			<u>Appendix</u>				ort No. : FA4826
T	TL S	s p	ration with C a ION LABORATO	g	1		中国认可国际互认
Tel: +80-10-6230	/uanBei Road, 4633-2079	Haidian I	District, Beijing, 10 86-10-62304633-25	0191. Chi	ATTA C	NAS	校准 CALIBRATION CNAS L0570
E-mail: cttl@chin Client Spor		http://w	www.chinattl.cn	Certificate	Alex 7	04 00554	UNA LUUTU
CALIBRATION C			E	Certificate	NO: Z	21-60551	
			1992 A.C.				
Dbject	E	D835V2	- SN: 4d162				
Calibration Procedure(s)		F-Z11-(002.04				
				for dipole validation	on kite		
Calibration date:			er 17, 2021		JII KIIS		
This calibration Certificate measurements (SI). The m pages and are part of the c	easuremen	s the tra its and th	aceability to na he uncertaintie	ational standards, s with confidence	which rea probability	alize the phy are given on	sical units of the following
All calibrations have been numidity<70%.	conducted	d in the	e closed labor	atory facility: env	ironment	temperature	(22±3)°C and
alibration Equipment used	I (M&TE cri	itical for	calibration)				P
rimary Standards	I (M&TE cri ID #			brated by, Certifica	ate No.)	Scheduler	Calibration
rimary Standards ^P ower Meter NRP2	ID # 106277	2	Cal Date (Calil 24-Sep-21 (CT	brated by, Certifica TL, No.J21X08326	6)		Calibration
rimary Standards Power Meter NRP2 Power sensor NRP8S	ID # 106277 104291	2	Cal Date (Calil 24-Sep-21 (CT 24-Sep-21 (CT	TL, No.J21X08326 TL, No.J21X08326	3) 3)	Se	Calibration
rimary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4	ID # 106277 104291 SN 7307	22	Cal Date (Calil 24-Sep-21 (CT 24-Sep-21 (CT 26-May-21(SPE	TL, No.J21X08326 TL, No.J21X08326 EAG,No.EX3-7307	³⁾ 3) _May21)	Se Se	ep-22 ep-22 ay-22
rimary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4	ID # 106277 104291	22	Cal Date (Calil 24-Sep-21 (CT 24-Sep-21 (CT 26-May-21(SPE	TL, No.J21X08326 TL, No.J21X08326	³⁾ 3) _May21)	Se Se	ep-22 ep-22
rimary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards	ID # 106277 104291 SN 7307	2222	Cal Date (Calil 24-Sep-21 (CT 24-Sep-21 (CT 26-May-21(SPE 15-Jan-21(SPE	TL, No.J21X08326 TL, No.J21X08326 EAG,No.EX3-7307 AG,No.DAE4-1556	ട്) 5) _May21) 6_Jan21)	Se Se M Ja	ep-22 ep-22 ay-22 n-22
rimary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	ID # 106277 104291 SN 7307 SN 1556 ID # MY49071	2 2 1 1 1430 0	Cal Date (Calil 24-Sep-21 (CT 24-Sep-21 (CT 26-May-21(SPE 15-Jan-21(SPE Cal Date (Calibu	TL, No.J21X08326 TL, No.J21X08326 EAG,No.EX3-7307	8) 5) _May21) 6_Jan21) e No.)	Se Se M Ja Scheduled	ep-22 ep-22 ay-22 n-22 Calibration
Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	ID # 106277 104291 SN 7307 SN 1556 ID #	2 2 1 1 1430 0	Cal Date (Calil 24-Sep-21 (CT 24-Sep-21 (CT 26-May-21(SPE 5-Jan-21(SPE Cal Date (Calibi 01-Feb-21 (CTT	TL, No.J21X08326 TL, No.J21X08326 EAG,No.EX3-7307 AG,No.DAE4-1556 rated by, Certificat	6) _May21) 6_Jan21) e No.)	Se Se Ja Scheduled Ja	ep-22 ep-22 ay-22 n-22
rimary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	ID # 106277 104291 SN 7307 SN 1556 ID # MY49071 MY46110	2 2 1 1 1430 0	Cal Date (Calil 24-Sep-21 (CT 24-Sep-21 (CT 26-May-21(SPE 5-Jan-21(SPE Cal Date (Calibi 01-Feb-21 (CTT 4-Jan-21 (CTT	TL, No.J21X08326 TL, No.J21X08326 EAG,No.EX3-7307 AG,No.DAE4-1556 rated by, Certificat TL, No.J21X00593 TL, No.J21X00232	6) _May21) 6_Jan21) e No.)	Se Se Ja Scheduled Ja	ep-22 ep-22 ay-22 n-22 Calibration n-22
rimary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	ID # 106277 104291 SN 7307 SN 1556 ID # MY49071 MY46110 Name	2 2 1 1 1430 0 0673 1	Cal Date (Calil 24-Sep-21 (CT 24-Sep-21 (CT 26-May-21(SPE 5-Jan-21(SPE Cal Date (Calibi 01-Feb-21 (CTT	TL, No.J21X08326 TL, No.J21X08326 EAG,No.EX3-7307 AG,No.DAE4-1556 rated by, Certificat TL, No.J21X00593 TL, No.J21X00232	6) _May21) 6_Jan21) e No.)	Se Se Ja Scheduled Ja	ep-22 ep-22 ay-22 n-22 Calibration n-22 n-22
rimary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C letworkAnalyzer E5071C	ID # 106277 104291 SN 7307 SN 1556 ID # MY49071 MY46110	2 2 1 1 1430 0 0673 1	Cal Date (Calil 24-Sep-21 (CT 24-Sep-21 (CT 26-May-21(SPE 5-Jan-21(SPE Cal Date (Calibi 01-Feb-21 (CTT 4-Jan-21 (CTT	TL, No.J21X08326 TL, No.J21X08326 EAG,No.EX3-7307 AG,No.DAE4-1556 rated by, Certificat FL, No.J21X00593 TL, No.J21X00232	6) _May21) 6_Jan21) e No.)	Se Se Ja Scheduled Ja Ja	ep-22 ep-22 ay-22 n-22 Calibration n-22 n-22
rimary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	ID # 106277 104291 SN 7307 SN 1556 ID # MY49071 MY46110 Name	2 2 1 1 1430 0 0673 1	Cal Date (Calil 24-Sep-21 (CT 24-Sep-21 (CT 26-May-21(SPE 5-Jan-21(SPE Cal Date (Calibi 01-Feb-21 (CTT 4-Jan-21 (CTT Functic	TL, No.J21X08326 TL, No.J21X08326 EAG,No.EX3-7307 AG,No.DAE4-1556 rated by, Certificat FL, No.J21X00593 TL, No.J21X00232	6) _May21) 6_Jan21) e No.)	Se Se Ja Scheduled Ja Ja	ep-22 ep-22 ay-22 n-22 Calibration n-22 n-22
Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	ID # 106277 104291 SN 7307 SN 1556 ID # MY49071 MY46110 Name Zhao Jing	2 2 1 1 1430 0 0673 1	Cal Date (Calil 24-Sep-21 (CT 24-Sep-21 (CT 26-May-21(SPE 5-Jan-21(SPE) Cal Date (Calibr 01-Feb-21 (CTT 4-Jan-21 (CTT Function SAR Test 1	TL, No.J21X08326 TL, No.J21X08326 EAG,No.EX3-7307 AG,No.DAE4-1556 rated by, Certificat TL, No.J21X00593 TL, No.J21X00232 on Engineer	6) _May21) 6_Jan21) e No.)	Se Se Ja Scheduled Ja Ja	ep-22 ep-22 ay-22 n-22 Calibration n-22 n-22
rimary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	ID # 106277 104291 SN 7307 SN 1556 ID # MY49071 MY46110 Name Zhao Jing Lin Hao	2 2 1 1 1430 0 0673 1	Cal Date (Calif 24-Sep-21 (CT 24-Sep-21 (CT 26-May-21(SPE 5-Jan-21(SPE) Cal Date (Calibr 01-Feb-21 (CTT 4-Jan-21 (CTT Function SAR Test 1 SAR Test 1	TL, No.J21X08326 TL, No.J21X08326 EAG,No.EX3-7307 AG,No.DAE4-1556 rated by, Certificat TL, No.J21X00593 TL, No.J21X00232 on Engineer Engineer	8) _May21) 6_Jan21) e No.))	Se Se M Ja Scheduled Ja Ja Signati	ep-22 ep-22 ay-22 n-22 Calibration n-22 n-22
Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C alibrated by: eviewed by:	ID # 106277 104291 SN 7307 SN 1556 ID # MY49071 MY46110 Name Zhao Jing Lin Hao Qi Dianyua	2 2 1 1 1430 0 0673 1	Cal Date (Calif 24-Sep-21 (CT 24-Sep-21 (CT 26-May-21(SPE 5-Jan-21(SPE Cal Date (Calibr 01-Feb-21 (CTT 4-Jan-21 (CTT 5AR Test 1 SAR Test 1 SAR Test 1	TL, No.J21X08326 TL, No.J21X08326 EAG,No.EX3-7307 AG,No.DAE4-1556 rated by, Certificat TL, No.J21X00593 TL, No.J21X00232 on Engineer Engineer	6) _May21) 6_Jan21) e No.))	Se Se M Ja Scheduled Ja Ja Signati	ep-22 ep-22 ay-22 n-22 Calibration n-22 n-22
Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C alibrated by: eviewed by: pproved by: Dis calibration certificate shifts and a shift of the shift of th	ID # 106277 104291 SN 7307 SN 1556 ID # MY49071 MY46110 Name Zhao Jing Lin Hao Qi Dianyua	2 2 1 1 1430 0 0673 1	Cal Date (Calif 24-Sep-21 (CT 24-Sep-21 (CT 26-May-21(SPE 5-Jan-21(SPE Cal Date (Calibr 01-Feb-21 (CTT 4-Jan-21 (CTT 5AR Test 1 SAR Test 1 SAR Test 1	TL, No.J21X08326 TL, No.J21X08326 EAG,No.EX3-7307 AG,No.DAE4-1556 rated by, Certificat TL, No.J21X00593 TL, No.J21X00232 on Engineer Engineer	6) _May21) 6_Jan21) e No.))	Se Se M Ja Scheduled Ja Ja Signati	ep-22 ep-22 ay-22 n-22 Calibration n-22 n-22

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

in Collaboration with Ю

e

CALIBRATION LABORATORY

Glossary: TSL ConvF N/A

tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

Appendix B

а

- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole 0 positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z21-60551

In Collaboration with

Appendix B

CALIBRATION LABORATORY

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2079E-mail: cttl@chinattl.comFax: +86-10-62304633-2504http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	2.572.574 N
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.8 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition		
SAR measured	250 mW input power	2.44 W/kg	
SAR for nominal Head TSL parameters	normalized to 1W	9.64 W/kg ± 18.8 % (k=2)	
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	3 1 1 1 1	
SAR measured	250 mW input power	1.58 W/kg	
SAR for nominal Head TSL parameters	normalized to 1W	6.26 W/kg ± 18.7 % (k=2)	

e CALIBRATION LABORATORY

In Collaboration with

Appendix B

а

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.7Ω- 2.20jΩ		
Return Loss	- 27.7dB	-	

General Antenna Parameters and Design

Electrical Delay (one direction)	
Licented Delay (one direction)	1.346 ns
	1.540 113

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Cer

Manufactured by	SPEAG
ate No: Z21-60551	Page 4 of 6

Appendix B

In Collaboration with

CALIBRATION LABORATORY

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com Fax: +86-10-62304633-2504 http://www.chinattl.cn

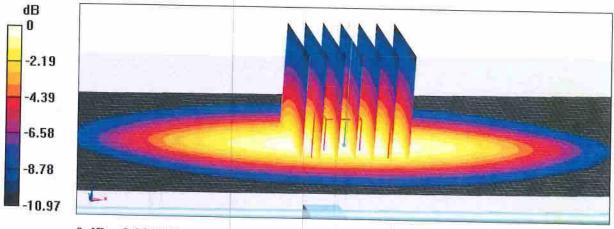
DASY5 Validation Report for Head TSLDate: 2021-12-17Test Laboratory: CTTL, Beijing, ChinaDUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d162Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1Medium parameters used: f = 835 MHz; $\sigma = 0.91$ S/m; $\varepsilon_r = 40.77$; $\rho = 1000$ kg/m³Phantom section: Right SectionMeasurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN7307; ConvF(10.13, 10.13, 10.13) @ 835 MHz; Calibrated: 2021-05-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2021-01-15
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 59.81 V/m; Power Drift = -0.01 dB


Peak SAR (extrapolated) = 3.70 W/kg

SAR(1 g) = 2.44 W/kg; SAR(10 g) = 1.58 W/kg

Smallest distance from peaks to all points 3 dB below = 20.5 mm

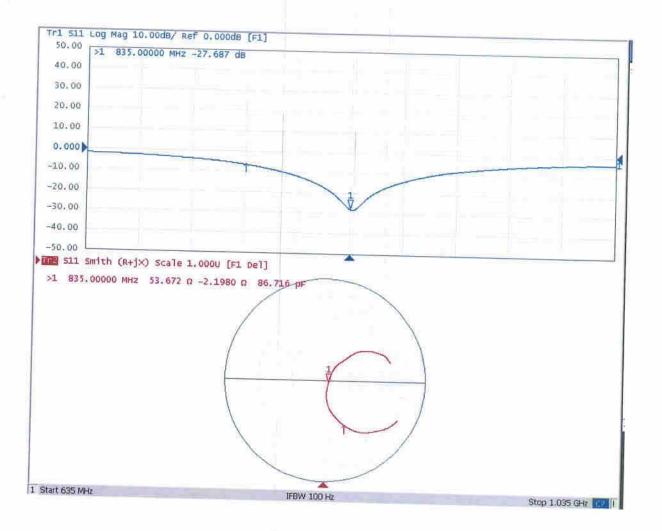
Ratio of SAR at M2 to SAR at M1 = 65.7%

Maximum value of SAR (measured) = 3.28 W/kg

0 dB = 3.28 W/kg = 5.16 dBW/kg

Page 5 of 6

e Q CALIBRATION LABORATORY


Appendix B

a

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

D

Impedance Measurement Plot for Head TSL

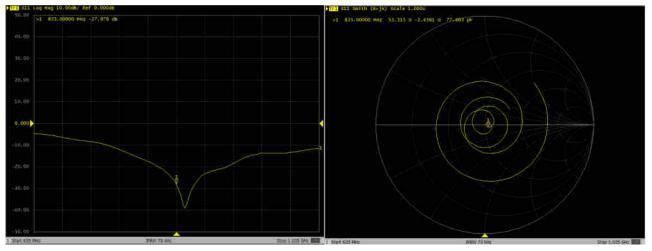
D835V2, Serial No. 4d162 Extended Dipole Calibrations

If dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

D835V2 – serial no. 4d162						
			835	Head		
Date of	Return-Loss	Delta	Real Impedance	Delta	Imaginary Impedance	Delta
Measurement	(dB)	(%)	(ohm)	(ohm)	(ohm)	(ohm)
2021.12.17	-27.7		53.7		-2.2	
2022.12.16	-27.7	0.0%	52.2	1.5	-3.6	1.4
2023.12.16	-27.9	0.7%	53.3	0.4	-2.5	0.3

<Justification of the extended calibration>

The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.



Dipole Verification Data> 835V2, serial no. 4d162

835MHz - Head----2022.12.16

835MHz - Head----2023.12.16

		<u>Appendix B</u>		Repo	ort No. : FA482618B
Add: No.52 Hua Yua		ration with e a g ION LABORATORY District, Beijing, 100191, Ch	HAC MRA	NAS	中国认可 国际互认 校准 CALIBRATION
Tel: +86-10-6230463 E-mail: cttl@chinattl		86-10-62304633-2504 vww.chinattl.cn	Maladada		CNAS L0570
Client sportor	1	Cer	tificate No: Z2	1-60374	-
CALIBRATION CE	RTIFICAT	E			
Object	D1750V	/2 - SN: 1137			
Calibration Procedure(s)	FF-Z11- Calibrat	003-01 ion Procedures for dip	ble validation kits		
Calibration date:	October	19, 2021			
This calibration Certificate of measurements (SI). The measurements and are part of the ce	asurements and				5 AL 16.07 UT
All calibrations have been humidity<70%.	conducted in th	ne closed laboratory	acility: environment	t temperature (22±3)°C and
Calibration Equipment used	(M&TE critical fo	or calibration)			
Primary Standards	ID#	Cal Date (Calibrated	by, Certificate No.)	Scheduled	Calibration
Power Meter NRP2	106277	24-Sep-21 (CTTL, No	J21X08326)	Se	p-22
Power sensor NRP8S	104291	24-Sep-21 (CTTL, No	european - rees a Commensum		p-22
Reference Probe EX3DV4	SN 7517	03-Feb-21(CTTL-SPE	sandrone manne a sta		eb-22
DAE4	SN 1556	15-Jan-21(SPEAG,No	DAE4-1556_Jan21) Ja	n-22
Secondary Standards	ID#	Cal Date (Calibrated		Scheduled	Calibration
Signal Generator E4438C NetworkAnalyzer E5071C	MY49071430 MY46110673	01-Feb-21 (CTTL, No 14-Jan-21 (CTTL, No			in-22 in-22
		14 Juli 21 (0112, 110			
	Name	Function		Signat	ure
Calibrated by:	Zhao Jing	SAR Test Engin	eer	E.	1
Reviewed by:	Lin Hao	SAR Test Engir	ieer	林湖	7
Approved by:	Qi Dianyuan	SAR Project Le	ader	Zia	
			Issued: Oct	ober 24 2021	
This calibration certificate sh	all not be reprod	luced except in full with	nout written approva	l of the laborato	ry.
Certificate No: Z21-60374	ł	Page 1 of 6			

 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: ettl@chinattl.com
 http://www.chinattl.cn

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2079E-mail: cttl@chinattl.comhttp://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.8 ± 6 %	1.38 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.20 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.5 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	4.83 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.2 W/kg ± 18.7 % (k=2)

 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.8Ω+ 0.34jΩ	
Return Loss	- 34.9 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.123 ns
	119 (4119) (419) (419)

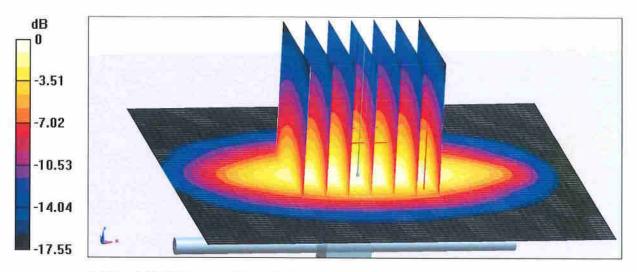
After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2079E-mail: cttl@chinattl.comFax: +86-10-62304633-2504http://www.chinattl.cn


DASY5 Validation Report for Head TSLDate: 10.19.2021Test Laboratory: CTTL, Beijing, ChinaDUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1137Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1Medium parameters used: f = 1750 MHz; $\sigma = 1.382$ S/m; $\epsilon_r = 39.76$; $\rho = 1000$ kg/m³Phantom section: Right SectionDASY5 Configuration:

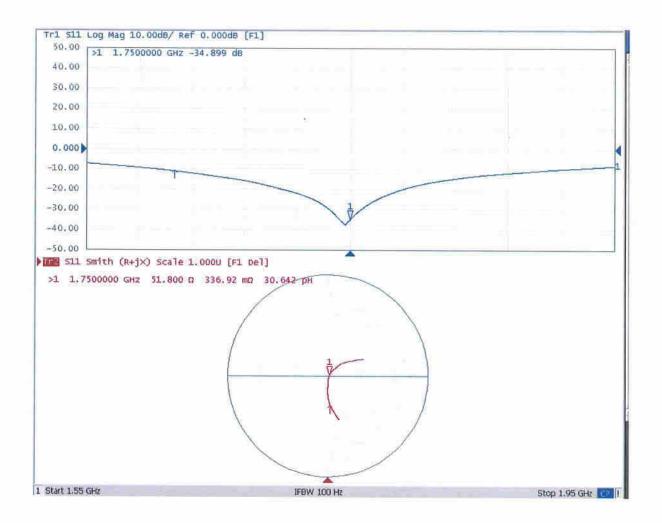
Probe: EX3DV4 - SN7517; ConvF(8.22, 8.22, 8.22) @ 1750 MHz; Calibrated: 2021-02-03

Appendix B

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2021-01-15
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.97 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 17.3 W/kg SAR(1 g) = 9.2 W/kg; SAR(10 g) = 4.83 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 53.1% Maximum value of SAR (measured) = 14.3 W/kg

0 dB = 14.3 W/kg = 11.55 dBW/kg



Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

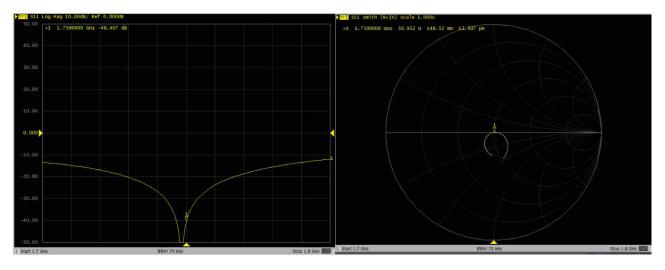
Impedance Measurement Plot for Head TSL

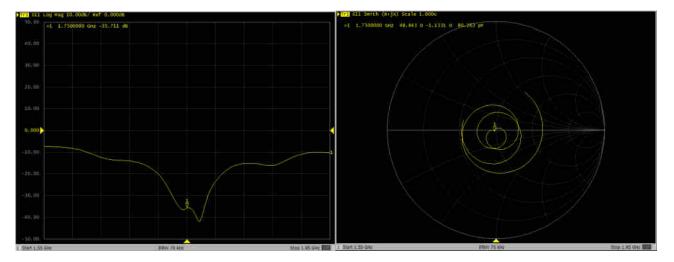
D1750V2, Serial No. 1137 Extended Dipole Calibrations

if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

			D1750V2 – serial no. 113	37		
			1750	Head		
Date of	Return-Loss	Delta	Real Impedance	Delta	Imaginary Impedance	Delta
Measurement	(dB)	(%)	(ohm)	(ohm)	(ohm)	(ohm)
2021.10.19	-34.9		51.8		0.34	
2022.10.18	-40.4	15.8%	50.9	0.7	0.15	0.19
2023.10.18	-35.7	2.0%	48.8	3	-1.1	1.44

<Justification of the extended calibration>


The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.



Dipole Verification Data> D1750V2, serial no. 1137

1750MHz - Head----2022.10.18

1750MHz - Head----2023.10.18

Add: No.52 HuaY Tel: +86-10-62304 E-mail: cttl@china Client Spo	uanBei Road	l, Haidian Fax: ⊣	Distric +86-10-	ABORATOR	g Y 191, Chi 4	AC MRA			t No.: FA4826 中国认可 国际互认 校准 CALIBRATION CNAS L0570
CALIBRATION C	the construction	ICAT	Е				the field		4 (1)
Object		D1900	V2 - S	N: 5d182					
Calibration Procedure(s)		FF-Z11 Calibra			or dipole	validation kits			
Calibration date:		Decem			or apoio	Validation Kits			
This calibration Certificate measurements (SI). The me pages and are part of the ce	easureme	its the ints and	tracea the ur	bility to na ncertainties	tional sta with cont	ndards, which fidence probal	n realize	e the phys given on	sical units of the following
All calibrations have been humidity<70%.	conducte	ed in tl	ne clo	sed labora	itory facil	lity: environm	ent ten	perature	(22±3)°C and
Calibration Equipment used	(M&TE c	ritical fo	or calib	oration)					
Primary Standards	ID #		Cal	Date (Calib	rated by,	Certificate No	.)	Scheduled	Calibration
Power Meter NRP2	106277			ep-21 (CTT		a construction of the second second second second		7.	p-22
Power sensor NRP8S	104291			ep-21 (CTT				Se	p-22
Reference Probe EX3DV4	SN 730					K3-7307_May		Ma	ay-22
DAE4	SN 155	6	15-Ja	n-21(SPEA	AG, No. DA	E4-1556_Jan	21)	Ja	n-22
Secondary Standards	ID#		Cal D	ate (Calibr	ated by C	Certificate No.)		chedulad	Collibration
Signal Generator E4438C	MY4907	71430		eb-21 (CTT				21	Calibration n-22
NetworkAnalyzer E5071C	MY4611	0673		in-21 (CTTI					n-22
	Name								
Calibrated by:	Name Zhao Jin	a		Function				Signati	ure
Reviewed by:	Lin Hao			SAR Test E	1.10		8	Q EL	
Approved by:	Qi Dianyı	uan		SAR Proje				2	7
his calibration certificate sh	all not be	reprodu				Issued: D	ecembe	er 27, 2021	-
his calibration certificate sh	an not be	reprodu	iced e	xcept in ful	without	written approv	al of the	e laborator	у.
Certificate No: Z21-60553			ļ	Page 1 of 6	- (1)	8			

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

In Collaboration with

S D C a C

lossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

Appendix B

- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z21-60553

Page 2 of 6

a

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

s

In Collaboration with

р

e

CALIBRATION LABORATORY

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.4 ± 6 %	1.41 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C	1=222	

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.0 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.6 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.07 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.2 W/kg ± 18.7 % (k=2)

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.3Ω+ 6.57jΩ	
Return Loss	- 22.5dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	2 12/1/5:
concurrent being (one direction)	1.112 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by		SPEAG
	4	
		k .
		1

Appendix B

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2079E-mail: cttl@chinattl.comFax: +86-10-62304633-2504http://www.chinattl.cn

In Collaboration with

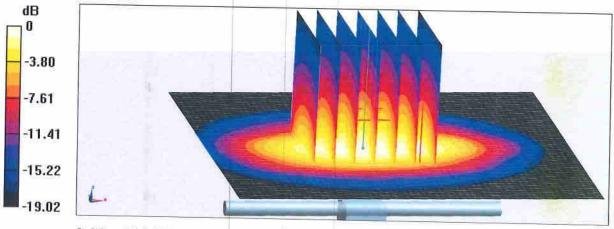
O

e

CALIBRATION LABORATORY

DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China

Date: 2021-12-20

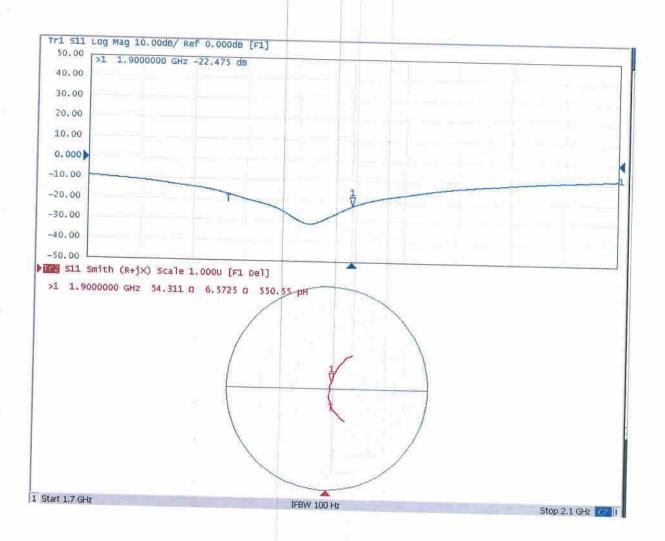

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d182 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.414$ S/m; $\epsilon_r = 39.36$; $\rho = 1000$ kg/m³ Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration:

- Probe: EX3DV4 SN7307; ConvF(8.32, 8.32, 8.32) @ 1900 MHz; Calibrated: 2021-05-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2021-01-15
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm Reference Value = 101.3 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 19.6 W/kg **SAR(1 g) = 10 W/kg; SAR(10 g) = 5.07 W/kg** Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 51% Maximum value of SAR (measured) = 15.9 W/kg


0 dB = 15.9 W/kg = 12.01 dBW/kg

Page 5 of 6

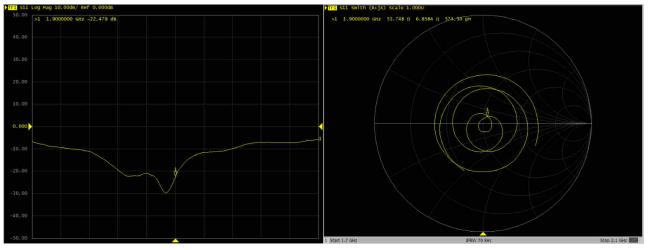
Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

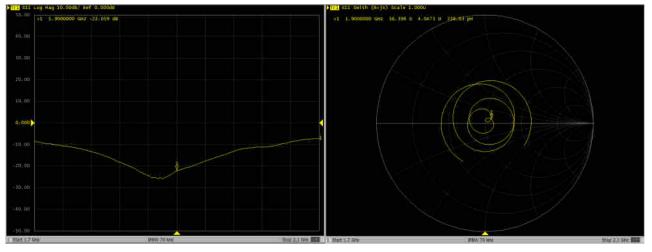
D1900V2, Serial No. 5d182 Extended Dipole Calibrations

If dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

		[D1900V2 – serial no. 5d1	82		
			1900	Head		
Date of	Return-Loss	Delta	Real Impedance	Delta	Imaginary Impedance	Delta
Measurement	(dB)	(%)	(ohm)	(ohm)	(ohm)	(ohm)
2021.12.20	-22.5		54.3		6.57	
2022.12.19	-22.5	0.0%	53.7	0.6	6.9	-0.33
2023.12.19	-22.1	-1.8%	56.4	-2.1	4	2.57


<Justification of the extended calibration>

The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.



Dipole Verification Data> D1900V2, serial no. 5d182

1900MHz - Head----2022.12.19

1900MHz - Head----2023.12.19

T	TL S	Appendix B poration with			rt No. : FA482618 中国认可 国际互认
Add: No.52 HuaY Tel: +86-10-6230 E-mail: cttl@chin	uanBei Road, Haidia 4633-2079 Fax:	ATION LABORATORY n District, Beijing, 100191 +86-10-62304633-2504 //www.chinattl.cn	, Chi	CNAS	校准 CALIBRATION CNAS L0570
Client Spo	rton		Certificate No:	Z21-60554	
CALIBRATION C	ERTIFICA	TE			
Object	D2600	0V2 - SN: 1070			
	22000	1070 ON. 1070			
Calibration Procedure(s)	FF-71	1-003-01			
			dipole validation kits		
O-lib-co-t-t-t		addit + toccuties tor	dipole validation kits		
Calibration date:	Decen	nber 20, 2021			
This calibration Certificate measurements (SI). The me pages and are part of the c	easurements and	traceability to natio	nal standards, which th confidence probat	n realize the phys bility are given on	sical units of the following
All calibrations have been humidity<70%.	conducted in	the closed laborato	ry facility: environme	ent temperature	(22±3)°C and
Calibration Equipment used	I (M&TE critical f	or calibration)			
Primary Standards	ID #	Cal Date (Calibrat	ed by, Certificate No.) Cabadulad	
Power Meter NRP2	106277	24-Sep-21 (CTTL,		<u>.</u>	Calibration
Power sensor NRP8S	104291	24-Sep-21 (CTTL,			ep-22 ep-22
Reference Probe EX3DV4	SN 7307		6,No.EX3-7307_May2		ay-22
DAE4	SN 1556		No.DAE4-1556_Jan		n-22
			1		1-22
Secondary Standards	ID #	Cal Date (Calibrate	d by, Certificate No.)	Scheduled	Calibration
Signal Generator E4438C	MY49071430	01-Feb-21 (CTTL,			in-22
Network Analyzer E5071C	MY46110673	14-Jan-21 (CTTL, I	No.J21X00232)		n-22
	Name	Function		Signati	ure
Calibrated by:	Zhao Jing	SAR Test Eng	jineer	教	
Reviewed by:	Lin Hao	SAR Test Eng	gineer	林光	>
Approved by:	Qi Dianyuan	SAR Project I	_eader	dua	
This calibration certificate sh	all not be reprod	uced except in full w	Issued: De ithout written approve	ecember 27, 2021 al of the laborator	у.
Certificate No: Z21-60554		Page 1 of 6			

Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

e

CALIBRATION LABORATORY

In Collaboration with P

Appendix B

a

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole 0 positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. . No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna . connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z21-60554

Page 2 of 6

S P C a g CALIBRATION LABORATORY

In Collaboration with

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	102.1014
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	arr (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
Frequency	2600 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

Temperature	Permittivity	Conductivity
22.0 °C	39.0	1.96 mho/m
(22.0 ± 0.2) °C	40.1 ± 6 %	1.97 mho/m ± 6 %
<1.0 °C	10000000000000000000000000000000	
	22.0 °C (22.0 ± 0.2) °C	22.0 °C 39.0 (22.0 ± 0.2) °C 40.1 ± 6 %

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.0 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	56.2 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.14 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.6 W/kg ± 18.7 % (k=2)

In Collaboration with S e p а CALIBRATION LABORATORY

Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.5Ω- 6.60jΩ	
Return Loss	- 23.6dB	-

General Antenna Parameters and Design

Electrical Delay (one direction)	1.058 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Cert

	SPEAG
cate No: Z21-60554 Page 4 of 6	

e p а CALIBRATION LABORATORY

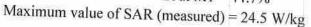
In Collaboration with

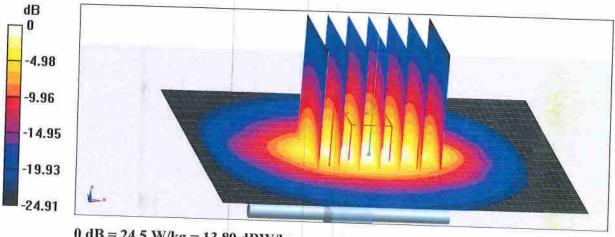
Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China

Date: 2021-12-20


DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1070 Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; σ = 1.97 S/m; ϵ_r = 40.05; ρ = 1000 kg/m³ Phantom section: Right Section


Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) **DASY5** Configuration:

- Probe: EX3DV4 SN7307; ConvF(7.5, 7.5, 7.5) @ 2600 MHz; Calibrated: . 2021-05-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2021-01-15
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 0
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

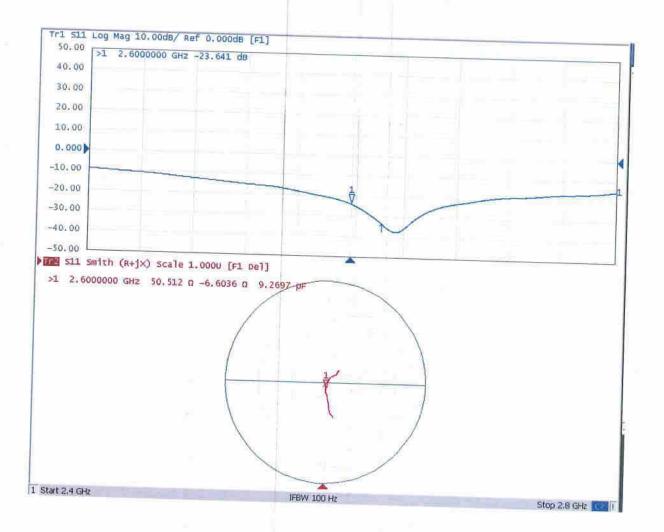
Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 106.3 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 30.8 W/kg SAR(1 g) = 14 W/kg; SAR(10 g) = 6.14 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 44.7%

0 dB = 24.5 W/kg = 13.89 dBW/kg

Certificate No: Z21-60554

Page 5 of 6


In Collaboration with S p e a CALIBRATION LABORATORY

Appendix B

Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

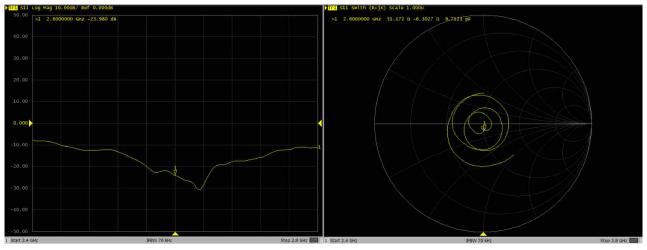
Certificate No: Z21-60554

Page 6 of 6

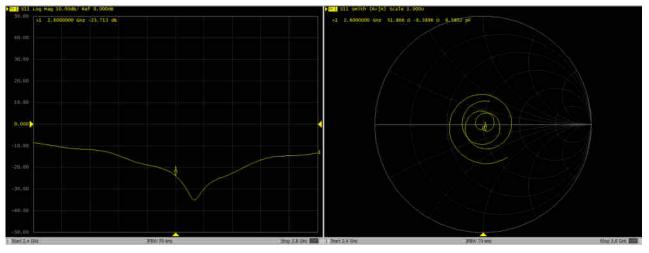
D2600V2, Serial No. 1070 Extended Dipole Calibrations

If dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

			D2600V2 – serial no. 10	70		
			2600	Head		
Date of	Return-Loss	Delta	Real Impedance	Delta	Imaginary Impedance	Delta
Measurement	(dB)	(%)	(ohm)	(ohm)	(ohm)	(ohm)
2021.12.20	-23.6		50.5		-6.6	
2022.12.19	-24.0	1.6%	51.2	-0.7	-6.3	-0.3
2023.12.19	-23.7	0.4%	51.9	-1.4	-6.4	-0.2


<Justification of the extended calibration>

The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.



Dipole Verification Data> D2600V2, serial no. 1070

2600MHz - Head----2022.12.19

2600MHz - Head----2023.12.19

S

e

a

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 www.speag.swiss, info@speag.swiss

IMPORTANT NOTICE

USAGE OF THE DAE4

The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points:

Battery Exchange: The battery cover of the DAE4 unit is closed using a screw, over tightening the screw may cause the threads inside the DAE to wear out.

Shipping of the DAE: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside.

E-Stop Failures: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements.

Repair: Minor repairs are performed at no extra cost during the calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect.

DASY Configuration Files: Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file.

Important Note:

Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer.

Important Note:

Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the Estop assembly is allowed by certified SPEAG personnel only and is part of the calibration procedure.

Important Note:

To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Sporton

Shenzhen City

Accreditation No : SO

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

- C Service suisse d'etalonnage
 - Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Certificate No: DAE4-1664_Jul24

 CALIBRATION CERTIFICATE

 Object
 DAE4 - SD 000 D04 BO - SN: 1664

 Calibration procedure(s)
 QA CAL-06.v30 Calibration procedure for the data acquisition electronics (DAE)

 Calibration date:
 July 10, 2024

 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	29-Aug-23 (No:37421)	Aug-24
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Secondary Standards Auto DAE Calibration Unit	ID # SE UWS 053 AA 1001		Scheduled Check In house check: Jan-25

Calibrated by:

Name Adrian Gehring Function Laboratory Technician

Approved by:

Sven Kühn

Technical Manager

Signature

Issued: July 10, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

- Schweizerischer Kalibrierdienst S
- Service suisse d'étalonnage С
- Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

data acquisition electronics

DAE Connector angle

information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically 0 by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an 0 input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset 0 current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, 6 during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement

A/D - Converter Reso High Range:	1LSB =	6.1µV,	full range =	-100+300 mV
Low Range:	1LSB =	61nV ,	•	-1+3mV
DASY measurement	parameters: Au	to Zero Time: 3	3 sec; Measuring	time: 3 sec

Calibration Factors	X	Y	Z
High Range	404.911 ± 0.02% (k=2)	404.813 ± 0.02% (k=2)	405.080 ± 0.02% (k=2)
Low Range	4.01111 ± 1.50% (k=2)	4.00153 ± 1.50% (k=2)	4.00269 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	103.5 ° ± 1 °

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	199995.32	-1.49	-0.00
Channel X + Input	20003.76	0.68	0.00
Channel X - Input	-20000.01	1.54	-0.01
Channel Y + Input	199998.56	1.62	0.00
Channel Y + Input	20001.77	-1.12	-0.01
Channel Y - Input	-20003.23	-1.57	0.01
Channel Z + Input	199996.69	-0.02	-0.00
Channel Z + Input	20003.74	0.87	0.00
Channel Z - Input	-20002.79	-0.99	0.00

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	2001.84	0.12	0.01
Channel X + Input	202.11	0.21	0.10
Channel X - Input	-197.55	0.25	-0.13
Channel Y + Input	2001.46	-0.02	-0.00
Channel Y + Input	201.22	-0.50	-0.25
Channel Y - Input	-198.79	-0.79	0.40
Channel Z + Input	2001.75	0.13	0.01
Channel Z + Input	201.03	-0.84	-0.41
Channel Z - Input	-199.06	-1.19	0.60

2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (µV)
Channel X	200	-4.29	-5.95
	- 200	7.82	5.92
Channel Y	200	6.96	6.81
	- 200	-8.64	-9.20
Channel Z	200	9.87	9.77
	- 200	-12.13	-12.56

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	-	2.44	-2.29
Channel Y	200	7.14		3.57
Channel Z	200	8.78	4.60	-

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15991	15322
Channel Y	16010	15900
Channel Z	16020	13124

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10M\Omega$

	Average (µV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.32	-0.59	1.05	0.31
Channel Y	-1.03	-1.78	-0.32	0.30
Channel Z	-0.07	-1.10	1.09	0.35

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Appendix B

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage С
- Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sporton Shenzhen City Certificate No.

EX-3819_Aug24

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:3819
Calibration procedure(s)	QA CAL-01.v10, QA CAL-12.v10, QA CAL-14.v7, QA CAL-23.v6, QA CAL-25.v8 Calibration procedure for dosimetric E-field probes
Calibration date	August 22, 2024
This calibration certificate docu The measurements and the un	ments the traceability to national standards, which realize the physical units of measurements (SI). certainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3) °C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP2	SN: 104778	26-Mar-24 (No. 217-04036/04037)	Mar-25
Power sensor NRP-Z91	SN: 103244	26-Mar-24 (No. 217-04036)	Mar-25
OCP DAK-3.5 (weighted)	SN: 1249	05-Oct-23 (OCP-DAK3.5-1249_Oct23)	Oct-24
OCP DAK-12	SN: 1016	05-Oct-23 (OCP-DAK12-1016_Oct23)	Oct-24
Reference 20 dB Attenuator	SN: CC2552 (20x)	26-Mar-24 (No. 217-04046)	Mar-25
DAE4	SN: 660	23-Feb-24 (No. DAE4-660_Feb24)	Feb-25
Reference Probe EX3DV4	SN: 7349	03-Jun-24 (No. EX3-7349_Jun24)	Jun-25

Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-24)	In house check: Jun-26
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-24)	In house check: Jun-26
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-24)	In house check: Jun-26
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-24)	In house check: Jun-26
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24

	Name	Function	Signature
Calibrated by	Joanna Lleshaj	Laboratory Technician	Affelling
Approved by	Sven Kühn	Technical Manager	Sil
This calibration certificate shall	not be reproduced except in full wit	nout written approval of the laborat	Issued: August 23, 2024 ory.

Appendix B

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Hac-MRA

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization ϑ	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices – Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization ∂ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum
 calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800 \text{ MHz}$) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from $\pm 50 \text{ MHz}$.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Parameters of Probe: EX3DV4 - SN:3819

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k = 2)
Norm (µV/(V/m) ²) A	0.44	0.44	0.46	±10.1%
DCP (mV) B	105.1	102.4	105.5	±4.7%

Calibration Results for Modulation Response

UID	Communication System Name		A dB	$^{B}_{dB\sqrt{\mu V}}$	С	D dB	VR mV	Max dev.	Max Unc ^E k = 2
0	CW	X	0.00	0.00	1.00	0.00	147.9	±1.0%	±4.7%
(75.) 		Y	0.00	0.00	1.00		135.4		
1		Z	0.00	0.00	1.00		118.4		
10352	Pulse Waveform (200Hz, 10%)	X	12.28	84.53	19.02	10.00	60.0	±2.8%	±9.6%
107.110.000		Y	20.00	94.71	23.35		60.0		
		Z	20.00	91.76	21.67		60.0		
10353	Pulse Waveform (200Hz, 20%)	X	20.00	90.43	19.49	6.99	80.0	±1.5%	±9.6%
	the second s	Y	20.00	95.24	22.66		80.0		
		Z	20.00	92.28	20.72		80.0		
10354	Pulse Waveform (200Hz, 40%)	X	20.00	91.98	18.82	3.98	95.0	±1.2%	±9.6%
	Contraction of the second s	Y	20.00	99.32	23.41	1	95.0		
		Z	20.00	93.87	20.07		95.0		
10355	Pulse Waveform (200Hz, 60%)	X	20.00	95.42	19.27	2.22	120.0	±1.2%	±9.6%
0.555.577	· · · · · · · · ·	Y	20.00	106.46	25.54		120.0		
		Z	20.00	97.95	20.80		120.0		
10387	QPSK Waveform, 1 MHz	X	1.65	65.40	14.56	1.00	150.0	±1.7%	±9.6%
1.57.7.1		Y	1.85	66.48	15.61		150.0		
		Z	1.74	65.90	14.96	1	150.0		
10388	QPSK Waveform, 10 MHz	X	2.16	67.29	15.23	0.00	150.0	±1.0%	±9.6%
11.75.050.502.5	period sectors - 2.5 encodered allocation and the sector	Y	2.47	69.13	16.34	1	150.0		
		Z	2.29	68.09	15.64	1	150.0		
10396	64-QAM Waveform, 100 kHz	X	3.02	70.76	18.65	3.01	150.0	±0.6%	±9.6%
		Y	3.37	72.18	19.65	1	150.0	1	
		Z	3.69	74.02	20.05		150.0		
10399	64-QAM Waveform, 40 MHz	X	3.50	67.03	15.57	0.00	150.0	±0.8%	±9.6%
	District Construction of the providence of the state of t	Y	3.54	67.08	15.81	1	150.0		
		Z	3.42	66.66	15.44]	150.0		
10414	WLAN CCDF, 64-QAM, 40 MHz	X	4.71	65.08	15.10	0.00	150.0	±1.7%	±9.6%
8720 C (2010	provinces one works of State Solid Table State	Y	4.91	65.45	15.44	1	150.0	1	
		Z	4.81	65.36	15.26	1	150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Linearization parameter uncertainty for maximum specified field strength.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Parameters of Probe: EX3DV4 - SN:3819

Sensor Model Parameters

	C1 fF	C2 fF	а V ⁻¹	T1 msV ^{−2}	T2 ms V ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	Т6
x	47.2	341.18	33.50	13.26	0.63	5.01	1.42	0.20	1.01
Ŷ	55.9	410.21	34.54	23.24	0.26	5.10	1.09	0.33	1.01
z	50.3	362.98	33.49	15.86	0.61	5.03	2.00	0.16	1.01

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle	-69.7°
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

August 22, 2024

Parameters of Probe: EX3DV4 - SN:3819

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc ^H (k = 2)
13	55.0	0.75	16.39	13.97	15.19	0.00	1.25	±13.3%
750	41.9	0.89	9.81	8.75	9.26	0.35	1.27	±11.0%
835	41.5	0.90	9.40	8.38	8.87	0.35	1.27	±11.0%
900	41.5	0.97	8.87	7.91	8.37	0.35	1.27	±11.0%
1750	40.1	1.37	7.94	7.08	7.50	0.35	1.27	±11.0%
1900	40.0	1.40	7.95	7.09	7.51	0.35	1.27	±11.0%
2000	40.0	1.40	7.96	7.10	7.52	0.35	1.27	±11.0%
2300	39.5	1.67	7.86	7.01	7.42	0.35	1.27	±11.0%
2450	39.2	1.80	7.82	6.98	7.39	0.35	1.27	±11.0%
2600	39.0	1.96	7.68	6.85	7.26	0.35	1.27	±11.0%
3300	38.2	2.71	6.83	6.09	6.45	0.35	1.27	±13.1%
3500	37.9	2.91	6.91	6.16	6.52	0.35	1.27	±13.1%
3700	37.7	3.12	6.92	6.17	6.53	0.35	1.27	±13.1%
3900	37.5	3.32	6.83	6.09	6.45	0.36	1.27	±13.1%
4100	37.2	3.53	6.69	5.97	6.32	0.36	1.27	±13.1%
5250	35.9	4.71	5.59	4.99	5.28	0.31	1.27	±13.1%
5600	35.5	5.07	5.26	4.69	4.97	0.28	1.27	±13.1%
5750	35.4	5.22	5.17	4.61	4.89	0.27	1.27	±13.1%

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is $\pm 10, 25, 40, 50$ and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than $\pm 5\%$ from the target values (typically better than $\pm 3\%$)

^F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than ±5% from the target values (typically better than ±3%) and are valid for TSL with deviations of up to ±10% if SAR correction is applied. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less

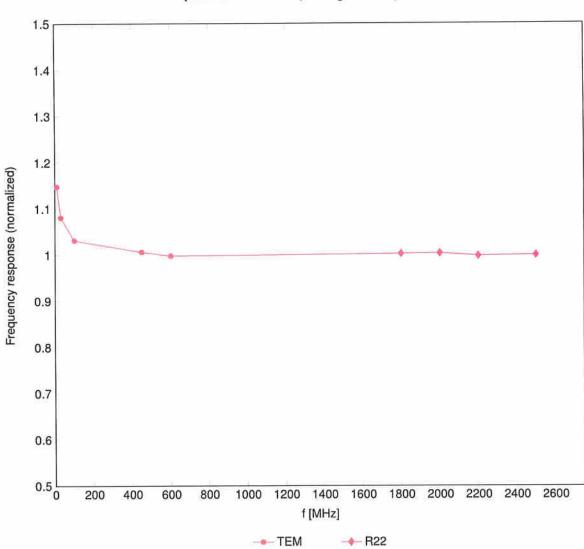
^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz and below ±2% for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary.

^H The stated uncertainty is the total calibration uncertainty (k = 2) of Norm-ConvF. This is equivalent to the uncertainty component with the symbol CF in Table 9 of IEC/IEEE 62209-1528:2020.

Parameters of Probe: EX3DV4 - SN:3819

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc ^H (<i>k</i> = 2)
6500	34.5	6.07	5.85	5.22	5.52	0.20	1.27	±18.6%

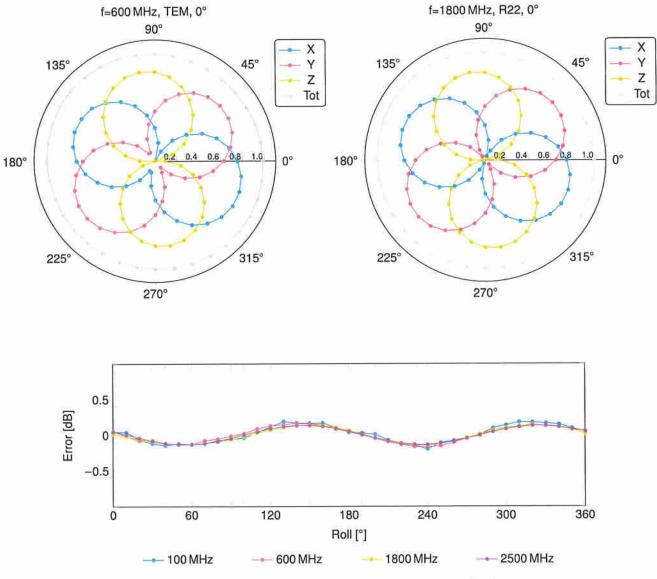

C Frequency validity at 6.5 GHz is -600/+700 MHz, and ±700 MHz at or above 7 GHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than ±10% from the target values (typically better than ±6%)

and are valid for TSL with deviations of up to $\pm 10\%$. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz; below ±2% for frequencies between 3-6 GHz; and below ±4% for frequencies between 6-10 GHz at any distance larger than half the probe tip diameter from the boundary.

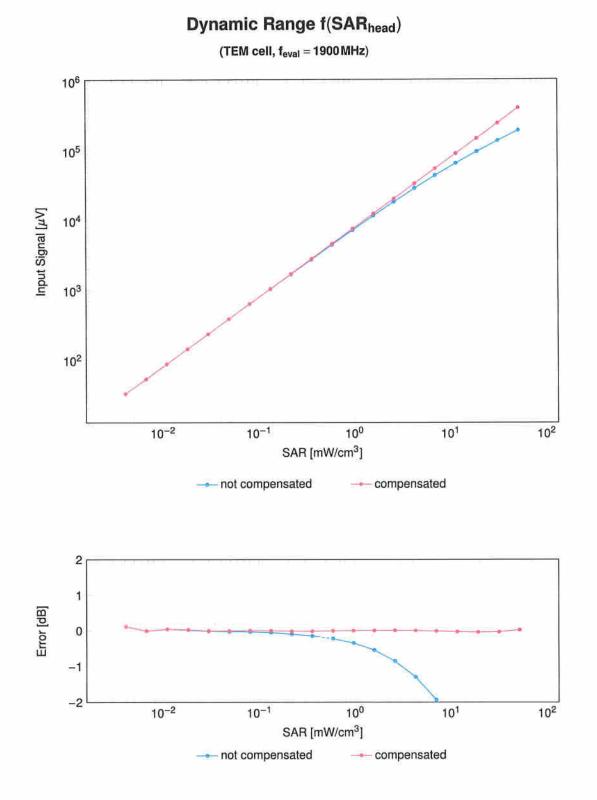
H The stated uncertainty is the total calibration uncertainty (k = 2) of Norm-ConvF. This is equivalent to the uncertainty component with the symbol CF in Table 9 of IEC/IEEE 62209-1528:2020.

August 22, 2024



Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide:R22)


Uncertainty of Frequency Response of E-field: ±6.3% (k=2)

August 22, 2024

Receiving Pattern (ϕ **),** $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ±0.5% (k=2)

Uncertainty of Linearity Assessment: ±0.6% (k=2)