

MOTOROLA

Portable Cellular Phone Supplemental SAR Test Report

Motorola Mobility, Inc.

Tests Requested By: 600 N. US Highway 45
Libertyville, IL 60048

Test Report #: 24967-1F Supplemental

Date of Report: Apr-30-2012

Date of Test: Apr-16-2012 to Apr-19-2012

FCC ID #: IHDT56NH2

Generic Name:

Motorola Mobility, Inc. - ADR Test Services Laboratory

Test Laboratory: 600 N. US Highway 45
Libertyville, IL 60048

Report Author: Katya Bruggemann
Engineer

This laboratory is accredited to ISO/IEC 17025-2005 to perform the following tests:

Accreditation:

2404

<u>Tests:</u>	<u>Procedures:</u>
Electromagnetic Specific Absorption Rate	IEC 62209-1
	RSS-102
	IEEE 1528 - 2003
	FCC OET Bulletin 65 (<i>including Supplement C</i>)
	Australian Communications Authority Radio
	Communications (Electromagnetic Radiation – Human Exposure) Standard 2003
	CENELEC EN 50360
	ARIB Std. T-56 (2002)

On the following products or types of products:

Wireless Communications Devices (Examples): Two Way Radios; Portable Phones (including Cellular, Licensed Non-Broadcast and PCS); Low Frequency Readers; and Pagers

Motorola declares under its sole responsibility that the portable cellular telephone model to which this declaration relates, is in conformity with the appropriate General Population/Uncontrolled RF exposure standards, recommendations and guidelines (FCC 47 CFR §2.1093) as well as with CENELEC en50360:2001 and ANSI / IEEE C95.1. It also declares that the product was tested in accordance with IEEE 1528 / CENELEC EN62209-1 (2006), as well as other appropriate measurement standards, guidelines and recommended practices. Any deviations from these standards, guidelines and recommended practices are noted below:

Statement of Compliance:

Motorola's ISO 17025 accreditation scope does not currently include SAR testing in the 5 GHz band. Therefore, SAR testing performed in this band was performed outside of our ISO 17025 accreditation. The general procedures and guidelines provided within; FCC KDB 248227 D01, FCC KDB 648474 D01, FCC KDB 865664 D01 and IEC 62209-2 were utilized for testing.

©Motorola Mobility, Inc. 2012

This test report shall not be reproduced except in full, without written approval of the laboratory. The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only in connection with the statements or results from this report. Motorola encourages all feedback, both positive and negative, on this test report.

Table of Contents

1. Introduction	3
2. Description of the Device Under Test	3
<i>2.1 Device Signaling</i>	3
2.2.1 Power limit reduction schemes	4
3. Test Equipment Used	5
<i>3.1 Dosimetric System</i>	5
<i>3.2 Additional Equipment</i>	5
4. Electrical parameters of the tissue simulating liquid	6
5. System Accuracy Verification	7
6. Test Results	8
References	10

Appendix 1: SAR distribution comparison for the system accuracy verification

Appendix 2: SAR distribution plots for Mobile Hotspot Configuration

Appendix 3: Measurement Uncertainty Budget

Appendix 4: Probe Calibration Certificate

Appendix 5: Dipole Characterization Certificate

1. Introduction

The Motorola Mobility ADR Test Services Laboratory has performed measurements of the maximum potential exposure to the user of the portable cellular phone covered by this test report. The Specific Absorption Rate (SAR) of this product was measured. The portable cellular phone was tested in accordance with [1], [4] and [5]. The SAR values measured for the portable cellular phone are below the maximum recommended levels of 1.6 W/kg in a 1 g average set in [3] and 2.0 W/kg in a 10 g average set in [2].

Per direction of the FCC, the following SAR test data is being provided to demonstrate the device's effective utilization of power reduction conditions specified in Exhibit 12 - Operational Description. The values in the table in Section 6.0 are provided solely for purposes of confirming compliant power reduction operation and do not represent maximum SAR values of the product. For maximum reported SAR compliance values, refer to the Exhibit 11 SAR test report.

2. Description of the Device Under Test

2.1 Device Signaling

Serial Number(s) (Functional Use)	351633050007783
Production Unit or Identical Prototype (47 CFR §2.908)	Identical Prototype
Device Category	Portable (Mobile Station)
RF Exposure Limits	General Population / Uncontrolled

Mode(s) of Operation	Modulation Mode(s)	Maximum Output Power Setting	Duty Cycle	Transmitting Frequency Range(s)
CDMA 800	QPSK	25.0 dBm	1:1	824.70 - 848.31 MHz
CDMA 1900	QPSK	25.0 dBm	1:1	1851.20 - 1908.75 MHz
GSM 850	GMSK	33.5 dBm	1:8	824.2 - 848.8 MHz
GSM 1900	GMSK	30.5 dBm	1:8	1850.2 - 1909.8 MHz

GSM Data Functionality	GPRS/EDGE Class 12 (4 uplink timeslots; 4 downlink timeslots; 5 total timeslots per frame)							
	Class B (DTM not supported)							

Mode(s) of Operation	GPRS 850				GPRS 1900			
Modulation	GMSK				GMSK			
Maximum Output Power Setting (dBm)	33.5	30.5	28.5	27.5	28.1	25.2	23.0	22.2
Time Average Output Power Setting (dBm)	24.5	24.5	24.2	24.5	19.1	19.2	18.7	19.2
Duty Cycle	1:8	2:8	3:8	4:8	1:8	2:8	3:8	4:8
Transmitting Frequency Range(s)	824.2 - 848.8 MHz				1850.2 - 1909.8 MHz			

2.2.1 Power limit reduction schemes

For specified modes of operation, the DUT utilizes reduced maximum power limits to maintain compliance to SAR exposure limits. Complete descriptions of the following functionalities are provided in the Operational Description contained within Exhibit 12. The implementations to trigger the reductions in power require the device to be radiating, which prevents conducted power measurements of these functionalities without modification of the DUT.

The DUT utilizes reduced limits for the maximum transmit power when the mobile hotspot functionality is enabled in CDMA 800, CDMA 1900, GSM 850 and GSM 1900 bands. These limits are utilized when in a data connection during a mobile hotspot session. A table of the reduced limits used for testing is given below.

Mode(s) of Operation	CDMA 850	CDMA 1900	GSM 850	GSM 1900
Maximum Output Power Setting (dBm)	25.0	25.0	33.5	29.5
Reduced Maximum Output Power Setting (dBm)	22.0	22.0	30.5	30.5
Power Reduction (dB)	3.0	3.0	3.0	3.0

3. Test Equipment Used

3.1 Dosimetric System

The Motorola Mobility ADR Test Services Laboratory utilizes a Dosimetric Assessment System (Dasy4™ v4.7) manufactured by Schmid & Partner Engineering AG (SPEAG™), of Zurich Switzerland. All the SAR measurements are taken within a shielded enclosure. The overall 10 g RSS uncertainty of the measurement system is $\pm 10.8\%$ (K=1) with an expanded uncertainty of $\pm 21.6\%$ (K=2). The overall 1 g RSS uncertainty of the measurement system is $\pm 11.1\%$ (K=1) with an expanded uncertainty of $\pm 22.2\%$ (K=2). The measurement uncertainty budget is given in Appendix 6. Per IEEE 1528, this uncertainty budget is applicable to the SAR range of 0.4 W/kg to 10 W/kg.

The list of calibrated equipment used for the measurements is shown in the following table.

Description	Serial Number	Cal Date	Cal Due Date
DASY4™ DAE V1	1313	Jan-20-2012	Jan-20-2013
E-Field Probe ES3DV3	3180	Jan-11-2012	Jan-11-2013
DASY4™ DAE V1	437	Feb-09-2012	Feb-09-2013
E-Field Probe ES3DV3	3178	Jan-11-2012	Jan-11-2013
S.A.M. Phantom used for 800/900 MHz	TP-1154		
S.A.M. Phantom used for 1800/1900/2450 MHz	TP-1684		
Dipole Validation Kit, DV835V2	425TR	Jul-08-2011	Jul-08-2012
Dipole Validation Kit, DV1800V2	2d129	Jul 22, 2011	Jul 22, 2012
Dipole Validation Kit, DV2450V2	788	Jul-12-2011	Jul-12-2012

3.2 Additional Equipment

Description	Serial Number	Cal Date	Cal Due Date
Signal Generator HP8648C	3847A04633	Mar-14-2012	Mar-14-2013
Power Meter E4419B	MY45101158	Mar-16-2012	Mar-16-2013
Power Sensor #1 - E9301A	MY41497903	Mar-16-2012	Mar-16-2013
Power Sensor #2 - E9301A	US39211011	Mar-16-2012	Mar-16-2013
Network Analyzer HP8753ES	MY42301800	Jan-27-2012	Jan-27-2013
Dielectric Probe Kit HP85070C	MY44300245		

4. Electrical parameters of the tissue simulating liquid

Prior to conducting SAR measurements, the relative permittivity, ϵ_r , and the conductivity, σ , of the tissue simulating liquids were measured with a HP85070 Dielectric Probe Kit. These values, along with the temperature of the simulated tissue are shown in the table below. The recommended limits for permittivity and conductivity are also shown. A mass density of $\rho = 1 \text{ g/cm}^3$ was entered into the system in all the cases. It can be seen that the measured parameters are within tolerance of the recommended limits specified in [1] and [5].

E-field probes calibrated at 1810 MHz were used for "1900 MHz" band (1850 MHz - 1910 MHz) SAR measurements. FCC KDB 450824 provides additional requirements on page 3 of 6 for SAR testing that is performed with probe calibration points that are more than 50 MHz removed from the measured bands. The KDB requires; "(2) When nominal tissue dielectric parameters are specified in the probe calibration data, the tissue dielectric parameters measured for routine measurements should be less than the target ϵ_r and higher than the target σ values to minimize SAR underestimations". The 1900 MHz simulated tissues listed below meet this criteria.

f (MHz)	Tissue type	Limits / Measured	Dielectric Parameters		
			ϵ_r	σ (S/m)	Temp (°C)
835	Body	Measured, Apr-16-2012	55.6	0.99	19.8
		Measured, Apr-19-2012	55.2	0.98	19.7
		Recommended Limits	55.2 \pm 5%	0.97 \pm 5%	18-25
1880	Body	Measured, Apr-17-2012	51.2	1.58	19.9
		Measured, Apr-18-2012	51.2	1.59	20.0
		Recommended Limits	53.3 \pm 5%	1.52 \pm 5%	18-25

The list of ingredients and the percent composition used for the simulated tissues are indicated in the table below.

Ingredient	782 / 835 / 900 MHz Head	782 / 835 / 900 MHz Body	1800 MHz / 1900 MHz Head	1800 MHz / 1900 MHz Body	2450 MHz Head	2450 MHz Body
Sugar	57	44.9	--	--	--	--
DGBE	--	--	47	30.8	--	30
Diacetin	--	--	--	--	51	--
Water	40.45	53.06	52.62	68.8	48.75	70
Salt	1.45	0.94	0.38	0.4	0.15	--
HEC	1	1	--	--	--	--
Bact.	0.1	0.1	--	--	0.1	--

5. System Accuracy Verification

A system accuracy verification of the DASY4™ was performed using the measurement equipment listed in Section 3.1. The daily system accuracy verification occurs within the flat section of the SAM phantom.

A SAR measurement was performed to verify the measured SAR was within $\pm 10\%$ from the target SAR indicated in Appendix 7. These frequencies are within $\pm 10\%$ of the compliance test mid-band frequency as required in [1] and [5]. The test was conducted on the same days as the measurement of the DUT. Recommended limits for permittivity and conductivity, specified in [5], are shown in the table below. The obtained results from the system accuracy verification are also displayed in the table below. SAR values are normalized to 1 W forward power delivered to the dipole. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values. The distributions of SAR compare well with those of the reference measurements (see Appendix 1). For frequencies below 3 GHz, the simulated tissue depth was verified to be $15.0\text{ cm} \pm 0.5\text{ cm}$. Z-axis scans showing the SAR penetration are also included in Appendix 1.

System Accuracy Verification Measurements for Body SAR Measurements						
f (MHz)	Description	SAR (W/kg), 1 gram	Dielectric Parameters		Ambient Temp (°C)	Tissue Temp (°C)
			ϵ_r	σ (S/m)		
835	Measured, Apr-16-2012	9.70	55.6	0.99	22.2	20.2
	Measured, Apr-19-2012	9.75	55.6	0.99	21.7	19.8
	Recommended Limits	9.35	55.2 $\pm 5\%$	0.97 $\pm 5\%$	18-25	18-25
1800	Measured, Apr-17-2012	35.9	51.0	1.50	22.2	20.5
	Measured, Apr-18-2012	35.8	51.5	1.49	22.2	19.8
	Recommended Limits	38.8	53.3 $\pm 5\%$	1.52 $\pm 5\%$	18-25	18-25

The following probe conversion factors were used on the E-Field probe(s) used with the system accuracy verification measurements for body SAR measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe ES3DV3	3180	835	5.97	6 of 11
		1810	5.09	6 of 11
E-Field Probe ES3DV3	3178	2450	4.13	6 of 11

6. Test Results

The test sample was operated using an actual transmission through a base station simulator. The base station simulator or test software was set up for the proper channels, transmitter power levels and transmit modes of operation.

The phone was tested in configurations specified by the FCC for this device in order to demonstrate the effective utilization of power reduction conditions specified in Exhibit 12. Testing was performed with a separation of 1 cm between the DUT and the “flat” phantom. The phone was positioned into these configurations using the device holder supplied with the DASY4™ SAR measurement system. The default settings for the “coarse” and “cube” scans were chosen and used for measurements. The grid spacing of the coarse scan was set to 15 mm or less as shown in the SAR plots included in Appendix 2. Please refer to the DASY4™ manual for additional information on SAR scanning procedures and algorithms used.

The SAR results shown in the table below are maximum SAR values averaged over 1 gram of phantom tissue. Also shown is the extrapolated SAR to account for drift. The exact method of extrapolation is Extrapolated SAR = Measured SAR * $10^{(-\text{drift}/10)}$. The SAR reported at the end of the measurement process by the DASY4™ measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test.

The DUT utilizes a reduced limit for the maximum transmit power for the CDMA 800, CDMA 1900, GSM 850 and GSM 1900 mode when the mobile hotspot functionality is enabled. A description of this functionality is provided in the “Operational Description” contained within Exhibit 12.

A SPEAG™ MFP V5.1 C Triple Modular Phantom was used for the body-worn tests. The triple modular phantom consists of three identical modules that can be installed and removed separately without emptying the liquid. Each module of the triple phantom is constructed of glass-fiber reinforced vinylester (VG-GF) with a thickness at the bottom of 2.0 mm. It measures 29.2 cm(long) by 17.8 cm(wide) by 17.8 cm(tall). Alternately, a “flat” phantom was used for the body-worn tests. This “flat” phantom is made out of 1” thick natural High Density Polyethylene with a thickness at the bottom of 2.0 mm. It measures 52.7 cm(long) by 26.7 cm(wide) by 21.2 cm(tall).

The simulated tissue depth was verified to be 15.0 cm \pm 0.5 cm for frequencies below 3 GHz, or 10.0 cm \pm 0.5 cm for frequencies greater than 3 GHz.

The following probe conversion factors were used on the E-Field probe(s) used for the body-worn mobile hotspot measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe ES3DV3	3180	835	5.97	6 of 11
		1810	5.09	6 of 11
E-Field Probe ES3DV3	3178	2450	4.13	6 of 11

Per direction of the FCC, the following SAR test data is being provided to demonstrate the device's effective utilization of power reduction conditions specified in Exhibit 12 - Operational Description. The values in the table are provided solely for purposes of confirming compliant power reduction operation and do not represent maximum SAR values of the product. For maximum reported SAR compliance values, refer to the Exhibit 11 SAR test report.

Mobile Hotspot, Bottom Edge of Phone 10 mm from Phantom								
f (MHz)	Mode	Channel	1 g SAR value without Power Reduction		1 g SAR value with Power Reduction		Power Reduction Specification (dB)	Measured Power Reduction (dB)
			Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)		
835	CDMA 800	384	0.471	0.49	0.305	0.31	3.0	2.0
		190	0.648	0.66	0.393	0.40	3.0	2.2
	GSM 850	25	1.99	2.03	1.32	1.32	3.0	1.9
		600	2.14	2.15	1.45	1.49	3.0	1.6
1880	CDMA 1900	1175	2.14	2.17	1.12	1.12	3.0	2.9
		661	1.85	1.86	0.674	0.67	3.0	4.4

References

- [1] CENELEC, en62209-1:2006 “Human Exposure to Radio Frequency Fields From Hand - Held and Body - Mounted Wireless Communication Devices – Human Models, Instrumentation, and Procedures”
- [2] CENELEC, en50360:2001 “Product standard to demonstrate the compliance of mobile phones with the basic restrictions related to human exposure to electromagnetic fields (300 MHz – 3 GHz)”.
- [3] ANSI / IEEE, C95.1 1992 Edition “IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz”
- [4] FCC OET Bulletin 65 Supplement C 01-01
- [5] IEEE 1528 2003 Edition “IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques”
- [6] ICNIRP Guidelines “Guidelines for Limiting Exposure to Time-Varying Electric, Magnetic, and Electromagnetic Fields (up to 300 GHz)”

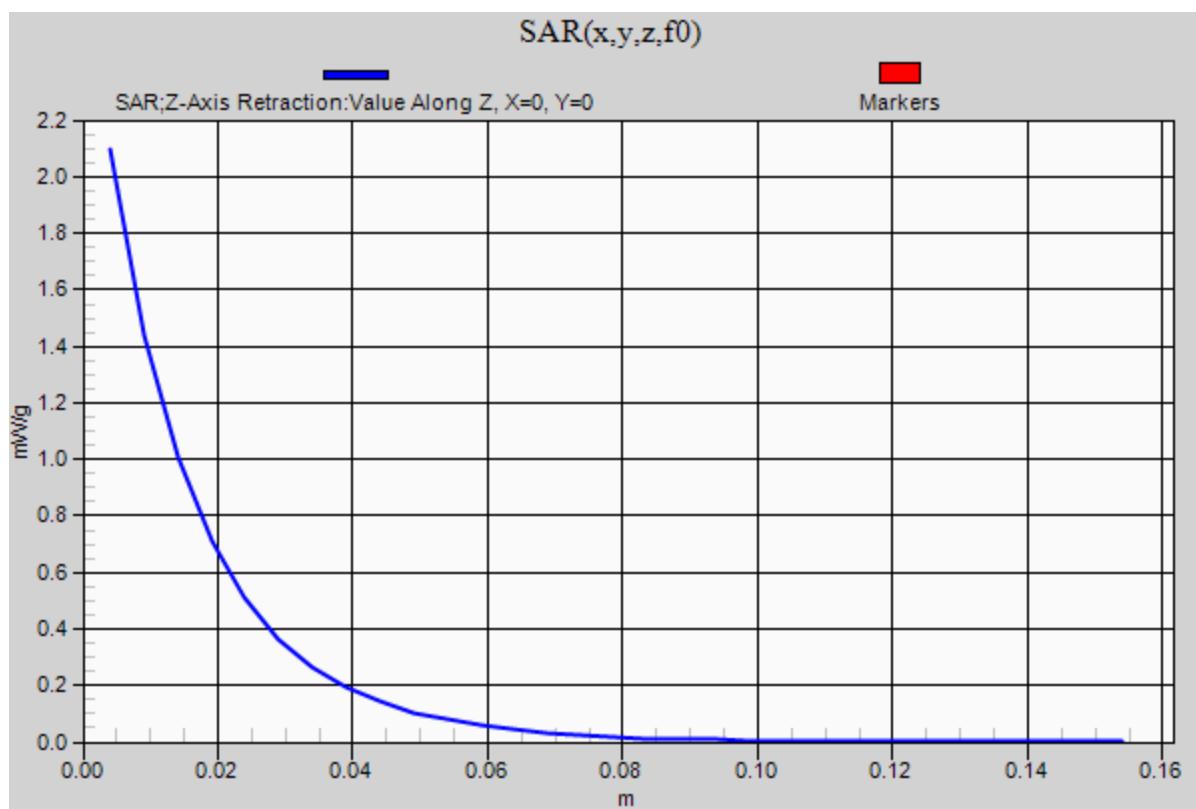
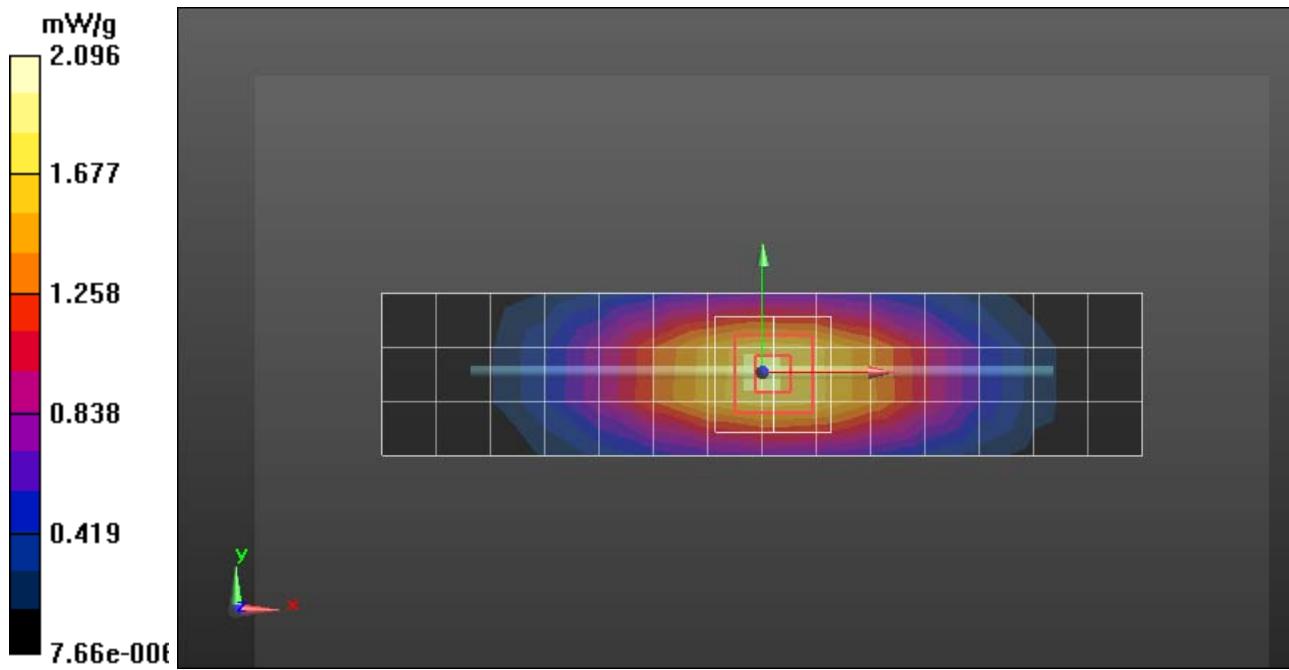
Appendix 1

SAR distribution comparison for the system accuracy verification

Date/Time: 4/16/2012 9:58:23 AM

DUT: Dipole 835 MHz; Type: D835V2; Procedure Notes: 835 MHz System Performance Check /
Dipole Sn# 425TR; PM1 Power = 200 mW
Sim.Temp@ meas = 20.7*C; Sim.Temp@ SPC =20.2*C; Room Temp@ SPC =22.2*C

Communication System: _CW - Dipole; Frequency: 835 MHz; Duty Cycle: 1:1
Medium: Validation *BODY Tissue* ; Medium parameters used: $f = 835$ MHz; $\sigma = 0.99$ mho/m; $\epsilon_r = 55.6$; $\rho = 1000$ kg/m³



DASY4 Configuration:

- Probe: ES3DV3 - SN3180; ConvF(5.97, 5.97, 5.97); Calibrated: 1/11/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1313; Calibrated: 1/20/2012
- Phantom: R#-12, Triple Flat Phantom 5.1C (Rev.3); Type: QD 000 P51 CA; Serial: n/a;
- ; SEMCAD X Version 14.6.4 (4989)

Daily SPC Check/Dipole Area Scan (4x15x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (measured) = 1.799 mW/g

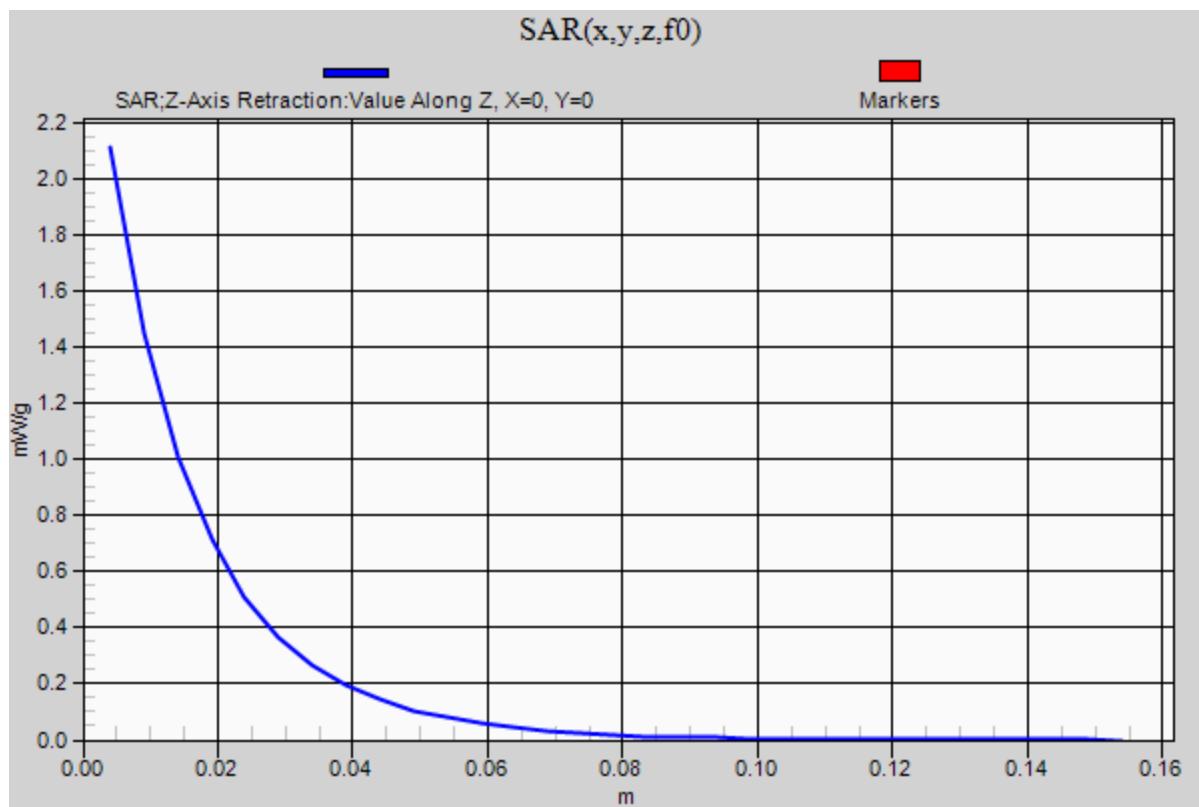
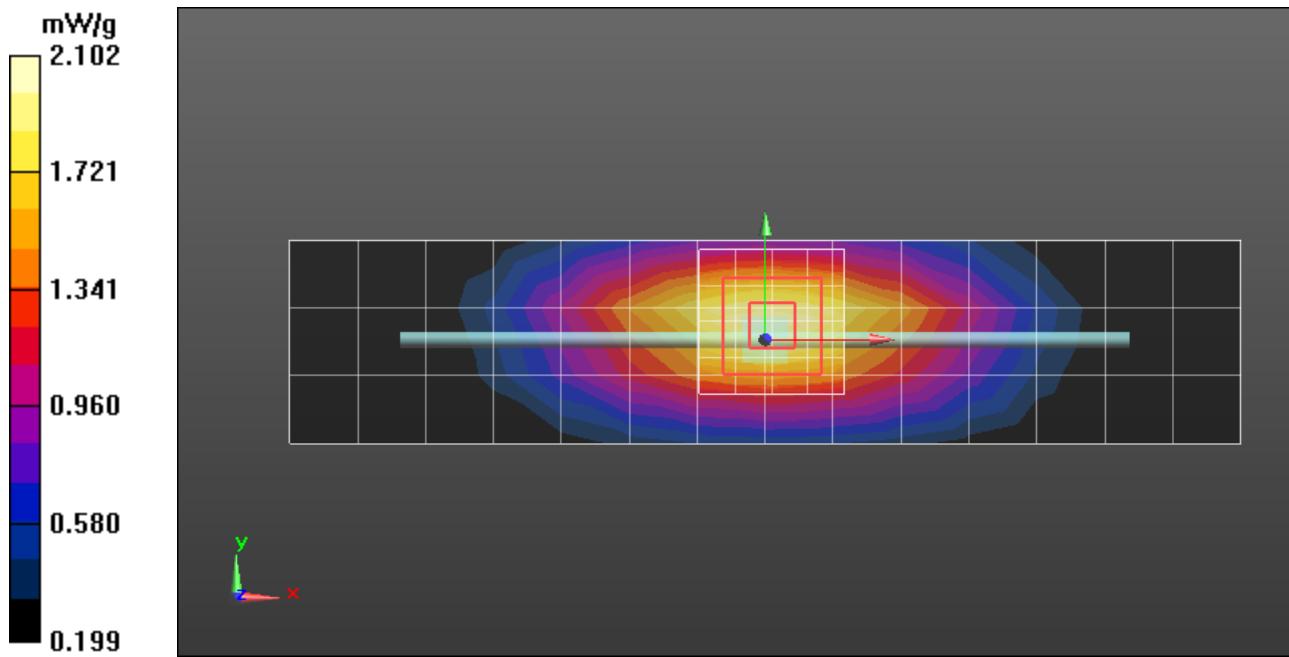
Daily SPC Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm,
dy=8mm, dz=5mm
Reference Value = 46.660 V/m; Power Drift = -0.0024 dB
Peak SAR (extrapolated) = 2.8010
SAR(1 g) = 1.94 mW/g; SAR(10 g) = 1.28 mW/g
Maximum value of SAR (measured) = 2.093 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31): Measurement grid: dx=20mm, dy=20mm,
dz=5mm
Maximum value of SAR (measured) = 2.096 mW/g

Date/Time: 4/18/2012 5:32:56 PM

DUT: Dipole 835 MHz; Type: D835V2; Procedure Notes: 835 MHz System Performance Check / Dipole Sn# 425TR; PM1 Power = 200 mW
Sim.Temp@ meas = 20.4*C; Sim.Temp@ SPC =19.8*C; Room Temp@ SPC =21.7*C

Communication System: _CW - Dipole; Frequency: 835 MHz; Duty Cycle: 1:1
Medium: Validation *BODY Tissue* ; Medium parameters used: $f = 835$ MHz; $\sigma = 0.99$ mho/m; $\epsilon_r = 55.6$; $\rho = 1000$ kg/m³



DASY4 Configuration:

- Probe: ES3DV3 - SN3180; ConvF(5.97, 5.97, 5.97); Calibrated: 1/11/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1313; Calibrated: 1/20/2012
- Phantom: R#-12, Triple Flat Phantom 5.1C (Rev.3); Type: QD 000 P51 CA; Serial: n/a;
- ; SEMCAD X Version 14.6.4 (4989)

Daily SPC Check/Dipole Area Scan (4x15x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (measured) = 2.008 mW/g

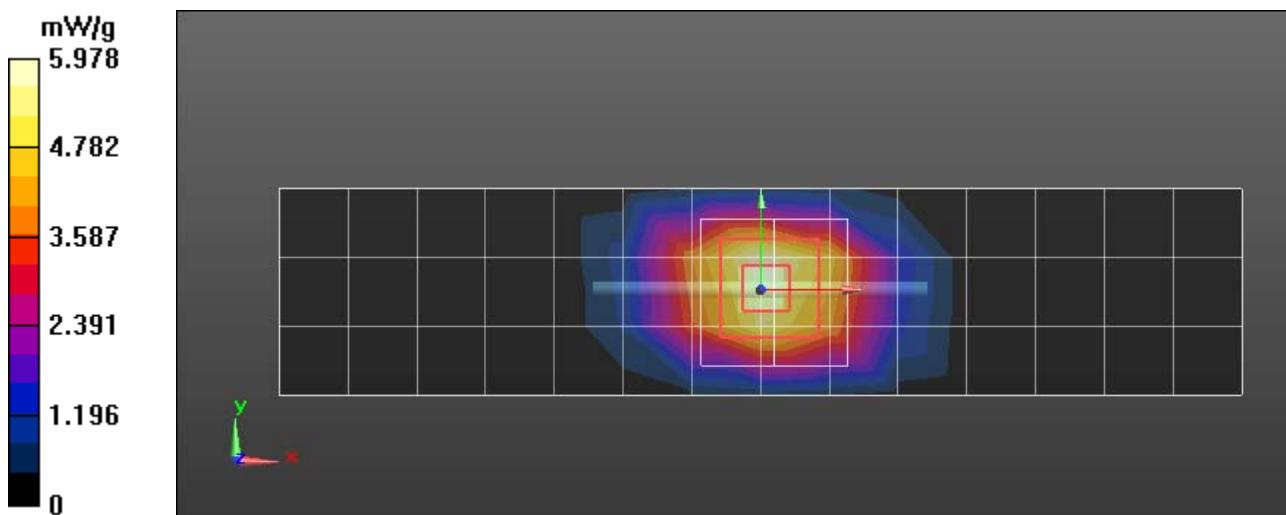
Daily SPC Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 46.302 V/m; Power Drift = 0.02 dB
Peak SAR (extrapolated) = 2.8310
SAR(1 g) = 1.95 mW/g; SAR(10 g) = 1.29 mW/g
Maximum value of SAR (measured) = 2.102 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31): Measurement grid: dx=20mm, dy=20mm, dz=5mm
Maximum value of SAR (measured) = 2.112 mW/g

Date/Time: 4/17/2012 2:33:03 PM

DUT: Dipole 1800 MHz; Type: D1800V2; Procedure Notes: 1800 MHz System Performance Check / Dipole Sn# 2d129; PM1 Power = 200 mW; Sim.Temp@ meas = 20.6*C; Sim.Temp@ SPC = 20.5*C; Room Temp@ SPC = 22.2*C

Communication System: _CW - Dipole; Frequency: 1800 MHz; Duty Cycle: 1:1
Medium: Validation *BODY Tissue* ; Medium parameters used: $f = 1800$ MHz; $\sigma = 1.5$ mho/m; $\epsilon_r = 51$; $\rho = 1000$ kg/m³


DASY4 Configuration:

- Probe: ES3DV3 - SN3180; ConvF(5.09, 5.09, 5.09); Calibrated: 1/11/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1313; Calibrated: 1/20/2012
- Phantom: R#-12, Triple Flat Phantom 5.1C (Rev.3); Type: QD 000 P51 CA; Serial: n/a;
- ; SEMCAD X Version 14.6.4 (4989)

Daily SPC Check/Dipole Area Scan (4x15x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (measured) = 5.978 mW/g

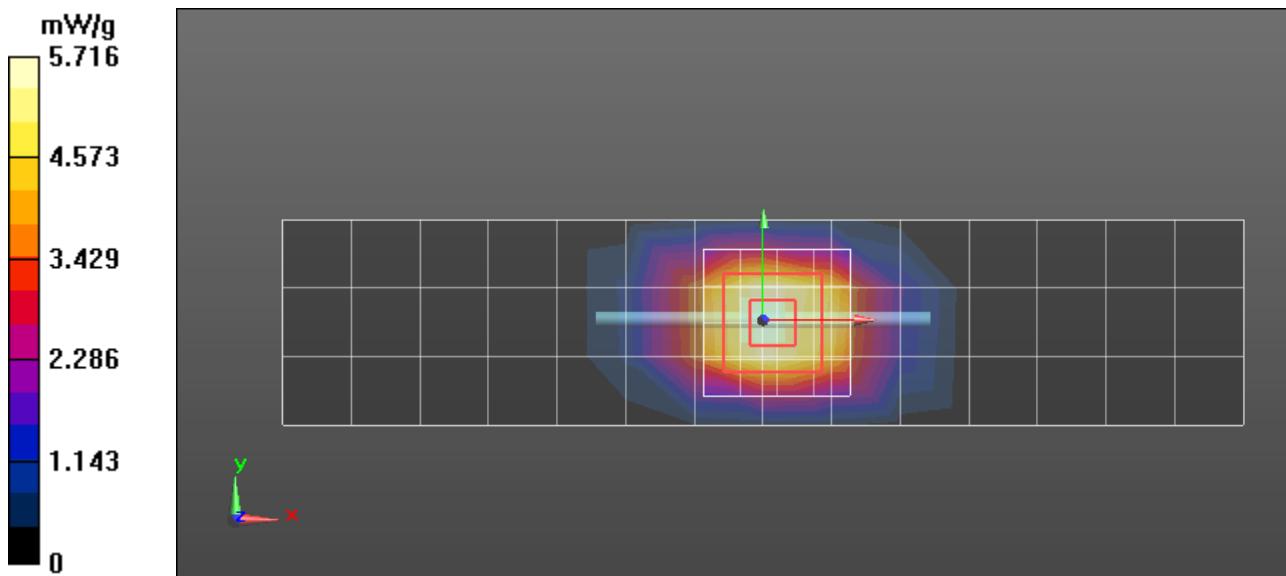
Daily SPC Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 75.315 V/m; Power Drift = -0.0068 dB
Peak SAR (extrapolated) = 12.2480
SAR(1 g) = 7.17 mW/g; SAR(10 g) = 3.84 mW/g
Maximum value of SAR (measured) = 8.053 mW/g

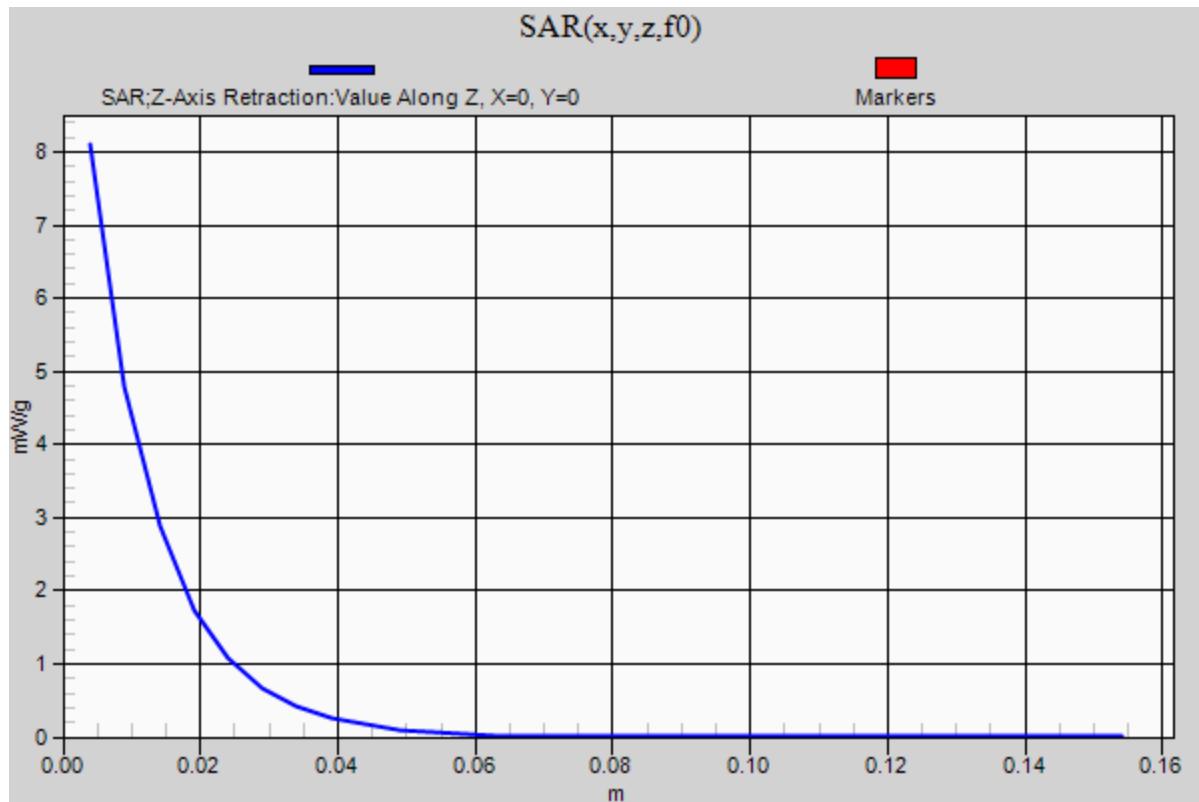
Daily SPC Check/Z-Axis Retraction (1x1x31): Measurement grid: dx=20mm, dy=20mm, dz=5mm
Maximum value of SAR (measured) = 8.069 mW/g

Date/Time: 4/18/2012 2:10:07 PM

DUT: Dipole 1800 MHz; Type: D1800V2; Procedure Notes: 1800 MHz System Performance Check / Dipole Sn# 2d129 PM1 Power = 200 mW
Sim.Temp@ meas =19.9*C; Sim.Temp@ SPC =19.8*C; Room Temp@ SPC = 22.2*C

Communication System: _CW - Dipole; Frequency: 1800 MHz; ; Duty Cycle: 1:1
Medium: Validation *BODY Tissue* ; Medium parameters used: $f = 1800$ MHz; $\sigma = 1.49$ mho/m; $\epsilon_r = 51.5$; $\rho = 1000$ kg/m³


DASY4 Configuration:


- Probe: ES3DV3 - SN3180; ConvF(5.09, 5.09, 5.09); Calibrated: 1/11/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1313; Calibrated: 1/20/2012
- Phantom: R#-12, Triple Flat Phantom 5.1C (Rev.3); Type: QD 000 P51 CA; Serial: n/a;
- ; SEMCAD X Version 14.6.4 (4989)

Daily SPC Check/Dipole Area Scan (4x15x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (measured) = 5.716 mW/g

Daily SPC Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 75.837 V/m; Power Drift = -0.06 dB
Peak SAR (extrapolated) = 12.2870
SAR(1 g) = 7.16 mW/g; SAR(10 g) = 3.83 mW/g
Maximum value of SAR (measured) = 8.075 mW/g

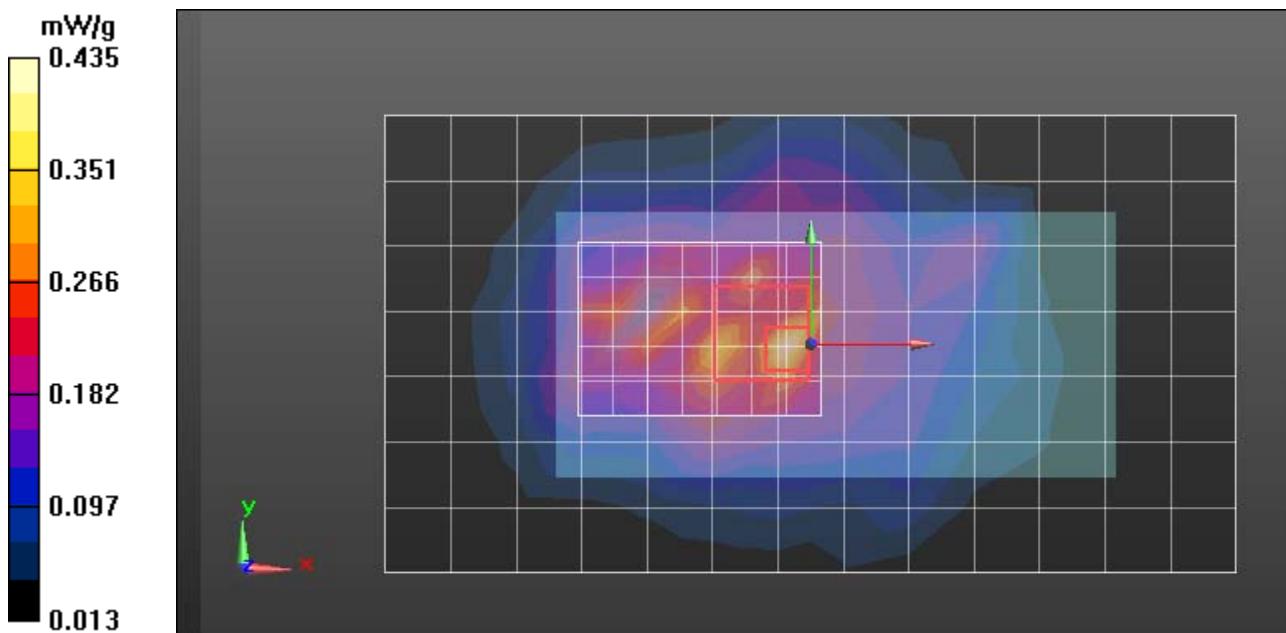
Daily SPC Check/Z-Axis Retraction (1x1x31): Measurement grid: dx=20mm, dy=20mm, dz=5mm
Maximum value of SAR (measured) = 8.100 mW/g

Appendix 2

SAR distribution plots for Mobile Hotspot Configuration

Date/Time: 4/19/2012 8:36:45 AM

Serial: 351633050007783; Procedure Notes: Pwr Step: All UP; DEVICE POSITION: Body Worn , Front of Phone 10mm from Phantom


Communication System: _CDMA; Frequency: 836.52 MHz; Communication System Channel Number: 384; Duty Cycle: 1:1
Medium: Low Freq Body; Medium parameters used: $f = 835$ MHz; $\sigma = 0.98$ mho/m; $\epsilon_r = 55.2$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 - SN3180; ConvF(5.97, 5.97, 5.97); Calibrated: 1/11/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1313; Calibrated: 1/20/2012
- Phantom: R#-12, Triple Flat Phantom 5.1C (Rev.3); Type: QD 000 P51 CA; Serial: n/a;
- ; SEMCAD X Version 14.6.4 (4989)

Triple Flat Phone Template/Area Scan - Normal Body (15mm) (14x8x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (measured) = 0.355 mW/g

Triple Flat Phone Template/5x5x7 Zoom Scan (<=3GHz) (8x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 16.480 V/m; Power Drift = 0.09 dB
Peak SAR (extrapolated) = 0.6890
SAR(1 g) = 0.305 mW/g; SAR(10 g) = 0.201 mW/g
Maximum value of SAR (measured) = 0.435 mW/g

Date/Time: 4/19/2012 9:26:41 AM

Serial: 351633050007783; *Unit Operating at Non-Reduced Power for Verification of Power Reduction* Procedure Notes: Pwr Step: All UP; DEVICE POSITION: Mobile Hotspot, Front of Phone 10mm from Phantom

Communication System: _CDMA; Frequency: 836.52 MHz; Communication System Channel Number: 384; Duty Cycle: 1:1

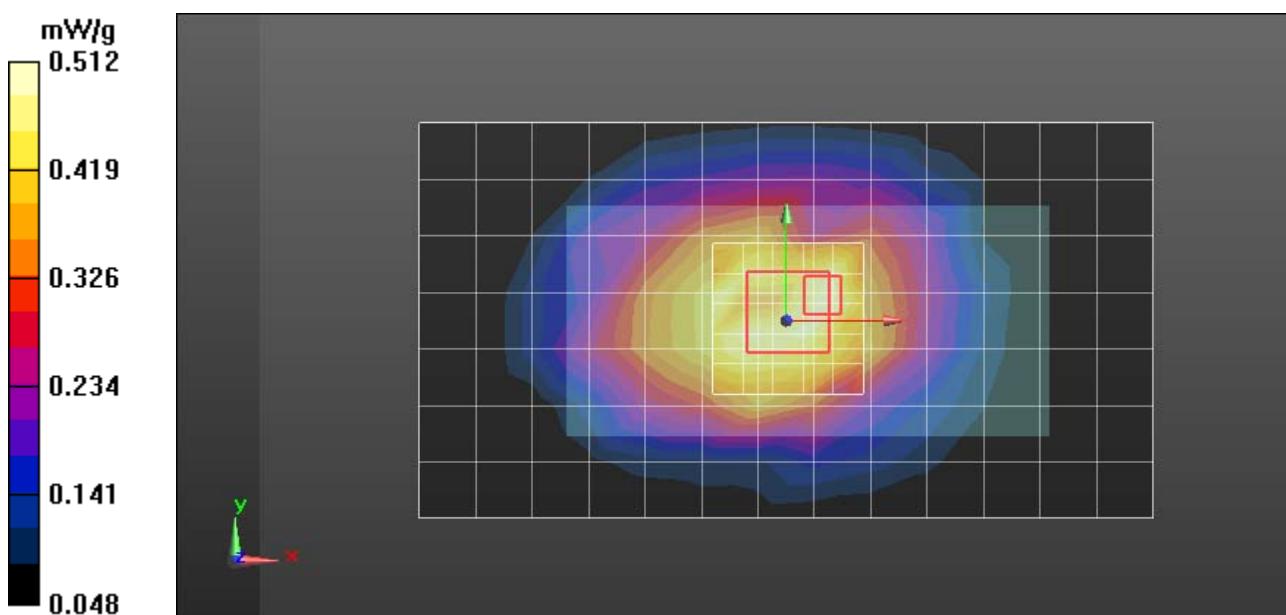
Medium: Low Freq Body; Medium parameters used: $f = 835$ MHz; $\sigma = 0.98$ mho/m; $\epsilon_r = 55.2$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 - SN3180; ConvF(5.97, 5.97, 5.97); Calibrated: 1/11/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1313; Calibrated: 1/20/2012
- Phantom: R#-12, Triple Flat Phantom 5.1C (Rev.3); Type: QD 000 P51 CA; Serial: n/a;
- ; SEMCAD X Version 14.6.4 (4989)

Triple Flat Phone Template/Area Scan - Normal Body (15mm) (14x8x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.542 mW/g


Triple Flat Phone Template/5x5x7 Zoom Scan (<=3GHz) (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.723 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.7850

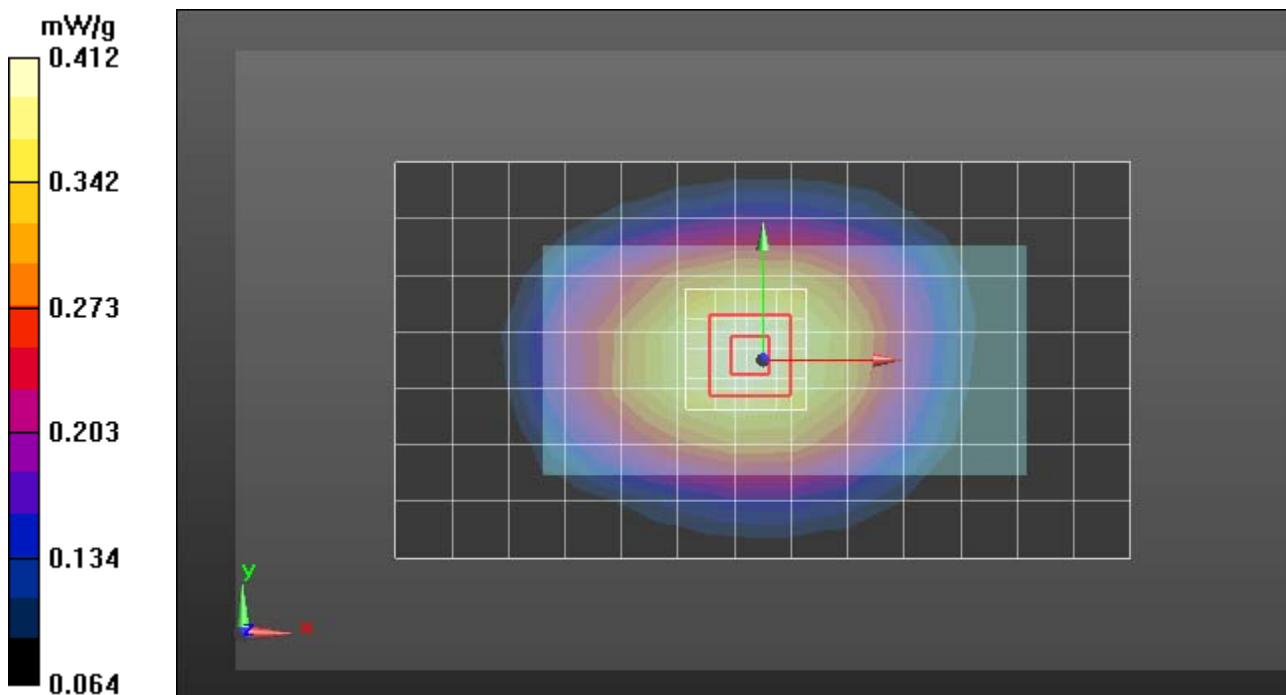
SAR(1 g) = 0.471 mW/g; SAR(10 g) = 0.342 mW/g

Maximum value of SAR (measured) = 0.512 mW/g

Date/Time: 4/16/2012 12:01:43 PM

Serial: 351633050007783; Procedure Notes: Pwr Step: 05; DEVICE POSITION: GPRS class 12 (4 Upslots) Body Worn, Front of Phone 10mm from Phantom

Communication System: _GPRS Class 12; Frequency: 836.6 MHz; Communication System Channel Number: 190; Duty Cycle: 1:2.07491


Medium: Low Freq Body; Medium parameters used: $f = 835$ MHz; $\sigma = 0.99$ mho/m; $\epsilon_r = 55.6$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 - SN3180; ConvF(5.97, 5.97, 5.97); Calibrated: 1/11/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1313; Calibrated: 1/20/2012
- Phantom: R#-12, Triple Flat Phantom 5.1C (Rev.3); Type: QD 000 P51 CA; Serial: n/a;
- ; SEMCAD X Version 14.6.4 (4989)

Triple Flat Phone Template/Area Scan - Normal Body (15mm) (14x8x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (measured) = 0.405 mW/g

Triple Flat Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 20.482 V/m; Power Drift = -0.06 dB
Peak SAR (extrapolated) = 0.4780
SAR(1 g) = 0.393 mW/g; SAR(10 g) = 0.300 mW/g
Maximum value of SAR (measured) = 0.412 mW/g

Date/Time: 4/16/2012 1:27:59 PM

Serial: 351633050007783; *Unit Operating at Non-Reduced Power for Verification of Power Reduction* Procedure Notes: Pwr Step: 05; DEVICE POSITION: Mobile Hotspot, Front of Phone 10mm from Phantom

Communication System: _GPRS Class 12; Frequency: 836.6 MHz; Communication System Channel Number: 190; Duty Cycle: 1:2.07491

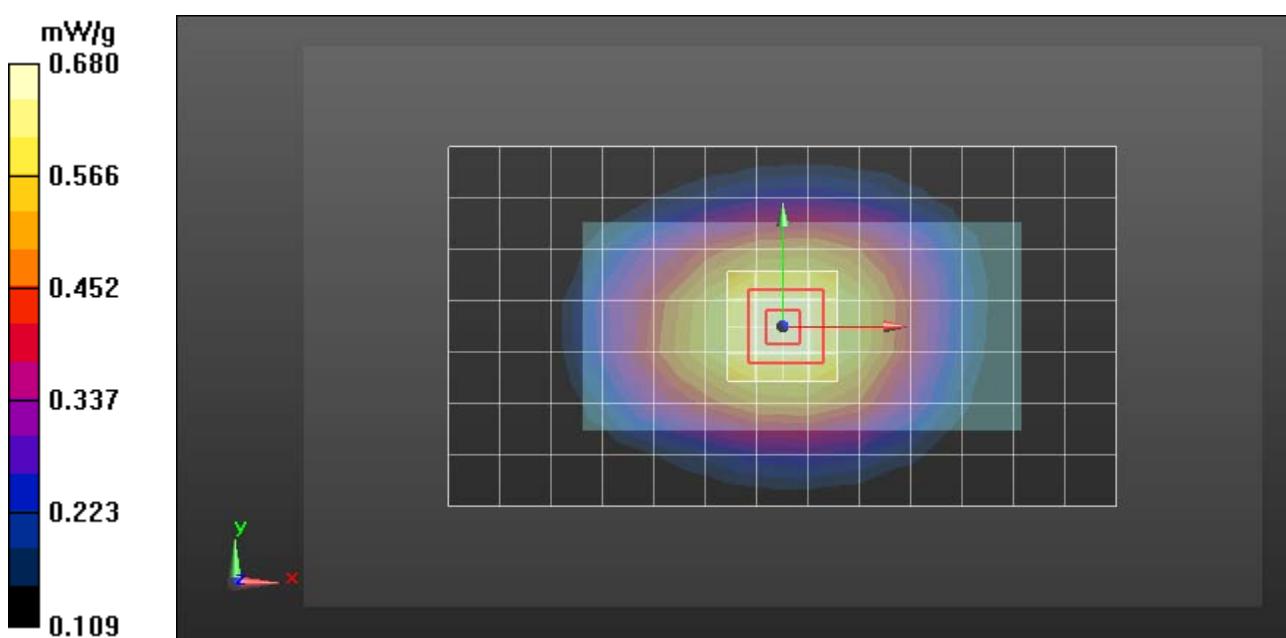
Medium: Low Freq Body; Medium parameters used: $f = 835$ MHz; $\sigma = 0.99$ mho/m; $\epsilon_r = 55.6$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 - SN3180; ConvF(5.97, 5.97, 5.97); Calibrated: 1/11/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1313; Calibrated: 1/20/2012
- Phantom: R#-12, Triple Flat Phantom 5.1C (Rev.3); Type: QD 000 P51 CA; Serial: n/a;
- ; SEMCAD X Version 14.6.4 (4989)

Triple Flat Phone Template/Area Scan - Normal Body (15mm) (14x8x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.652 mW/g


Triple Flat Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.857 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 0.7890

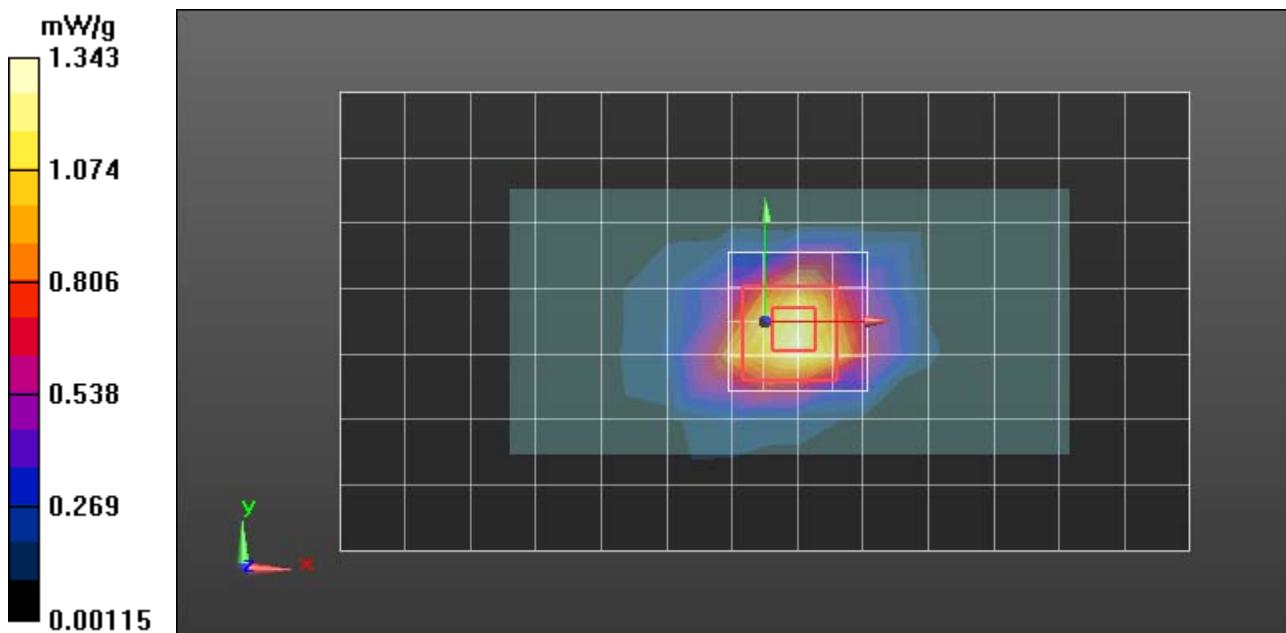
SAR(1 g) = 0.648 mW/g; SAR(10 g) = 0.496 mW/g

Maximum value of SAR (measured) = 0.680 mW/g

Date/Time: 4/17/2012 3:39:21 PM

Serial: 351633050007783; Procedure Notes: Pwr Step: All UP; DEVICE POSITION: Body Worn, Bottom of Phone 10mm from Phantom

Communication System: _CDMA; Frequency: 1880 MHz; Communication System Channel Number: 600; Duty Cycle: 1:1


Medium: Regular Glycol Body 1750/1880; Medium parameters used: $f = 1880$ MHz; $\sigma = 1.59$ mho/m; $\epsilon_r = 50.8$; $\rho = 1000$ kg/m³

DASY4 Configuration:

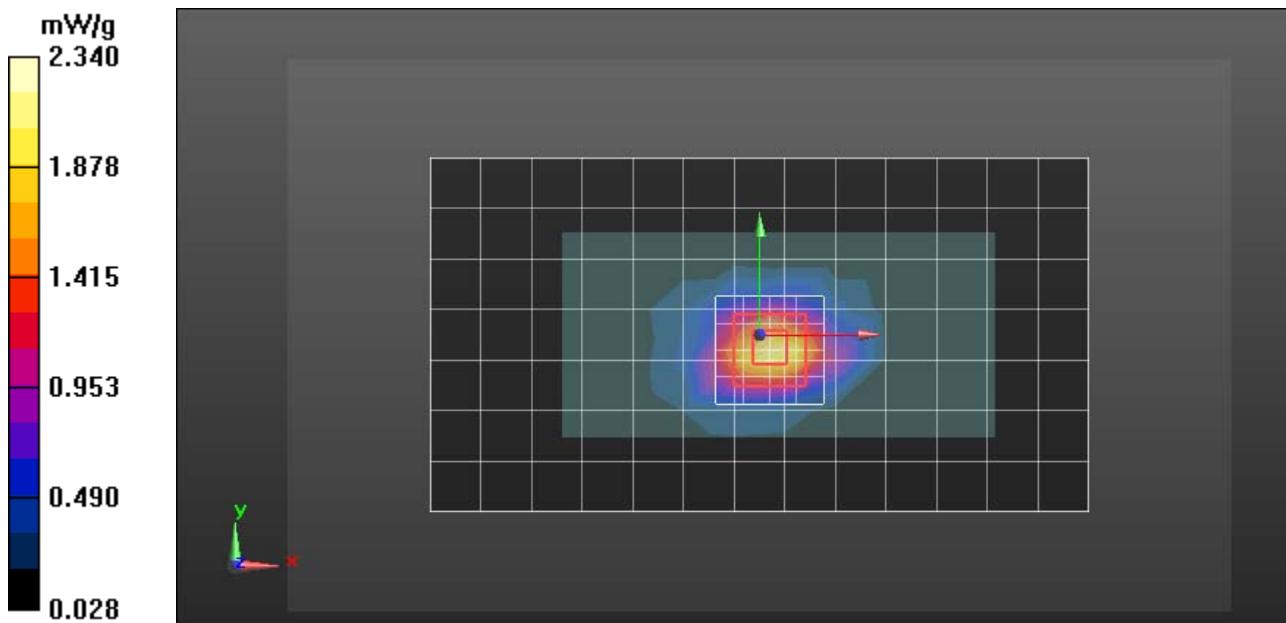
- Probe: ES3DV3 - SN3180; ConvF(5.09, 5.09, 5.09); Calibrated: 1/11/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1313; Calibrated: 1/20/2012
- Phantom: R#-12, Triple Flat Phantom 5.1C (Rev.3); Type: QD 000 P51 CA; Serial: n/a;
- ; SEMCAD X Version 14.6.4 (4989)

Triple Flat Phone Template/Area Scan - Normal Body (15mm) (14x8x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (measured) = 1.343 mW/g

Triple Flat Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 27.120 V/m; Power Drift = -0.11 dB
Peak SAR (extrapolated) = 3.1770
SAR(1 g) = 1.45 mW/g; SAR(10 g) = 0.670 mW/g
Maximum value of SAR (measured) = 1.964 mW/g

Date/Time: 4/18/2012 3:33:06 PM

Serial: 351633050007783; *Unit Operating at Non-Reduced Power for Verification of Power Reduction* Procedure Notes: Pwr Step: All UP; DEVICE POSITION: Mobile Hotspot, Bottom Edge of Phone 10mm from Phantom


Communication System: _CDMA; Frequency: 1908.75 MHz; Communication System Channel Number: 1175; Duty Cycle: 1:1
Medium: Regular Glycol Body 1750/1880; Medium parameters used: $f = 1880$ MHz; $\sigma = 1.59$ mho/m; $\epsilon_r = 51.2$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 - SN3180; ConvF(5.09, 5.09, 5.09); Calibrated: 1/11/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1313; Calibrated: 1/20/2012
- Phantom: R#-12, Triple Flat Phantom 5.1C (Rev.3); Type: QD 000 P51 CA; Serial: n/a;
- ; SEMCAD X Version 14.6.4 (4989)

Triple Flat Phone Template/Area Scan - Normal Body (15mm) (14x8x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (measured) = 2.079 mW/g

Triple Flat Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 31.547 V/m; Power Drift = -0.05 dB
Peak SAR (extrapolated) = 5.1080
SAR(1 g) = 2.14 mW/g; SAR(10 g) = 1.07 mW/g
Maximum value of SAR (measured) = 2.340 mW/g

Date/Time: 4/17/2012 9:08:25 AM

Serial: 351633050007783; Procedure Notes: Pwr Step: 0; DEVICE POSITION: Mobile Hotspot, Bottom Edge of Phone 10mm from Phantom

Communication System: _GPRS Class 12; Frequency: 1880 MHz; Communication System Channel Number: 661; Duty Cycle: 1:2.07491

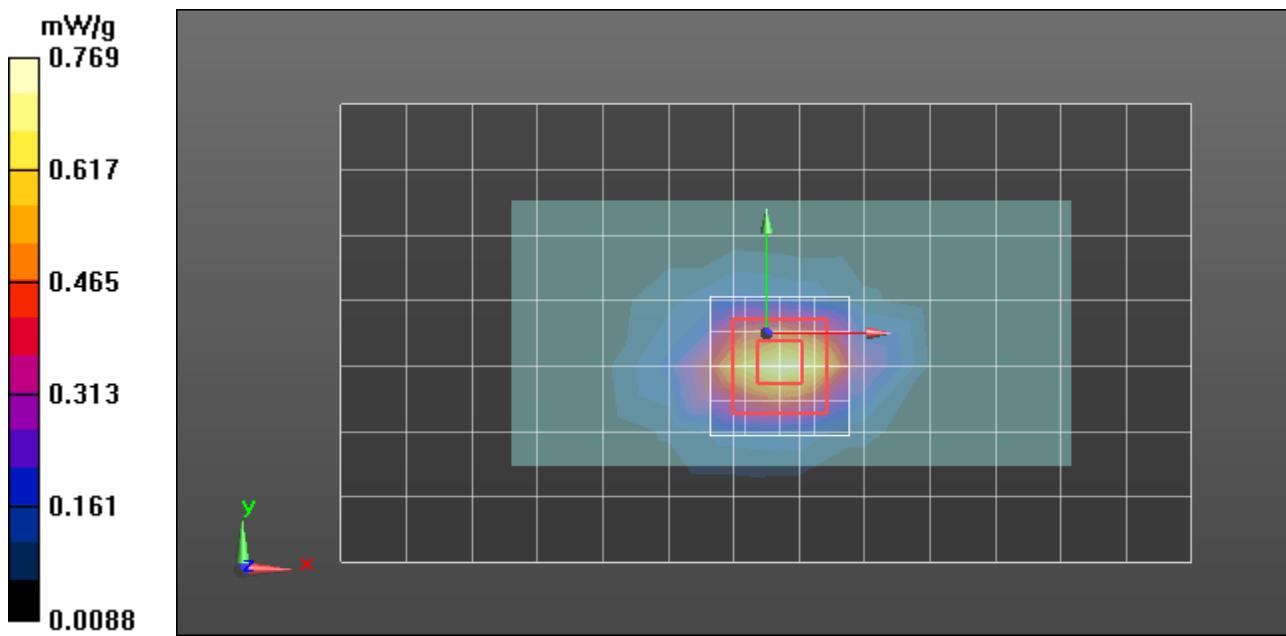
Medium: Regular Glycol Body 1750/1880; Medium parameters used: $f = 1880$ MHz; $\sigma = 1.58$ mho/m; $\epsilon_r = 51.2$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 - SN3180; ConvF(5.09, 5.09, 5.09); Calibrated: 1/11/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1313; Calibrated: 1/20/2012
- Phantom: R#-12, Triple Flat Phantom 5.1C (Rev.3); Type: QD 000 P51 CA; Serial: n/a;
- ; SEMCAD X Version 14.6.4 (4989)

Triple Flat Phone Template/Area Scan - Normal Body (15mm) (14x8x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.736 mW/g


Triple Flat Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.676 V/m; Power Drift = 0.05 dB

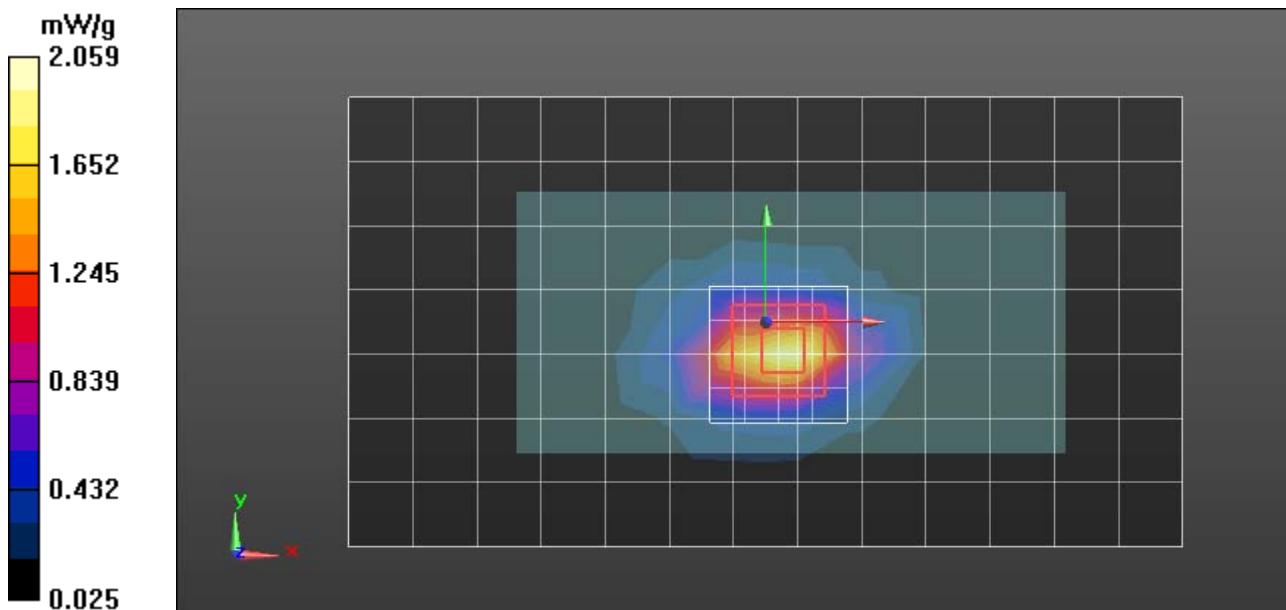
Peak SAR (extrapolated) = 1.1650

SAR(1 g) = 0.674 mW/g; SAR(10 g) = 0.344 mW/g

Maximum value of SAR (measured) = 0.769 mW/g

Date/Time: 4/17/2012 11:24:42 AM

Serial: 351633050007783; *Unit Operating at Non-Reduced Power for Verification of Power Reduction* Procedure Notes: Pwr Step: 0; DEVICE POSITION: Mobile Hotspot, Bottom of Phone 10mm from Phantom


Communication System: _GPRS Class 12; Frequency: 1880 MHz; Communication System Channel Number: 661; Duty Cycle: 1:2.07491
Medium: Regular Glycol Body 1750/1880; Medium parameters used: $f = 1880$ MHz; $\sigma = 1.58$ mho/m; $\epsilon_r = 51.2$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 - SN3180; ConvF(5.09, 5.09, 5.09); Calibrated: 1/11/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1313; Calibrated: 1/20/2012
- Phantom: R#-12, Triple Flat Phantom 5.1C (Rev.3); Type: QD 000 P51 CA; Serial: n/a;
- ; SEMCAD X Version 14.6.4 (4989)

Triple Flat Phone Template/Area Scan - Normal Body (15mm) (14x8x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (measured) = 1.976 mW/g

Triple Flat Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 26.328 V/m; Power Drift = -0.01 dB
Peak SAR (extrapolated) = 3.1840
SAR(1 g) = 1.82 mW/g; SAR(10 g) = 0.920 mW/g
Maximum value of SAR (measured) = 2.059 mW/g

Appendix 3

Measurement Uncertainty Budget

Uncertainty Budget for Device Under Test, for 735 MHz to 2 GHz

<i>a</i>	<i>b</i>	<i>c</i>	<i>d</i>	<i>e</i> = <i>f</i> (<i>d,k</i>)	<i>f</i>	<i>g</i>	<i>h</i> = <i>c x f / e</i>	<i>i</i> = <i>c x g / e</i>	<i>k</i>
Uncertainty Component	Description IEEE1528(2003) / IEC62209-1(2005)	Tol. (\pm %)	Prob Dist	Div.	<i>c_i</i> (1 g)	<i>c_i</i> (10 g)	1 g <i>u_i</i> (\pm %)	10 g <i>u_i</i> (\pm %)	<i>v_i</i>
Measurement System									
Probe Calibration [ES3DV3]	E.2.1 / 7.2.1	5.5	N	1.00	1	1	5.5	5.5	∞
Axial Isotropy	E.2.2 / 7.2.1.2	4.7	R	1.73	0.707	0.707	1.9	1.9	∞
Hemispherical Isotropy	E.2.2 / 7.2.1.2	9.6	R	1.73	0.707	0.707	3.9	3.9	∞
Boundary Effect	E.2.3 / 7.2.1.5	1.0	R	1.73	1	1	0.6	0.6	∞
Linearity	E.2.4 / 7.2.1.3	4.7	R	1.73	1	1	2.7	2.7	∞
System Detection Limits	E.2.5 / 7.2.1.4	1.0	R	1.73	1	1	0.6	0.6	∞
Readout Electronics	E.2.6 / 7.2.1.6	0.3	N	1.00	1	1	0.3	0.3	∞
Response Time	E.2.7 / 7.2.1.7	1.1	R	1.73	1	1	0.6	0.6	∞
Integration Time	E.2.8 / 7.2.1.8	1.1	R	1.73	1	1	0.6	0.6	∞
RF Ambient Conditions - Noise	E.6.1 / 7.2.3.6	3.0	R	1.73	1	1	1.7	1.7	∞
RF Ambient Conditions - Reflections	E.6.1 / 7.2.3.6	3.0	R	1.73	1	1	1.7	1.7	∞
Probe Positioner Mech. Tolerance	E.6.2 / 7.2.2.1	0.4	R	1.73	1	1	0.2	0.2	∞
Probe Positioning w.r.t Phantom	E.6.3 / 7.2.2.3	1.4	R	1.73	1	1	0.8	0.8	∞
Max. SAR Evaluation (ext., int., avg.)	E.5 / 7.2.4	3.4	R	1.73	1	1	2.0	2.0	∞
Test sample Related									
Test Sample Positioning	E.4.2 / 7.2.2.4	3.4	N	1.00	1	1	3.4	3.4	79
Device Holder Uncertainty	E.4.1 / 7.2.2.4.2	4.5	N	1.00	1	1	4.5	4.5	11
SAR drift	6.6.2 / 7.2.3.5	0.0	R	1.73	1	1	0.0	0.0	∞
Phantom and Tissue Parameters									
Phantom Uncertainty	E.3.1 / 7.2.2.2	4.0	R	1.73	1	1	2.3	2.3	∞
Liquid Conductivity (target)	E.3.2 / 7.2.3.3	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity (measurement)	E.3.3 / 7.2.3.3	2.5	N	1.00	0.64	0.43	1.6	1.1	6
Liquid Permittivity (target)	E.3.2 / 7.2.3.4	5.0	R	1.73	0.6	0.49	1.7	1.4	∞
Liquid Permittivity (measurement)	E.3.2 / 7.2.3.4	2.3	N	1.00	0.6	0.49	1.4	1.1	6
Combined Standard Uncertainty									
Expanded Uncertainty (95% CONFIDENCE LEVEL)				RSS			11	11	338
				<i>k</i> =2			22	21	

Appendix 4

Probe Calibration Certificate

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client Motorola Beijing

Accreditation No.: SCS 108

Certificate No: ES3-3180_Jan12

CALIBRATION CERTIFICATE

Object ES3DV3 - SN:3180

Calibration procedure(s) QA CAL-01.v8, QA CAL-23.v4, QA CAL-25.v4
Calibration procedure for dosimetric E-field probes

Calibration date: January 11, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	31-Mar-11 (No. 217-01372)	Apr-12
Power sensor E4412A	MY41498087	31-Mar-11 (No. 217-01372)	Apr-12
Reference 3 dB Attenuator	SN: S5054 (3c)	29-Mar-11 (No. 217-01369)	Apr-12
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-11 (No. 217-01367)	Apr-12
Reference 30 dB Attenuator	SN: S5129 (30b)	29-Mar-11 (No. 217-01370)	Apr-12
Reference Probe ES3DV2	SN: 3013	29-Dec-11 (No. ES3-3013_Dec11)	Dec-12
DAE4	SN: 654	3-May-11 (No. DAE4-654_May11)	May-12
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-11)	In house check: Apr-13
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-11)	In house check: Oct-12

Calibrated by:	Name	Function	Signature
	Jeton Kastrati	Laboratory Technician	
Approved by:	Katja Pokovic	Technical Manager	

Issued: January 13, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary:

TSL	tissue simulating liquid
NORM x,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORM x,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C	modulation dependent linearization parameters
Polarization ϕ	ϕ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\theta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- $NORMx,y,z$: Assessed for E-field polarization $\theta = 0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). $NORMx,y,z$ are only intermediate values, i.e., the uncertainties of $NORMx,y,z$ does not affect the E^2 -field uncertainty inside TSL (see below ConvF).
- $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- $DCPx,y,z$: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR : PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- $Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z$: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters*: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to $NORMx,y,z * ConvF$ whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy)*: in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset*: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe ES3DV3

SN:3180

Manufactured: March 25, 2008
Calibrated: January 11, 2012

Calibrated for DASY/EASY Systems
(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3180

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm ($\mu\text{V}/(\text{V}/\text{m})^2$) ^A	1.21	1.05	1.01	$\pm 10.1\%$
DCP (mV) ^B	101.4	103.7	103.5	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^E (k=2)
10000	CW	0.00	X	0.00	0.00	1.00	107.7	$\pm 3.0\%$
			Y	0.00	0.00	1.00	103.4	
			Z	0.00	0.00	1.00	92.6	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E^2 -field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3180

Calibration Parameter Determined in Head Tissue Simulating Media

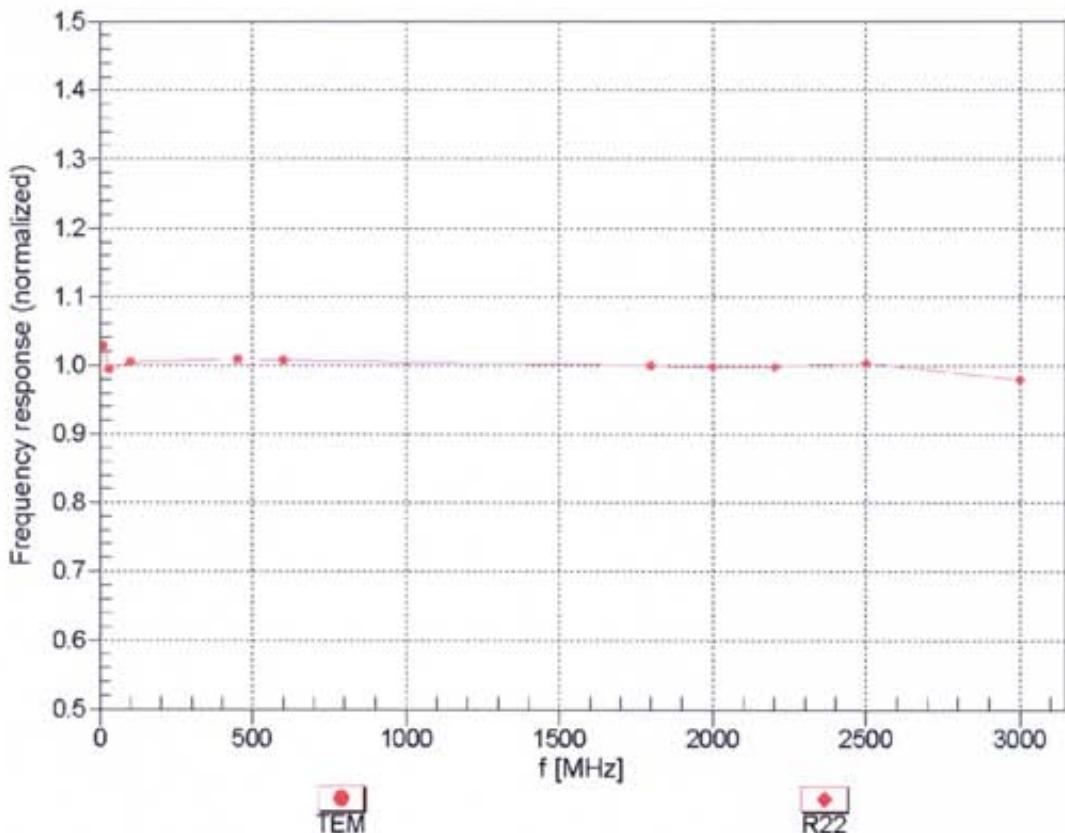
f (MHz) ^c	Relative Permittivity ^f	Conductivity (S/m) ^f	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	41.9	0.89	6.30	6.30	6.30	0.26	1.99	± 12.0 %
835	41.5	0.90	6.07	6.07	6.07	0.41	1.56	± 12.0 %
1810	40.0	1.40	5.20	5.20	5.20	0.43	1.56	± 12.0 %
1950	40.0	1.40	4.97	4.97	4.97	0.72	1.23	± 12.0 %
2450	39.2	1.80	4.51	4.51	4.51	0.77	1.33	± 12.0 %

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

^f At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3180

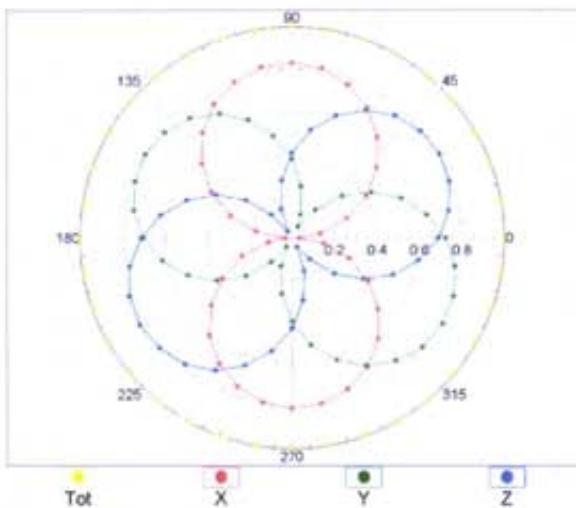
Calibration Parameter Determined in Body Tissue Simulating Media

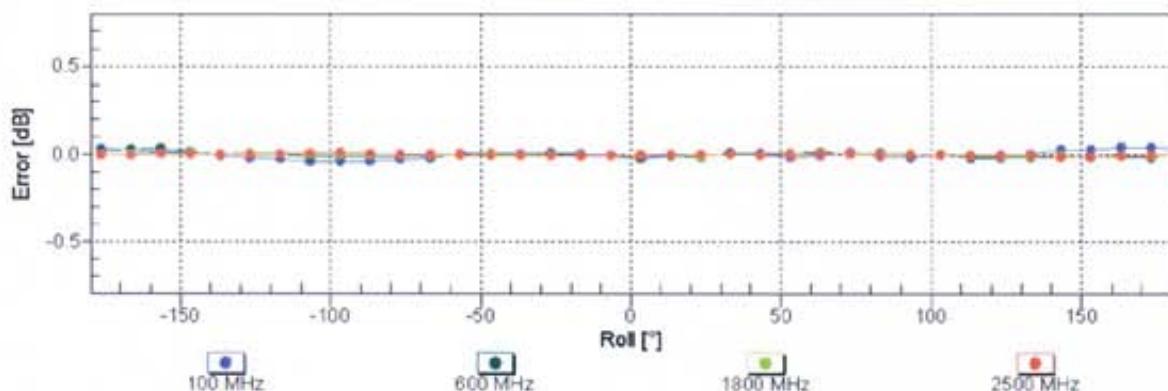
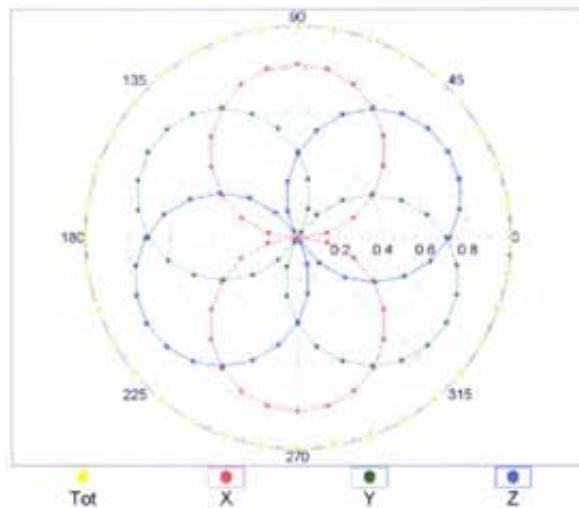

f (MHz) ^c	Relative Permittivity ^f	Conductivity (S/m) ^f	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	55.5	0.96	6.06	6.06	6.06	0.35	1.71	± 12.0 %
835	55.2	0.97	5.97	5.97	5.97	0.52	1.36	± 12.0 %
1810	53.3	1.52	5.09	5.09	5.09	0.65	1.58	± 12.0 %
1950	53.3	1.52	5.03	5.03	5.03	0.64	1.52	± 12.0 %
2450	52.7	1.95	4.46	4.46	4.46	0.80	1.21	± 12.0 %

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

^f At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

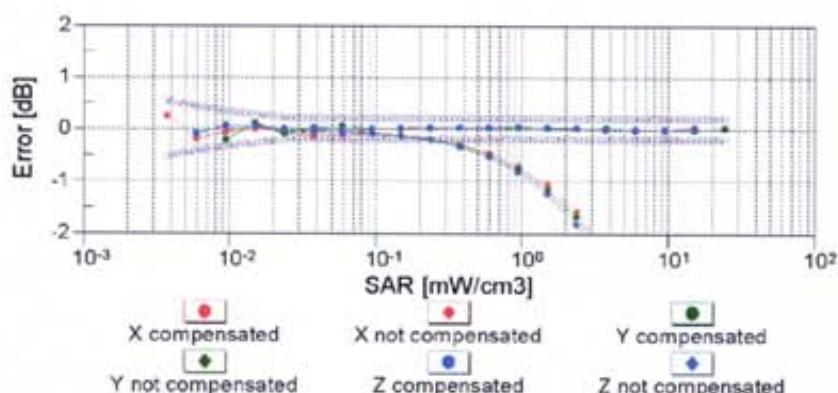
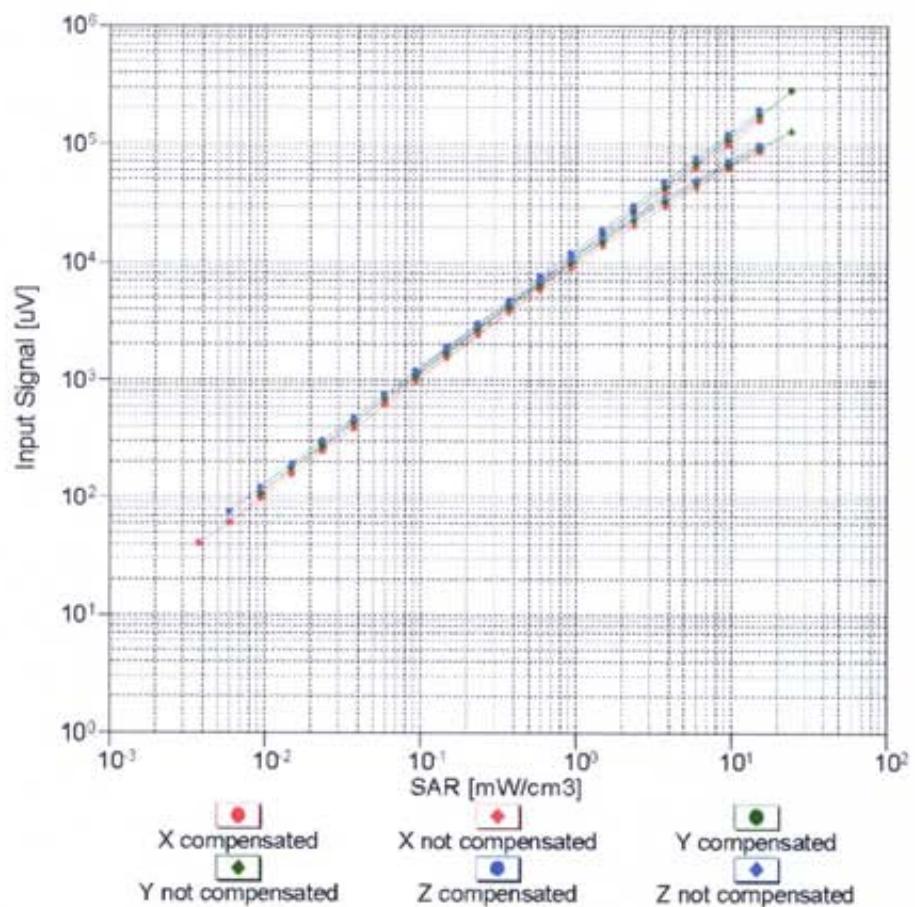
Frequency Response of E-Field


(TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ (k=2)

Receiving Pattern (ϕ), $\theta = 0^\circ$

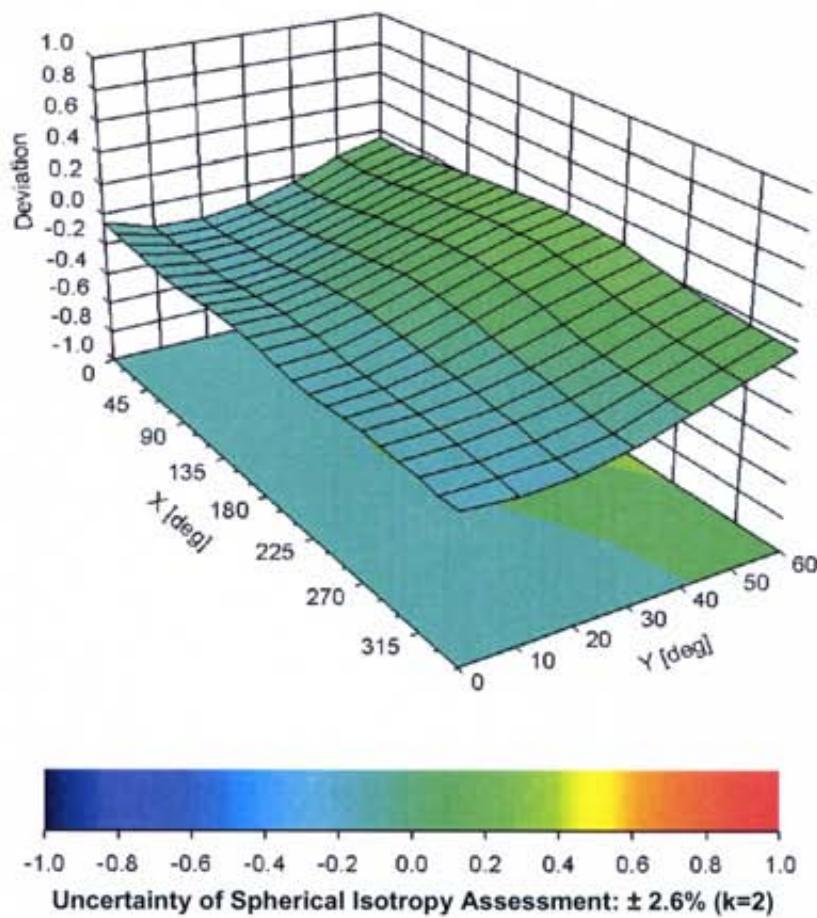
f=600 MHz, TEM



f=1800 MHz, R22

Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ ($k=2$)

Dynamic Range f(SAR_{head})

(TEM cell , f = 900 MHz)



Uncertainty of Linearity Assessment: $\pm 0.6\%$ (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (ϕ, θ), $f = 900 \text{ MHz}$

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3180

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Appendix 5

Dipole Characterization Certificate

Accredited by the Swiss Accreditation Service (SAS)

**The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates**

Accreditation No.: SCS 108

Client **Motorola MDb**

Certificate No: D835V2-425_Jul11

CALIBRATION CERTIFICATE

Object **D835V2 - SN: 425**

Calibration procedure(s) **QA CAL-05.v8**
Calibration procedure for dipole validation kits above 700 MHz

Calibration date: **July 08, 2011**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-10 (No. 217-01266)	Oct-11
Power sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01266)	Oct-11
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-11 (No. 217-01367)	Apr-12
Type-N mismatch combination	SN: 5047.2 / 06327	29-Mar-11 (No. 217-01371)	Apr-12
Reference Probe ES3DV3	SN: 3205	29-Apr-11 (No. ES3-3205_Apr11)	Apr-12
DAE4	SN: 601	04-Jul-11 (No. DAE4-601_Jul11)	Jul-12
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-10)	In house check: Oct-11

Calibrated by: **Jeton Kastrati** **Laboratory Technician**

Approved by: **Katja Pokovic** **Technical Manager**

Issued: July 12, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary:

TS	tissue simulating liquid
ConvF	sensitivity in TS / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

- d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TS:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TS parameters:* The measured TS parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz \pm 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 \pm 0.2) °C	41.0 \pm 6 %	0.88 mho/m \pm 6 %
Head TSL temperature change during test	< 0.5 °C	----	----

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.25 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.13 mW /g \pm 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.47 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	5.94 mW /g \pm 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 \pm 0.2) °C	53.8 \pm 6 %	0.98 mho/m \pm 6 %
Body TSL temperature change during test	< 0.5 °C	----	----

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.37 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	9.35 mW / g \pm 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.56 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	6.18 mW / g \pm 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$53.0 \Omega + 2.7 \text{ j} \Omega$
Return Loss	- 28.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$49.1 \Omega + 2.2 \text{ j} \Omega$
Return Loss	- 32.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.401 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Design Modification by End User

The dipole has been modified with Teflon Rings (TR) placed within identified markings close to the end of each dipole arm. Calibration has been performed with TR attached to the dipole

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	August 24, 2000

DASY5 Validation Report for Head TSL

Date: 08.07.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 425

Communication System: CW; Frequency: 835 MHz

Medium parameters used: $f = 835$ MHz; $\sigma = 0.88$ mho/m; $\epsilon_r = 41$; $\rho = 1000$ kg/m³

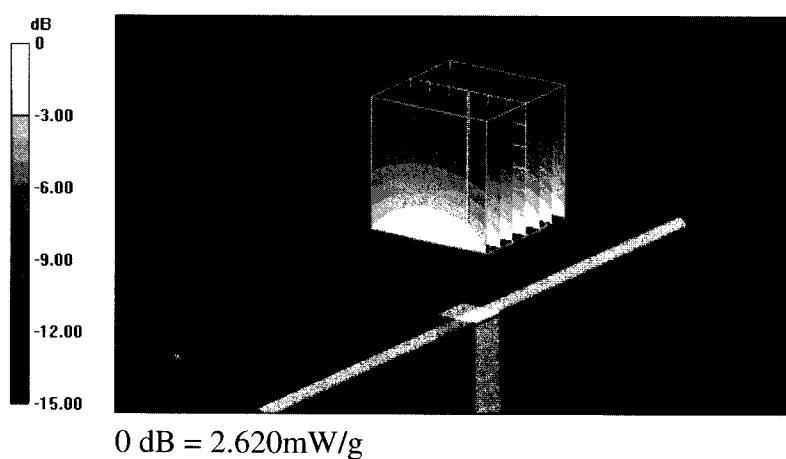
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

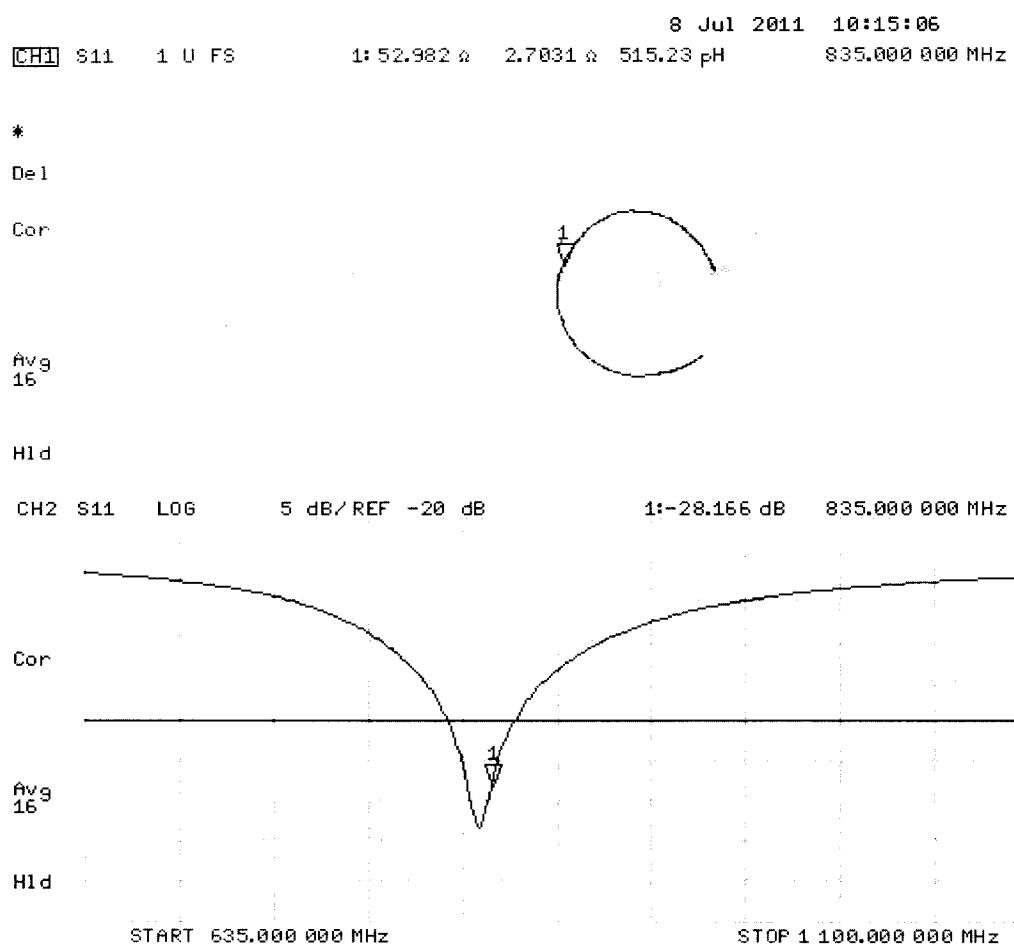
DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(6.07, 6.07, 6.07); Calibrated: 29.04.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: $dx=5$ mm, $dy=5$ mm, $dz=5$ mm

Reference Value = 56.396 V/m; Power Drift = 0.004 dB


Peak SAR (extrapolated) = 3.296 W/kg

SAR(1 g) = 2.25 mW/g; SAR(10 g) = 1.47 mW/g

Maximum value of SAR (measured) = 2.624 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 08.07.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 425

Communication System: CW; Frequency: 835 MHz

Medium parameters used: $f = 835$ MHz; $\sigma = 0.98$ mho/m; $\epsilon_r = 53.8$; $\rho = 1000$ kg/m³

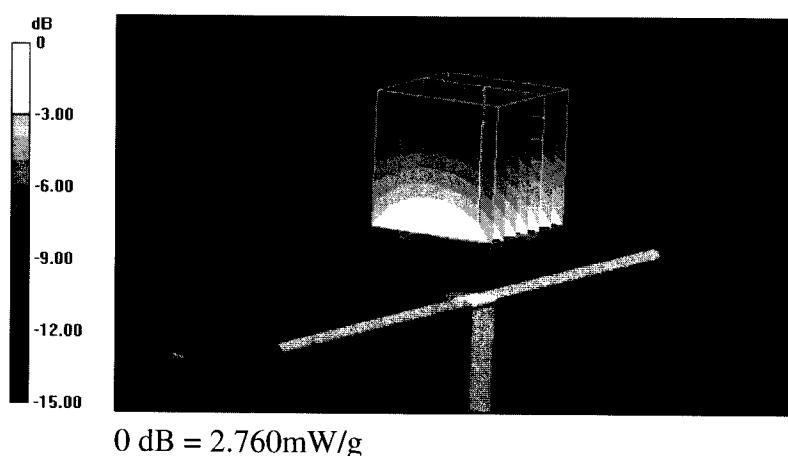
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(6.02, 6.02, 6.02); Calibrated: 29.04.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.024 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 3.431 W/kg

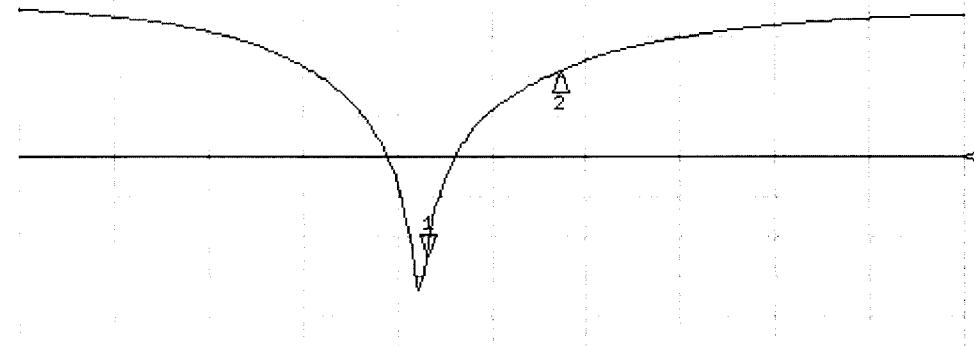
SAR(1 g) = 2.37 mW/g; SAR(10 g) = 1.56 mW/g


Maximum value of SAR (measured) = 2.759 mW/g

Impedance Measurement Plot for Body TSL

8 Jul 2011 14:29:23
CH1 S11 1 U FS 1: 49.143 Ω 2.2227 Ω 423.65 pH 835.000 000 MHz

*
Del
Cor
Avg 16



CH1 Markers
1: 61.988 Ω
2: 37.531 Ω
900.000 MHz

H1d

CH2 S11 LOG 5 dB/REF -20 dB 1:-32.392 dB 835.000 000 MHz

Cor
Avg 16
H1d

CH2 Markers
1:-9.5360 dB
2: 900.000 MHz

START 835.000 000 MHz STOP 1 100.000 000 MHz

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Client **Motorola Beijing**

Certificate No: **D1800V2-2d129_Jul11**

CALIBRATION CERTIFICATE

Object **D1800V2 - SN: 2d129**

Calibration procedure(s) **QA CAL-05.v8**
Calibration procedure for dipole validation kits above 700 MHz

Calibration date: **July 22, 2011**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-10 (No. 217-01266)	Oct-11
Power sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01266)	Oct-11
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-11 (No. 217-01367)	Apr-12
Type-N mismatch combination	SN: 5047.2 / 06327	29-Mar-11 (No. 217-01371)	Apr-12
Reference Probe ES3DV3	SN: 3205	29-Apr-11 (No. ES3-3205_Apr11)	Apr-12
DAE4	SN: 601	04-Jul-11 (No. DAE4-601_Jul11)	Jul-12
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-10)	In house check: Oct-11

Calibrated by: **Dimce Iliev** **Laboratory Technician**

Approved by: **Katja Pokovic** **Technical Manager**

Issued: July 22, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Accredited by the Swiss Accreditation Service (SAS)

Accreditation No.: **SCS 108**

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TS	tissue simulating liquid
ConvF	sensitivity in TS / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

- d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TS:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TS parameters:* The measured TS parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1800 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.2 ± 6 %	1.37 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	----	----

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.55 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	38.5 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.04 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	20.2 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.2 ± 6 %	1.50 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	----	----

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.67 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	38.8 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.14 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	20.6 mW / g ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.4 Ω - 2.3 $j\Omega$
Return Loss	- 31.0 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	43.8 Ω - 2.8 $j\Omega$
Return Loss	- 22.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.209 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 27, 2005

DASY5 Validation Report for Head TSL

Date: 20.07.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN: 2d129

Communication System: CW; Frequency: 1800 MHz

Medium parameters used: $f = 1800$ MHz; $\sigma = 1.37$ mho/m; $\epsilon_r = 39.2$; $\rho = 1000$ kg/m³

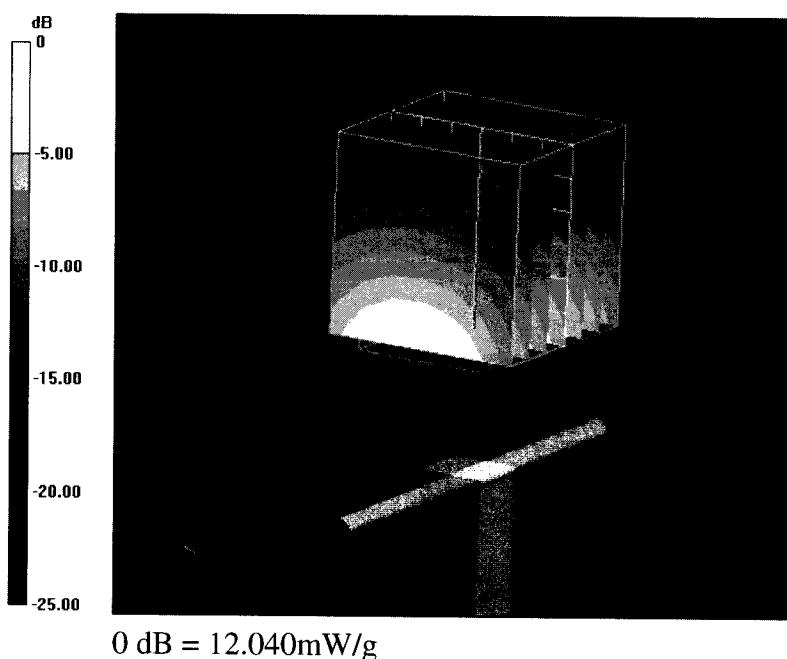
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

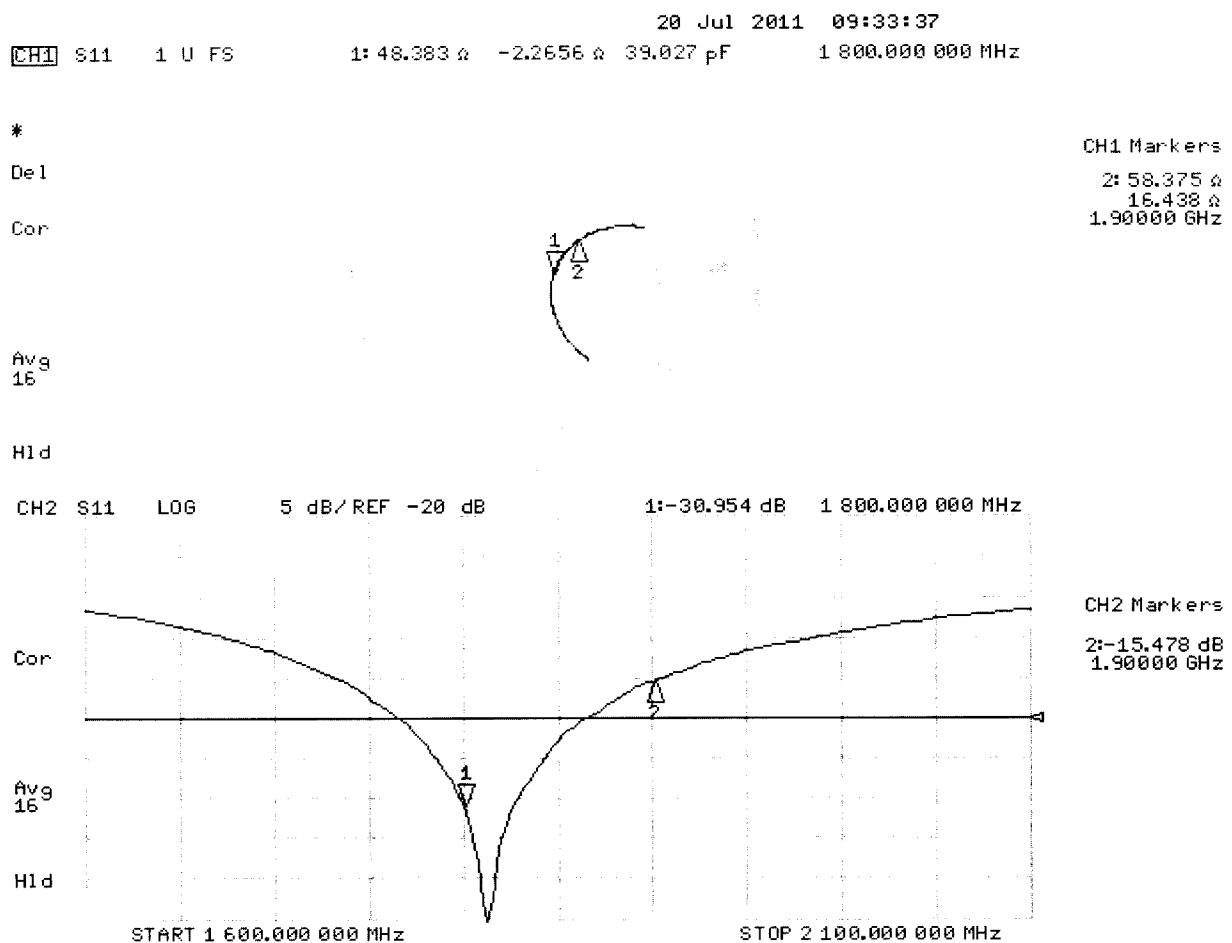
DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(5.07, 5.07, 5.07); Calibrated: 29.04.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: $dx=5$ mm, $dy=5$ mm, $dz=5$ mm

Reference Value = 97.826 V/m; Power Drift = 0.02 dB


Peak SAR (extrapolated) = 17.101 W/kg

SAR(1 g) = 9.55 mW/g; SAR(10 g) = 5.04 mW/g

Maximum value of SAR (measured) = 12.040 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 22.07.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN: 2d129

Communication System: CW; Frequency: 1800 MHz

Medium parameters used: $f = 1800$ MHz; $\sigma = 1.5$ mho/m; $\epsilon_r = 52.2$; $\rho = 1000$ kg/m³

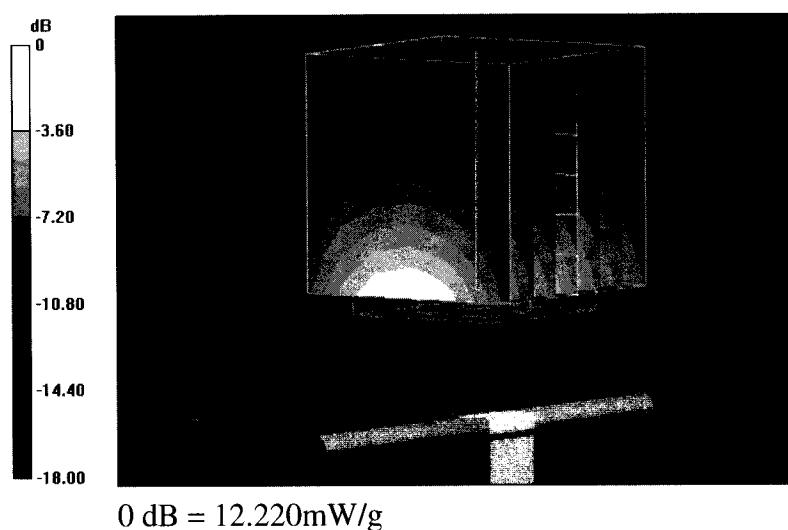
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

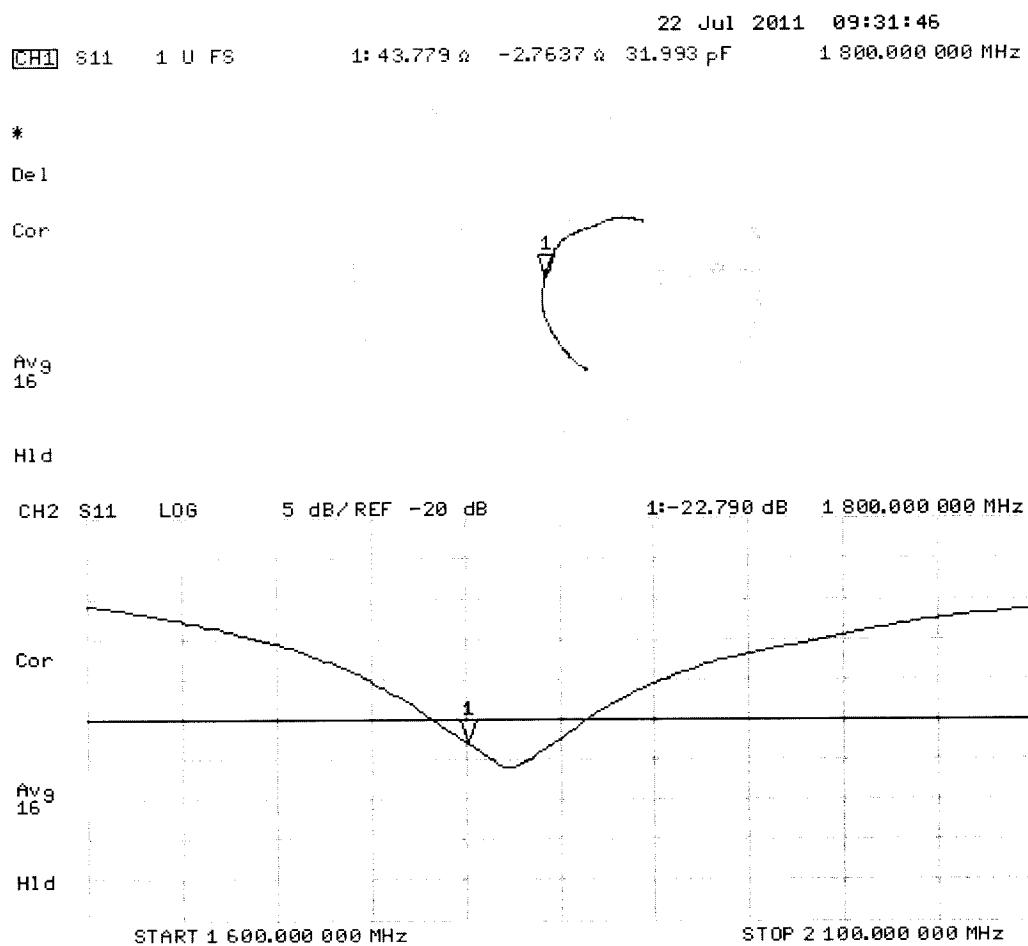
DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(4.74, 4.74, 4.74); Calibrated: 29.04.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.128 V/m; Power Drift = -0.03 dB


Peak SAR (extrapolated) = 16.950 W/kg

SAR(1 g) = 9.67 mW/g; SAR(10 g) = 5.14 mW/g

Maximum value of SAR (measured) = 12.225 mW/g

Impedance Measurement Plot for Body TSL

END OF REPORT