

Portable Cellular Phone SAR Test Report

FCC ID: IHDT56PF3

Motorola Mobility, LLC

Tests Requested By: 600 N. US Highway 45

Libertyville, IL 60048

Test Report #: 25510-1F

Date of Report: August 16, 2013

Date of Test: July 26 – August 13, 2013

FCC ID #: IHDT56PF3

IC ID #: N/A Generic Name: N/A

Motorola Mobility, LLC - ADR Test Service Laboratory

Test Laboratory: 600 N. US Highway 45

Libertyville, IL 60048

Report Author: Steve Hauswirth

Distinguished Member of the Technical Staff

This laboratory is accredited to ISO/IEC 17025-2005 to perform the following tests:

<u>Tests</u>: <u>Procedures</u>:

Electromagnetic Specific Absorption Rate IEC 62209-1

RSS-102

IEEE 1528 - 2003

FCC OET Bulletin 65 (including Supplement C) Australian Communications Authority Radio Communications (Electromagnetic Radiation –

Human Exposure) Standard 2003

CENELEC EN 50360 ARIB Std. T-56 (2002)

On the following products or types of products:

Wireless Communications Devices (Examples): Two Way Radios; Portable Phones (including Cellular,

Licensed Non-Broadcast and PCS); Low Frequency Readers; and Pagers

Statement of Compliance:

Accreditation:

Motorola declares under its sole responsibility that the portable cellular telephone model to which this declaration relates, is in conformity with the appropriate General Population/Uncontrolled RF exposure standards, recommendations and guidelines (FCC 47 CFR §2.1093) as well as with CENELEC en50360:2001 and ANSI / IEEE C95.1. It also declares that the product was tested in accordance with IEEE 1528 / CENELEC EN62209-1 (2006), along with other published guidance indicated in the references at the end of this report, as well as other appropriate measurement standards, guidelines and recommended practices. Any deviations from these standards, guidelines and recommended practices are noted below:

(none)

©Motorola Mobility, LLC 2013

This test report shall not be reproduced except in full, without written approval of the laboratory. The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only in connection with the statements or results from this report. Motorola encourages all feedback, both positive and negative, on this test report.

Table of Contents

1		ductionduction	
2	Deta	ils of the Device Under Test	4
	2.1	Sample Information	4
	2.2	Antenna Description	4
	2.3	Transmission Band Summary	4
	2.4	Device Test Setup, Operating Configurations, and Conducted Power Measurements	5
	2.4.1	CDMA	5
	2.4.2	Wi-Fi 802.11	6
	2.4.3	Bluetooth	7
	2.5	Transmitter power reduction conditions and modes	8
	2.6	Accessories for the Device Under Test	8
	2.6.1	Batteries	8
	2.6.2	Body-Worn Carry Accessories	8
3	Test	Equipment Used	9
	3.1	Dosimetric Measurement System	9
	3.2	Test System Validations	10
	3.3	Test System Verifications (System Performance Checks)	11
	3.4	Simulated Tissue Dielectric Properties	12
4	Test	Setup Information, SAR Measurement Results, and Analysis	14
	4.1	Overview of Test Setup and Results	
4	4.2	Head-Adjacent Exposure Results	15
4	4.3	Body-Worn Accessory Exposure Results	
	4.4	Mobile Hotspot Exposure Results	17
4	4.5	Measurement Variability Analysis	18
4	4.6	Description and Evaluation of Simultaneous Transmitters	19
5	Refe	rences to Test Standards and Guidance	22
	1.	4. GAD Division Divis	
		1: SAR Distribution Plots for Test System Verification	
Αp	pendix	2: SAR Distribution Plots for Head-Adjacent Test Results	

Appendix 3: SAR Distribution Plots for Body-Worn Accessory Test Results

Appendix 4: SAR Distribution Plots for Mobile Hotspot Test Results

Appendix 5: Measurement Uncertainty Budget

Appendix 6: Probe Calibration Certificates

Appendix 7: Dipole Characterization Certificates

Revision History

Revision Version	Date	Notes
Rev. 0	Aug-16-2013	Initial report release
Rev. A	Aug-27-2013	Updated references

1 Introduction

The Motorola Mobility ADR Test Services Laboratory has performed measurements of the maximum potential exposure to the user of the portable cellular phone covered by this test report. The Specific Absorption Rate (SAR) of this product was measured. The portable cellular phone was tested in accordance with [1], [5], [9], and per FCC KDB 941225 D06 for mobile hotspot operation. The SAR values measured for the portable cellular phone are below the maximum recommended levels of 1.6 W/kg in a 1 g average set in [3] and 2.0 W/kg in a 10 g average set in [2].

FCC ID: IHDT56PF3

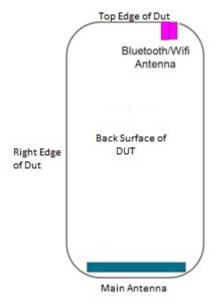
For ANSI / IEEE C95.1 (1 g), the final stand-alone SAR readings for this phone are given in the table below. These measurements were performed using a DASY52TM system manufactured by Schmid & Partner Engineering AG (SPEAG), of Zurich Switzerland.

Transmit Band	Head SAR (1 g W/kg)	Body-Worn Accessory SAR (1 g W/kg)	Mobile Hotspot SAR (1 g W/kg)
CDMA 800 (BC0)	0.52	1.01	0.44
CDMA 820 (BC10)	0.23	0.54	0.39
CDMA 1900 (BC1)	0.79	1.24	0.79
Wi-Fi 2.45 GHz	0.36	0.24	0.46
Bluetooth		N/A	

2 Details of the Device Under Test

2.1 Sample Information

Serial Number(s) (Functional Use)	LDXZ230042 LDXZ230059 LDXU220303	All CDMA 800 and CDMA 1900 testing All CDMA 820 testing All WLAN testing			
Production Unit or Identical Prototype (47 CFR §2.908)		Identical Prototype			
Device Category	Portable (Mobile Station Class B) General Population / Uncontrolled				
RF Exposure Limits					


2.2 Antenna Description

Main (850/1900 MHz) Antenna

Type	Internal			
Location	Bottom o	of Transceiver		
Dimensions	Width	5.6 mm		
Difficusions	Length	55.0 mm		

Bluetooth/Wi-Fi 2.45 GHz Antenna

Type	Internal				
Location	Left-Side Re	ear of Transceiver			
Dimondiana	Width	9.00 mm			
Dimensions	Length	10.00 mm			

2.3 Transmission Band Summary

Mode(s) of Operation	Modulation Mode(s)	Target Output Power Setting	Tune-Up Tolerance	Duty Cycle	Transmitting Frequency Range(s)
CDMA 800 BC0	QPSK	24.0 dBm	25.0 dBm	1:1	824.70 - 848.31 MHz
CDMA 820 BC10	QPSK	24.0 dBm	25.0 dBm	1:1	817.90 - 823.10 MHz
CDMA 1900 BC1	QPSK	24.0 dBm	25.0 dBm	1:1	1851.20 - 1908.75 MHz
Wi-Fi 802.11b/g/n	BPSK	18.1 dBm		1:1	2412.0 - 2462.0 MHz
Bluetooth	GFSK	12.1 dBm		1:1	2402.0 – 2480.0 MHz

2.4 Device Test Setup, Operating Configurations, and Conducted Power Measurements

2.4.1 CDMA

Technical Description

The phone under test contains CDMA2000 1x and CDMA2000 1xEV-DO (Rel. A) transmitters that support both voice (circuit-switched) and data (packet-switched) capabilities.

Exposure Conditions and Test Exclusions

Mode	Type	Head-Adjacent	Body-Worn Accessory
RC3 SO55 Loopback	Voice	Tested (1)	Excluded (2)
RC1 SO55 Loopback	Voice	Excluded (2)	Excluded (2)
TDSO SO32 FCH	Data	Excluded (2)	Excluded (2)
TDSO SO32 FCH+SCH	Data	Excluded (2)	Excluded (2)
EVDO Rel. 0 (RTAP)	Data	Excluded (2)	Excluded (2)
EVDO Rel. A (RETAP)	Data	Tested (3)	Tested (1)

Notes:

- (1)RC3 SO55 is tested as the default mode for Head SAR measurements, EVDO Rel. A (RETAP) is tested as the default mode for Body SAR measurements, and EVDO Rel. A (RETAP) is tested as the default mode in the Mobile Hotspot SAR exposure condition as a EVDO Data Device.
- (2) Per FCC KDB 941225 D01, the noted modes were excluded from testing as each exhibited measured output power not higher than that found in the default modes for each exposure condition.
- (3) EVDO Rel. A (RETAP), as a data-only mode, was tested against the Head to support evaluation for 3rd Party VOIP applications potentially installed and used by the end-user.

Device Test Setup

For CDMA modes, the test sample was operated using transmission to a base station simulator. The base station simulator was set up for the proper channel and transmit mode of operation on the phone's uplink. The transmitter power level and power control were set to "All Up Bits" for RC3 operation, and "Alternating Bits" for TDSO SO32 operation.

Conducted Power Measurements

Power measurements were executed per FCC KDB 941225 D01:

Measured Conducted Power (dBm) for CDMA modes								
		Loor	back	Data		EVDO	EVDO	
		Loop	DUACK			Rel. 0	Rel. A	
Band	Channel	RC3	RC1	TDSO SO32	TDSO SO32	RTAP	Subtype 2	
Dallu	Chamie	SO55	SO55	FCH	FCH+SCH	153.6k	RETAP	
	1013	24.13	24.15	24.14	24.12	24.13	24.11	
CDMA 800 BC0	384	24.14	24.16	24.17	24.16	24.16	24.16	
	777	24.09	24.12	24.12	24.12	24.11	24.10	
CDMA 820 BC10	564	24.15	23.99	23.99	24.02	23.94	23.92	
	25	24.12	24.13	24.13	24.14	24.15	24.09	
CDMA 1900 BC1	600	24.16	24.17	24.17	24.16	24.18	24.10	
	1175	24.01	24.00	23.99	23.97	23.98	23.92	

2.4.2 Wi-Fi 802.11

Technical Description

The phone under test contains a Wi-Fi 802.11b/g/n transmitter capable of data transmission in the 2.45 GHz ISM band

Exposure Conditions and Test Exclusions

Mode	Type	Head-Adjacent	Body-Worn Accessory	Mobile Hotspot
802.11b	Data	Tested (1)	Tested (1)	Tested (1)
802.11g / 802.11n	Data	Excluded (1)	Excluded (1)	Excluded (1)

Notes:

(1) Per FCC KDB 248227 D01 and the April 2010 FCC/TCB Meeting Notes, the highest average output power channel for the lowest data rate for 802.11b was selected for SAR evaluation. Other 802.11 modes (including 802.11g and 802.11n) were not investigated because the average output powers over all channels and data rates were not more than ½ dB higher than the tested channel in the lowest data rate of the 802.11b mode. The **bolded** data rate and channel in the following conducted power tables was used for SAR testing.

Device Test Setup

For Wi-Fi 802.11 modes, the test sample was operated using manufacturer test mode software per guidance provided in FCC KDB 248227. The test software was set up for the proper channel, transmitter power level and transmit modes of operation on the phone's uplink.

Conducted Power Measurements

Band	Channel	_	Average Conducted Power (dBm) for 802.11b Mode Data Rates				
		1 Mbps	2 Mbps	5.5 Mbps	11 Mbps		
2450	1	18.17	18.20	18.23	18.21		
2450 MHz	6	18.05	18.04	18.03	18.03		
IVIIIZ	11	17.87	17.89	17.86	17.86		

Band	Channel		Average (Conducted I	Power (dBn	n) for 802.1	l 1g Mode I	Data Rates	
Danu	Chamiei	6 Mbps	9 Mbps	12 Mbps	18 Mbps	24 Mbps	36 Mbps	48 Mbps	54 Mbps
	1	16.34	16.34	16.34	16.34	15.38	15.35	15.37	14.39
2450 MHz	6	16.21	16.22	16.24	16.25	15.23	15.18	15.20	14.22
	11	16.01	16.07	16.03	16.04	14.93	14.92	14.89	13.82

Band	Channel	Average Conducted Power (dBm) for 802.11n Mode Data Rates (20 MHz Channel, 800 ns Guard Interval)								
		6.5 Mbps	13 Mbps	19.5 Mbps	26 Mbps	39 Mbps	52 Mbps	58.5 Mbps	65 Mbps	
	1	16.33	16.36	16.34	15.36	15.36	14.39	13.37	12.43	
2450 MHz	6	16.22	16.24	16.22	15.29	15.27	14.26	13.30	12.25	
	11	16.07	16.09	16.09	15.01	14.98	13.87	12.87	11.81	

Band	Channel		Average Conducted Power (dBm) for 802.11n Mode Data Rates (20 MHz Channel, 400 ns Guard Interval)									
		7.2 Mbps	65 Mbps	72.2 Mbps								
	1	16.33	16.35	16.38	15.41	15.41	14.40	13.43	12.42			
2450 MHz	6	16.37	16.22	16.26	15.23	15.26	14.27	13.31	12.27			
	11	16.03	16.03	16.04	14.96	14.94	13.88	12.93	11.82			

2.4.3 Bluetooth

Technical Description

The phone under test contains a Bluetooth transmitter capable of data transmission in the 2.45 GHz ISM band.

Exposure Conditions and Test Exclusions

Mode	Type	Head-Adjacent	Body-Worn Accessory	Mobile Hotspot
All Modes	Data	Excluded (2)	Excluded (1)(2)	Excluded (1)(2)

FCC ID: IHDT56PF3

Notes:

(1) Per FCC KDB 447498 D01, standalone SAR measurements of the Bluetooth transmitter in this phone were not required based on the maximum conducted power and the Bluetooth antenna-to-user separation distance. As detailed by the KDB publication, the SAR exclusion threshold for distances < 50 mm is defined by the following equation:

$$\frac{[maximum\ power\ of\ channel, including\ tune-up\ tolerance]_{(mW)}}{[minimum\ test\ separation\ distance]_{(mm)}} \times \sqrt{f_{(GHz)}} \leq 3.0$$

Based on the maximum conducted power of Bluetooth and the most conservative antenna-to-user separation distance used in testing, standalone SAR measurements for Bluetooth were not required.

$$\frac{[12.1]_{(mW)}}{[10]_{(mm)}} \times \sqrt{2.44_{(GHz)}} = \mathbf{1.9} \le 3.0$$

Note that simultaneous SAR evaluations include estimations for Bluetooth SAR, as detailed in section 4.6 below.

(2) Per IC RSS-102 section 2.5.1, routine SAR evaluation of the Bluetooth transmitter in this phone was not required as the maximum conducted power of this transmitter is below 20 mW for a device operating between 2.2 GHz and 3 GHz.

Conducted Power Measurements

Frequency [MHz]	Data Rate [Mbps]	Channel Number	Conducted Power [mW]
2402	1.0	0	11.566
2441	1.0	39	10.782
2480	1.0	78	10.046
2402	2.0	0	11.717
2441	2.0	39	10.937
2480	2.0	78	10.228
2402	3.0	0	12.112
2441	3.0	39	11.306
2480	3.0	78	10.524

Frequency [MHz]	Mode	Channel Number	Conducted Power [mW]
2402	LE	0	1.613
2441	LE	39	1.535
2480	LE	78	1.364

2.5 Transmitter power reduction conditions and modes

The phone utilizes reduced limits for the maximum transmit power for its transmitters when operating under the following noted conditions to ensure SAR exposure compliance is maintained. Tables of the reduced limits used for testing are given below. A complete description of this functionality is provided in the "Operational Description" contained within Exhibit 12. The implementation to trigger the reduction in power requires the device to be radiating, which prevents conducted power measurements of this functionality without modification to the unit.

FCC ID: IHDT56PF3

While operating in body-adjacent exposure configurations during a mobile hotspot session, a reduced maximum power limit is enforced for the GSM and WCDMA modes. Tables of the reduced limits used for testing are given below.

Mode(s) of Operation	CDMA 800 BC0	CDMA 820 BC10	CDMA 1900 BC1
Channel Ranges	1013 - 777	476 - 684	25 - 1175
Maximum Output Power Setting (dBm)	25.0 dBm	25.0 dBm	25.0 dBm
Reduced Maximum Output Power Setting (dBm)	21.0 dBm	21.0 dBm	18.0 dBm

See section 6.4 for tables detailing the complete interoperation of this power limit reduction schema.

2.6 Accessories for the Device Under Test

2.6.1 Batteries

The phone tested was an internal battery, part number: Model SNN5932A

This battery was used to do all of the SAR testing. The phone was placed in the SAR measurement system with a fully charged battery.

2.6.2 Body-Worn Carry Accessories

There are no body-worn accessories available for this phone at the time of testing thus the device was tested per the Supplement C testing guidelines for devices that do not have body-worn accessories. A separation distance of 15 mm between the device and the flat phantom was used for testing body-worn accessory SAR. The chosen separation distance of 15 mm is utilized in order to support any case or holder accessories offered or to be offered by Motorola for this product. The device was tested with the front and back of the device facing the phantom. Both sides of the device were tested for Body SAR for the purpose of including the SAR evaluation for body-worn accessories that support the device with either side facing the user.

3 Test Equipment Used

3.1 Dosimetric Measurement System

The Motorola Mobility ADR Test Services Laboratory utilizes a DASY52TM Dosimetric Assessment System manufactured by Schmid & Partner Engineering AG (SPEAGTM), of Zurich Switzerland. All SAR measurements are taken within a shielded enclosure. The overall 10 g RSS uncertainty of the measurement system is $\pm 11\%$ (K=1) with an expanded uncertainty of $\pm 22\%$ (K=2). The overall 1 g RSS uncertainty of the measurement system is $\pm 11\%$ (K=1) with an expanded uncertainty of $\pm 22\%$ (K=2). The measurement uncertainty budget is given in Appendix 5. Per IEEE 1528, this uncertainty budget is applicable to the SAR range of 0.4 W/kg to 10 W/kg.

FCC ID: IHDT56PF3

The list of calibrated equipment used for the measurements is shown in the following table. All equipment was brought into service and used only during its noted calibration period, except where indicated. Equipment without a calibration period was in service for the entirety of the test period.

Description	Serial Number	Cal Date	Cal Due Date	Service Notes
DASY™ DAE V1	661	May-21-2013	May-21-2014	Measurement System 1
E-Field Probe ES3DV3	3180	Feb-11-2013	Feb-11-2014	Measurement System 1
Twin SAM Phantom V4.0	TP-1156			Measurement System 1
Twin SAM Phantom V4.0	TP-1319			Measurement System 1
MFP V5.1 C Triple Modular Flat Phantom	1101			Measurement System 1
DASY™ DAE V1	703	Sep-11-2012	Sep-11-2013	Measurement System 4
E-Field Probe ES3DV3	3037	Aug 24-2012	Aug 24-2013	Measurement System 4
Twin SAM Phantom V4.0	TP-1132			Measurement System 4
MFP V5.1 C Triple Modular Flat Phantom	1104			Measurement System 4
DASY™ DAE V1	784	Mar-6-2013	Mar-6-2014	Measurement System 3
E-Field Probe EX3DV4	3730	Aug-24-2012	Aug-24-2013	Measurement System 3
Twin SAM Phantom V4.0	TP-1106			Measurement System 3
Twin SAM Phantom V4.0	TP-1153			Measurement System 3
MFP V5.1 C Triple Modular Flat Phantom	1103			Measurement System 3
Dipole Validation Kit, DV835V2	422TR	Mar-18-2011	Mar-18-2012	Calibration extension, see note.
Dipole Validation Kit, DV835V2	423TR	Sep-12-2012	Sep-12-2013	Calibration extension, see note.
Dipole Validation Kit, DV1800V2	2D191	Jan-5-2012	Jan-5-2013	Calibration extension, see note.
Dipole Validation Kit, DV1800V2	259TR	Oct-20-2011	Oct-20-2012	Calibration extension, see note.
Dipole Validation Kit, DV2450V2	740	Feb-7-2012	Feb-7-2013	Calibration extension, see note.

Note: Per FCC KDB 865664 D01 v01r01, Section 3.2.2, evaluation for the extension of the dipole calibration was carried out. Results are provided in Appendix 7 in addition to the original calibration certificate.

3.2 Test System Validations

Per [5] and FCC KDB 865664 D01, each SAR system (including probes, system components, and software) used for device testing was validated against its performance specifications prior to deployment. These validation measurements are taken to ensure the accuracy of device test results. Validation measurements utilize reference dipoles and the required tissue-equivalent media, and include assessments of system sensitivity, probe linearity, and probe isotropy. Per FCC KDB 865664 D02, a tabulated summary of the validation results for each SAR system used in testing is given below.

]	DASY52	^{гм} Meası	irement	System 1	<u>1</u>				
					System \	Validatio	n Measu	rements	;				
			C	W Validatio	ons		Modulated Validations				s		
Probe	Tissue	f			lectric Parame	ters			Mod.	Dielectric I		Duty Factor	High PAR
11000	Type	(MHz)	Date	Measured σ (S/m)	Measured \mathcal{E}_r	Result	Date	Type	Measured σ (S/m)	Measured \mathcal{E}_r	Linearity Results	Linearity Results	
3180	Head	750	21-Feb-13	0.8599	41.52	pass							
3180	Head	835	21-Feb-13	0.941	41.98	pass	3/7/2	013	GMSK	0.912	39.6	PASS	N/A
3180	Head	1800	21-Feb-13	1.37	39.23	pass	3/7/2	013	GMSK	1.384	38.24	PASS	N/A
3180	Head	1900	21-Feb-13	1.476	38.79	pass							
3180	Head	2450	25-Feb-13	1.75	36.59	pass	3/14/2	2013	OFDM	1.807	37.8	N/A	PASS
3180	Head	2600	25-Feb-13	1.897	36.17	pass							
3180	Body	750	21-Feb-13	0.9525	54.36	pass							
3180	Body	835	21-Feb-13	1	55.04	pass	3/7/2	013	GMSK	0.996	54.068	PASS	N/A
3180	Body	1800	21-Feb-13	1.445	49.43	pass	3/7/2	013	GMSK	1.582	49.18	PASS	N/A
3180	Body	1900	21-Feb-13	1.561	49.05	pass							
3180	Body	2450	25-Feb-13	1.926	49.22	pass	3/12/2	2013	OFDM	1.999	50.5	N/A	PASS
3180	Body	2600	25-Feb-13	2.097	48.83	pass							

				-			urement on Measu		_				
			C	W Validation						Modulated Validations			
Probe	Tissue	f		Diel	ectric Parame	ters			M-J	Dielectric l	Parameters		High
rrobe	Type	(MHz)	Date	Measured σ (S/m)	Measured \mathcal{E}_r	Result	Date 3/12/2013	Mod. Type	Measured σ (S/m)	Measured \mathcal{E}_r	Factor Linearity Results	PAR Linearity Results	
3730	Head	2450	1/16/2013	1.812	39.28	PASS	3/12/	2013	OFDM	1.795	37.65	N/A	PASS
3730	Head	2600	1/16/2013	1.972	38.77	PASS							
3730	Head	5200	1/15/2013	4.547	35.00	PASS	3/18/	2013	OFDM	4.562	35.362	N/A	PASS
3730	Head	5300	1/15/2013	4.663	34.79	PASS	3/18/	2013	OFDM	4.679	35.123	N/A	PASS
3730	Head	5600	1/15/2013	4.981	34.10	PASS	3/18/	2013	OFDM	5.014	34.448	N/A	PASS
3730	Head	5800	1/14/2013	5.204	33.67	PASS	3/19/	2013	OFDM	5.243	34.016	N/A	PASS
3730	Body	2450	1/16/2013	1.992	50.89	PASS	3/12/	2013	OFDM	1.999	50.5	N/A	PASS
3730	Body	2600	1/16/2013	2.179	50.40	PASS							
3730	Body	5200	1/14/2013	5.204	46.23	PASS	3/18/	2013	OFDM	5.233	47.237	N/A	PASS
3730	Body	5300	1/14/2013	5.353	46.00	PASS	3/18/	2013	OFDM	5.386	46.995	N/A	PASS
3730	Body	5600	1/14/2013	5.766	45.24	PASS	3/18/	2013	OFDM	5.815	46.248	N/A	PASS
3730	Body	5800	1/14/2013	6.061	44.77	PASS	3/19/	2013	OFDM	6.114	45.753	N/A	PASS

					DASY52	TM Measu	rement System	4						
				_	System '	Validatio	n Measurement	s s						
			C	W Validatio	ons			Modulated				Validations		
Probe	Tissue	f			lectric Parame	eters		Mod.		Parameters	Duty Factor	High PAR		
11000	Type	(MHz)	Date	Measured σ (S/m)	Measured \mathcal{E}_r	Result	Date	Type	Measured σ (S/m)	Measured \mathcal{E}_r	Linearity Results	Linearity Results		
3037	Head	750	8-Jan-13	0.861	43.20	pass								
3037	Head	835	7-Jan-13	0.936	42.10	pass	1/10/2013	GMSK	0.936	41.632	PASS	N/A		
3037	Head	1800	7-Jan-13	1.352	38.58	pass	1/8/2013	GMSK	1.345	38.568	PASS	N/A		
3037	Head	1900	7-Jan-13	1.459	38.05	pass								
3037	Head	2450	8-Jan-13	1.822	37.87	pass	3/12/2013	OFDM	1.795	37.65	N/A	PASS		
3037	Head	2600	8-Jan-13	1.974	37.32	pass								
3037	Body	750	8-Jan-13	0.911	54.83	pass								
3037	Body	835	7-Jan-13	0.997	53.94	pass	1/8/2013	GMSK	1.00	54.83	PASS	N/A		
3037	Body	1800	7-Jan-13	1.443	52.70	pass	1/8/2013	GMSK	1.43	52.459	PASS	N/A		
3037	Body	1900	7-Jan-13	1.567	52.25	pass								
3037	Body	2450	8-Jan-13	1.999	51.31	pass	3/12/2013	OFDM	1.999	50.5	N/A	PASS		
3037	Body	2600	8-Jan-13	2.177	50.77	pass								

3.3 Test System Verifications (System Performance Checks)

System accuracy verifications of the DASY52TM were performed using the measurement equipment listed in Section 3.1. The daily system performance check occurs within the flat section of the SAM phantom.

A SAR measurement was performed to verify the measured SAR was within $\pm 10\%$ from the target SAR indicated in Appendix 6. These frequencies are within $\pm 10\%$ of the compliance test mid-band frequency as required in [1] and [5]. The test was conducted within 24 hours prior to the measurement of the phone. Recommended limits for permittivity and conductivity, specified in [5], are shown in the table below. The obtained results from the system accuracy verification are also displayed in the table below. SAR values are normalized to 1 W forward power delivered to the dipole. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values. The distributions of SAR compare well with those of the reference measurements (see Appendix 1). For frequencies below 3 GHz, the simulated tissue depth was verified to be $15.0 \text{ cm} \pm 0.5 \text{ cm}$. Z-axis scans showing the SAR penetration are also included in Appendix 1.

	System	_		TM Meast			_	ements				
f	f Description Probe Dipole SAR (Wkg), SAR (W											
(MHz)	MHz) Description		Dipole	SAR (W/kg), 1 gram	SAR (W/kg), 1 gram	Measured σ (S/m)	Deviation σ (S/m)	Measured	Deviation	Temp (°C)	Temp (°C)	
	Measured, Aug-7-2013	3180	422TR	1.82	9.10	0.91	1.2%	ε _r 39.8	-4.1%	20.3	21.0	
835	Recommended Limits	3180	422TR	1.02	9.33	0.90	±10%	41.5	±10%	18-25	18-25	
1000	Measured, Aug-7-2013	3180	259TR	7.40	37.00	1.34	-4.3%	38.4	-4.0%	20.5	20.6	
1800	Recommended Limits	3180	259TR		38.10	1.40	±10%	40.0	±10%	18-25	18-25	

]	DASY52	TM Measu	urement	System 3	<u>3</u>				
	System Verification Measurements for Head SAR Measurements										
c	Measured Normalized Dielectric Parameters										
J	Description	Probe I	Dipole	SAR (W/kg),	SAR (W/kg),	Measured	Deviation	Measured	Deviation	Ambient Temp (°C)	Tissue
(MHz)			•	1 gram	1 gram	σ(S/m)	σ (S/m)	$\mathbf{\epsilon}_r$	$\mathbf{\epsilon}_r$	Temp (C)	Temp (°C)
2450	Measured, Jul-27-2013	3730	740	5.26	52.60	1.76	-2.2%	36.9	-5.9%	20.4	20.6
2450	Recommended Limits	3730	740		52.30	1.80	±10%	39.2	±10%	18-25	18-25

]	DASY52	TM Measu	ırement	System 4	<u>1</u>						
System Verification Measurements for Head SAR Measurements													
C	Measured Normalized Dielectric Parameters												
J	Description	Probe	Dipole	SAR (W/kg),	SAR (W/kg),	Measured	Deviation	Measured	Deviation	Ambient Temp (°C)	Tissue Temp (°C)		
(MHz)	•		•	1 gram	1 gram	σ (S/m)	σ (S/m)	$\mathbf{\epsilon}_r$	$\mathbf{\epsilon}_r$	remp (C)	Temp (C)		
835	Measured, Aug-12-2013	3037	423TR	1.87	9.35	0.92	2.2%	40.1	-3.4%	20.1	21.3		
033	Recommended Limits	3037	423TR		9.22	0.90	±10%	41.5	±10%	18-25	18-25		

	System	_		TM Measureme		_	_	ements						
£	Measured Normalized Dielectric Parameters													
J	Description	Probe	Dipole	SAR (W/kg),	SAR (W/kg),	Measured	Deviation	Measured	Deviation	Ambient Temp (°C)	Tissue Temp (°C)			
(MHz)	•			1 gram	1 gram	σ (S/m)	σ (S/m)	$\mathbf{\epsilon}_r$	ϵ_r	Temp (C)	remp (C)			
835	Measured, Aug-6-2013	3180	422TR	1.92	9.60	1.00	3.1%	54.0	-2.0%	20.5	21.0			
033	Recommended Limits	3180	422TR		9.77	0.97	±10%	55.2	±10%	18-25	18-25			
1800	Measured, Aug-7-2013	3180	259TR	7.37	36.85	1.45	-4.6%	52.7	-1.1%	20.1	20.6			
1000	Recommended Limits	3180	259TR		39.10	1.52	±10%	53.3	±10%	18-25	18-25			

]	DASY52	TM Measu	urement	System 3	<u>3</u>						
System Verification Measurements for Body SAR Measurements													
£	f Measured Normalized Dielectric Parameters Applicat Tienus												
J	Description	Probe	Dipole	SAR (W/kg),	SAR (W/kg),	Measured	Deviation	Measured	Deviation	Ambient Temp (°C)	Tissue		
(MHz)	•		•	1 gram	1 gram	σ (S/m)	σ (S/m)	$\mathbf{\epsilon}_r$	$\mathbf{\epsilon}_r$	Temp (C)	Temp (°C)		
2450	Measured, Jul-26-2013	3730	740	5.02	50.20	1.95	0.0%	49.9	-5.3%	20.4	20.8		
2450	Recommended Limits	3730	740		49.50	1.95	±10%	52.7	±10%	18-25	18-25		

	System	-		TM Measuremen				ements						
f	f Measured Normalized Dielectric Parameters Ambient Tissue													
(MHz)	Description	Probe	Dipole	SAR (W/kg), 1 gram	SAR (W/kg), 1 gram	Measured	Deviation	Measured	Deviation	Temp (°C)	Temp (°C)			
(IVIIIE)				Ü	Ü	σ(S/m)	σ (S/m)	$\mathbf{\epsilon}_r$	$\mathbf{\epsilon}_r$		7 1 1			
835	Measured, Aug-12-2013	3037	423TR	1.92	9.60	1.00	3.1%	54.3	-1.6%	20.2	20.7			
033	Recommended Limits	3037	423TR		9.31	0.97	±10%	55.2	±10%	18-25	18-25			
1800	Measured, Aug-13-2013	3037	2d191	7.65	38.25	1.43	-5.9%	52.3	-1.9%	20.3	20.7			
1000	Recommended Limits	3037	2d191		37.80	1.52	±10%	53.3	±10%	18-25	18-25			

3.4 Simulated Tissue Dielectric Properties

Validation, System Performance Check, and device SAR measurements are performed using the DASY52 $^{\text{\tiny M}}$ system along with liquids specified to simulate head and body tissues subjected to electromagnetic exposure. The list of ingredients and the percent composition of the tissue-simulating liquids used for testing are indicated in the following table.

Ingredient	782 / 835 / 900 MHz Head	782 / 835 / 900 MHz Body	1800 MHz / 1900 MHz Head	1800 MHz / 1900 MHz Body	2450 MHz Head	2450 MHz Body	5 GHz Head	5 GHz Body
Sugar	57.0	44.9		-				
DGBE			47.0	30.8	6.89	8.0		
Water	40.45	53.06	52.62	68.8	57.95	71.8	65.52	78.66
Salt	1.45	0.94	0.38	0.4	0.15	0.2		
HEC	1.0	1.0						
Bact.	0.1	0.1						
Triton X-100					35.02	20.0	17.24	10.67
Di(ethylene glycol) Hexyl Ether							17.24	10.67

Prior to conducting SAR measurements, the relative permittivity, ε_r , and conductivity, σ , of the tissue-simulating liquids were measured with a SPEAGTM DAK-3.5 Dielectric Assessment Kit across the frequency ranges of interest. These values, along with recommended targets, percent deviation from the targets, and the temperature of the simulated tissue are shown in the tables below.

For SAR measurements, the dielectric measurements from the DAK-3.5 are imported into the DASY software which performs interpolation to determine the dielectric parameters at the specific frequencies used for device testing. The DASY software also implements SAR error compensation algorithms to automatically correct the measured SAR results for deviations between the measured and target dielectric parameters. This error compensation has been verified by the lab to meet the requirements in FCC KDB 865664 D01. Therefore, where frequencies of test fall within ± 50 MHz of a calibration point of the probe used for test, the acceptable range of tissue variation is $\pm 10\%$ per FCC KDB 865664 D01 section 2.4. For test frequencies outside of ± 50 MHz of a probe calibration point, the range of tissue variation is reduced per section 2.6 part 2 of the same KDB, to ensure that tissues used in testing are within the required specification regardless of device performance. A mass density of $\rho = 1$ g /_{cm3} was entered into the system for all cases. It can be seen that the measured parameters are within tolerance of the recommended targets specified in [1] and [5].

			Head Sim	ulated-Tissue Dielect	ric Parameters						
	Date	f	Target	Target	Measured	Deviation	Measured	Deviation	Temp		
Index	Measured	(MHz)	σ	$\mathbf{\epsilon}_r$	σ	σ	ϵ_r	$\mathbf{\epsilon}_r$	(°C)		
	Wicusarea	(IVIIII)	(S/m)		(S/m)	(%)		(%)	(0)		
		820.0	0.90 ±10%	41.58 ±10%	0.90	0.2%	40.0	-3.8%			
	Aug-7-2013	835.0	$0.90 \pm 10\%$	41.50 ±10%	0.91	1.2%	39.8	-4.1%	21.0		
835		849.0	0.92 ±10%	41.50 ±10%	0.93	1.7%	39.6	-4.5%			
833		820.0	$0.90\pm10\%$	41.58 ±10%	0.88	-2.1%	39.3	-5.5%			
	Aug-12-2013	Aug-12-2013	Aug-12-2013	835.0	0.90 ±10%	41.50 ±10%	0.90	0.0%	39.1	-5.8%	21.3
		849.0	0.92 ±10%	41.50 ±10%	0.91	-0.6%	39.0	-6.2%			
		1850.0	1.40 ±10%	40.00 ±10%	1.40	0.0%	38.2	-4.7%			
1880	Aug-07-2013	1880.0	1.40 -5%/+10%	40.00 -10%/+5%	1.43	2.2%	38.0	-5.0%	20.6		
		1915.0	1.40 -5%/+10%	40.00 -10%/+5%	1.46	4.3%	37.9	-5.4%			
		2412.0	1.77 ±10%	39.27 ±10%	1.72	-2.7%	36.9	-6.0%			
2450	Jul-27-2013	2450.0	1.80 ±10%	39.20 ±10%	1.76	-2.3%	36.9	-6.0%	20.6		
		2462.0	1.81 ±10%	39.18 ±10%	1.77	-2.4%	36.8	-6.1%			

	Body Simulated-Tissue Dielectric Parameters Target Target Measured Deviation Measured Deviation														
	Date	f	Target	Target	Measured	Deviation	Measured	Deviation	Temp						
Index	Measured	(MHz)	σ	$\mathbf{\epsilon}_r$	σ	σ	$\mathbf{\epsilon}_r$	$\mathbf{\epsilon}_r$	(°C)						
	Measureu	(WIIIZ)	(S/m)		(S/m)	(%)		(%)	(C)						
		820.0	$0.97 \pm 10\%$	55.26 ±10%	0.98	1.2%	54.3	-1.8%]						
	Aug-7-2013	835.0	0.97 ±10%	55.20 ±10%	1.00	3.1%	54.1	-2.0%	21.0						
835		849.0	0.99 ±10%	55.16 ±10%	1.01	2.4%	54.0	-2.2%							
833		820.0	0.97 ±10%	55.26 ±10%	0.98	1.2%	54.1	-2.2%							
	Aug-13-2013	835.0	0.97 ±10%	55.20 ±10%	0.99	2.1%	53.9	-2.3%	20.7						
	714g 13 2013	849.0	0.99 ±10%	55.16 ±10%	1.01	2.4%	53.8	-2.5%							
		1850.0	1.52 ±10%	53.30 ±10%	1.51	-0.7%	52.1	-2.3%							
	Aug-7-2013	1880.0	1.52 -5%/+10%	53.30 -10%/+5%	1.55	2.0%	52.0	-2.5%	20.6						
1880		1915.0	1.52 -5%/+10%	53.30 -10%/+5%	1.59	4.7%	51.9	-2.8%							
1000		1850.0	1.52 ±10%	53.30 ±10%	1.49	-2.0%	52.1	-2.2%							
	Aug-13-2013	1880.0	1.52 -5%/+10%	53.30 -10%/+5%	1.53	0.7%	52.1	-2.4%	20.7						
		1915.0	1.52 -5%/+10%	53.30 -10%/+5%	1.57	3.3%	51.9	-2.6%							
		2412.0	1.91 ±10%	52.75 ±10%	1.91	-0.3%	50.0	-5.3%							
2450	Jul-26-2013	2450.0	1.95 ±10%	52.70 ±10%	1.96	0.6%	49.9	-5.4%	20.8						
		2462.0	1.97 ±10%	52.68 ±10%	1.97	0.2%	49.9	-5.4%							

4 Test Setup Information, SAR Measurement Results, and Analysis

4.1 Overview of Test Setup and Results

The phone was tested in the exposure configurations stipulated in [1], [5], [9], and per FCC KDB 941225 D06 for mobile hotspot operation. The phone was positioned into these configurations using the device holder supplied with the DASY52TM SAR measurement system. The default settings for the SAR scans are set in accordance with FCC KDB 865664 D01 for all area scan resolutions, zoom scan resolutions and volumes, and probe positioning. Please refer to the DASY52TM manual for additional information on SAR scanning procedures and algorithms used.

FCC ID: IHDT56PF3

The SAR measurements were performed using the SAM and Flat phantoms listed in section 3.1. The same phantoms and simulated tissues were used for the system performance checks and the device SAR measurements. Consequently the Z-axis scans included in Appendix 1 are applicable for verification of the required simulated tissue depths of 15.0 cm \pm 0.5 cm for frequencies less than 3 GHz, or 10.0 cm \pm 0.5 cm for frequencies greater than 3 GHz.

The SAR results shown in following tables are maximum SAR values averaged over 1 gram of phantom tissue, to demonstrate compliance to [3] and also over 10 grams of phantom tissue, to demonstrate compliance to [6]. Also shown are the maximum device power, measured device power, temperature of the simulated tissue after the test, the measured drift and the scaled SAR. The exact method of scaling is:

Scaled SAR =
$$(Measured\ SAR) * 10^{\left(\frac{(Maximum\ Power) - (Measured\ Power)}{10}\right)} * 10^{\left(\frac{-Drift}{10}\right)}$$

The SAR reported at the end of the measurement process by the DASY52™ measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test. Note that measured SAR is scaled only in the manner which results in a more conservative scaled value, i.e. to a higher SAR value as a consequence of measured power being below the maximum allowed power, or for negative drift values.

Per FCC KDB 447498 D01, area-scan based 1 g SAR estimation was used for initial testing in all combinations of device modes and exposure conditions. The highest SAR measurements for each combination of device mode and exposure condition, and all conditions where the area scan estimation reported values greater than 1.2 $^{W}/_{kg}$, were further evaluated with a zoom scan. When operating conditions for the SAR system verifications did not demonstrate that the verification area scan 1 g SAR estimation resulted in values within 3% of zoom scan 1 g SAR, zoom scans were executed for all SAR tests.

The test conditions that produced the highest SAR values for each combination of DUT mode and exposure condition are indicated as **bold** numbers in the following tables. Plots of these tests are included in Appendices 2 through 4.

4.2 Head-Adjacent Exposure Results

	Left Cheek-Touch Position													
	Battery/		f	DUT	Power	Temp	Drift	10 g SA	R value	1 g SAl	R value			
Mode	Accessory	Channel	(MHz)	Maximum (dBm)	Measured (dBm)	(°C)	(dB)	Measured (W/kg)	Corrected (W/kg)	Measured (W/kg)	Corrected (W/kg)	Plot Page		
CDMA 800, RC3 SO55	SNN5932A	384	836.52	25.00	24.14	20.0	-0.20	0.317	0.40	0.408	0.52			
CDMA 820, RC3 SO55	SNN5932A	564	820.1	25.00	24.15	20.6	0.04	0.138	0.14	0.18	0.22			
CDMA 1900, RC3 SO55	SNN5932A	600	1880	25.00	24.16	20.5	0.05	0.378	0.46	0.638	0.77			
EV-DO 1900 Rev. 0	SNN5932A	600	1880	25.00	24.18	20.3	0.05	0.38	0.47	0.639	0.79			
802.11b, 1 Mbps	SNN5932A	1	2412		18.17	20.6	-0.33	0.0888	0.10	0.182	0.20			

Table 4-1: SAR measurement results in a head-adjacent position against the ICNIRP and ANSI SAR Limit.

Right Cheek-Touch Position													
	Battery/		f	DUT	Power	Temp	Drift	10 g SA	R value	1 g SA	R value		
Mode	Mode Accessory	Channel	(MHz)	Maximum (dBm)	Measured (dBm)	(°C)	(dB)	Measured (W/kg)	Corrected (W/kg)	Measured (W/kg)	Corrected (W/kg)	Plot Page	
CDMA 800, RC3 SO55	SNN5932A	384	836.52	25.00	24.13	21.0	0.05	0.327	0.40	0.428	0.52		
EV-DO 800 Rev. 0	SNN5932A	384	836.52	25.00	24.13	21.0	-0.02	0.292	0.36	0.378	0.46		
CDMA 820, RC3 SO55	SNN5932A	564	820.1	25.00	24.15	20.6	0.08	0.144	0.14	0.191	0.23		
EV-DO 820 Rev. 0	SNN5932A	564	820.1	25.00	23.92	20.6	-0.04	0.145	0.15	0.192	0.25		
CDMA 1900, RC3 SO55	SNN5932A	600	1880	25.00	24.16	20.5	0.01	0.183	0.22	0.301	0.37		
802.11b, 1 Mbps	SNN5932A	1	2412		18.17	20.6	0.06	0.139	0.14	0.289	0.29		

Table 4-2: SAR measurement results in a head-adjacent position against the ICNIRP and ANSI SAR Limit.

Left 15° Tilt Position													
	Battery/		f	DUT	Power	Temp	Drift	10 g SA	R value	1 g SAl	R value		
Mode	Accessory	Channel	(MHz)	Maximum (dBm)	Measured (dBm)	(°C)	(dB)	Measured (W/kg)	Corrected (W/kg)	Measured (W/kg)	Corrected (W/kg)	Plot Page	
CDMA 800, RC3 SO55	SNN5932A	384	836.52	25.00	24.14	21.0	0.05	0.21	0.26	0.275	0.34		
CDMA 820, RC3 SO55	SNN5932A	564	820.1	25.00	24.15	20.6	0.03	0.106	0.11	0.138	0.17		
CDMA 1900, RC3 SO55	SNN5932A	600	1880	25.00	24.16	20.5	0.0	0.128	0.15	0.223	0.27		
802.11b, 1 Mbps	SNN5932A	1	2412		18.17	20.6	-0.11	0.113	0.12	0.232	0.24		

Table 4-3: SAR measurement results in a head-adjacent position against the ICNIRP and ANSI SAR Limit.

	Right 15° Tilt Position													
Battery/ G														
Mode Accessory		Channel	(MHz)	Maximum (dBm)	Measured (dBm)	(°C)	(dB)	Measured (W/kg)	Corrected (W/kg)	Measured (W/kg)	Corrected (W/kg)	Plot Page		
CDMA 800, RC3 SO55	SNN5932A	384	836.52	25.00	24.14	21.0	-0.02	0.245	0.30	0.322	0.39			
CDMA 820, RC3 SO55	SNN5932A	564	820.1	25.00	24.15	20.6	-0.02	0.101	0.10	0.132	0.16			
CDMA 1900, RC3 SO55	SNN5932A	600	1880	25.00	24.16	20.5	-0.02	0.125	0.15	0.214	0.26			
802.11b, 1 Mbps	SNN5932A	1	2412		18.17	20.6	-0.01	0.163	0.16	0.361	0.36			

Table 4-4: SAR measurement results in a head-adjacent position against the ICNIRP and ANSI SAR Limit.

4.3 Body-Worn Accessory Exposure Results

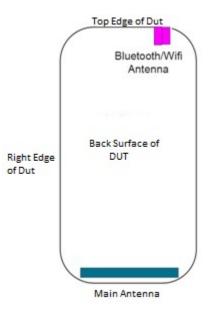

	Body-Worn Accessory Position, Front of Phone 15 mm from Phantom														
	Made Battery/ Channel f DUT Power Temp Drift 10 g SAR value 1 g SAR value														
Mode	Accessory	Channel	(MHz)	Maximum (dBm)	Measured (dBm)	(°C)	(dB)	Measured (W/kg)	Corrected (W/kg)	Measured (W/kg)	Corrected (W/kg)	Plot Page			
EV-DO 800 Rev. A	SNN5932A	384	836.52	25.00	24.16	21.2	0.0	0.50	0.61	0.649	0.79				
EV-DO 820 Rev. A	SNN5932A	564	820.1	25.00	23.92	20.6	-0.37	0.244	0.27	0.317	0.44				
EV-DO 1900 Rev. A	SNN5932A	600	1880	25.00	24.18	20.2	-0.1	0.298	0.38	0.528	0.66				
802.11b, 1 Mbps	SNN5932A	1	2412		18.17	19.8	-0.04	0.0766	0.08	0.137	0.14				

Table 4-5: SAR measurement results in a body-adjacent position against the ICNIRP and ANSI SAR Limit.

	Body-Worn Accessory Position, Back of Phone 15 mm from Phantom														
	Battery/		f	DUT	Power	Temp	Drift	10 g SA	R value	1 g SAl	R value				
Mode	Accessory	Channel	(MHz)	Maximum (dBm)	Measured (dBm)	(°C)	(dB)	Measured (W/kg)	Corrected (W/kg)	Measured (W/kg)	Corrected (W/kg)	Plot Page			
EV-DO 800 Rev. A	SNN5932A	1013	824.7	25.00	24.13	21.2	-0.02	0.461	0.57	0.61	0.75				
EV-DO 800 Rev. A	SNN5932A	384	836.52	25.00	24.16	21.2	-0.05	0.567	0.70	0.812	1.00				
EV-DO 800 Rev. A	SNN5932A	777	848.31	25.00	24.11	21.2	0.05	0.618	0.76	0.821	1.01				
EV-DO 820 Rev. A	SNN5932A	564	820.1	25.00	23.92	20.3	-0.07	0.317	0.32	0.418	0.54				
EV-DO 1900 Rev. A	SNN5932A	25	1851.25	25.00	24.15	20.2	-0.15	0.534	0.68	0.947	1.21				
EV-DO 1900 Rev. A	SNN5932A	600	1880.09	25.00	24.18	20.2	-0.11	0.50	0.63	0.885	1.12				
EV-DO 1900 Rev. A	SNN5932A	1175	1908.75	25.00	23.98	20.2	-0.14	0.527	0.70	0.935	1.24				
802.11b, 1 Mbps	SNN5932A	1	2412		18.17	19.8	0.32	0.133	0.13	0.243	0.24				

Table 4-6: SAR measurement results in a body-adjacent position against the ICNIRP and ANSI SAR Limit.

4.4 Mobile Hotspot Exposure Results

	Mobile I	Hotspot Sur	faces/Edge	es for SAR	testing							
Mode Front Back Left Right Top Bottom												
CDMA	Yes	Yes	Yes	Yes	No	Yes						
Wi-Fi	Wi-Fi Yes Yes Yes No Yes No											

		Mobile	Hotspot	Position,	Front of	Phone 1	10 mm fr	om Phai	ntom			
	Battery/		f	DUT	Power	Temp	Drift	10 g SA	R value	1 g SAl	R value	
Mode	Accessory	Channel	(MHz)	Maximum (dBm)	Measured (dBm)	(°C)	(dB)	Measured (W/kg)	Corrected (W/kg)	Measured (W/kg)	Corrected (W/kg)	Plot Page
EV-DO 800 Rev. A	SNN5932A	384	836.52	21.0	See Supplemental	20.5	0.02	0.231	0.23	0.326	0.33	
EV-DO 820 Rev. A	SNN5932A	564	820.1	21.0	See Supplemental	20.4	0.03	0.194	0.19	0.275	0.28	
EV-DO 1900 Rev. A	SNN5932A	600	1880	18.0	See Supplemental	20.3	-0.1	0.154	0.19	0.28	0.35	
802.11b, 1 Mbps	SNN5932A	1	2412		18.17	19.8	-0.03	0.126	0.13	0.236	0.24	

Table 4-7: SAR measurement results in a body-adjacent position against the ICNIRP and ANSI SAR Limit.

	Bo	dy-Wori	1 Accesso	ory Posit	ion, Bacl	s of Pho	ne 10 mn	n from P	hantom			
	Battery/	~ ·	f	DUT	Power	Temp	Drift	10 g SA	R value	1 g SAl	R value	
Mode	Accessory	Channel	(MHz)	Maximum (dBm)	Measured (dBm)	(°C)	(dB)	Measured (W/kg)	Corrected (W/kg)	Measured (W/kg)	Corrected (W/kg)	Plot Page
EV-DO 800 Rev. A	SNN5932A	384	836.52	21.0	See Supplemental	20.4	0.01	0.308	0.31	0.44	0.44	
EV-DO 820 Rev. A	SNN5932A	564	820.1	21.0	See Supplemental	20.5	-0.03	0.271	0.27	0.387	0.39	
EV-DO 1900 Rev. A	SNN5932A	600	1880	18.0	See Supplemental	20.2	-0.12	0.248	0.25	0.488	0.50	
802.11b, 1 Mbps	SNN5932A	1	2412		18.17	19.8	0.33	0.238	0.24	0.462	0.46	

Table 4-8: SAR measurement results in a body-adjacent position against the ICNIRP and ANSI SAR Limit.

	N	Iobile Ho	otspot Po	sition, L	eft Edge	of Phon	e 10 mm	from Ph	antom			
	Battery/		f	DUT	Power	Temp	Drift	10 g SA	R value	1 g SAl	R value	
Mode	Accessory	Channel	(MHz)	Maximum (dBm)	Measured (dBm)	(°C)	(dB)	Measured (W/kg)	Corrected (W/kg)	Measured (W/kg)	Corrected (W/kg)	Plot Page
EV-DO 800 Rev. A	SNN5932A	384	836.52	21.0	See Supplemental	20.4	0.05	0.201	0.20	0.297	0.30	
EV-DO 820 Rev. A	SNN5932A	564	820.1	21.0	See Supplemental	20.5	-0.06	0.166	0.17	0.247	0.25	
EV-DO 1900 Rev. A	SNN5932A	600	1880	18.0	See Supplemental	20.3	0.04	0.0435	0.04	0.0746	0.07	
802.11b, 1 Mbps	SNN5932A	1	2412		18.17	19.7	0.05	0.0389	0.04	0.0694	0.07	

Table 4-9: SAR measurement results in a body-adjacent position against the ICNIRP and ANSI SAR Limit.

	Body-	Worn A	ccessory	Position	, Right E	Edge of P	hone 10	mm from	n Phanto	m		
	Battery/	~ .	f	DUT	Power	Temp	Drift	10 g SA	R value	1 g SAl	R value	
Mode	Accessory	Channel	(MHz)	Maximum (dBm)	Measured (dBm)	(°C)	(dB)	Measured (W/kg)	Corrected (W/kg)	Measured (W/kg)	Corrected (W/kg)	Plot Page
EV-DO 800 Rev. A	SNN5932A	384	836.52	21.0	See Supplemental	20.5	0.00	0.236	0.24	0.352	0.35	
EV-DO 820 Rev. A	SNN5932A	564	820.1	21.0	See Supplemental	20.4	-0.01	0.16	0.16	0.236	0.24	
EV-DO 1900 Rev. A	SNN5932A	600	1880	18.0	See Supplemental	20.2	-0.13	0.00844	0.01	0.0146	0.02	

Table 4-10: SAR measurement results in a body-adjacent position against the ICNIRP and ANSI SAR Limit.

	Mobile Hotspot Position, Top Edge of Phone 10 mm from Phantom														
	Battery/ G J DUT Power Temp Drift 10 g SAR value 1 g SAR value														
Mode	Mode Battery/ Accessory Channel (MHz) Maximum Measured (dBm)														
802.11b, 1 Mbps	802.11b, 1 Mbps SNN5932A 1 2412 18.17 19.7 0.00 0.0765 0.08 0.147 0.15														

Table 4-11: SAR measurement results in a body-adjacent position against the ICNIRP and ANSI SAR Limit.

	Body-V	Worn Ac	cessory l	Position,	Bottom	Edge of	Phone 10) mm fro	m Phant	om		
	Battery/		f	DUT	Power	Temp	Drift	10 g SA	R value	1 g SA	R value	
Mode	Accessory	Channel	(MHz)	Maximum (dBm)	Measured (dBm)	(°C)	(dB)	Measured (W/kg)	Corrected (W/kg)	Measured (W/kg)	Corrected (W/kg)	Plot Page
EV-DO 800 Rev. A	SNN5932A	384	836.52	21.0	See Supplemental	20.5	0.07	0.0132	0.01	0.0211	0.02	
EV-DO 820 Rev. A	SNN5932A	564	820.1	21.0	See Supplemental	20.5	0.10	0.0118	0.01	0.0195	0.02	
EV-DO 1900 Rev. A	SNN5932A	600	1880	18.0	See Supplemental	20.3	-0.08	0.382	0.49	0.771	0.79	

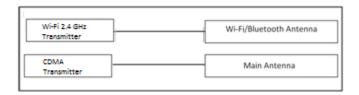
Table 4-12: SAR measurement results in a body-adjacent position against the ICNIRP and ANSI SAR Limit.

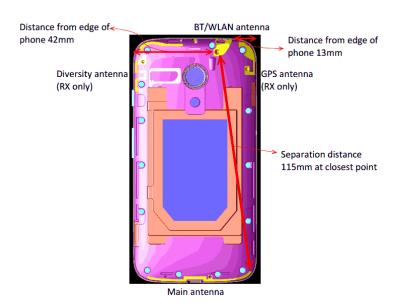
4.5 Measurement Variability Analysis

Per FCC KDB 865664 D01, SAR measurement variability was assessed for each frequency band as determined by the SAR probe calibration points and tissue-equivalent mediums used for the device measurements. These additional measurements are executed after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The phone was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for these measurements, to minimize any unexpected variations in the repeated results.

SAR measurement variability was assessed using the following procedures for each frequency band:

- 1. If the original highest measured SAR is < 0.8 $^{\rm W}/_{\rm kg}$, the following steps do not apply and no repeat measurements were executed.
- 2. If the original highest measured SAR is ≥ 0.8 W/_{kg}, that measurement was repeated once.
- 3. If the ratio of the largest to smallest SAR for the original and first repeated measurement was > 1.2, or if the original or first repeated measurement was ≥ 1.45 W/_{kg}, the measurement was repeated a second time.
- 4. If the ratio of the largest to smallest SAR for the original, first repeated, or second repeated measurement was > 1.2, and one of those measurements was ≥ 1.5 W/kg, the measurement was repeated a third time.


	SAF	R Measur	rement V	ariabilit	y Result	s				
Mode	Exposure Condition	Channel	f (MHz)	Original Measured SAR (W/kg)	1st Repeated SAR (W/kg)	Ratio	2nd Repeated SAR (W/kg)	Ratio	3rd Repeated SAR (W/kg)	Ratio
EV-DO 800 Rev. 0	Body-Worn Accessory Position, Back of Phone 15 mm from Phantom	777	848.31	0.821	0.783	0.95	N/A	N/A	N/A	N/A
EV-DO 1900 Rev. 0	Body-Worn Accessory Position, Back of Phone 15 mm from Phantom	1175	1908.75	0.935	1.02	1.09	N/A	N/A	N/A	N/A


Table 4-13: SAR measurement results for Variability Analysis

4.6 Description and Evaluation of Simultaneous Transmitters

Per FCC KDB 447498 D01, the necessity of simultaneous SAR testing was evaluated for the licensed and unlicensed transmitters of the phone under test.

By design some or all of the transmitters built into the phone may operate simultaneously, as described in the tables on the following pages. A simplified model of the transmit paths and a diagram of the separation distances between the transmitting antennas are provided below.

When standalone SAR test exclusion applies to a mode and antenna that transmits simultaneously with other modes and antennas, the KDB directs that the standalone SAR of that mode must be estimated for evaluation in the SAR summations.

For simultaneous SAR evaluation, Bluetooth SAR was estimated and included in all applicable SAR summations. For Body-Worn Accessory simultaneous SAR evaluation, the value used for inclusion in these summations was found to be:

$$\frac{[10]_{(mW)}}{[25]_{(mm)}} \times \frac{\sqrt{2.44_{(GHz)}}}{7.5} = 0.1 \, W / kg_{(estimated)}$$

For Mobile Hotspot simultaneous SAR evaluation, the value used for inclusion in these summations was found to be:

$$\frac{[10]_{(mW)}}{[10]_{(mm)}} \times \frac{\sqrt{2.44_{(GHz)}}}{7.5} = 0.2 \, W / kg_{(estimated)}$$

Note Bluetooth and Wi-Fi share the same transmit path, and cannot transmit simultaneously.

A description of the power conditions or reduced limits for simultaneous transmit modes is provided in section 2.5 and in expanded detail in Exhibit 12. The notation used in the "Exposure Condition" tables is as follows for the *PWR* column:

- *N/A* indicates the transmitter in this case has no reduced power limit enforced and may operate up to its maximum power, and no conditions are contingent on this transmitter's operation.
- Values other than "N/A" indicate an enforced power limit, at the value stated in dBm, on the noted transmitter
 for this simultaneous transmit case.

Per FCC KDB 447498 D01 section 4.3.2, when the sum of the 1 g SAR values of all simultaneously transmitting antennas and device modes in an exposure condition is within the SAR limit, that simultaneous transmission configuration may be excluded from SAR measurements. Simultaneous SAR summations for the head-adjacent, dispatch/push-to-talk, body-worn accessory, and mobile hotspot exposure conditions with the worst-case SAR transmitter configurations are presented in the following tables.

	Simultaneo		ead Exposure Condi ansmit Configuration										
Case	Transmitter #1		Transmitter #2		Notes								
Cusc	Transmitter Configuration PWR Transmitter Configuration PWR												
H1													
H2	EVDO 800 BC0	N/A	Wi-Fi 2.4 GHz	N/A	VoIP + Mobile Hotspot								
H3	CDMA 820 BC10	N/A	Wi-Fi 2.4 GHz	N/A	Voice + Background Data								
H4	EVDO 820 BC10	N/A	Wi-Fi 2.4 GHz	N/A	VoIP + Mobile Hotspot								
H5	CDMA 1900 BC1	N/A	Wi-Fi 2.4 GHz	N/A	Voice + Background Data								
Н6	H6 EVDO 1900 BC1 N/A Wi-Fi 2.4 GHz N/A VoIP + Mobile Hotspot												

		Transmitte	er Stand-Alon	e 1 g SAR Val	ues (W/kg)	1 g SA	R Summations	(W/kg)
						Case H1	Case H2	Case H3
	Band	CDMA 800	CDMA 820	CDMA 1900	Wi-Fi 2.4 GHz	CDMA 800	CDMA 820	CDMA 1900
Power	Condition or Reduced Limit	N/A	N/A	N/A	N/A	Wi-Fi 2.4 GHz	Wi-Fi 2.4 GHz	Wi-Fi 2.4 GHz
	Left Head Cheek	0.52	0.22	0.77	0.20	0.72	0.42	0.97
tion	Left Head 15° Tilt	0.34	0.17	0.27	0.24	0.58	0.41	0.51
Position	Right Head Cheek	0.52	0.23	0.37	0.29	0.81	0.52	0.66
	Right Head 15° Tilt	0.39	0.16	0.26	0.36	0.75	0.52	0.62

Table 4-14: SAR summations for simultaneous evaluation – CDMA in Head Positions

		Transmitte	r Stand-Alon	e 1 g SAR Val	lues (W/kg)	1 g SA	R Summations	(W/kg)
						Case H4	Case H5	Case H6
	Band	EVDO 800	EVDO 820	EVDO 1900	Wi-Fi 2.4 GHz	EVDO 800	EVDO 820	EVDO 1900
Power	Condition or Reduced Limit	N/A	N/A	N/A	N/A	Wi-Fi 2.4 GHz	Wi-Fi 2.4 GHz	Wi-Fi 2.4 GHz
	Left Head Cheek	N/A	N/A	0.79	0.20	N/A	N/A	0.99
tion	Left Head 15° Tilt	N/A	N/A	N/A	0.24	N/A	N/A	N/A
Position	Right Head Cheek	0.46	0.25	N/A	0.29	0.75	0.54	N/A
	Right Head 15° Tilt	N/A	N/A	N/A	0.36	N/A	N/A	N/A

Table 4-15: SAR summations for simultaneous evaluation – EVDO in Head Positions

S	Body-Worn Accessory Exposure Conditions; Simultaneous Transmit Configurations, including Power Conditions									
Case	Case Transmitter #1 Transmitter #2 Notes									
Cusc	Transmitter Configuration PWR Transmitter Configuration				Notes					
B1	CDMA 800 BC0	N/A	Wi-Fi 2.4 GHz	N/A	Voice + Background Data					
B2	CDMA 820 BC10	N/A	Wi-Fi 2.4 GHz	N/A	Voice + Background Data					
В3	CDMA 1900 BC1	N/A	Wi-Fi 2.4 GHz	N/A	Voice + Background Data					
B4	CDMA 800 BC0	Bluetooth	N/A	Voice + BT (Estimated)						
B5	CDMA 820 BC10	N/A	Voice + BT (Estimated)							
B6	CDMA 1900 BC1	N/A	Bluetooth	N/A	Voice + BT (Estimated)					

		Transmitte	r Stand-Alon	e 1 g SAR Val	lues (W/kg)	1 g SAR Summations (W/kg)			
				Case B1	Case B2	Case B3			
	Band	CDMA 800	CDMA 820	CDMA 1900	Wi-Fi 2.4 GHz	CDMA 800	CDMA 820	CDMA 1900	
Power	Condition or Reduced Limit	N/A	N/A	N/A	N/A	Wi-Fi 2.4 GHz	Wi-Fi 2.4 GHz	Wi-Fi 2.4 GHz	
tion	Body Worn, Front of Phone 15 mm from Phantom	0.79	0.44	0.66	0.14	0.93	0.58	0.80	
Position	Body Worn, Back of Phone 15 mm from Phantom	1.01	0.54	1.24	0.24	1.25	0.78	1.48	

Table 4-16: SAR summations for simultaneous evaluation - CDMA in Body-Worn Accessory Positions w/WiFi

		Transmitte	er Stand-Alon	e 1 g SAR Val	ues (W/kg)	1 g SAR Summations (W/kg)			
						Case B4	Case B5	Case B6	
	Band	CDMA 800	CDMA 820	CDMA 1900	Bluetooth	CDMA 800	CDMA 820	CDMA 1900	
Power	Condition or Reduced Limit	N/A	N/A	N/A	N/A	+ Bluetooth	+ Bluetooth	+ Bluetooth	
tion	Body Worn, Front of Phone 15 mm from Phantom	0.79	0.44	0.66	0.10	0.89	0.54	0.76	
Position	Body Worn, Back of Phone 15 mm from Phantom	1.01 0.54		1.24	0.10	1.11	0.64	1.34	

Table 4-17: SAR summations for simultaneous evaluation – CDMA in Body-Worn Accessory Positions w/BT

Mobile Hotspot Exposure Conditions; Simultaneous Transmit Configurations, including Reduced Power Limits								
Case	e Transmitter #1		Transmitter #2	DILID	Notes			
	Transmitter Configuration	PWR	Transmitter Configuration	PWR				
M1	EV-DO 800 Rev. 0	26.5	Wi-Fi 2.4 GHz N/A		Mobile Hotspot session			
M2	EV-DO 820 Rev. 0 23.5		Wi-Fi 2.4 GHz		Mobile Hotspot session			
M5	EV-DO 1900 Rev. 0	19.0	Wi-Fi 2.4 GHz	N/A	Mobile Hotspot session			

		Transmit	ter Stand-A (W/	lone 1 g SA	R Values	1 g SAR Summations (W/kg)			
			(**/	Kg)		Case M1 Case M2 Case			
Band		EVDO 800	EVDO 820	EVDO 1900	Wi-Fi 2.4 GHz	EVDO 800	EVDO 820	EVD) 1900	
Power Condition or Reduced Limit		26.5	23.5	22.0	N/A	Wi-Fi 2.4 GHz	Wi-Fi 2.4 GHz	Wi-Fi 2.4 GHz	
	Front of Phone 10 mm from Phantom	0.33	0.35	0.35	0.24	0.57	0.59	0.59	
	Back of Phone 10 mm from Phantom	0.44	0.39	0.50	0.46	0.90	0.85	0.96	
Position	Left Edge of Phone 10 mm from Phantom	0.30	0.25	0.07	0.07	0.37	0.32	0.14	
Posi	Right Edge of Phone 10 mm from Phantom	0.35	0.24	0.02	N/A	N/A	N/A	N/A	
	Top Edge of Phone 10 mm from Phantom	N/A	N/A	N/A	0.15	N/A	N/A	N/A	
	Bottom Edge of Phone 10 mm from Phantom	0.02	0.02	0.79	N/A	N/A	N/A	N/A	

Table 4-18: SAR summations for simultaneous evaluation – Positions during a Mobile Hotspot session w/ WiFi

Simultaneous Evaluation Conclusion

As no summation of transmitter SAR values results in a value greater than the compliance limit, no measurements for simultaneous SAR are required.

5 References to Test Standards and Guidance

[1] CENELEC, EN 62209-1:2006 "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures - Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)"

- [2] CENELEC, EN 50360:2001 "Product standard to demonstrate the compliance of mobile phones with the basic restrictions related to human exposure to electromagnetic fields (300 MHz 3 GHz)".
- [3] ANSI / IEEE, C95.1 1992 Edition "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz"
- [4] Removed
- [5] IEEE 1528 2003 Edition "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques"
- [6] ICNIRP Guidelines "Guidelines for Limiting Exposure to Time-Varying Electric, Magnetic, and Electromagnetic Fields (up to 300 GHz)"
- [7] IC RSS-102 "Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)"
- [8] IC Notice 2012-DRS1203 "RE: Applicability of Latest FCC RF Exposure KDB Procedures (Publication Date: October 24, 2012) and Other Procedures"
- [9] CENELEC, EN 62209-2:2010 "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)"
- [10] FCC KDB Publication 248227 D01 v01r02 "SAR Measurement Procedures for 802.11 a/b/g Transmitters"
- [11] FCC KDB Publication 447498 D01 v05r01 "Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies"
- [12] FCC KDB Publication 648474 D04 v01r01 "SAR Evaluation Considerations for Wireless Handsets"
- [13] FCC KDB Publication 865664 D01 v01r01 "SAR Measurement Requirements for 100 MHz to 6 GHz"
- [14] FCC KDB Publication 865664 D02 v01r01 "RF Exposure Compliance Reporting and Documentation Considerations"
- [15] FCC KDB Publication 941225 D01 v02 "SAR Measurement Procedures for 3G Devices"
- [16] FCC KDB Publication 941225 D03 v01 "Recommended SAR Test Reduction Procedures for GMS/GPRS/EDGE"
- [17] FCC KDB Publication 941225 D05 v02r02 "SAR Evaluation Considerations for LTE Devices"
- [18] FCC KDB Publication 941225 D06 v01r01 "SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities"

Appendix 1

SAR Distribution Plots for Test System Verification

Exhibit 11 Page A1

System Accuracy Verification Measurements for Head SAR Measurements

Exhibit 11 Page A2

Date/Time: 8/7/2013 7:36:42 AM

FCC ID: IHDT56PF3

Test Lab: Motorola Mobility - CW System Verification for SAR using Dipoles

DUT Serial: D835V2 - SN:422tr

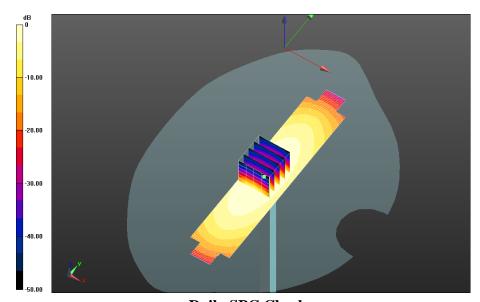
DASY Configuration:

- Probe: ES3DV3 SN3180; ConvF(6.23,6.23,6.23); Calibrated: 2/11/2013;
- Sensor-Surface: 4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn661; Calibrated: 5/21/2013
- Phantom: R#1 Sugar SAM (extended range), Rev.2 (24-Feb-12); Type: SAM v4.0; Serial: TP-1156
- DASY52 52.8.7(1137); SEMCAD X Version 14.6.8 (7028)

Communication System: CW for SAR Dipoles; Frequency: 835.0 MHz; Duty Cycle: 1:1.000 Medium Parameters used: f=835 MHz; $\sigma=0.9124$; $\epsilon_r=39.81$ mho/m; $\rho=1.000$ kg/m³

<2 GHz, SAM Daily SPC Check/fastSAR, Dipole Area Scan (41x141x1):

Interpolated grid: dx=1.000 mm, dy=1.500 mm


Fast SAR: SAR(1g) = 1.83 W/kg; SAR(10g) = 1.22 W/kg

<2 GHz, SAM Daily SPC Check/CUBE SAR, 5x5x7 (21x21x36)/Cube 0:

Interpolated grid: dx=1.600 mm, dy=1.600 mm, dz=1.000 mm

Reference Value = 47.022 V/m, Power Drift = 0.014 dB

Averaged SAR: SAR(1g) = 1.82 W/kg; SAR(10g) = 1.20 W/kg

Daily SPC Check

Date/Time: 8/12/2013 8:31:38 AM

Test Lab: Motorola Mobility - CW System Verification for SAR using Dipoles

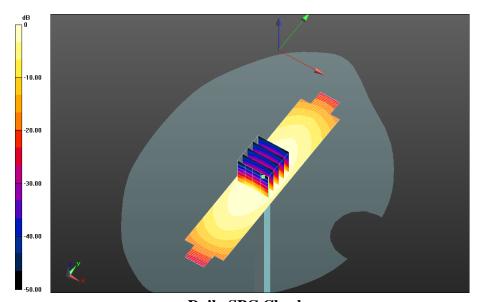
DUT Serial: D835V2 - SN:423tr

DASY Configuration:

- Probe: ES3DV3 SN3037; ConvF(6.23,6.23,6.23); Calibrated: 9/13/2012;
- Sensor-Surface: 4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn703; Calibrated: 9/11/2012
- Phantom: R#4 Sugar SAM (extended range), Rev.2 (24-Feb-12); Type: SAM v4.0; Serial: TP-1132
- DASY52 52.8.7(1137); SEMCAD X Version 14.6.8 (7028)

Communication System: CW for SAR Dipoles; Frequency: 835.0 MHz; Duty Cycle: 1:1.000 Medium Parameters used: f=835 MHz; σ = 0.9188; ϵ_r = 40.13 mho/m; ρ = 1.000 kg/m³

<2 GHz, SAM Daily SPC Check/fastSAR, Dipole Area Scan (41x141x1):


Interpolated grid: dx=1.000 mm, dy=1.500 mm

Fast SAR: SAR(1g) = 1.87 W/kg; SAR(10g) = 1.25 W/kg

<2 GHz, SAM Daily SPC Check/CUBE SAR, 5x5x7 (21x21x36)/Cube 0:

Interpolated grid: dx=1.600 mm, dy=1.600 mm, dz=1.000 mm

Reference Value = 47.675 V/m, Power Drift = -0.00916 dBAveraged SAR: SAR(1g) = 1.87 W/kg; SAR(10g) = 1.23 W/kg

Daily SPC Check

Date/Time: 8/7/2013 7:05:42 AM

Test Lab: Motorola Mobility - CW System Verification for SAR using Dipoles

DUT Serial: D1800V2 - SN:259tr

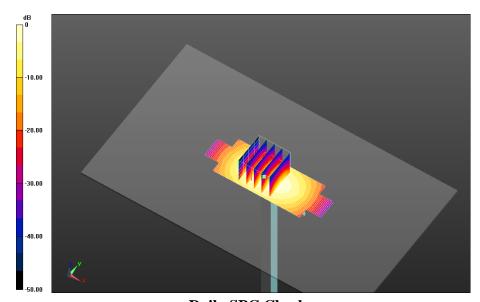
DASY Configuration:

- Probe: ES3DV3 SN3180; ConvF(5.01,5.01,5.01); Calibrated: 2/11/2013;
- Sensor-Surface: 4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn661; Calibrated: 5/21/2013
- Phantom: R#-1, Triple Flat Phantom 5.1C (Rev.4); Type: QD 000 P51 CA; Serial: n/a
- DASY52 52.8.7(1137); SEMCAD X Version 14.6.8 (7028)

Communication System: CW for SAR Dipoles; Frequency: 1800 MHz; Duty Cycle: 1:1.000 Medium Parameters used: f=1800 MHz; $\sigma=1.342$; $\varepsilon_r=38.43$ mho/m; $\rho=1.000$ kg/m³

< 2GHz, Daily SPC Check/fastSAR, Dipole Area Scan (41x141x1):

Interpolated grid: dx=1.000 mm, dy=1.500 mm


Fast SAR: SAR(1g) = 7.46 W/kg; SAR(10g) = 4.04 W/kg

< 2GHz, Daily SPC Check/CUBE SAR, 5x5x7 (21x21x36)/Cube 0:

Interpolated grid: dx=1.600 mm, dy=1.600 mm, dz=1.000 mm

Reference Value = 79.548 V/m, Power Drift = 0.024 dB

Averaged SAR: SAR(1g) = 7.40 W/kg; SAR(10g) = 3.91 W/kg

Daily SPC Check

System Accuracy Verification Measurements for Body SAR Measurements

Exhibit 11 Page A3

Date/Time: 8/6/2013 9:41:38 PM

FCC ID: IHDT56PF3

Test Lab: Motorola Mobility - CW System Verification for SAR using Dipoles

DUT Serial: D835V2 - SN:422tr

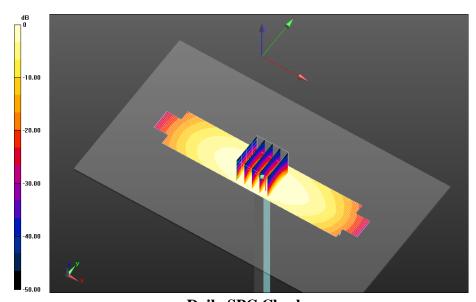
DASY Configuration:

- Probe: ES3DV3 SN3180; ConvF(6.05,6.05,6.05); Calibrated: 2/11/2013;
- Sensor-Surface: 4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn661; Calibrated: 5/21/2013
- Phantom: R#-1, Triple Flat Phantom 5.1C (Rev.4); Type: QD 000 P51 CA; Serial: n/a
- DASY52 52.8.7(1137); SEMCAD X Version 14.6.8 (7028)

Communication System: CW for SAR Dipoles; Frequency: 835.0 MHz; Duty Cycle: 1:1.000 Medium Parameters used: f=835 MHz; $\sigma=0.9978$; $\epsilon_r=54.04$ mho/m; $\rho=1.000$ kg/m³

< 2GHz, Daily SPC Check/fastSAR, Dipole Area Scan (41x141x1):

Interpolated grid: dx=1.000 mm, dy=1.500 mm


Fast SAR: SAR(1g) = 1.91 W/kg; SAR(10g) = 1.27 W/kg

< 2GHz, Daily SPC Check/CUBE SAR, 5x5x7 (21x21x36)/Cube 0:

Interpolated grid: dx=1.600 mm, dy=1.600 mm, dz=1.000 mm

Reference Value = 46.662 V/m, Power Drift = 0.043 dB

Averaged SAR: SAR(1g) = 1.92 W/kg; SAR(10g) = 1.28 W/kg

Daily SPC Check

Date/Time: 8/12/2013 4:25:38 PM

Test Lab: Motorola Mobility - CW System Verification for SAR using Dipoles

DUT Serial: D835V2 - SN:423tr

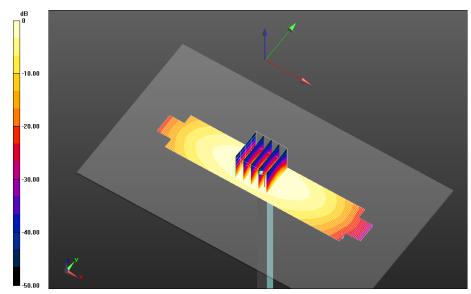
DASY Configuration:

- Probe: ES3DV3 SN3037; ConvF(6.16,6.16,6.16); Calibrated: 9/13/2012;
- Sensor-Surface: 4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn703; Calibrated: 9/11/2012
- Phantom: R#4 Triple Flat Phantom 5.1C (Rev.4); Type: QD 000 P51 CA; Serial: n/a
- DASY52 52.8.7(1137); SEMCAD X Version 14.6.8 (7028)

Communication System: CW for SAR Dipoles; Frequency: 835.0 MHz; Duty Cycle: 1:1.000 Medium Parameters used: f=835 MHz; $\sigma=1.002$; $\varepsilon_r=54.26$ mho/m; $\rho=1.000$ kg/m³

< 2GHz, Daily SPC Check/fastSAR, Dipole Area Scan (41x141x1):

Interpolated grid: dx=1.000 mm, dy=1.500 mm


Fast SAR: SAR(1g) = 1.92 W/kg; SAR(10g) = 1.28 W/kg

< 2GHz, Daily SPC Check/CUBE SAR, 5x5x7 (21x21x36)/Cube 0:

Interpolated grid: dx=1.600 mm, dy=1.600 mm, dz=1.000 mm

Reference Value = 46.732 V/m, Power Drift = -0.013 dB

Averaged SAR: SAR(1g) = 1.92 W/kg; SAR(10g) = 1.28 W/kg

Daily SPC Check

Date/Time: 8/7/2013 12:56:22 AM

Test Lab: Motorola Mobility - CW System Verification for SAR using Dipoles

DUT Serial: D1800V2 - SN:259tr

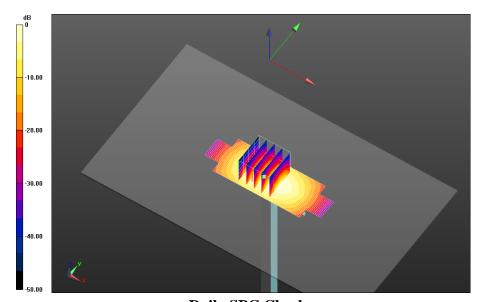
DASY Configuration:

- Probe: ES3DV3 SN3180; ConvF(4.78,4.78,4.78); Calibrated: 2/11/2013;
- Sensor-Surface: 4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn661; Calibrated: 5/21/2013
- Phantom: R#-1, Triple Flat Phantom 5.1C (Rev.4); Type: QD 000 P51 CA; Serial: n/a
- DASY52 52.8.7(1137); SEMCAD X Version 14.6.8 (7028)

Communication System: CW for SAR Dipoles; Frequency: 1800 MHz; Duty Cycle: 1:1.000 Medium Parameters used: f=1800 MHz; $\sigma=1.451$; $\varepsilon_r=52.74$ mho/m; $\rho=1.000$ kg/m³

< 2GHz, Daily SPC Check/fastSAR, Dipole Area Scan (41x141x1):

Interpolated grid: dx=1.000 mm, dy=1.500 mm


Fast SAR: SAR(1g) = 7.44 W/kg; SAR(10g) = 3.95 W/kg

< 2GHz, Daily SPC Check/CUBE SAR, 5x5x7 (21x21x36)/Cube 0:

Interpolated grid: dx=1.600 mm, dy=1.600 mm, dz=1.000 mm

Reference Value = 76.227 V/m, Power Drift = 0.011 dB

Averaged SAR: SAR(1g) = 7.37 W/kg; SAR(10g) = 3.93 W/kg

Daily SPC Check

Date/Time: 8/13/2013 7:20:33 AM

FCC ID: IHDT56PF3

Test Lab: Motorola Mobility - CW System Verification for SAR using Dipoles

DUT Serial: D1800V2 - SN:2d191

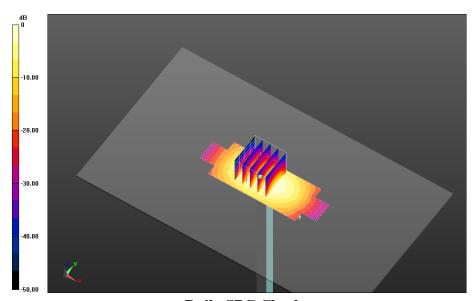
DASY Configuration:

- Probe: ES3DV3 SN3037; ConvF(4.83,4.83,4.83); Calibrated: 9/13/2012;
- Sensor-Surface: 4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn703; Calibrated: 9/11/2012
- Phantom: R#4 Triple Flat Phantom 5.1C (Rev.4); Type: QD 000 P51 CA; Serial: n/a
- DASY52 52.8.7(1137); SEMCAD X Version 14.6.8 (7028)

Communication System: CW for SAR Dipoles; Frequency: 1800 MHz; Duty Cycle: 1:1.000 Medium Parameters used: f=1800 MHz; $\sigma=1.432$; $\varepsilon_r=52.33$ mho/m; $\rho=1.000$ kg/m³

< 2GHz, Daily SPC Check/fastSAR, Dipole Area Scan (41x141x1):

Interpolated grid: dx=1.000 mm, dy=1.500 mm


Fast SAR: SAR(1g) = 7.82 W/kg; SAR(10g) = 4.10 W/kg

< 2GHz, Daily SPC Check/CUBE SAR, 5x5x7 (21x21x36)/Cube 0:

Interpolated grid: dx=1.600 mm, dy=1.600 mm, dz=1.000 mm

Reference Value = 76.893 V/m, Power Drift = 0.00341 dB

Averaged SAR: SAR(1g) = 7.65 W/kg; SAR(10g) = 4.06 W/kg

Daily SPC Check

Date/Time: 8/6/2013 9:41:38 PM

FCC ID: IHDT56PF3

Appendix 2

SAR Distribution Plots for Head-Adjacent Test Results

Date/Time: 8/7/2013 10:51:11 AM

Test Lab: Motorola Mobility

DUT Serial: LDXZ230042 ; FCC ID: IHDT56PF3;

Antenna: Internal; Battery: SNN5932A;

Test Configuration: Cheek

DASY Configuration:

• Probe: ES3DV3 - SN3180; ConvF(6.23,6.23,6.23); Calibrated: 2/11/2013;

• Sensor-Surface: 4 mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn661; Calibrated: 5/21/2013

• Phantom: R#1 - Sugar SAM (extended range), Rev.2 (24-Feb-12); Type: SAM v4.0; Serial: TP-1156

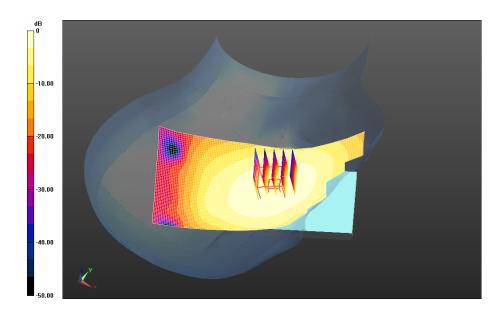
• DASY52 52.8.7(1137); SEMCAD X Version 14.6.8 (7028)

Communication System: _CDMA (0); Communication System Band: CDMA 800; Frequency: 836.5 MHz; Duty Cycle: 1:1.000

Medium Parameters used: f=836.52 MHz; $\sigma = 0.9138$; $\varepsilon_r = 39.78$ mho/m; $\rho = 1.000$ kg/m³

0.6-2GHz Right Head Template/15mm, Area Scan (61x161x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm


Fast SAR: SAR(1g) = 0.427 W/kg; SAR(10g) = 0.290 W/kg

0.6-2GHz Right Head Template/5x5x7 Zoom Scan (0.6-2GHz) (21x21x36)/Cube 0:

Interpolated grid: dx=1.600 mm, dy=1.600 mm, dz=1.000 mm

Reference Value = 21.874 V/m, Power Drift = 0.054 dB

Averaged SAR: SAR(1g) = 0.428 W/kg; SAR(10g) = 0.327 W/kg

0.6-2GHz Right Head Template

Date/Time: 8/12/2013 7:43:28 PM

FCC ID: IHDT56PF3

Test Lab: Motorola Mobility

DUT Serial: LDXZ230059; FCC ID: IHDT56PF3;

Antenna: Internal; Battery: SNN5932A;

Test Configuration: Cheek

DASY Configuration:

• Probe: ES3DV3 - SN3037; ConvF(6.23,6.23,6.23); Calibrated: 9/13/2012;

• Sensor-Surface: 4 mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn703; Calibrated: 9/11/2012

 Phantom: R#4 Sugar SAM (extended range), Rev.2 (24-Feb-12); Type: SAM v4.0; Serial: TP-1132

DASY52 52.8.7(1137); SEMCAD X Version 14.6.8 (7028)

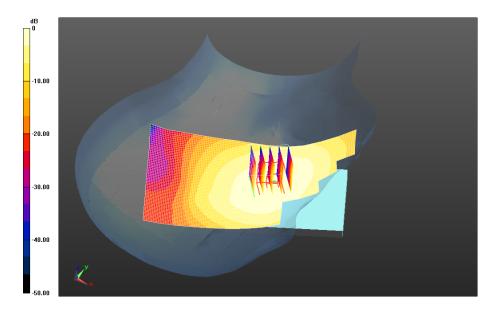
Communication System: _CDMA (0); Communication System Band: CDMA 820 (Band Class 10);

Frequency: 820.1 MHz; Duty Cycle: 1:1.000

Medium Parameters used: f=820.1 MHz; $\sigma = 0.9039$; $\varepsilon_r = 40.32$ mho/m; $\rho = 1.000$ kg/m³

0.6-2GHz Right Head Template/15mm, Area Scan (61x161x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm


Fast SAR: SAR(1g) = 0.188 W/kg; SAR(10g) = 0.129 W/kg

0.6-2GHz Right Head Template/5x5x7 Zoom Scan (0.6-2GHz) (21x21x36)/Cube 0:

Interpolated grid: dx=1.600 mm, dy=1.600 mm, dz=1.000 mm

Reference Value = 14.949 V/m, Power Drift = 0.084 dB

Averaged SAR: SAR(1g) = 0.191 W/kg; SAR(10g) = 0.144 W/kg

0.6-2GHz Right Head Template

Date/Time: 8/7/2013 9:44:07 PM

Test Lab: Motorola Mobility

DUT Serial: LDXZ230042; FCC ID: IHDT56PF3;

Antenna: Internal; Battery: SNN5932A;

Test Configuration: Cheek

DASY Configuration:

• Probe: ES3DV3 - SN3180; ConvF(5.01,5.01,5.01); Calibrated: 2/11/2013;

• Sensor-Surface: 4 mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn661; Calibrated: 5/21/2013

• Phantom: R#1 - Glycol SAM (extended range), Rev.2 (24-Feb-12); Type: SAM v4.0; Serial: TP-1319

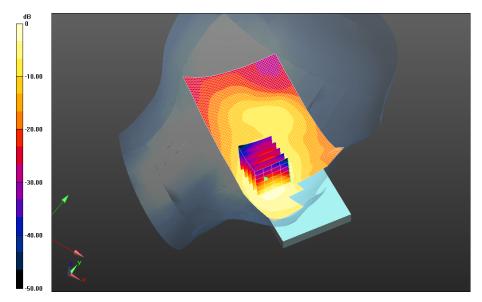
• DASY52 52.8.7(1137); SEMCAD X Version 14.6.8 (7028)

Communication System: _CDMA (0); Communication System Band: CDMA 1900; Frequency: 1880 MHz; Duty Cycle: 1:1.000

Medium Parameters used: f=1880 MHz; $\sigma = 1.427$; $\varepsilon_r = 38.02$ mho/m; $\rho = 1.000$ kg/m³

0.6-2GHz, Left Head Template/15mm, Area Scan (61x161x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm


Fast SAR: SAR(1g) = 0.623 W/kg; SAR(10g) = 0.357 W/kg

0.6-2GHz, Left Head Template/5x5x7 Zoom Scan (0.6-2GHz) (21x21x36)/Cube 0:

Interpolated grid: dx=1.600 mm, dy=1.600 mm, dz=1.000 mm

Reference Value = 18.699 V/m, Power Drift = 0.048 dB

Averaged SAR: SAR(1g) = 0.639 W/kg; SAR(10g) = 0.380 W/kg

0.6-2GHz, Left Head Template

Appendix 3

SAR Distribution Plots for Body-Worn Accessory Test Results

Exhibit 11 Page A5

Date/Time: 8/7/2013 3:39:09 PM

Test Lab: Motorola Mobility

DUT Serial: LDXZ230042 ; FCC ID: IHDT56PF3;

Antenna: Internal; Battery: SNN5932A;

Test Configuration: Body Worn, Back of Phone from Phantom

DASY Configuration:

• Probe: ES3DV3 - SN3180; ConvF(6.05,6.05,6.05); Calibrated: 2/11/2013;

• Sensor-Surface: 4 mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn661; Calibrated: 5/21/2013

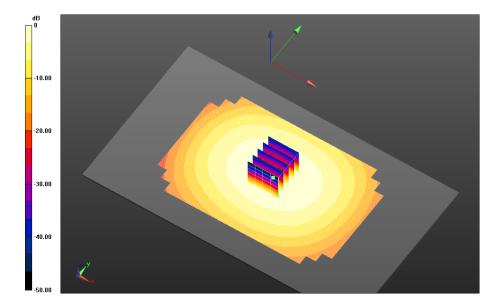
• Phantom: R#-1, Triple Flat Phantom 5.1C (Rev.4); Type: QD 000 P51 CA; Serial: n/a

• DASY52 52.8.7(1137); SEMCAD X Version 14.6.8 (7028)

Communication System: _CDMA (0); Communication System Band: CDMA 800; Frequency: 848.3 MHz; Duty Cycle: 1:1.000

Medium Parameters used: f=848.31 MHz; $\sigma = 1.011$; $\varepsilon_r = 53.90$ mho/m; $\rho = 1.000$ kg/m³

0.6-2GHz Triple Flat Phone Template/Area Scan (10mm) (261x141x1):


Interpolated grid: dx=1.000 mm, dy=1.000 mm

Fast SAR: SAR(1g) = 0.823 W/kg; SAR(10g) = 0.574 W/kg

0.6-2GHz Triple Flat Phone Template/5x5x7 Zoom Scan (0.6-2GHz) (21x21x36)/Cube 0: Interpolated grid: dx=1.600 mm, dy=1.600 mm, dz=1.000 mm

Reference Value = 28.284 V/m, Power Drift = 0.046 dB

Averaged SAR: SAR(1g) = 0.821 W/kg; SAR(10g) = 0.618 W/kg

0.6-2GHz Triple Flat Phone Template

Date/Time: 8/12/2013 6:31:07 PM

Test Lab: Motorola Mobility

DUT Serial: LDXZ230059; FCC ID: IHDT56PF3;

Antenna: Internal; Battery: SNN5932A;

Test Configuration: Body Worn, Back of Phone from Phantom

DASY Configuration:

• Probe: ES3DV3 - SN3037; ConvF(6.16,6.16,6.16); Calibrated: 9/13/2012;

• Sensor-Surface: 4 mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn703; Calibrated: 9/11/2012

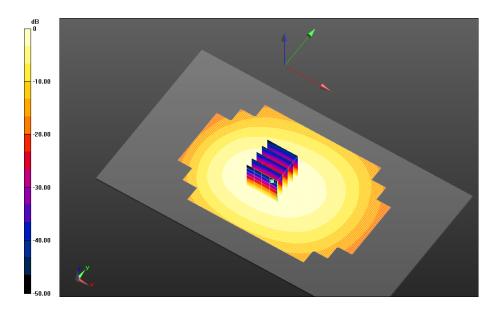
• Phantom: R#4 Triple Flat Phantom 5.1C (Rev.4); Type: QD 000 P51 CA; Serial: n/a

• DASY52 52.8.7(1137); SEMCAD X Version 14.6.8 (7028)

Communication System: _CDMA (0); Communication System Band: CDMA 820 (Band Class 10);

Frequency: 820.1 MHz; Duty Cycle: 1:1.000

Medium Parameters used: f=820.1 MHz; $\sigma = 0.9873$; $\varepsilon_r = 54.43$ mho/m; $\rho = 1.000$ kg/m³


0.6-2GHz Triple Flat Phone Template/Area Scan (15mm), not for EDGES (181x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Fast SAR: SAR(1g) = 0.418 W/kg; SAR(10g) = 0.293 W/kg

0.6-2GHz Triple Flat Phone Template/5x5x7 Zoom Scan (0.6-2GHz) (21x21x36)/Cube 0: Interpolated grid: dx=1.600 mm, dy=1.600 mm, dz=1.000 mm

Reference Value = 21.339 V/m, Power Drift = -0.073 dB

Averaged SAR: SAR(1g) = 0.418 W/kg; SAR(10g) = 0.317 W/kg

0.6-2GHz Triple Flat Phone Template

Date/Time: 8/7/2013 11:25:21 PM

Test Lab: Motorola Mobility

DUT Serial: LDXZ230042; FCC ID: IHDT56PF3;

Antenna: Internal; Battery: SNN5932A;

Test Configuration: Body Worn, Back of Phone from Phantom

DASY Configuration:

• Probe: ES3DV3 - SN3180; ConvF(4.78,4.78,4.78); Calibrated: 2/11/2013;

• Sensor-Surface: 4 mm (Mechanical Surface Detection)

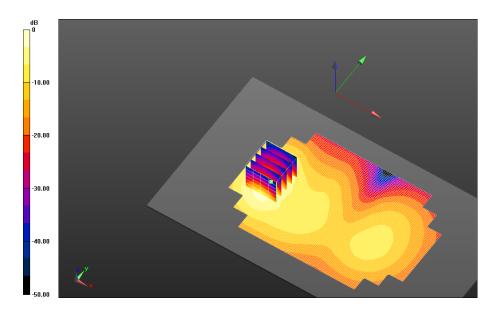
• Electronics: DAE4 Sn661; Calibrated: 5/21/2013

• Phantom: R#-1, Triple Flat Phantom 5.1C (Rev.4); Type: QD 000 P51 CA; Serial: n/a

• DASY52 52.8.7(1137); SEMCAD X Version 14.6.8 (7028)

Communication System: _CDMA (0); Communication System Band: CDMA 1900; Frequency: 1909 MHz; Duty Cycle: 1:1.000

Medium Parameters used: f=1908.75 MHz; $\sigma = 1.583$; $\varepsilon_r = 51.89$ mho/m; $\rho = 1.000$ kg/m³


0.6-2GHz Triple Flat Phone Template/Area Scan (15mm), not for EDGES (181x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Fast SAR: SAR(1g) = 0.914 W/kg; SAR(10g) = 0.493 W/kg

0.6-2GHz Triple Flat Phone Template/5x5x7 Zoom Scan (0.6-2GHz) (21x21x36)/Cube 0: Interpolated grid: dx=1.600 mm, dy=1.600 mm, dz=1.000 mm

Reference Value = 18.664 V/m, Power Drift = -0.136 dB

Averaged SAR: SAR(1g) = 0.935 W/kg; SAR(10g) = 0.527 W/kg

0.6-2GHz Triple Flat Phone Template

Appendix 4

SAR Distribution Plots for Mobile Hotspot Test Results

Date/Time: 8/13/2013 6:11:32 PM

FCC ID: IHDT56PF3

Test Lab: Motorola Mobility

DUT Serial: LDXZ230042; FCC ID: IHDT56PF3;

Antenna: Internal; Battery: SNN5932A;

Test Configuration: Back Edge of Phone 10 mm from Phantom

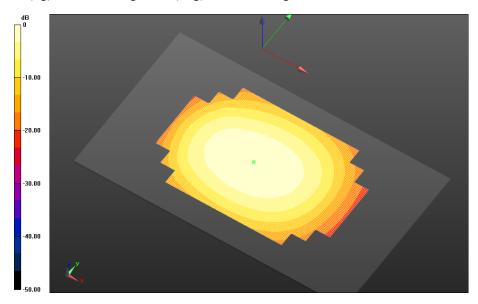
DASY Configuration:

• Probe: ES3DV3 - SN3037; ConvF(6.16,6.16,6.16); Calibrated: 9/13/2012;

• Sensor-Surface: 4 mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn703; Calibrated: 9/11/2012

• Phantom: R#4 Triple Flat Phantom 5.1C (Rev.4); Type: QD 000 P51 CA; Serial: n/a


• DASY52 52.8.7(1137); SEMCAD X Version 14.6.8 (7028)

Communication System: _CDMA (0); Communication System Band: CDMA 800; Frequency: 836.5 MHz; Duty Cycle: 1:1.000

Medium Parameters used: f=836.52 MHz; $\sigma = 0.9959$; $\varepsilon_r = 53.92$ mho/m; $\rho = 1.000$ kg/m³

0.6-2GHz Triple Flat Phone Template/Area Scan (15mm), not for EDGES (181x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Fast SAR: SAR(1g) = 0.440 W/kg; SAR(10g) = 0.308 W/kg

0.6-2GHz Triple Flat Phone Template

Date/Time: 8/13/2013 11:21:03 PM

Test Lab: Motorola Mobility

DUT Serial: LDXZ230059; FCC ID: IHDT56PF3;

Antenna: Internal; Battery: SNN5932A;

Test Configuration: Back Edge of Phone 10 mm from Phantom

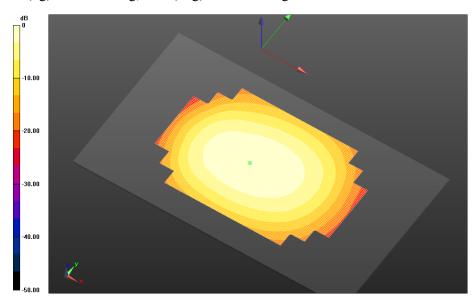
DASY Configuration:

• Probe: ES3DV3 - SN3037; ConvF(6.16,6.16,6.16); Calibrated: 9/13/2012;

• Sensor-Surface: 4 mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn703; Calibrated: 9/11/2012

• Phantom: R#4 Triple Flat Phantom 5.1C (Rev.4); Type: QD 000 P51 CA; Serial: n/a


• DASY52 52.8.7(1137); SEMCAD X Version 14.6.8 (7028)

Communication System: _CDMA (0); Communication System Band: CDMA 820 (Band Class 10); Frequency: 820.1 MHz; Duty Cycle: 1:1.000

Medium Parameters used: f=820.1 MHz; $\sigma = 0.9765$; $\varepsilon_r = 54.09$ mho/m; $\rho = 1.000$ kg/m³

0.6-2GHz Triple Flat Phone Template/Area Scan (15mm), not for EDGES (181x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Fast SAR: SAR(1g) = 0.387 W/kg; SAR(10g) = 0.271 W/kg

0.6-2GHz Triple Flat Phone Template

Date/Time: 8/13/2013 7:51:52 PM

FCC ID: IHDT56PF3

Test Lab: Motorola Mobility

DUT Serial: LDXZ230042; FCC ID: IHDT56PF3;

Antenna: Internal; Battery: SNN5932A;

Test Configuration: Bottom Edge of Phone 10 mm from Phantom

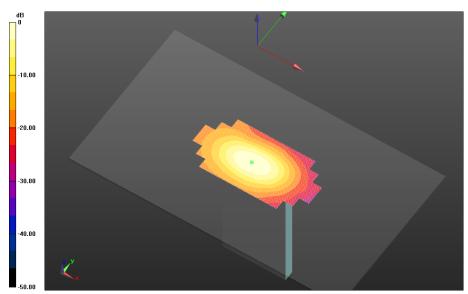
DASY Configuration:

• Probe: ES3DV3 - SN3037; ConvF(4.83,4.83,4.83); Calibrated: 9/13/2012;

• Sensor-Surface: 4 mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn703; Calibrated: 9/11/2012

• Phantom: R#4 Triple Flat Phantom 5.1C (Rev.4); Type: QD 000 P51 CA; Serial: n/a


• DASY52 52.8.7(1137); SEMCAD X Version 14.6.8 (7028)

Communication System: _CDMA (0); Communication System Band: CDMA 1900; Frequency: 1880 MHz; Duty Cycle: 1:1.000

Medium Parameters used: f=1880 MHz; $\sigma = 1.528$; $\varepsilon_r = 52.07$ mho/m; $\rho = 1.000$ kg/m³

0.6-2GHz Triple Flat Phone Template/Area Scan (10mm) (261x141x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Fast SAR: SAR(1g) = 0.771 W/kg; SAR(10g) = 0.382 W/kg

0.6-2GHz Triple Flat Phone Template

Appendix 5

Measurement Uncertainty Budget

Exhibit 11 Page A7

Uncertainty Budget for Device Under Test, for 735 MHz to 3 GHz

							h =	i =	
а	b	С	d	e = f(d,k)	f	g			k
							cxf/e	cxg/e	
		Tol.	Prob		Ci	Ci	1 g	10 g	
	Description								
Uncertainty Component	IEEE 1528(2003) /	(± %)	Dist	Div.	(1 g)	(10 g)	u _i	u _i	v_i
	IEC 62209-1(2005)								
							(±%)	(±%)	
Measurement System									
Probe Calibration [ES3DV3]	E.2.1 / 7.2.1	6.0	N	1.00	1	1	6.0	6.0	∞
Axial Isotropy	E.2.2 / 7.2.1.2	4.7	R	1.73	0.707	0.707	1.9	1.9	∞
Hemispherical Isotropy	E.2.2 / 7.2.1.2	9.6	R	1.73	0.707	0.707	3.9	3.9	∞
Boundary Effect	E.2.3 / 7.2.1.5	1.0	R	1.73	1	1	0.6	0.6	∞
Linearity	E.2.4 / 7.2.1.3	4.7	R	1.73	1	1	2.7	2.7	∞
System Detection Limits	E.2.5 / 7.2.1.4	1.0	R	1.73	1	1	0.6	0.6	∞
Readout Electronics	E.2.6 / 7.2.1.6	0.3	N	1.00	1	1	0.3	0.3	8
Response Time	E.2.7 / 7.2.1.7	1.1	R	1.73	1	1	0.6	0.6	∞
Integration Time	E.2.8 / 7.2.1.8	1.1	R	1.73	1	1	0.6	0.6	∞
RF Ambient Conditions - Noise	E.6.1 / 7.2.3.6	3.0	R	1.73	1	1	1.7	1.7	8
RF Ambient Conditions - Reflections	E.6.1 / 7.2.3.6	3.0	R	1.73	1	1	1.7	1.7	8
Probe Positioner Mech. Tolerance	E.6.2 / 7.2.2.1	0.4	R	1.73	1	1	0.2	0.2	∞
Probe Positioning w.r.t Phantom	E.6.3 / 7.2.2.3	2.9	R	1.73	1	1	1.7	1.7	8
Max. SAR Evaluation (ext., int., avg.)	E.5 / 7.2.4	3.4	R	1.73	1	1	2.0	2.0	8
Test sample Related									
Test Sample Positioning	E.4.2 / 7.2.2.4	3.4	N	1.00	1	1	3.4	3.4	79
Device Holder Uncertainty	E.4.1 / 7.2.2.4.2	4.5	N	1.00	1	1	4.5	4.5	11
SAR drift	6.6.2 / 7.2.3.5	0.0	R	1.73	1	1	0.0	0.0	?
Phantom and Tissue Parameters									
Phantom Uncertainty	E.3.1 / 7.2.2.2	6.1	R	1.73	1	1	3.5	3.5	∞
SAR Correction		1.9	R	1.73	1	0.84	1.1	0.9	∞
Liquid Conductivity (measurement)	E.3.3 / 7.2.3.3	1.3	N	1.00	0.64	0.43	0.9	0.6	6
Liquid Permittivity (measurement)	E.3.2 / 7.2.3.4	0.7	N	1.00	0.6	0.49	0.4	0.3	6
Combined Standard Uncertainty			RSS				11	11	390
Expanded Uncertainty			k=2				22	22	
(95% CONFIDENCE LEVEL)									