

FCC RF Test Report

APPLICANT : Motorola Mobility, LLC
EQUIPMENT : Mobile Cellular Phone
BRAND NAME : Motorola
MODEL NAME : 7524
FCC ID : IHDT56VC2
STANDARD : FCC 47 CFR Part 2, 22(H), 24(E), 27(L)
CLASSIFICATION : PCS Licensed Transmitter Held to Ear (PCE)

The product was received on May 16, 2016 and testing was completed on Jul. 03, 2016. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures given in ANSI / TIA / EIA-603-D-2010 and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by: Joseph Lin / Supervisor

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL INC.
No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.

TABLE OF CONTENTS

REVISION HISTORY.....	3
SUMMARY OF TEST RESULT	4
1 GENERAL DESCRIPTION	5
1.1 Applicant.....	5
1.2 Manufacturer	5
1.3 Product Feature of Equipment Under Test	5
1.4 Re-use of Measured Data	6
1.5 Modification of EUT	6
1.6 Maximum ERP/EIRP Power, Frequency Tolerance, and Emission Designator	7
1.7 Testing Location	8
1.8 Applicable Standards	8
2 TEST CONFIGURATION OF EQUIPMENT UNDER TEST	9
2.1 Test Mode.....	9
2.2 Connection Diagram of Test System	10
2.3 Support Unit used in test configuration	10
2.4 Measurement Results Explanation Example	10
3 CONDUCTED TEST RESULT.....	11
3.1 Measuring Instruments.....	11
3.2 Test Setup	11
3.3 Test Result of Conducted Test.....	11
3.4 Conducted Output Power	12
3.5 Peak-to-Average Ratio	13
3.6 99% Occupied Bandwidth and 26dB Bandwidth Measurement.....	14
3.7 Conducted Band Edge	15
3.8 Conducted Spurious Emission	16
3.9 Frequency Stability	17
4 RADIATED TEST ITEMS	18
4.1 Measuring Instruments.....	18
4.2 Test Setup	18
4.3 Test Result of Radiated Test.....	18
4.4 Effective Radiated Power and Effective Isotropic Radiated Power Measurement	19
4.5 Field Strength of Spurious Radiation Measurement	21
5 LIST OF MEASURING EQUIPMENT.....	22
6 UNCERTAINTY OF EVALUATION.....	23

APPENDIX A. TEST RESULTS OF CONDUCTED TEST

APPENDIX B. TEST RESULTS OF RADIATED TEST

REVISION HISTORY

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.4	§2.1046	Conducted Output Power	Reporting Only	PASS	-
3.5	§24.232(d)	Peak-to-Average Ratio	< 13 dB	PASS	-
3.6	§2.1049 §22.917(b) §24.238(b) §27.53(g)	Occupied Bandwidth	Reporting Only	PASS	-
3.7	§2.1051 §22.917(a) §24.238(a) §27.53(h)	Band Edge Measurement	< 43+10log10(P[Watts])	PASS	-
3.8	§2.1051 §22.917(a) §24.238(a) §27.53(h)	Conducted Emission	< 43+10log10(P[Watts])	PASS	-
3.9	§2.1055 §22.355	Frequency Stability for Temperature & Voltage	< 2.5 ppm for Part 22	PASS	-
	§2.1055 §24.235 §27.54		Within Authorized Band		
4.4	§22.913(a)(2)	Effective Radiated Power	< 7 Watts	PASS	-
	§24.232(c)	Equivalent Isotropic Radiated Power	< 2 Watts	PASS	-
	§27.50(d)(4)	Equivalent Isotropic Radiated Power	< 1 Watts	PASS	-
4.5	§2.1053 §22.917(a) §24.238(a) §27.53(h)	Field Strength of Spurious Radiation	< 43+10log10(P[Watts])	PASS	Under limit 37.30 dB at 3812.000 MHz

1 General Description

1.1 Applicant

Motorola Mobility, LLC

222 W Merchandise Mart Plaza, Suite 1800, Chicago, IL 60654, United States

1.2 Manufacturer

Motorola Mobility, LLC

222 W Merchandise Mart Plaza, Suite 1800, Chicago, IL 60654, United States

1.3 Product Feature of Equipment Under Test

Product Feature	
Equipment	Mobile Cellular Phone
Brand Name	Motorola
Model Name	7524
FCC ID	IHDT56VC2
EUT supports Radios application	GSM/EGPRS/WCDMA/HSPA/LTE/NFC WLAN 11b/g/n HT20 WLAN 11a/n HT20/HT40 Bluetooth v3.0 EDR Bluetooth v4.0 LE
HW Version	DVT2
EUT Stage	Identical Prototype

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

Accessory List	
AC Adapter 3	Brand Name : Motorola Model Name : SPN5917A
Earphone 1	Brand Name : Motorola Model Name : SJYN1181B
Battery 1	Brand Name : Motorola Model Name : SNN5974A
USB Cable	Brand Name : Motorola Model Name : SKN6473A

1.4 Re-use of Measured Data

1.4.1 Introduction Section

(FCC ID: IHDT56VC2, model: 7524) and (FCC ID: IHDT56VC1, model: 5892) are electrically identical in all hardware designs. (FCC ID: IHDT56VC2, model: 7524) will reuse the part 22.24 test results from (FCC ID: IHDT56VC1, model: 5892)

The applicant takes full responsibility that the test data as referenced in this section represent compliance for this FCC ID.

1.4.2 Difference Section

(FCC ID: IHDT56VC2, model: 7524) is a variant model of (FCC ID: IHDT56VC1, model: 5892) with some additional transmission bands enabled and disabled because of market segmentation. The available bands of these two models are controlled by software designed for each target market and won't impact the performance of WWAN. All the divergent bands have been properly tested to make sure the compliance. The detailed comparison of (FCC ID: IHDT56VC2, model: 7524) and (FCC ID: IHDT56VC1, model: 5892) is included in the Operational Description.

1.4.3 Spot Check Verification Data Section

In order to confirm hardware similarity of the subject device with the reference device, Spot check has been performed on (FCC ID: IHDT56VC2, model: 7524) for certain parts, including radiated spurious emission and ERP/EIRP, the test results are significantly consistent with its parent model(FCC ID: IHDT56VC1, model: 5892).

1.4.4 Reference detail Section:

Equipment Class	Reference FCC ID	Folder Test/RF Exposure	Report Title/Section
PCE	IHDT56VC1	Part22H.24E(FG651612A)	All sections applicable

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Maximum ERP/EIRP Power, Frequency Tolerance, and Emission Designator

FCC Rule	System	Type of Modulation	Maximum ERP/EIRP (W)	Frequency Tolerance (ppm)	Emission Designator
Part 24	WCDMA Band II RMC 12.2Kbps	QPSK	0.1786	0.0016 ppm	4M12F9W
Part 27	WCDMA Band IV RMC 12.2Kbps	QPSK	0.1786	0.0063 ppm	4M12F9W

1.7 Testing Location

Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code : 1190) and the FCC designation No. TW1022 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC Test.

Test Site	SPORTON INTERNATIONAL INC.
Test Site Location	No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park, Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C. TEL: +886-3-327-3456 FAX: +886-3-328-4978
Test Site No.	Sporton Site No. TH03-HY

Test Site	SPORTON INTERNATIONAL INC.
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd Rd. Guishan Dist, Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855
Test Site No.	Sporton Site No. 03CH12-HY

1.8 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 2, 22(H), 24(E), 27(L)
- ANSI / TIA / EIA-603-D-2010
- FCC KDB 971168 D01 Power Meas. License Digital Systems v02r02

Remark:

1. All test items were verified and recorded according to the standards and without any deviation during the test.
2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

2.1 Test Mode

Antenna port conducted and radiated test items were performed according to KDB 971168 D01 Power Meas. License Digital Systems v02r02 with maximum output power.

Radiated emissions were investigated as following frequency range:

1. 30 MHz to 18000 MHz for WCDMA Band IV.
2. 30 MHz to 19000 MHz for WCDMA Band II.

All modes and data rates and positions were investigated.

Test modes are chosen to be reported as the worst case configuration below:

Test Modes		
Band	Radiated TCs	Conducted TCs
WCDMA Band II	■ RMC 12.2Kbps Link	■ RMC 12.2Kbps Link
WCDMA Band IV	■ RMC 12.2Kbps Link	■ RMC 12.2Kbps Link

2.2 Connection Diagram of Test System

2.3 Support Unit used in test configuration

Item	Equipment	Trade Name	Model No.	FCC ID	Data Cable	Power Cord
1.	System Simulator	R&S	CMU 200	N/A	N/A	Unshielded, 1.8 m

2.4 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between RF conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level will be exactly the RF output level.

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

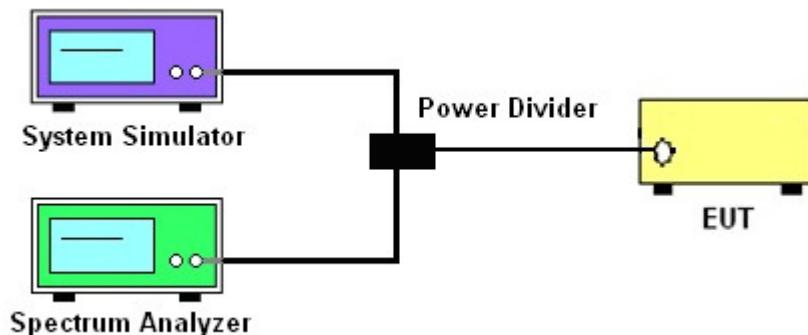
The following shows an offset computation example with RF cable loss 4.2 dB and a 10dB attenuator.

Example :

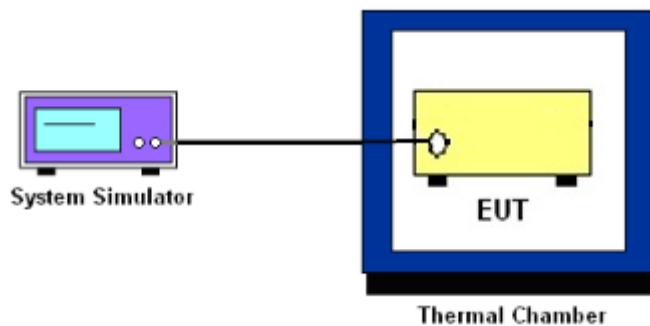
$$\begin{aligned} \text{Offset(dB)} &= \text{RF cable loss(dB)} + \text{attenuator factor(dB)} \\ &= 4.2 + 10 = 14.2 \text{ (dB)} \end{aligned}$$

3 Conducted Test Result

3.1 Measuring Instruments


See list of measuring instruments of this test report.

3.2 Test Setup


3.2.1 Conducted Output Power

3.2.2 Peak-to-Average Ratio, Occupied Bandwidth, Conducted Band-Edge and Conducted Spurious Emission

3.2.3 Frequency Stability

3.3 Test Result of Conducted Test

Please refer to Appendix A.

3.4 Conducted Output Power

3.4.1 Description of the Conducted Output Power

A system simulator was used to establish communication with the EUT. Its parameters were set to enforce EUT transmitting at the maximum power. The measured power in the radio frequency on the transmitter output terminals shall be reported.

3.4.2 Test Procedures

1. The transmitter output port was connected to the system simulator.
2. Set EUT at maximum power through system simulator.
3. Select lowest, middle, and highest channels for each band and different modulation.
4. Measure the maximum burst average power for GSM and maximum average power for other modulation signal.

3.5 Peak-to-Average Ratio

3.5.1 Description of the PAR Measurement

The peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

3.5.2 Test Procedures

1. The testing follows FCC KDB 971168 D01 v02r02 Section 5.7.1.
2. The EUT was connected to spectrum analyzer and system simulator via a power divider.
3. Set EUT to transmit at maximum output power.
4. When the duty cycle is less than 98%, then signal gating will be implemented on the spectrum analyzer by triggering from the system simulator.
5. Set the CCDF (Complementary Cumulative Distribution Function) option of the spectrum analyzer.

Record the maximum PAPR level associated with a probability of 0.1%.

3.6 99% Occupied Bandwidth and 26dB Bandwidth Measurement

3.6.1 Description of 99% Occupied Bandwidth and 26dB Bandwidth Measurement

The occupied bandwidth is the width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5% of the total mean transmitted power.

The 26 dB emission bandwidth is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated 26 dB below the maximum in-band spectral density of the modulated signal. Spectral density (power per unit bandwidth) is to be measured with a detector of resolution bandwidth equal to approximately 1.0% of the emission bandwidth.

3.6.2 Test Procedures

1. The testing follows FCC KDB 971168 v02r02 Section 4.2.
2. The EUT was connected to spectrum analyzer and system simulator via a power divider.
3. The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the spectrum analyzer shall be between two and five times the anticipated OBW.
4. The nominal resolution bandwidth (RBW) shall be in the range of 1 to 5 % of the anticipated OBW, and the VBW shall be at least 3 times the RBW.
5. Set the detection mode to peak, and the trace mode to max hold.
6. Determine the reference value: Set the EUT to transmit a modulated signal. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace. (this is the reference value)
7. Determine the “-26 dB down amplitude” as equal to (Reference Value – X).
8. Place two markers, one at the lowest and the other at the highest frequency of the envelope of the spectral display such that each marker is at or slightly below the “-X dB down amplitude” determined in step 6. If a marker is below this “-X dB down amplitude” value it shall be placed as close as possible to this value. The OBW is the positive frequency difference between the two markers.
9. Use the 99 % power bandwidth function of the spectrum analyzer and report the measured bandwidth.

3.7 Conducted Band Edge

3.7.1 Description of Conducted Band Edge Measurement

The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least $43 + 10 \log (P)$ dB.

3.7.2 Test Procedures

1. The testing follows FCC KDB 971168 D01 v02r02 Section 6.0.
2. The EUT was connected to the spectrum analyzer and system simulator via a power divider.
3. The RF output of EUT was connected to the spectrum analyzer by an RF cable and attenuator. The path loss was compensated to the results for each measurement.
4. The band edges of low and high channels for the highest RF powers were measured.
5. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
6. The limit line is derived from $43 + 10\log(P)$ dB below the transmitter power P(Watts)
$$= P(W) - [43 + 10\log(P)] \text{ (dB)}$$
$$= [30 + 10\log(P)] \text{ (dBm)} - [43 + 10\log(P)] \text{ (dB)}$$
$$= -13 \text{ dBm.}$$

3.8 Conducted Spurious Emission

3.8.1 Description of Conducted Spurious Emission Measurement

The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least $43 + 10 \log (P)$ dB.

It is measured by means of a calibrated spectrum analyzer and scanned from 30 MHz up to a frequency including its 10th harmonic.

3.8.2 Test Procedures

1. The testing follows FCC KDB 971168 D01 v02r02 Section 6.0.
2. The EUT was connected to the spectrum analyzer and system simulator via a power divider.
3. The RF output of EUT was connected to the spectrum analyzer by an RF cable and attenuator. The path loss was compensated to the results for each measurement.
4. The middle channel for the highest RF power within the transmitting frequency was measured.
5. The conducted spurious emission for the whole frequency range was taken.
6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
7. The limit line is derived from $43 + 10\log(P)$ dB below the transmitter power P(Watts)
 $= P(W) - [43 + 10\log(P)]$ (dB)
 $= [30 + 10\log(P)]$ (dBm) - $[43 + 10\log(P)]$ (dB)
 $= -13$ dBm.

3.9 Frequency Stability

3.9.1 Description of Frequency Stability Measurement

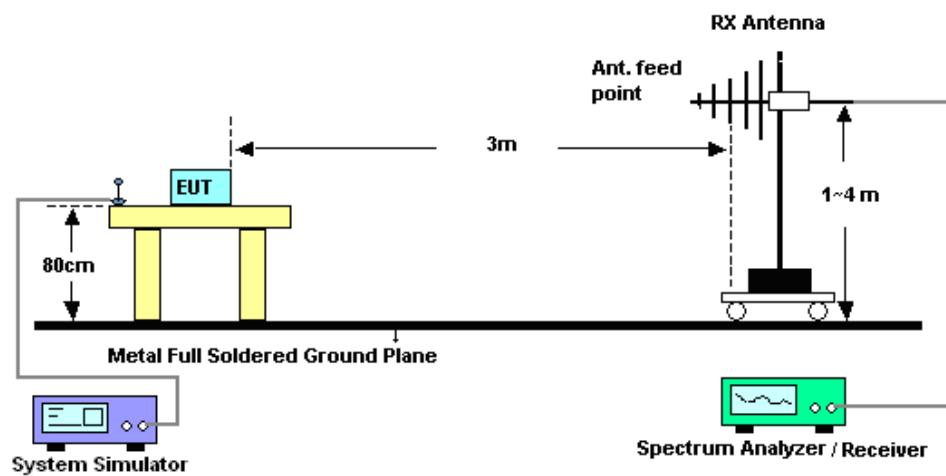
The frequency stability shall be measured by variation of ambient temperature and variation of primary supply voltage to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within $\pm 0.00025\%$ ($\pm 2.5\text{ppm}$) of the center frequency.

3.9.2 Test Procedures for Temperature Variation

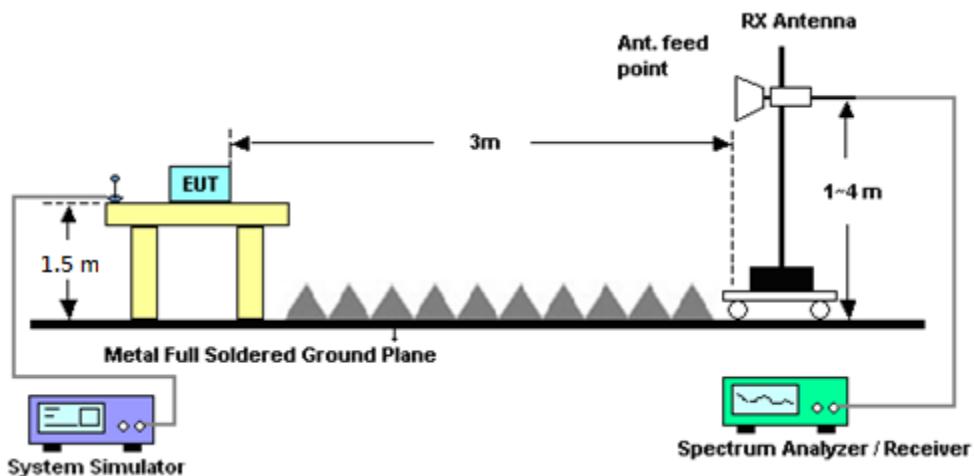
1. The testing follows FCC KDB 971168 D01 v02r02 Section 9.0.
2. The EUT was set up in the thermal chamber and connected with the system simulator.
3. With power OFF, the temperature was decreased to -30°C and the EUT was stabilized before testing. Power was applied and the maximum change in frequency was recorded within one minute.
4. With power OFF, the temperature was raised in 10°C steps up to 50°C . The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute.

3.9.3 Test Procedures for Voltage Variation

1. The testing follows FCC KDB 971168 D01 v02r02 Section 9.0.
2. The EUT was placed in a temperature chamber at $20\pm 5^\circ\text{C}$ and connected with the system simulator.
3. The power supply voltage to the EUT was varied from 85% to 115% of the nominal value measured at the input to the EUT.
4. The variation in frequency was measured for the worst case.


4 Radiated Test Items

4.1 Measuring Instruments


See list of measuring instruments of this test report.

4.2 Test Setup

4.2.1 For radiated test from 30MHz to 1GHz

4.2.2 For radiated test above 1GHz

4.3 Test Result of Radiated Test

Please refer to Appendix B.

4.4 Effective Radiated Power and Effective Isotropic Radiated Power Measurement

4.4.1 Description of the ERP/EIRP Measurement

The substitution method, in ANSI / TIA / EIA-603-D-2010, was used for ERP/EIRP measurement, and the spectrum analyzer configuration follows KDB 971168 D01 Power Meas. License Digital Systems v02r02. The EIRP of mobile transmitters are limited to 2 Watts (PCS Band) and 1 Watts (AWS Band).

4.4.2 Test Procedures

1. The testing follows FCC KDB 971168 D01 v02r02 Section 5.2.1. (for CDMA/WCDMA), Section 5.2.2.2 (for GSM/GPRS/EDGE) and ANSI / TIA-603-D-2010 Section 2.2.17.
2. The EUT was placed on a non-conductive rotating platform (0.8 meters for frequency below 1GHz and 1.5 meter for frequency above 1GHz) in a semi-anechoic chamber. The radiated emission at the fundamental frequency was measured at 3 m with a test antenna and a spectrum analyzer with RMS detector per section 5. of KDB 971168 D01.
3. During the measurement, the system simulator parameters were set to force the EUT transmitting at maximum output power. The maximum emission was recorded from analyzer power level (LVL) from the 360 degrees rotation of the turntable and the test antenna raised and lowered over a range from 1 to 4 meters in both horizontally and vertically polarized orientations.
4. Effective Isotropic Radiated Power (EIRP) was measured by substitution method according to TIA/EIA-603-D. The EUT was replaced by the substitution antenna at same location, and then a known power from S.G. was applied into the dipole antenna through a Tx cable, and then recorded the maximum Analyzer reading through raised and lowered the test antenna. The correction factor (in dB) = S.G. - Tx Cable loss + Substitution antenna gain - Analyzer reading. Then the EUT's EIRP was calculated with the correction factor, $EIRP = LVL + \text{Correction factor}$ and $ERP = EIRP - 2.15$. Take the record of the output power at substitution antenna.

	GSM/GPRS/EDGE	WCDMA/HSPA
SPAN	500kHz	10MHz
RBW	10kHz	100kHz
VBW	30kHz	300kHz
Detector	RMS	RMS
Trace	Average	Average
Average Type	Power	Power
Sweep Count	100	100

4.5 Field Strength of Spurious Radiation Measurement

4.5.1 Description of Field Strength of Spurious Radiated Measurement

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitter power (P) by a factor of at least $43 + 10 \log (P)$ dB. The spectrum is scanned from 30 MHz up to a frequency including its 10th harmonic.

4.5.2 Test Procedures

1. The testing follows FCC KDB 971168 D01 v02r02 Section 5.8 and ANSI / TIA-603-D-2010 Section 2.2.12.
2. The EUT was placed on a rotatable wooden table 0.8 meters for frequency below 1GHz and 1.5 meter for frequency above 1GHz above the ground.
3. The EUT was set 3 meters from the receiving antenna, which was mounted on the antenna tower.
4. The table was rotated 360 degrees to determine the position of the highest spurious emission.
5. The height of the receiving antenna is varied between one meter and four meters to search for the maximum spurious emission for both horizontal and vertical polarizations.
6. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz, taking record of maximum spurious emission.
7. A horn antenna was substituted in place of the EUT and was driven by a signal generator.
8. Tune the output power of signal generator to the same emission level with EUT maximum spurious emission.
9. Taking the record of output power at antenna port.
10. Repeat step 7 to step 8 for another polarization.
11. EIRP (dBm) = S.G. Power – Tx Cable Loss + Tx Antenna Gain
12. ERP (dBm) = EIRP - 2.15
13. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
14. The limit line is derived from $43 + 10\log(P)$ dB below the transmitter power P(Watts)
$$= P(W) - [43 + 10\log(P)] \text{ (dB)}$$
$$= [30 + 10\log(P)] \text{ (dBm)} - [43 + 10\log(P)] \text{ (dB)}$$
$$= -13 \text{ dBm.}$$

5 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Temperature Chamber	ESPEC	SU-641	92013721	-30°C ~70°C	Nov. 20, 2015	Jun. 22, 2016 ~ Jun. 24, 2016	Nov. 19, 2016	Conducted (TH03-HY)
Programmable Power Supply	GW Insteck	PSS-2005	EL883644	Voltage:0~20V;Current:0~5A	Nov. 26, 2015	Jun. 22, 2016 ~ Jun. 24, 2016	Nov. 25, 2016	Conducted (TH03-HY)
Base Station (Measure)	Rohde & Schwarz	CMU200	117995	GSM / GPRS / WCDMA / CDMA	Jul. 26, 2015	Jun. 22, 2016 ~ Jun. 24, 2016	Jul. 25, 2016	Conducted (TH03-HY)
Spectrum Analyzer	Rohde & Schwarz	FSP40	100057	9kHz-40GHz	Nov. 23, 2015	Jun. 22, 2016 ~ Jun. 24, 2016	Nov. 22, 2016	Conducted (TH03-HY)
Amplifier	SONOMA	310N	187312	9kHz~1GHz	Nov. 20, 2015	Jun. 28, 2016 ~ Jul. 03, 2016	Nov. 19, 2016	Radiation (03CH12-HY)
Bilog Antenna	TESEQ	CBL 6111D	35414	30MHz~1GHz	Nov. 17, 2015	Jun. 28, 2016 ~ Jul. 03, 2016	Nov. 16, 2016	Radiation (03CH12-HY)
Horn Antenna	SCHWARZBECK	BBHA 9120 D	9120D-1326	1GHz ~ 18GHz	Oct. 08, 2015	Jun. 28, 2016 ~ Jul. 03, 2016	Oct. 07, 2016	Radiation (03CH12-HY)
Spectrum Analyzer	Keysight	N9010A	MY54200486	10Hz ~ 44GHz	Sep. 24, 2015	Jun. 28, 2016 ~ Jul. 03, 2016	Sep. 23, 2016	Radiation (03CH12-HY)
Bilog Antenna	TESEQ	CBL 6111D	37059	30MHz~1GHz	Dec. 29, 2015	Jun. 28, 2016 ~ Jul. 03, 2016	Dec. 28, 2016	Radiation (03CH12-HY)
EMI Test Receiver	Rohde & Schwarz	ESU26	100390	20Hz~26.5GHz	Dec. 21, 2015	Jun. 28, 2016 ~ Jul. 03, 2016	Dec. 20, 2016	Radiation (03CH12-HY)
Horn Antenna	SCHWARZBECK	BBHA 9120D	9120D-1328	1GHz ~ 18GHz	Nov. 02, 2015	Jun. 28, 2016 ~ Jul. 03, 2016	Nov. 01, 2016	Radiation (03CH12-HY)
Preamplifier	MITEQ	AMF-7D-00 101800-30-1	1815698	1GHz~18GHz	Dec. 14, 2015	Jun. 28, 2016 ~ Jul. 03, 2016	Dec. 13, 2016	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY24958/4,M Y28653/4,MY	26GHz~40GHz	Jan. 12, 2016	Jun. 28, 2016 ~ Jul. 03, 2016	Jan. 11, 2017	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY24958/4,M Y28653/4,MY	1GHz~26GHz	Jan. 12, 2016	Jun. 28, 2016 ~ Jul. 03, 2016	Jan. 11, 2017	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY24958/4,M Y28653/4,MY	30MHz~1GHz	Jan. 12, 2016	Jun. 28, 2016 ~ Jul. 03, 2016	Jan. 11, 2017	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY24958/4,M Y28653/4,MY	9K~30MHz	Jan. 12, 2016	Jun. 28, 2016 ~ Jul. 03, 2016	Jan. 11, 2017	Radiation (03CH12-HY)
Antenna Mast	EMEC	AM-BS-450 0-B	N/A	1m~4m	N/A	Jun. 28, 2016 ~ Jul. 03, 2016	N/A	Radiation (03CH12-HY)
Turn Table	EMEC	TT2000	N/A	0~360 Degree	N/A	Jun. 28, 2016 ~ Jul. 03, 2016	N/A	Radiation (03CH12-HY)
SHF-EHF Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA917057 6	18GHz ~ 40GHz	Apr. 15, 2016	Jun. 28, 2016 ~ Jul. 03, 2016	Apr. 14, 2017	Radiation (03CH12-HY)
Preamplifier	MITEQ	TTA0204	1872107	2GHz~40GHz	Feb. 15, 2016	Jun. 28, 2016 ~ Jul. 03, 2016	Feb. 14, 2017	Radiation (03CH12-HY)
SHF-EHF Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA917058 4	18GHz- 40GHz	Nov. 02, 2015	Jun. 28, 2016 ~ Jul. 03, 2016	Nov. 01, 2016	Radiation (03CH12-HY)
Signal Generator	Rohde & Schwarz	SMF100A	101107	100kHz~40GHz	May 19, 2016	Jun. 28, 2016 ~ Jul. 03, 2016	May 18, 2017	Radiation (03CH12-HY)

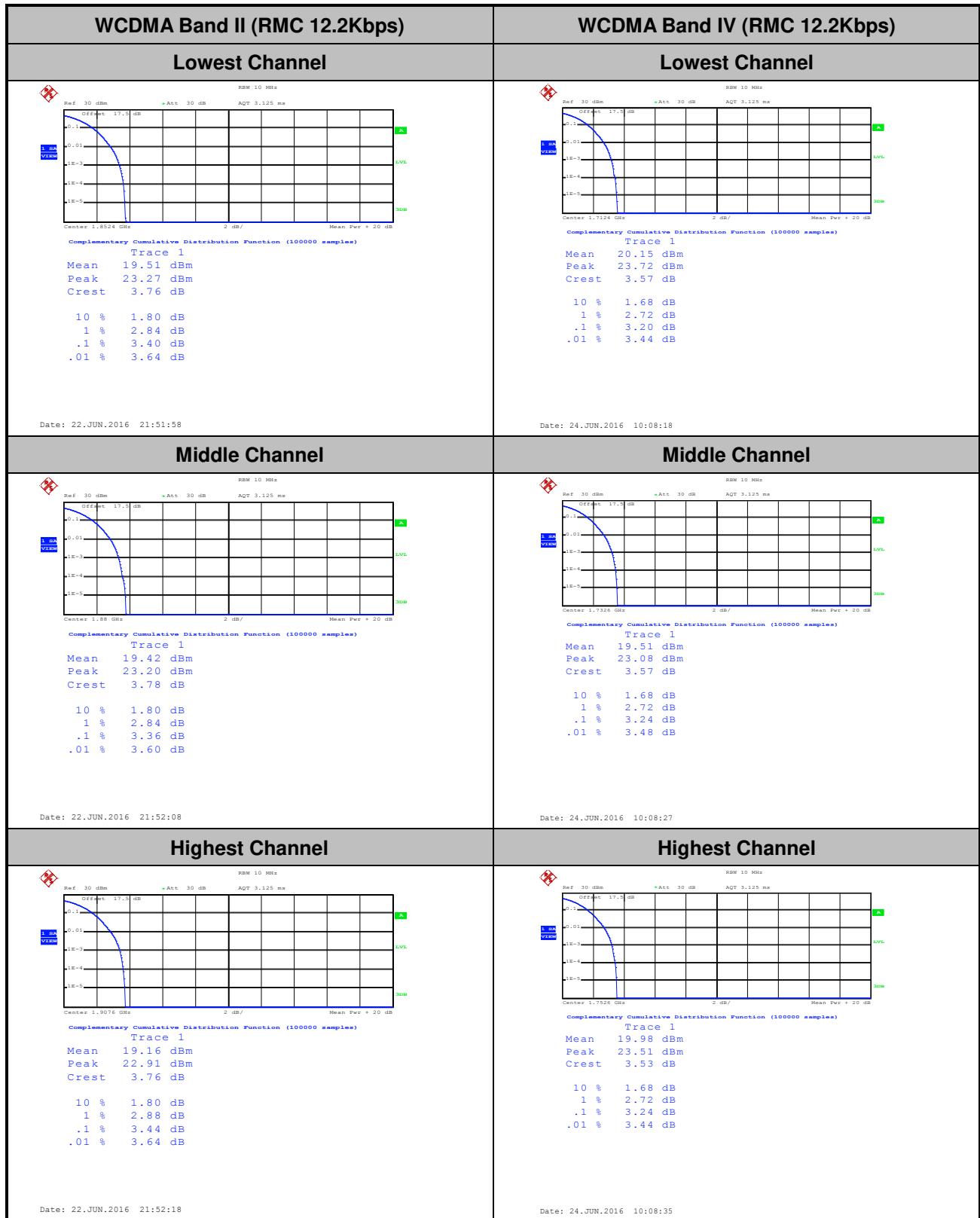
6 Uncertainty of Evaluation

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	5.40
---	------

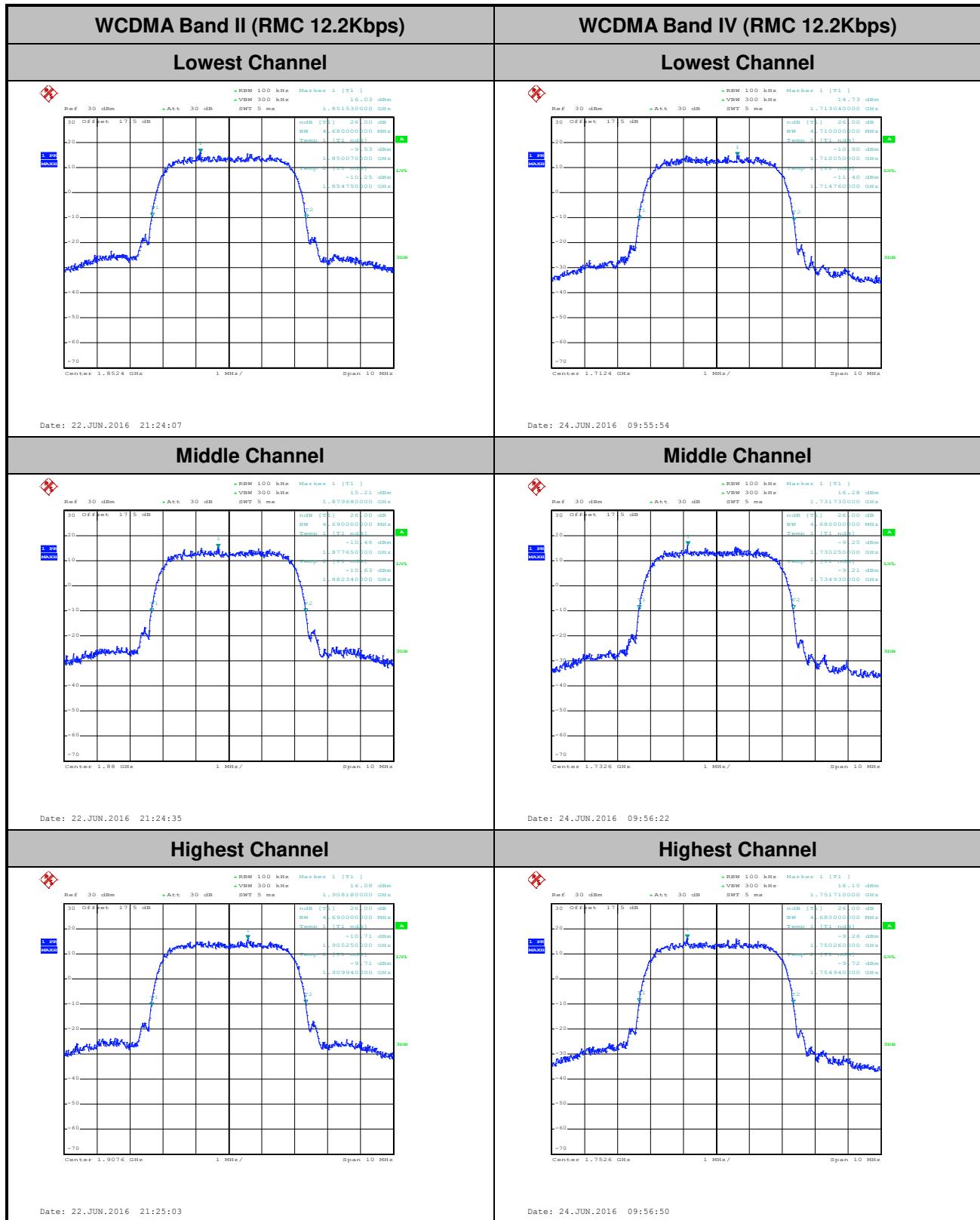
Appendix A. Test Results of Conducted Test

Conducted Output Power(Average power)

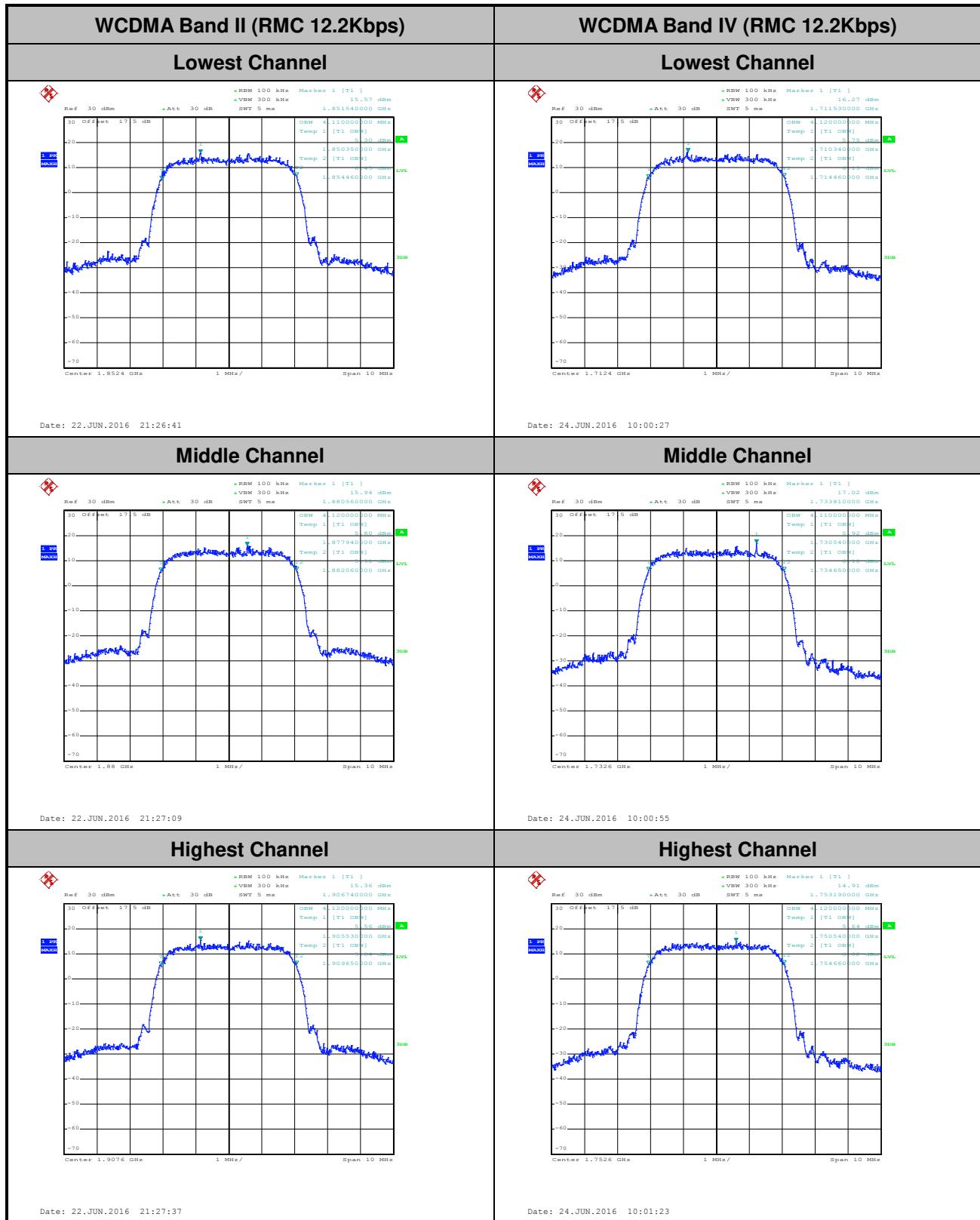

Conducted Power (*Unit: dBm)						
Band	WCDMA Band II			WCDMA Band IV		
Channel	9262	9400	9538	1312	1413	1513
Frequency	1852.4	1880	1907.6	1712.4	1732.6	1752.6
RMC 12.2K	22.60	22.71	22.64	22.89	22.79	22.76
HSDPA Subtest-1	21.46	21.62	21.46	21.84	21.83	21.62
HSDPA Subtest-2	21.63	21.60	21.68	21.89	21.86	21.73
HSDPA Subtest-3	21.09	21.07	21.13	21.26	21.24	21.20
HSDPA Subtest-4	21.01	21.06	21.12	21.23	21.16	21.04
HSUPA Subtest-1	21.43	21.65	21.65	21.73	21.70	21.47
HSUPA Subtest-2	19.36	19.52	19.53	19.58	19.64	19.41
HSUPA Subtest-3	20.65	20.71	20.68	20.47	20.55	20.47
HSUPA Subtest-4	19.51	19.61	19.65	19.52	19.58	19.33
HSUPA Subtest-5	21.14	21.35	21.36	21.31	21.51	21.37

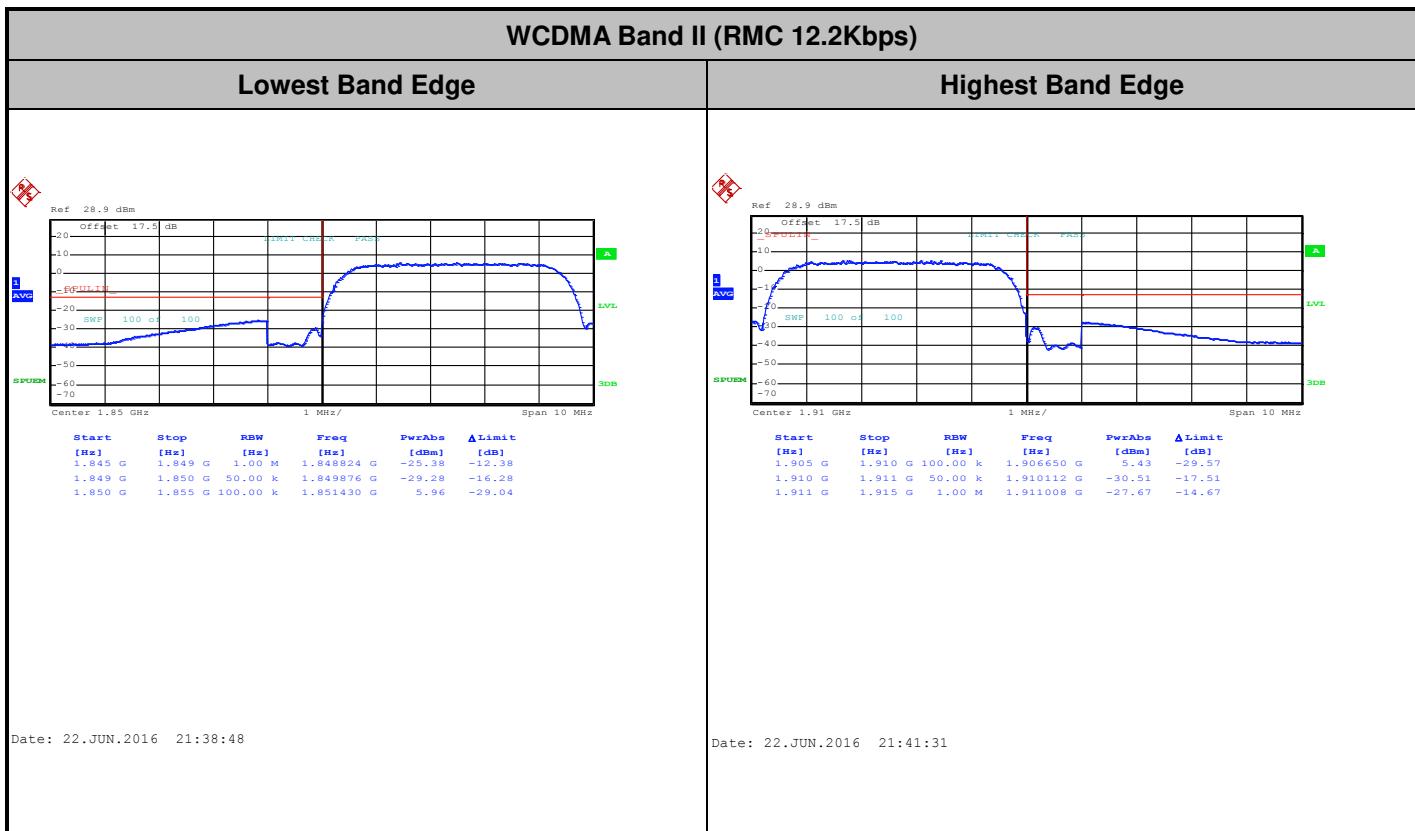
A1. WCDMA

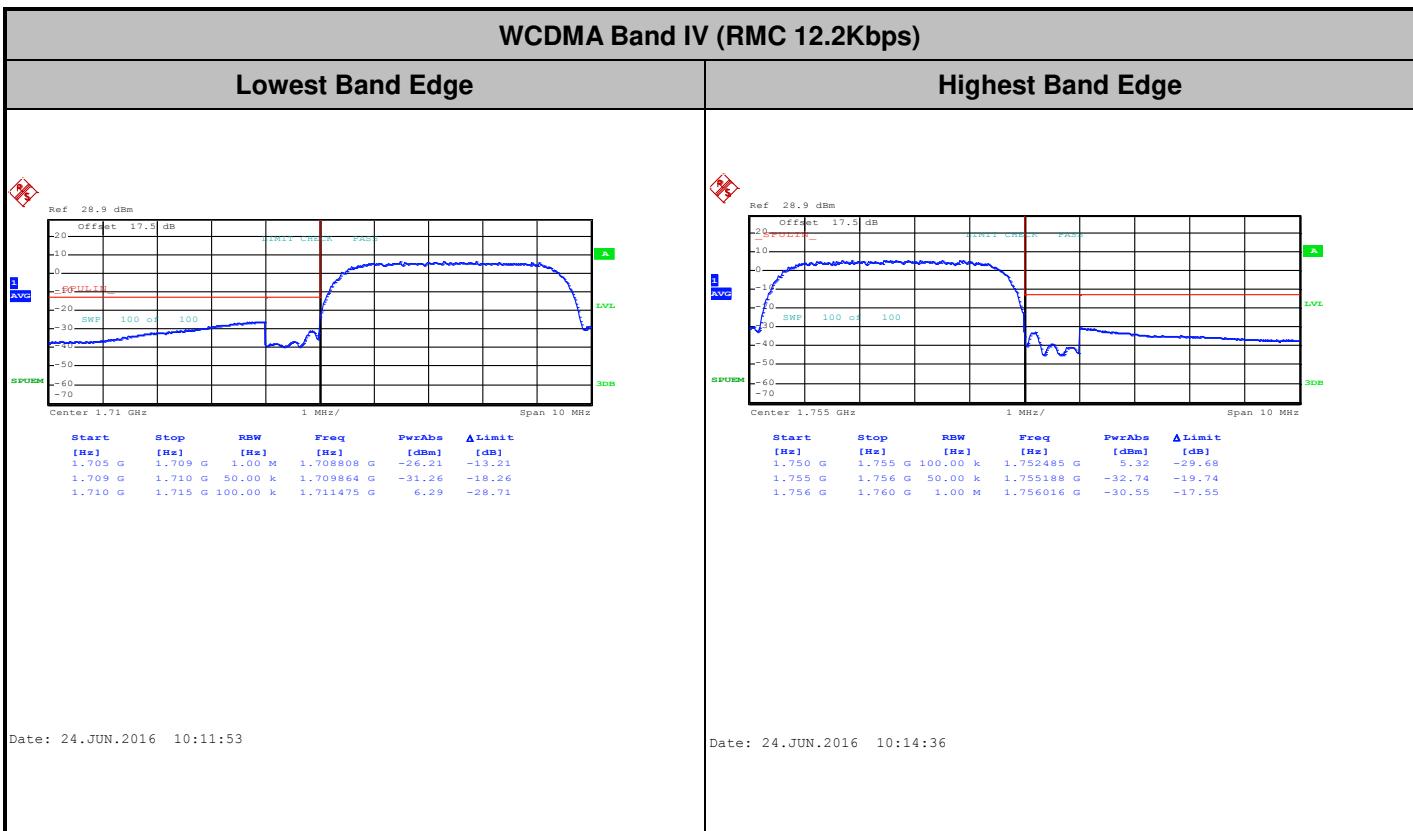
Peak-to-Average Ratio

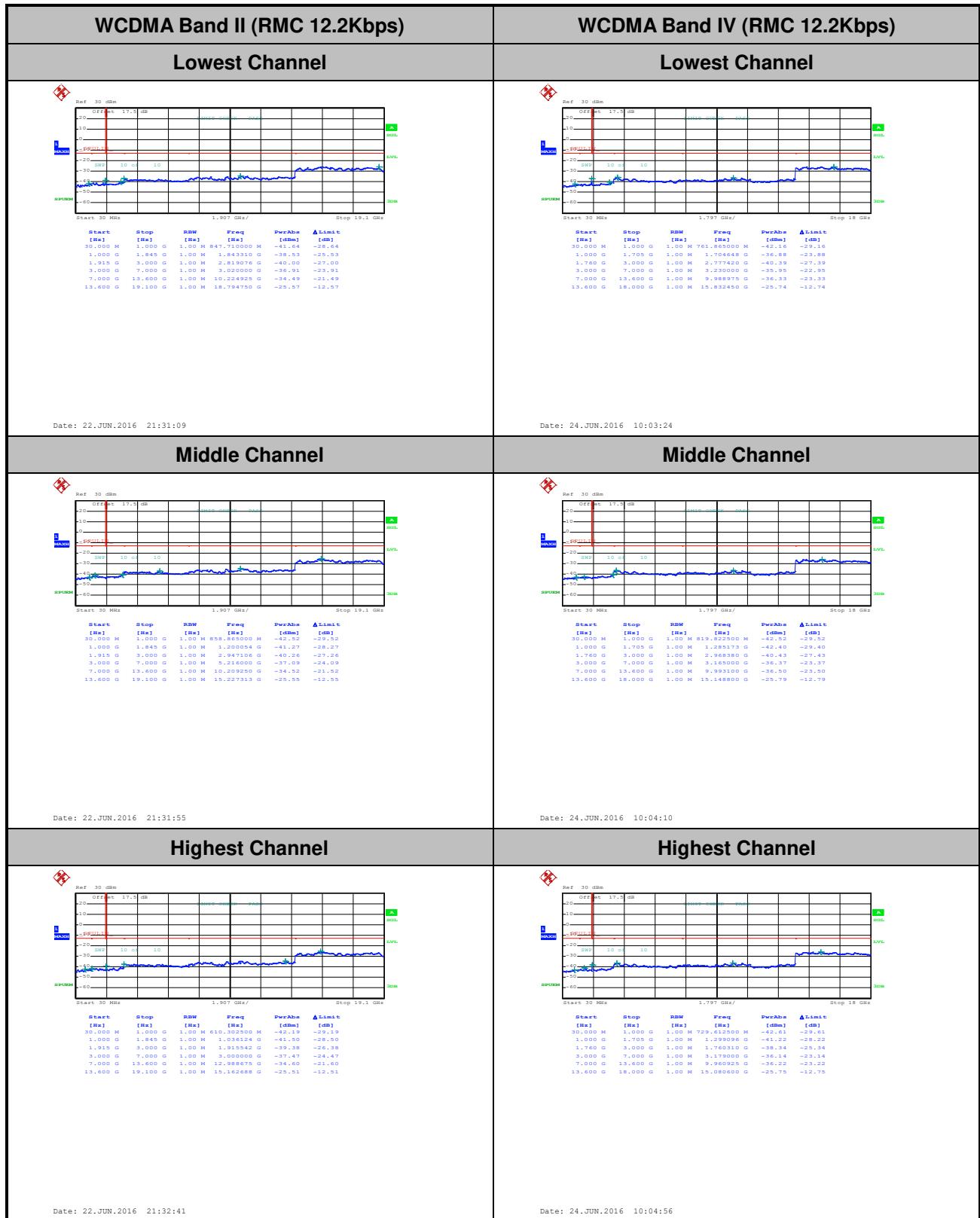

Mode	WCDMA Band II	WCDMA Band IV	Limit: 13dB
Mod.	RMC 12.2Kbps	RMC 12.2Kbps	Result
Lowest CH	3.40	3.20	PASS
Middle CH	3.36	3.24	
Highest CH	3.44	3.24	

26dB Bandwidth


Mode	WCDMA Band II	WCDMA Band IV
Mod.	RMC 12.2Kbps	RMC 12.2Kbps
Lowest CH	4.68	4.71
Middle CH	4.69	4.68
Highest CH	4.69	4.68


Occupied Bandwidth


Mode	WCDMA Band II	WCDMA Band IV
Mod.	RMC 12.2Kbps	RMC 12.2Kbps
Lowest CH	4.11	4.12
Middle CH	4.12	4.11
Highest CH	4.12	4.12


Conducted Band Edge

Conducted Spurious Emission

Frequency Stability

Test Conditions	Middle Channel Voltage (Volt)	WCDMA Band II (RMC 12.2Kbps)	Limit Note 2.
		Deviation (ppm)	
50	Normal Voltage	0.0016	PASS
40	Normal Voltage	0.0005	
30	Normal Voltage	0.0011	
20(Ref.)	Normal Voltage	0.0000	
10	Normal Voltage	0.0005	
0	Normal Voltage	0.0005	
-10	Normal Voltage	0.0016	
-20	Normal Voltage	0.0005	
-30	Normal Voltage	0.0011	
20	Maximum Voltage	0.0016	
20	Normal Voltage	0.0005	
20	Battery End Point	0.0000	

Note:

1. Normal Voltage = 3.9V. ; Battery End Point (BEP) = 3.4 V. ; Maximum Voltage = 4.35 V
2. The frequency fundamental emissions stay within the authorized frequency block based on the frequency deviation measured is small.

Test Conditions	Middle Channel Voltage (Volt)	WCDMA Band IV (RMC 12.2Kbps)	Limit Note 2. Result
		Deviation (ppm)	
50	Normal Voltage	0.0012	PASS
40	Normal Voltage	0.0000	
30	Normal Voltage	0.0006	
20(Ref.)	Normal Voltage	0.0000	
10	Normal Voltage	0.0012	
0	Normal Voltage	0.0006	
-10	Normal Voltage	0.0006	
-20	Normal Voltage	0.0012	
-30	Normal Voltage	0.0017	
20	Maximum Voltage	0.0006	
20	Normal Voltage	0.0000	
20	Battery End Point	0.0063	

Note:

1. Normal Voltage = 3.9V. ; Battery End Point (BEP) = 3.4 V. ; Maximum Voltage = 4.35 V
2. The frequency fundamental emissions stay within the authorized frequency block based on the frequency deviation measured is small.

Appendix B. Test Results of Radiated Test

Radiated Spurious Emission

WCDMA Band II (RMC 12.2Kbps)									
Channel	Frequency (MHz)	EIRP (dBm)	Limit (dBm)	Over Limit (dB)	SPA Reading (dBm)	S.G. Power (dBm)	TX Cable loss (dB)	TX Antenna Gain (dBi)	Polarization (H/V)
Lowest	3707	-54.18	-13	-41.18	-47.99	-60.76	1.67	8.25	H
	5555	-62.75	-13	-49.75	-63.32	-69.82	2.66	9.72	H
	7410	-58.57	-13	-45.57	-64.55	-67.73	2.46	11.62	H
	3707	-53.38	-13	-40.38	-46.94	-59.96	1.67	8.25	V
	5555	-62.05	-13	-49.05	-62.58	-69.12	2.66	9.72	V
	7410	-58.14	-13	-45.14	-64.42	-67.30	2.46	11.62	V
Middle	3763	-54.76	-13	-41.76	-48.66	-61.39	1.69	8.32	H
	5639	-62.64	-13	-49.64	-63.45	-69.69	2.71	9.76	H
	7522	-58.79	-13	-45.79	-65.05	-68.18	2.42	11.81	H
	3763	-52.28	-13	-39.28	-45.96	-58.91	1.69	8.32	V
	5639	-61.37	-13	-48.37	-62.12	-68.42	2.71	9.76	V
	7522	-58.40	-13	-45.40	-64.94	-67.79	2.42	11.81	V
Highest	3812	-53.08	-13	-40.08	-47.02	-59.75	1.70	8.37	H
	5723	-61.03	-13	-48.03	-62.07	-68.07	2.75	9.79	H
	7627	-58.60	-13	-45.60	-65.03	-68.09	2.39	11.88	H
	3812	-50.30	-13	-37.30	-44.03	-56.97	1.70	8.37	V
	5723	-60.22	-13	-47.22	-61.19	-67.26	2.75	9.79	V
	7627	-58.42	-13	-45.42	-65.09	-67.91	2.39	11.88	V

Remark: Spurious emissions within 30-1000MHz were found more than 20dB below limit line.

WCDMA Band IV (RMC 12.2Kbps)									
Channel	Frequency (MHz)	EIRP (dBm)	Limit (dBm)	Over Limit (dB)	SPA Reading (dBm)	S.G. Power (dBm)	TX Cable loss (dB)	TX Antenna Gain (dBi)	Polarization (H/V)
Lowest	3427	-61.19	-13	-48.19	-54.61	-67.29	1.58	7.68	H
	5135	-64.01	-13	-51.01	-63.53	-71.30	2.41	9.70	H
	6850	-60.40	-13	-47.40	-64.72	-68.38	2.64	10.62	H
	3427	-58.07	-13	-45.07	-51.21	-64.17	1.58	7.68	V
	5135	-64.29	-13	-51.29	-63.63	-71.58	2.41	9.70	V
	6850	-59.98	-13	-46.98	-64.56	-67.96	2.64	10.62	V
Middle	3462	-60.33	-13	-47.33	-53.82	-66.57	1.59	7.83	H
	5198	-63.51	-13	-50.51	-63.19	-70.76	2.45	9.70	H
	6927	-59.84	-13	-46.84	-64.5	-67.94	2.61	10.71	H
	3462	-58.58	-13	-45.58	-51.78	-64.82	1.59	7.83	V
	5198	-63.98	-13	-50.98	-63.51	-71.23	2.45	9.70	V
	6927	-59.37	-13	-46.37	-61.31	-67.47	2.61	10.71	V
Highest	3504	-62.05	-13	-49.05	-55.61	-68.45	1.61	8.00	H
	5254	-64.19	-13	-51.19	-63.99	-71.41	2.48	9.70	H
	7011	-60.07	-13	-47.07	-65.02	-68.31	2.59	10.82	H
	3504	-61.30	-13	-48.30	-54.55	-67.70	1.61	8.00	V
	5254	-64.42	-13	-51.42	-64.1	-71.64	2.48	9.70	V
	7011	-59.67	-13	-46.67	-64.92	-67.91	2.59	10.82	V

Remark: Spurious emissions within 30-1000MHz were found more than 20dB below limit line.

ERP/ERIP

Channel	Mode	Horizontal		Vertical	
		EIRP(dBm)	EIRP(W)	EIRP(dBm)	EIRP(W)
Lowest	WCDMA Band II RMC 12.2Kbps	22.51	0.1782	21.98	0.1578
Middle		22.52	0.1786	21.80	0.1514
Highest		22.32	0.1706	22.12	0.1629
Limit	EIRP < 2W	Result		PASS	

Channel	Mode	Horizontal		Vertical	
		EIRP(dBm)	EIRP(W)	EIRP(dBm)	EIRP(W)
Lowest	WCDMA Band IV RMC 12.2Kbps	22.52	0.1786	22.17	0.1648
Middle		21.75	0.1496	21.59	0.1442
Highest		22.17	0.1648	21.84	0.1528
Limit	EIRP < 1W	Result		PASS	

Appendix C. Original Report

Please refer to Sporton report number FG651612A.