

HEARING AID COMPATIBILITY T-COIL TEST REPORT

FCC ID	: IHDT56AT9
Equipment	: Mobile Cellular Phone
Brand Name	: Motorola
Model Name	: XT2513-1, XT2513-2, XT2513-3, XT2513V
Test Results	: PASS
Applicant	: Motorola Mobility LLC 222 W, Merchandise Mart Plaza, Chicago IL 60654 USA
Manufacturer	: Motorola Mobility LLC
Standard	 222 W, Merchandise Mart Plaza, Chicago IL 60654 USA FCC 47 CFR §20.19 ANSI C63.19-2019
Date Tested	: Sep. 05, 2024 ~ Sep. 20, 2024

We, Sporton International Inc. (Shenzhen), would like to declare that the tested sample provide by manufacturer and the test data has been evaluated in accordance with the test procedures given in ANSI C63.19-2019 / 47 CFR Part 20.19 and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (Shenzhen), the test report shall not be reproduced except in full.

Si Zhang

Approved by: Si Zhang

Sporton International Inc. (Shenzhen) 1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055 People's Republic of China

Table of Contents

1.	Gener	ral Information	4
2.	Testin	ig Location	5
3.		ed Standards	
4.	Air Int	terface and Operating Mode	6
5.	T-Coil	coupling mode requirements	7
	5.1	T-Coil coupling qualifying field strengths	7
	5.2	Frequency Response	7
	5.3	Desired ABM signal, undesired ABM field qualification requirements	8
	5.4	T-Coil measurement and reference plane	9
6.	Test p	procedure for T-Coil signal	10
7.	Test E	Equipment List	14
8.	T-Coil	testing for CMRS Voice	15
	8.1	GSM Evaluation Results	15
	8.2	UMTS Evaluation Results	16
	8.3	VoLTE Evaluation Results	17
	8.4	VoNR Evaluation Results	
	8.5	VoWiFi Evaluation Results	
9.	Uncer	rtainty Assessment	25
10.	Refer	ences	26

Appendix A. Plots of T-Coil Measurement Appendix B. DASY Calibration Certificate Appendix C. Test Setup Photos

History of this test report

Report No.	Version	Description	Issued Date
HA482618B	Rev. 01	Initial issue of report	Oct. 12, 2024

1. General Information

	Product Feature & Specification
Applicant Name	Motorola Mobility LLC
Equipment Name	Mobile Cellular Phone
Brand Name	Motorola
Model Name	XT2513-1, XT2513-2, XT2513-3, XT2513V
IMEI Code	Sample 1: IMEI 1: 352291420057019 IMEI 2: 352291420057027 Sample 2: IMEI 1: 352291420078478 IMEI 2: 352291420078486
FCC ID	IHDT56AT9
HW	DVT2
SW	VVK35.48
EUT Stage	Identical Prototype
Frequency Band	GSM150: 824 MHz ~ 949 MHz GSM1900: 1850 MHz ~ 1910 MHz WCDMA Band II: 1850 MHz ~ 1755 MHz WCDMA Band V: 1710 MHz ~ 1755 MHz LTE Band 2: 1850 MHz ~ 1910 MHz LTE Band 2: 1850 MHz ~ 1910 MHz LTE Band 2: 1850 MHz ~ 1915 MHz LTE Band 1: 72500 MHz ~ 2570 MHz LTE Band 1: 72500 MHz ~ 2716 MHz LTE Band 1: 777 MHz ~ 787 MHz LTE Band 1: 780 MHz ~ 716 MHz LTE Band 1: 780 MHz ~ 716 MHz LTE Band 2: 689 MHz ~ 716 MHz LTE Band 2: 680 MHz ~ 1915 MHz LTE Band 3: 2305 MHz ~ 2315 MHz LTE Band 3: 2305 MHz ~ 2315 MHz LTE Band 4: 3550 MHz ~ 2315 MHz LTE Band 4: 3260 MHz ~ 2300 MHz LTE Band 4: 3260 MHz ~ 2000 HHz LTE Band 4: 2496 MHz ~ 2600 MHz LTE Band 4: 2496 MHz ~ 698 MHz LTE Band 4: 2496 MHz ~ 698 MHz LTE Band 6: 1710 MHz - 7160 MHz LTE Band 7: 663 MHz ~ 698 MHz SG NR n2: 1850 MHz ~ 3700 MHz LTE Band 7: 663 MHz ~ 698 MHz SG NR n2: 1850 MHz ~ 3700 MHz LTE Band 6: 1710 MHz - 1780 MHz SG NR n2: 1850 MHz ~ 2870 MHz SG NR n2: 1850 MHz ~ 2870 MHz SG NR n2: 699 MHz ~ 716 MHz SG NR n2: 6180 MHz ~ 1915 MHz SG NR n2: 6180 MHz ~ 1915 MHz SG NR n2: 6180 MHz ~ 716 MHz SG NR n2: 6180 MHz ~ 710 MHz SG NR n2: 6180 MHz ~ 710 MHz SG NR n2: 6180 MHz ~ 3200 MHz SG NR n2: 6180 MHz ~ 3200 MHz SG NR n2: 6180 MHz ~ 3200 MHz SG NR n3: 3450 MHz ~ 3700 MHz SG NR n4: 3550 MHz ~ 3700 MHz SG NR n6: 710 MHz ~ 1780 MHz SG NR n7: 3450 MHz ~ 3550 MHz ~ 3700 MHz ~ 3800 MHz SG NR n7: 3450 MHz ~ 3550 MHz ~ 3700 MHz ~ 3800 MHz SG NR n7: 3450 MHz ~ 3550 MHz ~ 3700 MHz ~ 3800 MHz SG NR n7: 3450 MHz ~ 3550 MHz ~ 3700 MHz ~ 3800 MHz WLAN 5.3GHz Band: 5260 MHz ~ 5200 MHz ~ 3800 MHz WLAN 5.3GHz Band: 5260 MHz ~ 5200 MHz ~ 3800 MHz WLAN 5.3GHz Band: 5260 MHz ~ 5200 MHz WLAN 5.3GHz Band: 5260 MHz ~ 5200 MHz W
Mode	GSM/GPRS/EGPRS RMC/AMR 12.2Kbps HSDPA HSUPA DC-HSDPA HSPA+ (16QAM uplink is supported) LTE: QPSK, 16QAM, 64QAM, 256QAM 5G NR: DFT-s-OFDM/CP-OFDM, Pi/2 BPSK/QPSK/16QAM/64QAM/256QAM

WLAN 2.4GHz 802.11b/g/n HT20/HT40 WLAN 5GHz 802.11a/n HT20/HT40 WLAN 5GHz 802.11ac VHT20/VHT40/VHT80 Bluetooth BR/EDR/LE NFC: ASK

2. Testing Location

Sporton International Inc. (Shenzhen) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.01.

	Testing Laboratory									
Т	est Firm	Sporton International Inc	Sporton International Inc. (Shenzhen)							
т	est Site Location									
-	iant Cita Na	Sporton Site No.	FCC Designation No.	FCC Test Firm Registration No.						
	est Site No.	SAR05-SZ	CN1256	421272						

3. Applied Standards

- FCC CFR47 Part 20.19
- · ANSI C63.19-2019
- · FCC KDB 285076 D01 HAC Guidance v06r04
- FCC KDB 285076 D02 T Coil testing v04
- FCC KDB 285076 D03 HAC FAQ v01r06

4. Air Interface and Operating Mode

Air Interface	Band MHz	Туре	C63.19 Tested	Simultaneous Transmitter	Name of Voice Service	Power State Compliance	
	GSM850			WLAN, BT			
	GSM1900	VO	Yes	WLAN, BT	CMRS Voice	Pmax	
GSM	EDGE850			,	Google Meet ⁽¹⁾		
	EDGE1900	VD	Yes	WLAN, BT	google Fi		
	Band 2			WLAN. BT	googio i i		
	Band 4	VO	Yes	WLAN, BT	CMRS Voice		
UMTS	Band 5		100	WLAN, BT		Pmax	
	HSPA	VD	Yes	WLAN, BT	Google Meet ⁽¹⁾ google Fi	-	
	Band 2			5G NR, WLAN, BT	googio i i		
	Band 4			5G NR, WLAN, BT	-		
	Band 5	-		5G NR, WLAN, BT			
LTE (FDD)	Band 7			5G NR, WLAN, BT	-		
	Band 12	-		5G NR, WLAN, BT			
	Band 12 Band 13	-		5G NR, WLAN, BT	VoLTE		
	Band 14	VD	Yes	5G NR, WLAN, BT	/ (1)	Pmax	
(FDD)	Band 17 Band 17		100	5G NR, WLAN, BT	Google Meet ⁽¹⁾		
	Band 25			5G NR, WLAN, BT	google Fi		
	Band 26			5G NR, WLAN, BT	-		
	Band 30		-	5G NR, WLAN, BT	-		
	Band 66			5G NR, WLAN, BT	-		
	Band 71		-	5G NR, WLAN, BT	-		
	Band 38			5G NR, WLAN, BT	VoLTE		
	Band 41	VD	Yes	5G NR, WLAN, BT			
(TDD)	Band 48		100	5G NR, WLAN, BT	Google Meet ⁽¹⁾		
	n2			LTE, WLAN, BT			
	n5			LTE, WLAN, BT	-		
	n7			LTE, WLAN, BT	-		
	n12			LTE, WLAN, BT	-		
	n14			LTE, WLAN, BT	-		
	n25			LTE, WEAN, BT	-		
	n26			LTE, WLAN, BT	VoNR		
5G NR	n30	VD	Yes	LTE, WLAN, BT	- /	Pmax	
	n66		105	LTE, WLAN, BT	Google Meet ⁽¹⁾	THOA	
	n70			LTE, WEAN, BT	google Fi		
	n71			LTE, WLAN, BT			
	n48			LTE, WLAN, BT			
	n40			LTE, WLAN, BT	1		
	n77			LTE, WLAN, BT	1		
	n78			LTE, WLAN, BT			
	2450			GSM, WCDMA, LTE, 5G NR			
	5200			GSM, WCDMA, LTE, 5G NR, BT	VoWiFi		
W/i-Fi	5300	VD	Yes	GSM, WCDMA, LTE, 5G NR, BT	/	Full	
	5500		165	GSM, WCDMA, LTE, 5G NR, BT	Google Meet ⁽¹⁾	i uii	
	5800			GSM, WCDMA, LTE, 5G NR, BT	google Fi		
BT	2450	DT	No	GSM, WCDMA, LTE, 5G NR, 5GHz WLAN	NA	NA	
Type Transp			NO		IN/A	11/1	

Type Transport:

VO= Voice only

DT= Digital Transport only (no voice)

VD= CMRS and IP Voice Service over Digital Transport

Remark:

For protocols not listed in Table 6.1 of ANSI C63.19:2019, the average speech level of -20 dBm0 should be used. 1.

Because features of Google Meet allow the option of voice-only communications, Meet has been tested for HAC/T-Coil compatibility to 2. ensure the best user experience.

3. The device have similar frequency in some LTE and NR bands: LTE B12/17, 5/26, 4/66, 2/25, 38/41 and NR Band 2/25, 5/26, 77/78, since the supported frequency spans for the smaller LTE and NR bands are completely cover by the larger LTE and NR bands, therefore, only larger LTE and NR bands were required to be tested for hearing-aid compliance.

4. The Google Meet and google Fi the audio path, parameter and audio codec are all the same, therefore, the Google Meet is evaluation for this device to show compliance.

5. This is partial report for CMRS voice T-Coil testing. VOIP test report will be separately submitted.

There are two samples, the sample 1 is 1st source + Battery 1 and the sample 2 is 2nd source + Battery 2. The differences could be referred 6. to the XT2513-1, XT2513-2, XT2513-3, XT2513V_Operational Description of Product Equality Declaration which is exhibit separately. According to the differences, so sample 1 was chosen to perform full testing and sample 2 verified the worst case of sample 1. The different model names XT2513-1, XT2513-2, XT2513-3, XT2513V are only for market segment purpose, there is no other difference.

7.

The product only 2G/3G/4G/5G support time-average SAR feature, therefore GSM/UMTS/LTE/5GFR1 HAC were tested at Pmax level(the maximum power). However, due the WIFI operation doesn't support Time average SAR feature, therefore, WIFI operation were assessment 8. at the maximum power to meet HAC Volume Control compliance.

5. T-Coil coupling mode requirements

5.1 T-Coil coupling qualifying field strengths

When measured as specified in this standard, there are two groups of qualifying measurement points:

Primary group: A qualifying measurement point shall have its T-Coil signal, desired ABM signal, \geq -18 dB(A/m) at 1 kHz, in a 1/3 octave band filter. These measurements shall be made with the WD operating at a reference input level as specified in Table 6.1. simultaneously, the qualifying measurement point shall have its weighted magnetic noise, undesired ABM field \leq -38 dB(A/m).

Secondary group: A qualifying measurement point shall have its weighted magnetic noise, undesired ABM field \leq -38 dB(A/m). This group inherently includes all the members of the primary group.

These levels are designed to be compatible with hearing aids that produce the same acoustic output level for either an acoustic input level of 65 dB SPL or a magnetic input level of -25 dB(A/m) (56.2 mA/m) 39 at either 1.0 kHz or 1.6 kHz. The hearing aid operational measurements are performed per ANSI S3.22-2014

5.2 Frequency Response

The frequency response of the magnetic field, measured in 1/3 octave bands, shall follow the response curve specified in this subclause, over the frequency range 300 Hz to 3 kHz.

Figure 6.4 and Figure 6.5 provide the boundaries for the specified frequency. These response curves are for true field strength measurements of the T-Coil signal. Thus the 6 dB/octave probe response has been corrected from the raw readings.

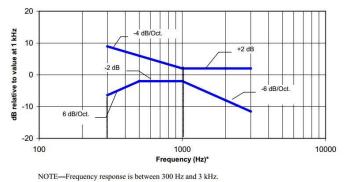


Figure 6.4—Magnetic field frequency response for WDs

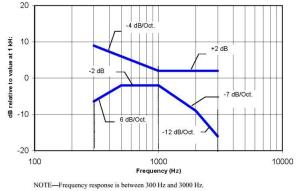


Figure 6.5—Magnetic field frequency response for WDs with a maximum field that exceeds -15 dB(A/m) at 1 kHz

with a maximum field ≤−15 dB(A/m) at 1 kHz

5.3 Desired ABM signal, undesired ABM field qualification requirements

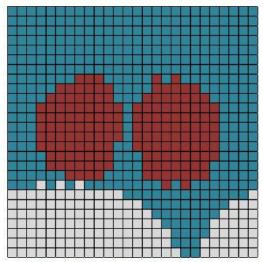
<Non-2G GSM operating modes>

The goal of this requirement is to ensure an adequate area where desired ABM signal is sufficiently strong to be heard clearly and a larger area where undesired ABM field is sufficiently low as to avoid undue annoyance. Qualifying measurement points shall fulfill the requirements of ANSI C63.19-2019 section 6.6.2; both the primary and

secondary group requirements shall be met:

- The primary group shall include at least 75 measurement points
- The secondary group shall include at least 300 contiguous measurement points

Additionally, to avoid an oddly shaped area of low noise, the secondary group shall include at least one longitudinal column of at least 10 contiguous qualifying points and at least one transverse row containing at least 15 contiguous qualifying points.

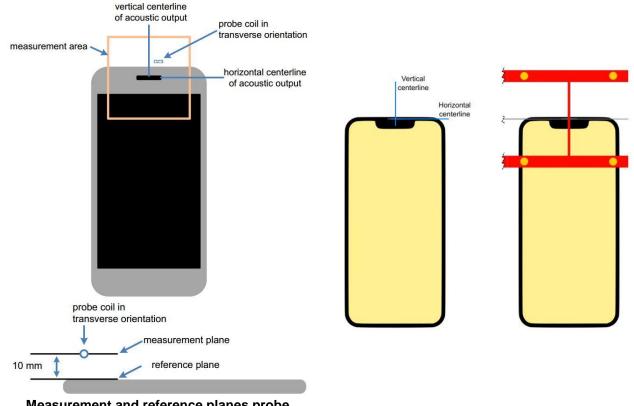

Figure 6.6 is an example of a qualifying scan. The total number of primary group qualifying measurement points is 161 , which is ≥75. The total number of secondary group qualifying points is 536, which is ≥300

The secondary group has a longitudinal column of 26, which is \geq 10, and a transverse row also of 26 contiguous points, which is \geq 15

<2G GSM operating modes>

If the 2G GSM operating mode(s) are selected for qualification, the qualifying measurement points shall fulfil the requirements of ANSI C63.19-2019 section 6.6.2; both the primary and secondary group requirements shall be met:

- The primary group shall include at least 25 measurement points
- The secondary group shall include at least 125 contiguous measurement points



Red (primary group): AB desired ABM signal M1 \geq -18 dB(A/m) and undesired ABM field \leq -38 dB(A/m) Blue and red (secondary group): undesired ABM field \leq -38 dB(A/m)

Figure 6.6—An example of a qualifying desired ABM signal, undesired ABM field scan:

5.4 T-Coil measurement and reference plane

Measurement and reference planes probe orientation for WD audio frequency magnetic field measurements

The T-Coil measurement plane, reference plane and other measurement parameters shall be:

- a. The reference plane is the planar area that contains the highest point in the area of the phone that normally rests against the user's ear. It is parallel to the centerline of the receiver area of the phone and is defined by the points of the receiver-end of the WD handset, which, in normal handset use, rest against the ear.
- b. The measurement plane is parallel to, and 1 0 mm in front of, the reference plane.
- c. The reference axis is normal to the reference plane and passes through the center of the acoustic output (or the center of the hole array); or may be centered on or near a secondary inductive source. The actual location of the reference axis and resultant measurement area shall be noted in the test report.
- d. The measurement area shall be 50 mm by 50 mm. The measurement area for both desired ABM signal and undesired ABM field may be located where the transverse magnetic measurements are optimum with regard to the requirements. However, the measurement area should be in the vicinity of the acoustic output of the WD and shall be located in the same half of the phone as the WD receiver. In a WD handset with a centered receiver and a circularly symmetrical magnetic field, the measurement axis and the reference axis would coincide.
- e. Measurements of desired ABM signal strength and undesired ABM field are made at 2.0 mm ± 0.5 mm or 4 mm intervals in an X-Y measurement area pattern over the entire measurement area (676 measurement points total); either all measured, or measured plus interpolated, per ANSI C63.19-2019 section 6.4
- f. Desired ABM signal frequency response is measured at a single location at or near the maximum
- g. desired ABM signal strength location.
- h. The actual locations of the measurement points shall be noted in the test report.

6. Test procedure for T-Coil signal

This subclause describes the procedures used to measure the ABM (T-Coil) performance of the WD. Measurements shall be performed over a measurement area 50 mm square, in the measurement plane, as specified in ANSI C63.19-2019 A.3. The measurement area shall be scanned with a uniform measurement point spacing of 2.0 mm \pm 0.5 mm in each X-Y axis of the plane, yielding 676 measurement points with approximately even spacing throughout the area

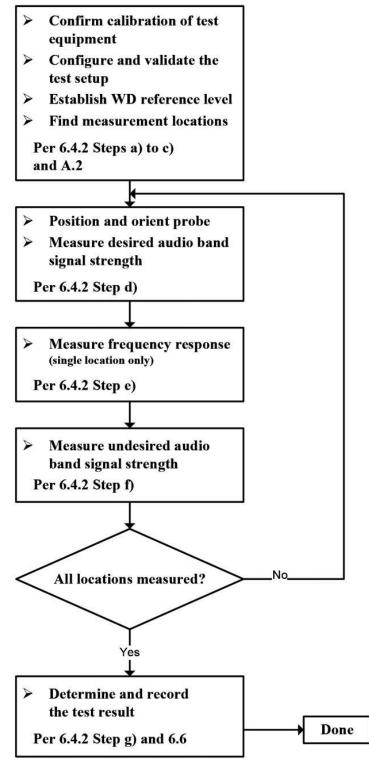
Optionally, measurement point spacing may be increased to 4 mm, with interpolation employed to yield the required 676 equivalent measurement points distributed uniformly over the 50 mm square measurement area. Interpolated points shall be derived from the average of the linear representations of the field strengths of the nearest two or four equidistant measured points. The area of measurement is increased to a 52 mm square so that edge rows and columns of the required 50 mm square can be either measured or interpolated, with none extrapolated.

In addition to measuring the desired ABM signal levels, the weighted magnitude of the unintended signal shall also be determined. Weighting of the unintended and undesired ABM field shall be by the spectral and temporal weighting described in ANSI C63.19-2019 D.4 through D.6

In order to assure that the required signal quality is measured, the measurement of the intended signal and the measurement of the unintended signal shall be made at the same locations. Measurements shall not include undesired influence from the WD's RF field; therefore, use of a coaxial connection to a base station simulator or non-radiating load might be necessary. However, even then with a coaxial connection to a base station simulator or non-radiating load there could still be RF leakage from the WD, which could interfere with the desired measurement. Pre-measurement checks should be made to avoid this possibility. All measurements shall be done with the WD operating on battery power with an appropriate normal speech audio signal input level given in ANSI C63.19-2019 Table 6.1. If the device display can be turned off during a phone call, then that may be done during the measurement as well. If tested with the display in the off state this shall be documented in the test report

Measurements shall be performed with the probe coil oriented in the transverse direction, as illustrated in ANSI C63.19-2019 A.3, that is, aligned in the plane of the measurement area and perpendicular to the long dimension of the WD. A multi-stage sequence consists of first measuring the field strength of the desired T-Coil signal (desired ABM signal) that is useful to a hearing aid T-Coil at each specified measurement point. The undesired magnetic component (undesired ABM field) is then measured in the same transverse orientation at each of the same measurement points. At a single location only, taken at or near the highest desired ABM signal reading, the desired ABM signal frequency response shall be determined in a third measurement stage. The flowchart in ANSI C63.19-2019 Figure 6.3 illustrates this three-stage process.

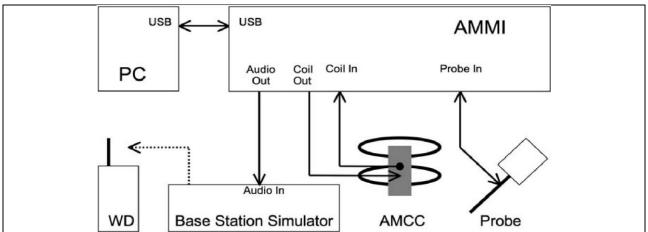
To minimize the need to test every WD operating mode to the telecoil requirements of ANSI C63.19-2019 Clause 6, it is permissible to exclude some subset of supported configurations. For a given WD, every mode that supports voice communication shall be considered for telecoil testing. However, if it can be demonstrated that a certain configuration will not be the worst-case telecoil configuration, such configurations may be excluded from the full telecoil scans of ANSI C63.19-2019 section 6.4. 34 For example, operating modes may be pre-screened by scanning for both desired ABM signal and undesired ABM field at a lower measurement point density than the final scans, thus saving considerable testing time by eliminating configurations that are excellent performers from more detailed testing for worst-case. In any case, the specific methods and criteria used to determine


which configurations are excluded for a WD shall be explicitly stated and justified in the test report. To be considered for exclusion from telecoil testing, operating modes shall also be shown to pass the frequency response requirements of ANSI C63.19-2019 section 6.6.3.

Many factors could affect telecoil test results. RF power level and amplitude modulation characteristics as well as the specific current paths within the WD associated with the RF output stage(s), the display, and processing circuitry could affect the undesired ABM field. Audio codec implementation and acoustic receiver characteristics could also affect the desired ABM signal). Therefore, any justifications for exclusions should be thorough documented. If an operating mode is under user control and instructions on how to place the WD in a less interfering condition is in the user instructions, those instructions may be followed in configuring the device for testing

Test flow for T-Coil signal test

Test Instructions



The following steps summarize the basic test flow for determining desired ABM signal and undesired ABM field. These steps assume that a sine wave or narrowband 1/3 octave signal can be used for the measurement of desired ABM signal level. An alternative procedure, yielding equivalent results, using a broadband excitation is described in ANSI C63.19-2019 section 6.5.

- a. A validation of the test setup and instrumentation shall be performed. This may be done using a TMFS or Helmholtz Coil. Measure the emissions and confirm that they are within tolerance of the expected values.
- b. Confirm that equipment that requires calibration has been calibrated, and that the noise level meets the requirements given in ANSI C63.19-2019 section 6.3.2.
- c. Position the WD in the test setup and connect the WD RF connector to a base station simulator or a non-radiating load (if necessary to control RF interference in the measurement equipment) as shown in section 6.1 or section 6.2.
- d. The drive level to the WD is set such that the reference input level specified in ANSI C63.19-2019 Table 6.1 is input to the base station simulator (or manufacturer's test mode equivalent) in the 1 kHz, 1/3 octave band. This drive level shall be used for the T-Coil signal test (desired ABM signal) at f = 1 kHz. Either a sine wave at 1025 Hz, or a voice-like signal, band-limited to the 1 kHz 1/3 octave, as specified in 6.4.3, shall be used for the reference audio signal. If interference is found at 1025 Hz an alternative nearby reference audio signal frequency may be used. 35 The same drive level will be used for the desired ABM signal frequency response measurements at each 1/3 octave band center frequency. The WD volume control may be set at any level up to maximum, provided that a signal at any frequency at maximum modulation would not result in clipping or signal overload.
- e. At each measurement location over the measurement area and in the transverse orientation, measure and record the desired 1 kHz T-Coil magnetic signal (desired ABM signal) as described in Step c).
- f. At or near a location representing a maximum in the just-measured desired ABM signal, measure and record the desired T-Coil magnetic signals (desired ABM signal at fi) as described in ANSI C63.19-2019 section 6.4.5.2 in each individual ISO 266:1975 R10 standard 1/3 octave band. The desired audio band input frequency (fi) shall be centered in each 1/3 octave band maintaining the same drive level as determined in Step c), and the reading taken for that band. Equivalent methods of determining the frequency response may also be employed, such as fast Fourier transform (FFT) analysis using noise excitation or input–output comparison using simulated speech. The full-band integrated or half-band integrated probe output, as described in ANSI C63.19-2019 D.9, may be used, as long as the appropriate calibration curve is applied to the measured result, so as to yield an accurate measurement of the field magnitude. (The resulting measurement shall be an accurate measurement in dB(A/m).) Compare the frequency response found to the requirements of ANSI C63.19-2019 section 6.6.3.
- g. At the same locations measured in Step d), measure and record the undesired broadband audio magnetic signal (undesired ABM field) with no audio signal applied (or digital zero applied, if appropriate) using the specified spectral weighting, the half-band integrator followed by the temporal weighting.
- h. Calculate and record the location and number of the measurement points that satisfy both the minimum desired ABM signal level and the maximum undesired ABM field level specified in ANSI C63.19-2019 section 6.6.2. Compare this to the requirements in ANSI C63.19-2019 section 6.6.4 and record the result.
- i. Calculate and record the location and number of the measurement points that satisfy the maximum undesired ABM field level and distribution requirements specified in ANSI C63.19-2019 section 6.6.4.

Test Setup Diagram for GSM/UMTS/VoLTE/VoWiFi/VoNR

General Note:

- Define the all applicable input audio level as below according to ANSI C63.19-2019 table 6.1:
- GSM input level: -16dBm0
- UMTS input level: -16dBm0
- VoLTE input level: -16dBm0
- VoNR input level: -16dBm0
- VoWiFi input level: -16dBm0
- 2. The test setup used for GSM/UMTS is via the callbox of CMW500 for T-coil measurement. The CMW500 input is calibrated and the relation between the analog input voltage and the internal level in dBm0 can be determined. The CMW500 can be manually configured to control the speech input level and ensure that the result is -16dBm0 for GSM/UMTS CMRS Voice connection.
- 3. Voice over Long-Term Evolution (VoLTE) is a standard for high-speed wireless communication for mobile phones and data terminals including IoT devices and wearables. It is based on the IP Multimedia Subsystem (IMS) network, with specific profiles for control and media planes of voice service on LTE defined by GSMA in PRD IR.92. This approach results in the voice service (control and media planes) being delivered as data flows within the LTE data bearer. This means that there is no dependency on the legacy circuit-switched voice network to be maintained.
- 4. The test setup used for VoLTE and VoWiFI over IMS is via the callbox of CMW500 for T-coil measurement. The data application unit of the CMW500 is used to simulate the IP multimedia subsystem server. The CMW500 can be manually configured to control the speech input level and ensure that the result is -16dBm0 for VoLTE, and VoWiFi during the IMS connection.
- 5. The test setup used for VoNR over IMS is via the callbox of CMX500 for T-coil measurement, The data application unit of the CMX500 was used to simulate the IP multimedia subsystem server. The CMW500 can be manually configured to ensure and control the speech input level result is -16dBm0 for VoNR when the device during the IMS connection.
- 6. According to KDB 285076 D02, T-Coil testing for VoLTE, VoNR and VoWiFi requires test instrumentation that can (1) for the system to be able to establish an IP call from/to the handset under test, (2) through an IMS (IP Multimedia Subsystem) and SIP/IP server, (3) to an analog audio adapter containing the permissible set of codecs used by the device under test, and (4) inject the necessary C63.19 test tones at the average speech level for the measurement The test setup is illustrated above Figure. The R&S CMW500 and CMX500 was used as system simulator for VoLTE, VoNR and VoWiFi T-Coil testing. The DAU (Data Application Unit) in CMW500, CMX500 integrates IMS and SIP/IP server that can establish VoLTE, VoNR and Wi-Fi calling, and transport the test tones from AMMI (Audio Magnetic Measuring Instrument) to EUT.

Gain Value	dBm0	Full scal Voltage	dB	AMMI audio out dBv (RMS)	AMCC Coil Out (dBv (RMS)
	3.14	1.5		0.51	
100	5.61		40	2.98	3.13
8.31	-16		18.39		-18.48
Signal Type	Duration (s)	Peak to RMS (dB)	RMS (dB)	Gain Factor	Gain Setting
1kHz sine	-	3	0	1	8.31
					05.00
48k_voice_1kHz	1	16.2	-12.7	4.33	35.98

<Example define the input level for GSM/UMTS/VoLTE/VoNR/VoWiFi>

7. <u>Test Equipment List</u>

Manufacturer	Nome of Equipment		Serial Number	Calibration		
Manufacturer	Name of Equipment	Type/Model	Serial Number	Last Cal.	Due Date	
SPEAG	Audio Magnetic 1D Field Probe	AM1DV3	3106	Dec. 13, 2023	Dec. 12, 2024	
SPEAG	Data Acquisition Electronics	DAE4	715	Jan. 25, 2024	Jan. 24, 2025	
SPEAG	Audio Magnetic Calibration Coil	AMCC	1128	NCR	NCR	
SPEAG	Audio Measuring Instrument	AMMI	1137	NCR	NCR	
Anymetre	Thermo-Hygrometer	JR593	2023110803	Nov. 10, 2023	Nov. 09, 2024	
R&S	Wideband Radio Communication Tester	CMW500	115793	Nov. 20, 2023	Nov. 19, 2024	
R&S	Wideband Radio Communication Tester	CMX500	101931	Sep. 12, 2023	Sep. 11, 2024	
R&S	Base Station(Measure)	CMU200	108440	Dec. 28, 2023	Dec. 27, 2024	
SPEAG	Test Arch Phantom	N/A	N/A	NCR	NCR	
SPEAG	Phone Positioner	N/A	N/A	NCR	NCR	

Note:

1. NCR: "No-Calibration Required"

8. T-Coil testing for CMRS Voice

General Note:

- <u>Codec Investigation</u>: For a voice service/air interface, investigate the variations of codec configurations (WB, NB bit rate) and document the parameters (Primary Group, Secondary Group, longitudinal contiguous points, transverse row contiguous points, frequency response) for that voice service. It is only necessary to document this for one channel/band, the following worst investigation codec would be remarked to be used for the testing for the handset.
- 2. Air Interface Investigation:
 - a. Through Internal radio configuration investigation (e.g. bandwidth, modulation data rate, subcarrier spacings, and resource blocks) that the worst radio configuration was document as below table.
 - b. Use the worst-case codec test and document a limited set of bands/channel/bandwidths.
 - c. According to the ANSI C63.19-2019 section 6.3.3, using a frequency near the center of the frequency band perform T-coil evaluation.

8.1 GSM Evaluation Results

<Codec Investigation>

	GSM Codec										
Codec	AMR NB Full Rate	AMR NB Full Rate	AMR WB Full Rate	AMR WB Full Rate	EFR NB (FR V2)	Orientation	Band /				
Bit rate	4.75 Kbps	12.2 Kbps	6.6 Kbps	12.65 Kbps	12.2Kbps		Channel				
Primary Group Contiguous Point Count	49	53	47	52	50						
Secondary Group Contiguous Point Count	151	143	144	144	140						
Secondary Group Max Longitudinal	22	22	22	22	22	Transversal (Y)	GSM850/189				
Secondary Group Max Transverse	17	16	16	16	15	(')					
Frequency Response	0.89	1.56	1.66	1.06	1.65						

Remark: According to codec investigation, the worst codec is AMR WB Full Rate 6.6Kbps.

<Air Interface Investigation>

Plot No.	Air Interface	Modulation / Mode	Channel	Ant Status	Probe Position	Primary Group Contiguous Point Count		Secondary Group Max Longitudinal	Group Max	Margin	
1	GSM850	Voice	189	Ant 0	Transversal (Y)	47	144	22	16	1.66	-48.29
2	GSM850_Sample2	Voice	189	Ant 0	Transversal (Y)	38	126	16	11	1.47	-49.11
3	GSM1900	Voice	661	Ant 0	Transversal (Y)	158	474	26	26	1.19	-48.65

8.2 UMTS Evaluation Results

<Codec Investigation>

	ι	JMTS AMR Cod	ec			
Codec	NB AMR 4.75Kbps	WB AMR 6.60Kbps	NB AMR 12.2Kbps	WB AMR 23.85Kbps	Orientation	Band / BW / Channel
Primary Group Contiguous Point Count	273	262	278	288		
Secondary Group Contiguous Point Count	676	662	674	674		
Secondary Group Max Longitudinal	26	26	26	26	Transversal (Y)	B2 / 9400
Secondary Group Max Transverse	26	26	26	26		
Frequency Response	1.25	0.81	1.54	0.85		

Remark: According to codec investigation, the worst codec is WB AMR 6.60Kbps.

<Air Interface Investigation>

Plot No.	Air Interface	Modulation / Mode	Channel	Ant Status	Probe Position	Primary Group Contiguous Point Count		Secondary Group Max Longitudinal	Group Max	Margin	
4	WCDMA II	Voice	9400	Ant 0	Transversal (Y)	262	662	26	26	0.81	-48.12
5	WCDMA IV	Voice	1413	Ant 0	Transversal (Y)	265	673	26	26	0.43	-49.8
6	WCDMA V	Voice	4182	Ant 0	Transversal (Y)	261	673	26	26	1.51	-49.75

8.3 VoLTE Evaluation Results

<Codec Investigation>

LTE FDD

	٧	OLTE AMR Cod	lec			
Codec	NB AMR 4.75Kbps	WB AMR 6.60Kbps	NB AMR 12.2Kbps	WB AMR 23.85Kbps	Orientation	Band / BW / Channel
Primary Group Contiguous Point Count	287	283	292	298		
Secondary Group Contiguous Point Count	644	639	635	637		
Secondary Group Max Longitudinal	26	26	26	26	Transversal (Y)	B25 / 20M / 26340
Secondary Group Max Transverse	26	26	26	26		
Frequency Response	1.72	1.16	1.46	0.39		

	VoLTE EVS Codec												
Codec	EVS SWB 9.6Kbps	EVS SWBEVS WBEVS WB128Kbps5.9Kbps128Kbps		EVS NB 5.9Kbps	EVS NB 24.4Kbps	Orientation	Band / BW / Channel						
Primary Group Contiguous Point Count	319	349	214	310	198	302							
Secondary Group Contiguous Point Count	619	639	640	649	643	635							
Secondary Group Max Longitudinal	26	26	26	26	26	26	Transversal (Y)	B25 / 20M / 26340					
Secondary Group Max Transverse	26	26	26	26	26	26							
Frequency Response	1.78	1.69	0.31	0.95	1.76	1.53							

Remark: According to codec investigation, the worst codec is EVS NB 5.9Kbps.

Report No. : HA482618B

LTE TDD

VoLTE AMR Codec												
Codec	NB AMR 4.75Kbps	WB AMR 6.60Kbps	NB AMR 12.2Kbps	WB AMR 23.85Kbps	Orientation	Band / BW / Channel						
Primary Group Contiguous Point Count	189	188	195	190								
Secondary Group Contiguous Point Count	500	497	500	490								
Secondary Group Max Longitudinal	26	26	26	26	Transversal (Y)	B48 / 20M / 55830						
Secondary Group Max Transverse	26	26	26	26								
Frequency Response	1.47	0.68	1.45	0.35								

		Vo	DLTE EVS Co	dec				
Codec	EVS SWB 9.6Kbps	EVS SWB 128Kbps	EVS WB 5.9Kbps	EVS WB 128Kbps	EVS NB 5.9Kbps	EVS NB 24.4Kbps	Orientation	Band / BW / Channel
Primary Group Contiguous Point Count	226	200	150	206	144	201		
Secondary Group Contiguous Point Count	502	500	501	502	500	499		
Secondary Group Max Longitudinal	26	26	26	26	26	26	Transversal (Y)	B48 / 20M / 55830
Secondary Group Max Transverse	26	26	26	26	26	26		
Frequency Response	2	1.08	0.35	0.45	1.75	1.3		

Remark: According to codec investigation, the worst codec is EVS NB 5.9Kbps.

<Air Interface Investigation>

Air Interface	BW (MHz)	Modulation / Mode	RB Size	RB offset	Channel	UL-DL Configuration	Ant Status	Probe Position					
LTE B41_PC2	20	QPSK	1	0	40620	0	Ant 1	Transversal (Y)	176	538	26	26	Pass
LTE B41_PC2	20	QPSK	100	0	40620	0	Ant 1	Transversal (Y)	202	587	26	26	Pass
LTE B41_PC2	20	16QAM	1	0	40620	0	Ant 1	Transversal (Y)	189	618	26	26	Pass
LTE B41_PC2	20	64QAM	1	0	40620	0	Ant 1	Transversal (Y)	194	618	26	26	Pass
LTE B41_PC2	20	256QAM	1	0	40620	0	Ant 1	Transversal (Y)	199	645	26	26	Pass
LTE B41_PC3	20	QPSK	1	0	40620	0	Ant 1	Transversal (Y)	204	584	26	26	Pass
CA B41_PC2	20	QPSK	1/99	1/0	40521+40719	1	Ant 1	Transversal (Y)	183	590	26	26	Pass
LTE B41_PC2	5	QPSK	1	0	40620	0	Ant 1	Transversal (Y)	184	567	26	26	Pass
LTE B25	1.4	QPSK	1	0	26340	1	Ant 0	Transversal (Y)	216	639	26	26	Pass

Plot No.	Air Interface	BW (MHz)	Modulation / Mode		RB offset	Channel	Ant Status	Probe Position	Primary Group Contiguous Point Count	Secondary Group Contiguous Point Count	Secondary	Group max	Deenence	Ambient Noise dB (A/m)
7	LTE Band 7	20M	QPSK	1	0	21100	Ant 1	Transversal (Y)	198	634	26	26	1.36	-49.21
8	LTE Band 12	10M	QPSK	1	0	23095	Ant 0	Transversal (Y)	198	644	26	26	0.88	-48.58
9	LTE Band 13	10M	QPSK	1	0	23230	Ant 0	Transversal (Y)	196	639	26	26	1.54	-49.35
10	LTE Band 14	10M	QPSK	1	0	23330	Ant 0	Transversal (Y)	194	631	26	26	1.81	-48.62
11	LTE Band 25	20M	QPSK	1	0	26340	Ant 0	Transversal (Y)	198	643	26	26	1.76	-49.41
12	LTE Band 26	15M	QPSK	1	0	26865	Ant 0	Transversal (Y)	195	630	26	26	1.05	-48.61
13	LTE Band 30	10M	QPSK	1	0	27710	Ant 1	Transversal (Y)	198	634	26	26	1.52	-48.95
14	LTE Band 66	20M	QPSK	1	0	132322	Ant 0	Transversal (Y)	198	635	26	26	1.06	-49.44
15	LTE Band 71	20M	QPSK	1	0	133297	Ant 0	Transversal (Y)	197	630	26	26	1.57	-49.12
16	LTE Band 41	20M	QPSK	1	0	40620	Ant 1	Transversal (Y)	176	538	26	26	1.91	-48.27
17	LTE Band 48	20M	QPSK	1	0	55830	Ant 5	Transversal (Y)	144	500	26	26	1.75	-48.26

8.4 VoNR Evaluation Results

<Codec Investigation>

5G NR FDD

	١	VoNR AMR Cod	ec			
Codec	NB AMR 4.75Kbps	WB AMR 6.60Kbps	NB AMR 12.2Kbps	WB AMR 23.85Kbps	Orientation	Band / BW / Channel
Primary Group Contiguous Point Count	249	188	253	277		
Secondary Group Contiguous Point Count	594	584	591	598		
Secondary Group Max Longitudinal	26	26	26	26	Transversal (Y)	n25 / 40M / 376500
Secondary Group Max Transverse	26	26	26	26		
Frequency Response	2	1.11	1.46	1.38		

	VoNR EVS Codec												
Codec	EVS SWB 9.6Kbps	EVS SWB 128Kbps	EVS WB 5.9Kbps	EVS WB 128Kbps	EVS NB 5.9Kbps	EVS NB 24.4Kbps	Orientation	Band / BW / Channel					
Primary Group Contiguous Point Count	319	321	211	305	177	200							
Secondary Group Contiguous Point Count	600	605	626	636	601	630							
Secondary Group Max Longitudinal	26	26	26	26	26	26	Transversal (Y)	n25 / 40M / 376500					
Secondary Group Max Transverse	26	26	26	26	26	26							
Frequency Response	2	1.64	0.22	0.99	1.08	1.79							

Remark: According to codec investigation, the worst codec is EVS NB 5.9Kbps.

Report No. : HA482618B

5G NR TDD

	,	VoNR AMR Cod	ec			
Codec	NB AMR 4.75Kbps	WB AMR 6.60Kbps	NB AMR 12.2Kbps	WB AMR 23.85Kbps	Orientation	Band / BW / Channel
Primary Group Contiguous Point Count	201	203	210	207		
Secondary Group Contiguous Point Count	500	503	505	496		
Secondary Group Max Longitudinal	26	26	26	26	Transversal (Y)	n41 / 100M / 518598
Secondary Group Max Transverse	26	26	26	26		
Frequency Response	0.81	1.01	1.39	0.31		

		V	ONR EVS Co	dec				
Codec	EVS SWB 9.6Kbps	EVS SWB 128Kbps	EVS WB 5.9Kbps	EVS WB 128Kbps	EVS NB 5.9Kbps	EVS NB 24.4Kbps	Orientation	Band / BW / Channel
Primary Group Contiguous Point Count	231	234	158	214	153	213		
Secondary Group Contiguous Point Count	496	500	502	496	514	501		
Secondary Group Max Longitudinal	26	26	26	26	26	26	Transversal (Y)	n41 / 100M / 518598
Secondary Group Max Transverse	26	26	26	26	26	26		
Frequency Response	1.94	1.74	0.51	0.89	1.69	1.46		

Remark: According to codec investigation, the worst codec is EVS NB 5.9Kbps.

<Air Interface Investigation>

Air Interface	BW (MHz)	Modulation / Mode	RB Size	RB offset	Channel	Ant Status	Probe Position	Primary Group Contiguous Point Count		Secondary Group Max Longitudinal	Group wax	Frequency Response
5G NR B41 PC2	100	DFT-PI/2 BPSK	1	1	518598	Ant 1	Transversal (Y)	158	510	26	26	Pass
5G NR B41 PC2	100	DFT-PI/2 BPSK	270	0	518598	Ant 1	Transversal (Y)	213	502	26	26	Pass
5G NR B41 PC2	100	DFT-QPSK	1	1	518598	Ant 1	Transversal (Y)	153	514	26	26	Pass
5G NR B41 PC2	100	DFT-16QAM	1	1	518598	Ant 1	Transversal (Y)	182	546	26	26	Pass
5G NR B41 PC2	100	DFT-64QAM	1	1	518598	Ant 1	Transversal (Y)	163	528	26	26	Pass
5G NR B41 PC2	100	DFT-256QAM	1	1	518598	Ant 1	Transversal (Y)	174	544	26	26	Pass
5G NR B41 PC3	100	DFT-QPSK	1	1	518598	Ant 1	Transversal (Y)	173	535	26	26	Pass
5G NR B41 PC2	10	DFT-QPSK	1	1	518598	Ant 1	Transversal (Y)	204	599	26	26	Pass
5G NR B7	50	DFT-QPSK	1	1	507000	Ant 1	Transversal (Y)	168	582	26	26	Pass
5G NR B7	5	DFT-QPSK	1	1	507000	Ant 1	Transversal (Y)	188	591	26	26	Pass

Plot No.	Air Interface	BW (MHz)	Modulation / Mode		RB offset	Channel	Ant Status	Probe Position	Primary Group Contiguous Point Count	Secondary Group Contiguous Point Count	Secondary	Secondary Group Max Transverse	Deepenee	Ambient Noise dB (A/m)
18	FR1 n7	50M	QPSK	1	1	507000	Ant 1	Transversal (Y)	168	582	26	26	1.19	-48.29
19	FR1 n12	15M	QPSK	1	1	141500	Ant 0	Transversal (Y)	192	608	26	26	1.04	-48.45
20	FR1 n14	10M	QPSK	1	1	158600	Ant 0	Transversal (Y)	194	609	26	26	1.56	-49.21
21	FR1 n25	40M	QPSK	1	1	376500	Ant 0	Transversal (Y)	177	601	26	26	1.08	-49.68
22	FR1 n26	20M	QPSK	1	1	166300	Ant 0	Transversal (Y)	284	576	26	26	1.68	-49.63
23	FR1 n30	10M	QPSK	1	1	462000	Ant 1	Transversal (Y)	167	606	26	26	1.39	-48.95
24	FR1 n66	40M	QPSK	1	1	349000	Ant 0	Transversal (Y)	156	575	26	26	1.41	-48.67
25	FR1 n70	15M	QPSK	1	1	340500	Ant 0	Transversal (Y)	196	603	26	26	1.71	-48.57
26	FR1 n71	30M	QPSK	1	1	136100	Ant 0	Transversal (Y)	179	607	26	26	1.85	-49.51
27	FR1 n41	100M	QPSK	1	1	518598	Ant 1	Transversal (Y)	153	514	26	26	1.69	-48.37
28	FR1 n48	40M	QPSK	1	1	641666	Ant 5	Transversal (Y)	108	461	26	26	1.51	-48.97
29	FR1 n77	100M	QPSK	1	1	656000	Ant 5	Transversal (Y)	108	428	26	26	1.67	-48.91

8.5 VoWiFi Evaluation Results

<Codec Investigation>

VoWIFI AMR Codec										
Codec	NB AMR 4.75Kbps	WB AMR 6.60Kbps	NB AMR 12.2Kbps	WB AMR 23.85Kbps	Orientation	Band / Channel				
Primary Group Contiguous Point Count	255	253	257	254		2.4GHz WLAN / 6				
Secondary Group Contiguous Point Count	583	585	581	584						
Secondary Group Max Longitudinal	26	26	26	26	Transversal (Y)					
Secondary Group Max Transverse	26	26	26	26						
Frequency Response	1.16	0.69	1.63	0.55						

		Vc	WIFI EVS Co	odec				
Codec	EVS SWB 9.6Kbps	EVS SWB 128Kbps	EVS WB 5.9Kbps	EVS WB 128Kbps	EVS NB 5.9Kbps	EVS NB 24.4Kbps	Orientation	Band / BW / Channel
Primary Group Contiguous Point Count	337	304	202	210	193	203		
Secondary Group Contiguous Point Count	627	587	627	626	628	629		
Secondary Group Max Longitudinal	26	26	26	26	26	26	Transversal (Y)	2.4GHz WLAN / 6
Secondary Group Max Transverse	26	26	26	26	26	26		
Frequency Response	2	1.88	0.64	0.2	1.13	1.85		

Remark: According to codec investigation, the worst codec is EVS NB 5.9Kbps.

<Air Interface Investigation>

Air Interface	BW (MHz)	Modulation / Mode	Channel	Ant Status	Probe Position	Primary Group Contiguous Point Count	Secondary Group Contiguous Point Count	Secondary Group Max Longitudinal	Secondary Group Max Transverse	Frequency Response
802.11b	20	1M	6	Ant 6	Transversal (Y)	193	628	26	26	Pass
802.11g	20	6M	6	Ant 6	Transversal (Y)	177	620	26	26	Pass
802.11n-HT20	20	MCS0	6	Ant 6	Transversal (Y)	171	616	26	26	Pass
802.11n-HT40	40	MCS0	6	Ant 6	Transversal (Y)	189	635	26	26	Pass
802.11b	20	11M	6	Ant 6	Transversal (Y)	181	622	26	26	Pass
802.11a	20	6M	40	Ant 6	Transversal (Y)	193	676	26	26	Pass
802.11n-HT20	20	MCS0	40	Ant 6	Transversal (Y)	193	676	26	26	Pass
802.11n-HT40	40	MCS0	38	Ant 6	Transversal (Y)	199	676	26	26	Pass
802.11ac-VHT20	20	MCS0	40	Ant 6	Transversal (Y)	189	676	26	26	Pass
802.11ac-VHT40	40	MCS0	38	Ant 6	Transversal (Y)	210	676	26	26	Pass
802.11ac-VHT80	80	MCS0	42	Ant 6	Transversal (Y)	207	676	26	26	Pass
802.11ac-VHT20	20	MCS8	40	Ant 6	Transversal (Y)	195	676	26	26	Pass

Plot No.	Air Interface	BW (MHz)	Modulation / Mode	Channel	Ant Status		Group Contiguous	Group	Secondary Group Max Longitudinal	Group Max		Ambient Noise dB (A/m)
30	WLAN2.4GHz	20	802.11n-HT20 MCS0	6	Ant 6	Transversal (Y)	171	616	26	26	1.55	-48.24
31	WLAN5GHz	20	802.11ac-VHT20 MCS0	40	Ant 6	Transversal (Y)	189	676	26	26	1.71	-48.42
32	WLAN5GHz	20	802.11ac-VHT20 MCS0	56	Ant 6	Transversal (Y)	193	676	26	26	1.52	-49.64
33	WLAN5GHz	20	802.11ac-VHT20 MCS0	116	Ant 6	Transversal (Y)	199	676	26	26	1.53	-49.56
34	WLAN5GHz	20	802.11ac-VHT20 MCS0	157	Ant 6	Transversal (Y)	201	676	26	26	1.22	-48.42

Remark:

- 1. Phone Condition: Mute on; Backlight off; Max Volume
- 2. Hearing Aid mode (Phone -> Setting ->Accessibility->Hearing aids) was set to on for improving the audio signal performance for HAC T-Coil compliance.

Test Engineer : Hank Huang, Kevin Xu, David Dai, Bin He

9. Uncertainty Assessment

The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type A evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance. The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances. Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is showed in Table 8.2.

The judgment of conformity in the report is based on the measurement results excluding the measurement uncertainty.

Error Description	Uncertainty Value (±%)	Probability Distribution	Divisor	Ci (ABMd)	Ci (ABMu)	Standard Uncertainty (ABMd) (±%)	Standard Uncertainty (ABMu) (±%)
		Probe Ser	nsitivity				
Reference Level	3.0	Normal	1	1	1	3.0	3.0
AMCC Geometry	0.4	Rectangular	√3	1	1	0.2	0.2
AMCC Current	1.0	Rectangular	√3	1	1	0.6	0.6
Probe Positioning During Calibrate	0.1	Rectangular	√3	1	1	0.1	0.1
Noise Contribution	0.7	Rectangular	√3	0.0143	1	0.0	0.4
Frequency Slope	5.9	Rectangular	√3	0.1	1	0.3	3.4
		Probe Sy	/stem				
Repeatability / Drift	1.0	Rectangular	√3	1	1	0.6	0.6
Linearity / Dynamic Range	0.6	Rectangular	√3	1	1	0.3	0.3
Acoustic Noise	1.0	Rectangular	√3	0.1	1	0.1	0.6
Probe Angle	1.0	Rectangular	√3	1	1	0.6	0.6
Spectral Processing	0.9	Rectangular	√3	1	1	0.5	0.5
Integration Time	0.6	Normal	1	1	5	0.6	3.0
Field Disturbation	0.2	Rectangular	√3	1	1	0.1	0.1
		Test Si	gnal				
Reference Signal Spectral Response	0.6	Rectangular	√3	0.0	0.3	0.0	0.3
		Positio	ning	-	-		
Probe Positioning	1.9	Rectangular	√3	1	1	1.1	1.1
Phantom Thickness	0.9	Rectangular	√3	1	1	0.5	0.5
EUT Positioning	1.9	Rectangular	√3	1	1	1.1	1.1
		External Con	tributions		_		
RF Interference	0.0	Rectangular	√3	1	0.3	0.0	0.0
Test Signal Variation	2.0	Rectangular	√3	1	1	1.2	1.2
	Combined Star	ndard Uncertainty				3.9%	6.0%
	Coverage F	actor for 95 %				K	= 2
	Expanded	d Uncertainty				7.7 %	11.9 %

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Uncertainty Budget of audio band magnetic measurement

10. <u>References</u>

- [1] ANSI C63.19-2019, "American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids", Aug. 2019.
- [2] FCC KDB 285076 D01v06r04, "Equipment Authorization Guidance for Hearing Aid Compatibility", Sep. 2023.
- [3] FCC KDB 285076 D02v04, "Guidance for performing T-Coil tests for air interfaces supporting voice over IP (e.g., LTE and WiFi) to support CMRS based telephone services", Feb 2022
- [4] FCC KDB 285076 D03v01r06, "Hearing aid compatibility frequently asked questions", Jul. 2022
- [5] SPEAG DASY System Handbook