

**MOBILE DEVICES BUSINESS****PRODUCT SAFETY AND COMPLIANCE  
EMC LABORATORY****EMC TEST REPORT****Test Report Number** – 24365-1 Supplement**Report Date** – January 26, 2011

The test results contained herein relate only to the model(s) identified. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical characteristics.

As the responsible EMC Engineer, I hereby declare that the equipment tested as specified in this report conforms to the requirements indicated.

Signature:

A handwritten signature in black ink that reads "Albert J. Patapack".

Name: Albert J. PatapackTitle: EMC EngineerDate: January 26, 2011

This report must not be reproduced, except in full, without written approval from this laboratory.

THIS REPORT MUST NOT BE USED TO CLAIM PRODUCT ENDORSEMENT BY UKAS OR ANY AGENCY OF THE U.S. GOVERNMENT.

UKAS Certificate Number: 2404

## Table of Contents

| <u>Description</u>                | <u>Page</u> |
|-----------------------------------|-------------|
| Test Report Details               | 3           |
| Applicable Standards              | 3           |
| Summary of Testing                | 4           |
| General and Special Conditions    | 4           |
| Equipment and Cable Configuration | 5           |
| Measurement Procedures and Data   | 6           |

## **Test Report Details**

Tests Performed By: ADR Testing Service  
Location Code: ADR LV  
Motorola Mobility Inc  
Product Safety and Compliance Group  
600 North US Hwy 45  
Libertyville, IL 60048  
PH (847) 523-6167 Fax (847) 523-4538  
FCC Registration Number: 316588  
Industry Canada Number: 109O-1

Tests Requested By: Motorola Mobility Inc.  
600 North US Hwy 45  
Libertyville, IL 60048

Product Type: Hand Held Device

Signaling Capability: Bluetooth, 802.11a/802.11b/802.11g/802.11n

FCC ID: IHDT56MT1

Serial Numbers: 99000052000881

Testing Complete Date: November 30, 2010

## **Applicable Standards**

All tests and measurements indicated in this document were performed in accordance with the Code of Federal Regulations Title 47:

X Part 15 Subpart B – Unintentional Radiators

Applicable Standards: ANSI 63.4 2003, RSS-210 Issue 7

## **Summary of Testing**

| Test<br># | Test Name                                                            | Pass/Fail                           |
|-----------|----------------------------------------------------------------------|-------------------------------------|
| 1         | Field Strength of Spurious Emissions<br>from Unintentional Radiators | Pass                                |
| 2         | AC Line Conducted Emissions                                          | Pass                                |
| Test<br># | Test Name                                                            | Margin with respect<br>to the Limit |
| 1         | Field Strength of Spurious Emissions<br>from Unintentional Radiators | see results                         |
| 2         | AC Line Conducted Emissions                                          | see results                         |

The margin with respect to the limit is the minimum margin for all modes and bands.

## **General and Special Conditions**

This product utilizes an internal battery that is not removable. When applicable, EMC testing was performed with the internal battery fully charged.

All testing was done in an indoor controlled environment. The temperature and the relative humidity were maintained within the ANSI C63.4 2003 Standard requirements during the entire duration of testing.

## Equipment List

| Manufacturer    | Equipment Type         | Model No.   | Serial Number | Calibration Due Date |
|-----------------|------------------------|-------------|---------------|----------------------|
| Rohde & Schwarz | Receiver               | ESIB40      | 100226        | 4/08/2011            |
| Rohde & Schwarz | Receiver               | ESI26       | 100001        | 9/23/2011            |
| ETS             | DRG Horn Antenna       | SAS 200/571 | 265           | 9/09/2011            |
| ETS             | Log-Periodic Antenna   | 3148        | 1188          | 2/02/2011            |
| ETS             | Biconical Antenna      | 3110B       | 3369          | 2/02/2011            |
| Agilent         | Microwave Preamplifier | 8449B       | 3008A00535    | 10/05/2011           |
| Attenuator      | Weinschel              | AS-6        | 6675          | NCR                  |
| Attenuator      | Weinschel              | AS-6        | 6677          | NCR                  |
| ETS             | LISN                   | 3810/2      | 00062907      | 9/08/2011            |
| ETS             | LISN                   | 3810/2      | 00062912      | 9/08/2011            |
| Dell            | Laptop Computer        | M20         | NA            | NA                   |
| Iomega          | Zip Drive              | Z250S       | P9HM1992CK    | NA                   |
| Olympus         | Camera                 | D-600L      | 4020727       | NA                   |

All equipment is on a one-year calibration cycle.

All test equipment was within their calibration date during the time of testing. When equipment went out of calibration during testing it was replaced using a similar piece of calibrated equipment. All these equipments are listed in the equipment list.

The Dell M20 Laptop Computer, Iomega Z250S Zip Drive and the Olympus D-600L Camera are labeled as DoC.

## **Measurement Procedures and Data**

### **FIELD STRENGTH OF EMISSIONS FROM UNINTENTIONAL RADIATORS**

#### **Measurement Procedure**

The equipment under test (EUT) is placed inside the semi-anechoic chamber on a wooden table on the turntable center. For each radiated emission, the antenna mast is raised and lowered from 1 to 4 meters and the turntable is rotated 360 degrees to obtain a maximum peak reading on the spectrum analyzer. The final radiated emissions are then measured using an EMI receiver employing a CISPR quasi-peak detector function below 1000 MHz and an average detector function above 1000 MHz. This is repeated for both horizontal and vertical polarizations of the receive antenna.

The field strength of each radiated emission is calculated by correcting the EMI receiver level for cable loss, amplifier gain and antenna correction factors.

$$\text{Field Strength (dBuV/m)} = \text{EMI Receiver Level (dBuV)} + \text{Cable Loss (dB)} - \text{Amplifier Gain (dB)} + \text{Antenna Correction Factor (1/m)}$$

#### **Test Setup**

The EUT and the host equipment were setup according to the procedures in ANSI C63.4-2003. The EUT was connected to a laptop computer using a USB data cable. The USB data cable is 1 m in length. The parallel and the serial ports of the computer were populated. The EUT was communicating with the laptop computer continuously.

**Measurement Results**

Operating Mode – Rx Mode, Data Transfer Mode.

Notes: Worst Case emissions reported.

**30 MHz – 1000 MHz**

| Frequency<br>MHz | Level<br>dB $\mu$ V/m | Measured<br>dB $\mu$ V | Transd<br>dB | Cables<br>dB | Limit<br>dB $\mu$ V/m | Margin<br>dB | Height<br>cm | Angle<br>deg | Pol. |
|------------------|-----------------------|------------------------|--------------|--------------|-----------------------|--------------|--------------|--------------|------|
| 38.84            | 33.43                 | 15.42                  | 10.9         | 7.1          | 40                    | 6.6          | 101          | 160          | VERT |
| 64.00            | 33.56                 | 17.46                  | 8.7          | 7.4          | 40                    | 6.4          | 100          | 203          | VERT |
| 67.12            | 34.42                 | 18.48                  | 8.5          | 7.4          | 40                    | 5.6          | 100          | 197          | VERT |
| 99.72            | 31.47                 | 13.16                  | 10.5         | 7.8          | 43.5                  | 12           | 100          | 234          | VERT |
| 147.24           | 37.47                 | 16.46                  | 12.9         | 8.1          | 43.5                  | 6.0          | 97           | 160          | VERT |
| 163.60           | 33.93                 | 11.67                  | 14.1         | 8.2          | 43.5                  | 9.6          | 100          | 196          | VERT |
| 192.36           | 33.30                 | 9.90                   | 15.0         | 8.4          | 43.5                  | 10.2         | 100          | 217          | HORI |
| 304.60           | 35.91                 | 12.60                  | 14.3         | 9.0          | 46                    | 10.1         | 101          | 261          | HORI |
| 309.92           | 36.93                 | 13.38                  | 14.5         | 9.1          | 46                    | 9.1          | 100          | 255          | HORI |
| 320.64           | 43.52                 | 19.47                  | 14.9         | 9.1          | 46                    | 2.5          | 100          | 267          | HORI |
| 336.64           | 38.13                 | 13.49                  | 15.4         | 9.2          | 46                    | 7.9          | 99           | 254          | HORI |
| 352.68           | 38.60                 | 13.95                  | 15.3         | 9.3          | 46                    | 7.4          | 100          | 243          | HORI |
| 366.44           | 41.11                 | 16.05                  | 15.7         | 9.4          | 46                    | 4.9          | 183          | 184          | VERT |
| 384.76           | 39.49                 | 14.11                  | 15.9         | 9.5          | 46                    | 6.5          | 100          | 187          | HORI |
| 625.00           | 37.80                 | 7.22                   | 20.0         | 10.6         | 46                    | 8.2          | 218          | 4            | HORI |
| 812.16           | 32.62                 | -0.91                  | 22.4         | 11.2         | 46                    | 13.4         | 123          | 193          | HORI |
| 906.96           | 34.67                 | -0.66                  | 23.9         | 11.4         | 46                    | 11.3         | 222          | 60           | HORI |

**Above 1 GHz**

| Frequency<br>MHz | Level<br>dB $\mu$ V/m | Measured<br>dB $\mu$ V | Transd<br>dB | Gain<br>dB | Limit<br>dB $\mu$ V/m | Margin<br>dB | Height<br>cm | Angle<br>deg | Pol. |
|------------------|-----------------------|------------------------|--------------|------------|-----------------------|--------------|--------------|--------------|------|
| 1065.9           | 26.83                 | 29.76                  | 24.0         | 27.0       | 54                    | 27.2         | 150          | 341          | VERT |
| 1097.0           | 27.47                 | 30.01                  | 24.2         | 26.7       | 54                    | 26.5         | 213          | 345          | VERT |
| 1123.5           | 27.17                 | 29.21                  | 24.5         | 26.5       | 54                    | 26.8         | 226          | 338          | VERT |
| 1164.1           | 28.11                 | 29.46                  | 24.8         | 26.2       | 54                    | 25.9         | 244          | 251          | VERT |
| 1225.0           | 28.14                 | 28.81                  | 25.0         | 25.7       | 54                    | 25.9         | 100          | 249          | VERT |
| 1489.0           | 29.54                 | 27.93                  | 25.3         | 23.7       | 54                    | 24.5         | 100          | 276          | VERT |
| 1502.5           | 29.26                 | 27.49                  | 25.3         | 23.6       | 54                    | 24.7         | 150          | 283          | VERT |
| 1512.8           | 29.48                 | 27.63                  | 25.3         | 23.5       | 54                    | 24.5         | 221          | 43           | VERT |
| 1897.7           | 34.20                 | 27.23                  | 27.4         | 20.5       | 54                    | 19.8         | 99           | 36           | HORI |
| 1906.2           | 34.00                 | 27.11                  | 27.3         | 20.4       | 54                    | 20           | 100          | 124          | VERT |
| 1918.4           | 34.04                 | 26.98                  | 27.4         | 20.3       | 54                    | 20           | 100          | 254          | VERT |
| 1982.6           | 34.37                 | 26.84                  | 27.3         | 19.8       | 54                    | 19.6         | 213          | 25           | VERT |

Peak Radiated Data for Emissions Above 1GHz

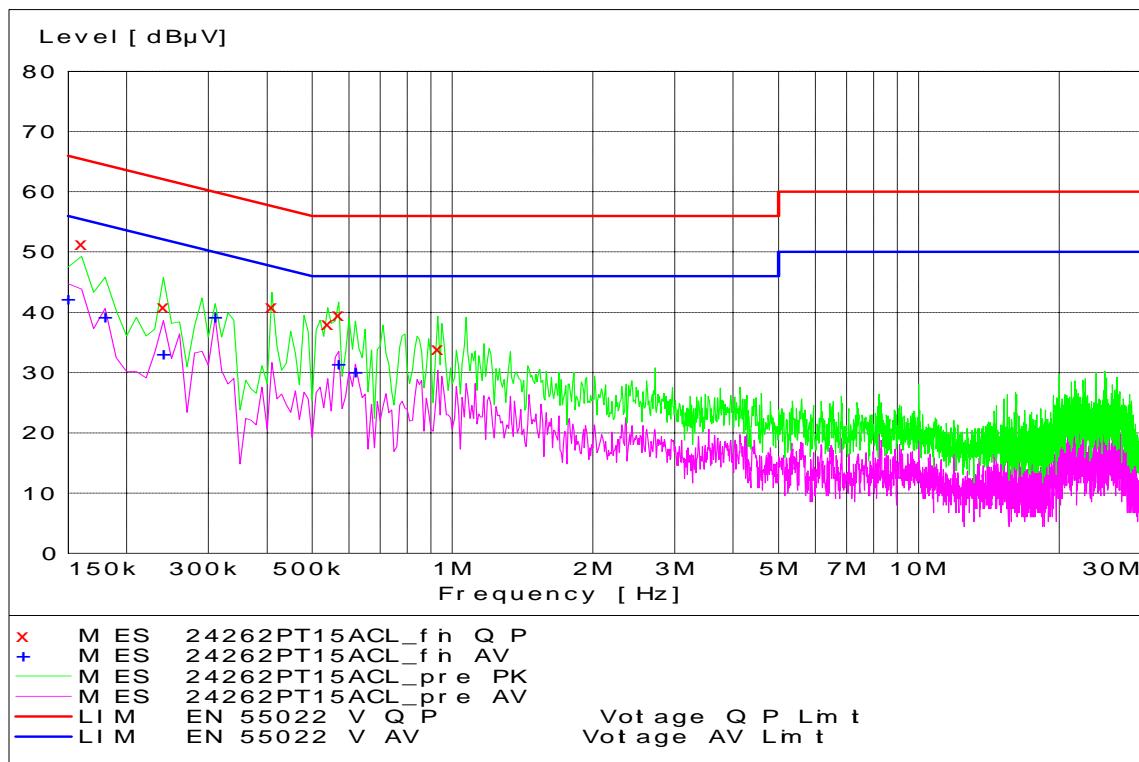
| Frequency<br>MHz | Level<br>dB $\mu$ V/m | Angle<br>deg | Height<br>cm | Pol. |
|------------------|-----------------------|--------------|--------------|------|
| 1064.19          | 45.71                 | 327          | 200          | VER  |
| 1066.13          | 40.28                 | 168          | 200          | HOR  |
| 1096.19          | 45.44                 | 343          | 200          | VER  |
| 1098.19          | 45.40                 | 343          | 200          | VER  |
| 1122.24          | 46.66                 | 335          | 200          | VER  |
| 1124.25          | 43.48                 | 78           | 200          | VER  |
| 1162.32          | 42.99                 | 257          | 200          | VER  |
| 1164.39          | 40.41                 | 257          | 200          | VER  |
| 1224.49          | 42.80                 | 262          | 100          | VER  |
| 1226.45          | 39.18                 | 57           | 100          | HOR  |
| 1224.49          | 42.80                 | 262          | 100          | VER  |
| 1226.45          | 39.18                 | 57           | 100          | HOR  |
| 1488.98          | 41.48                 | 238          | 200          | VER  |
| 1490.98          | 46.03                 | 274          | 100          | VER  |
| 1501.00          | 43.85                 | 283          | 200          | VER  |
| 1503.01          | 46.19                 | 283          | 200          | VER  |
| 1513.03          | 45.54                 | 256          | 100          | VER  |
| 1515.03          | 40.98                 | 141          | 100          | VER  |
| 1895.79          | 45.19                 | 0            | 100          | HOR  |
| 1897.79          | 46.59                 | 14           | 100          | HOR  |
| 1899.80          | 45.28                 | 33           | 200          | VER  |
| 1905.81          | 46.65                 | 103          | 100          | VER  |
| 1907.82          | 45.58                 | 252          | 200          | VER  |
| 1917.84          | 46.41                 | 233          | 100          | VER  |
| 1919.84          | 45.62                 | 227          | 100          | HOR  |
| 1981.96          | 47.04                 | 47           | 200          | VER  |
| 1983.97          | 45.62                 | 338          | 200          | VER  |

## AC LINE CONDUCTED EMISSIONS

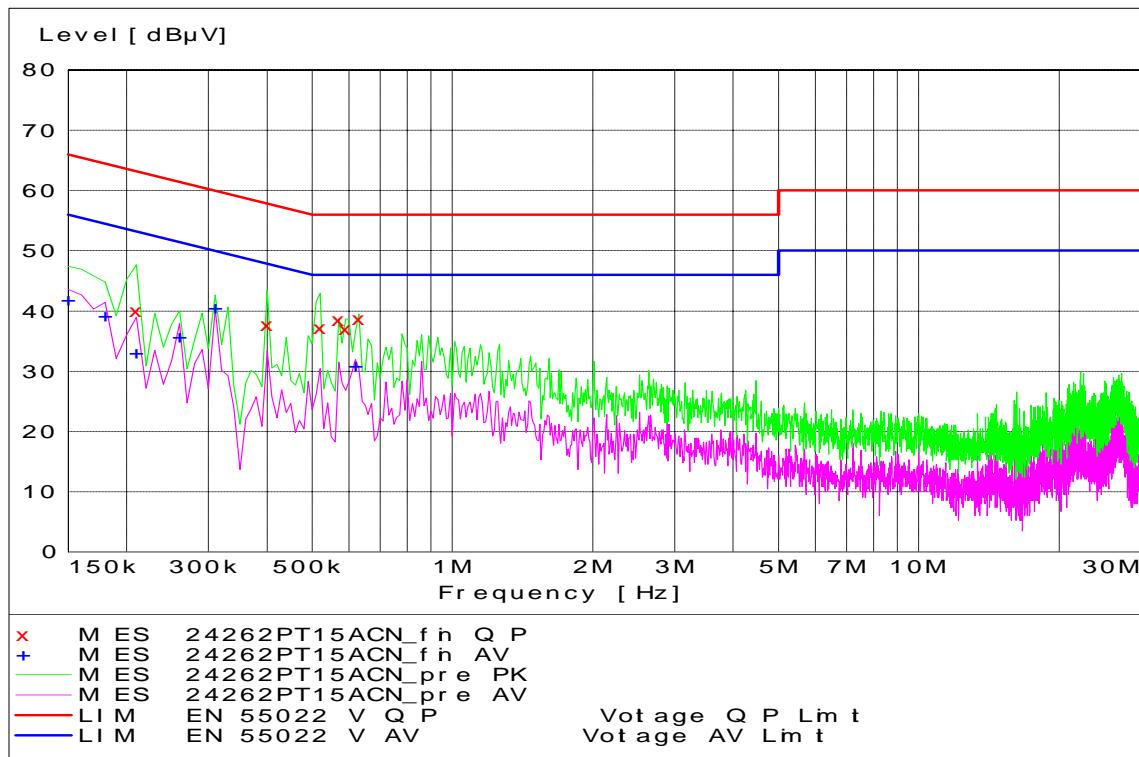
### **Measurement Procedure**

Measured levels of ac power line conducted emission shall be the radio-noise voltage from the line probe or across the  $50\ \Omega$  LISN port, where permitted, terminated into a  $50\ \Omega$  noise meter, or where permitted or required, the radio-noise current on the power line sensed by a current probe.

All radio-noise voltage and current measurements shall be made on each current-carrying conductor at the plug end of the EUT power cord or calibrated extension cord by the use of mating plugs and receptacles on the EUT and LISN. Equipment shall be tested with power cords that are normally supplied using an LISN, the  $50\ \Omega$  measuring port is terminated by a  $50\ \Omega$  radio-noise meter or a  $50\ \Omega$  resistive load. All other ports are terminated in  $50\ \Omega$ .


Detectors - Quasi Peak and Average Detector

### **Test Setup**


The EUT and the host equipment were setup according to the procedures in ANSI C63.4-2003. The EUT was connected to a laptop computer using a USB data cable. The USB data cable is 1 m in length. The parallel and the serial ports of the computer were populated. The EUT was communicating with the laptop computer continuously.

### **Measurement Results**

See attached:



### Tx Mode - Line Coupling



### Tx Mode - Neutral Coupling

**End of Test Report**