsilon_r$  = 35.5;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.58, 5.58, 5.58); Calibrated: 31.12.2016, ConvF(5.09, 5.09, 5.09); Calibrated: 31.12.2016, ConvF(5.02, 5.02, 5.02); Calibrated: 31.12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)


Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.42 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 30.5 W/kg SAR(1 g) = 8.11 W/kg; SAR(10 g) = 2.33 W/kg Maximum value of SAR (measured) = 18.4 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.18 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 33.1 W/kg SAR(1 g) = 8.49 W/kg; SAR(10 g) = 2.44 W/kg Maximum value of SAR (measured) = 19.8 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.71 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 33.3 W/kg SAR(1 g) = 8.23 W/kg; SAR(10 g) = 2.34 W/kg Maximum value of SAR (measured) = 19.4 W/kg



0 dB = 18.4 W/kg = 12.65 dBW/kg



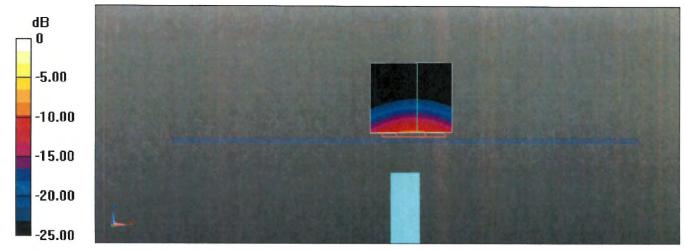
## **DASY5 Validation Report for Body TSL**

Date: 17.07.2017

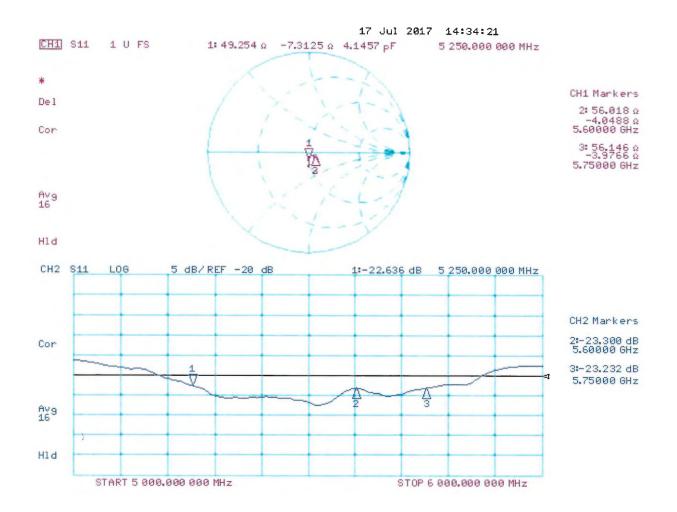
Test Laboratory: SPEAG, Zurich, Switzerland

## DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1171

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz;  $\sigma = 5.52$  S/m;  $\varepsilon_r = 47.3$ ;  $\rho = 1000$  kg/m<sup>3</sup>, Medium parameters used: f = 5600 MHz;  $\sigma = 5.99$  S/m;  $\varepsilon_r = 46.7$ ;  $\rho = 1000$  kg/m<sup>3</sup>, Medium parameters used: f = 5750 MHz;  $\sigma = 6.2$  S/m;  $\varepsilon_r = 46.4$ ;  $\rho = 1000$  kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.14, 5.14, 5.14); Calibrated: 31.12.2016, ConvF(4.57, 4.57, 4.57); Calibrated: 31.12.2016, ConvF(4.51, 4.51); Calibrated: 31.12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)


Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.93 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 30.6 W/kg SAR(1 g) = 7.86 W/kg; SAR(10 g) = 2.2 W/kg Maximum value of SAR (measured) = 18.5 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 66.00 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 34.2 W/kg SAR(1 g) = 8.15 W/kg; SAR(10 g) = 2.3 W/kg Maximum value of SAR (measured) = 19.9 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.17 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 34.9 W/kg SAR(1 g) = 7.92 W/kg; SAR(10 g) = 2.21 W/kg Maximum value of SAR (measured) = 19.5 W/kg



0 dB = 18.5 W/kg = 12.67 dBW/kg



#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



Schweizerischer Kallbrierdienst

- Service suisse d'étalonnage
- C Service suisse d'etalonnage
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Client Sporton (Auden)

#### Certificate No: DAE3-495\_May17

Accreditation No.: SCS 0108

S

| CALIBRATION C                                    | ERTIFICATE                          |                                                                                                  |                             |
|--------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------|
| Object                                           | DAE3 - SD 000 D(                    | 03 AD - SN: 495                                                                                  |                             |
| Calibration procedure(s)                         | QA CAL-06.v29<br>Calibration proced | lure for the data acquisition electro                                                            | nics (DAE)                  |
| Calibration date:                                | May 22, 2017                        |                                                                                                  |                             |
| The measurements and the uncer                   | tainties with confidence pro        | nal standards, which realize the physical units obability are given on the following pages and a | re part of the certificate. |
| All calibrations have been conduct               | ted in the closed laboratory        | r facility: environment temperature (22 ± 3)°C ar                                                | nd humidity < 70%.          |
| Calibration Equipment used (M&T                  | E critical for calibration)         |                                                                                                  |                             |
| Primary Standards                                | ID #                                | Cal Date (Certificate No.)                                                                       | Scheduled Calibration       |
| Keithley Multimeter Type 2001                    | SN: 0810278                         | 09-Sep-16 (No:19065)                                                                             | Sep-17                      |
| Secondary Standarda                              | ID #                                | Check Date (in house)                                                                            | Scheduled Check             |
| Secondary Standards<br>Auto DAE Calibration Unit |                                     | 05-Jan-17 (in house check)                                                                       | In house check: Jan-18      |
| Calibrator Box V2.1                              | 1                                   | 05-Jan-17 (in house check)                                                                       | In house check: Jan-18      |
|                                                  |                                     |                                                                                                  |                             |
|                                                  | Name                                | Function                                                                                         | Signature                   |
| Calibrated by:                                   | Adrian Gehring                      | Technician                                                                                       | A fla                       |
| Approved by:                                     | Fin Bomholt                         | Deputy Technical Manager                                                                         | A yes                       |
|                                                  |                                     |                                                                                                  | Issued: May 22, 2017        |

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

## **Calibration Laboratory of**

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage С
  - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

## Glossary

DAE Connector angle

data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

## Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle*: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a ٠ result from the performance test and require no uncertainty.
  - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
  - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
  - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
  - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
  - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
  - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
  - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
  - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
  - Power consumption: Typical value for information. Supply currents in various operating modes.

## DC Voltage Measurement A/D - Converter Resolution nominal

| A/D - Converter Reso | lution nominal   |                |                |             |
|----------------------|------------------|----------------|----------------|-------------|
| High Range:          | 1LSB =           | 6.1µV,         | full range =   | -100+300 mV |
| Low Range:           | 1LSB ≕           | 61nV,          | full range =   | -1+3mV      |
| DASY measurement p   | parameters: Auto | o Zero Time: 3 | sec; Measuring | time: 3 sec |

| Calibration Factors | X                     | Ŷ                     | Z                     |
|---------------------|-----------------------|-----------------------|-----------------------|
| High Range          | 404.410 ± 0.02% (k=2) | 405.390 ± 0.02% (k=2) | 405.754 ± 0.02% (k=2) |
| Low Range           | 3.95327 ± 1.50% (k=2) | 3.99222 ± 1.50% (k=2) | 3.96688 ± 1.50% (k=2) |

## **Connector Angle**

| Connector Angle to be used in DASY system | 73.0 ° ± 1 ° |
|-------------------------------------------|--------------|
|-------------------------------------------|--------------|

## Appendix (Additional assessments outside the scope of SCS0108)

## 1. DC Voltage Linearity

| High Range |         | Reading (μV) | Difference (µV) | Error (%) |
|------------|---------|--------------|-----------------|-----------|
| Channel X  | + Input | 200036.32    | -0.53           | -0.00     |
| Channel X  | + Input | 20006.90     | 1.96            | 0.01      |
| Channel X  | - Input | -20002.74    | 3.21            | -0.02     |
| Channel Y  | + Input | 200037.97    | 0.48            | 0.00      |
| Channel Y  | + Input | 20003.40     | -1.56           | -0.01     |
| Channel Y  | - Input | -20003.25    | 2.58            | -0.01     |
| Channel Z  | + Input | 200036.42    | -2.51           | -0.00     |
| Channel Z  | + Input | 20006.90     | 2.06            | 0.01      |
| Channel Z  | - Input | -20001.84    | 4.23            | -0.02     |

| Low Range         | Reading (µV) | Difference (µV) | Error (%) |
|-------------------|--------------|-----------------|-----------|
| Channel X + Input | 2001.22      | 0.30            | 0.02      |
| Channel X + Input | 200.83       | -0.07           | -0.04     |
| Channel X - Input | -198.44      | 0.59            | -0.29     |
| Channel Y + Input | 2000.13      | -0.67           | -0.03     |
| Channel Y + Input | 200.76       | -0.02           | -0.01     |
| Channel Y - Input | -199.54      | -0.36           | 0.18      |
| Channel Z + Input | 2000.82      | 0.09            | 0.00      |
| Channel Z + Input | 198.88       | -1.81           | -0.90     |
| Channel Z - Input | -200.61      | -1.37           | 0.69      |

## 2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

|           | Common mode<br>Input Voltage (mV) | High Range<br>Average Reading (μV) | Low Range<br>Average Reading (μV) |
|-----------|-----------------------------------|------------------------------------|-----------------------------------|
| Channel X | 200                               | 4.95                               | 3.15                              |
|           | - 200                             | -1.85                              | -3.32                             |
| Channel Y | 200                               | -0.13                              | 0.16                              |
|           | - 200                             | -1.11                              | -1.51                             |
| Channel Z | 200                               | 1.66                               | 1.87                              |
|           | - 200                             | -4.35                              | -4.69                             |

## 3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

|           | Input Voltage (mV) | Channel X (μV) | Channel Y (µV) | Channel Z (µV) |
|-----------|--------------------|----------------|----------------|----------------|
| Channel X | 200                | -              | <b>-1</b> .04  | -2.16          |
| Channel Y | 200                | 8.07           | -              | -0.61          |
| Channel Z | 200                | 5.90           | 6.18           | -              |

## 4. AD-Converter Values with inputs shorted

|           | High Range (LSB) | Low Range (LSB) |
|-----------|------------------|-----------------|
| Channel X | 15813            | 17008           |
| Channel Y | 15760            | 16933           |
| Channel Z | 15907            | 17415           |

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

#### 5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input  $10M\Omega$ 

|           | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation<br>(µV) |
|-----------|--------------|------------------|------------------|------------------------|
| Channel X | -0.31        | -1.54            | 1.33             | 0.59                   |
| Channel Y | 1.19         | -0.39            | 3.04             | 0.63                   |
| Channel Z | -1.55        | -3.60            | 0.02             | 0.66                   |

### 6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

#### 7. Input Resistance (Typical values for information)

|           | Zeroing (kOhm) | Measuring (MOhm) |
|-----------|----------------|------------------|
| Channel X | 200            | 200              |
| Channel Y | 200            | 200              |
| Channel Z | 200            | 200              |

#### 8. Low Battery Alarm Voltage (Typical values for information)

| Typical values | Alarm Level (VDC) |  |  |
|----------------|-------------------|--|--|
| Supply (+ Vcc) | +7.9              |  |  |
| Supply (- Vcc) | -7.6              |  |  |

#### 9. Power Consumption (Typical values for information)

| Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) |
|----------------|-------------------|---------------|-------------------|
| Supply (+ Vcc) | +0.01             | +6            | +14               |
| Supply (- Vcc) | 0.01              | -8            | -9                |