

FCC RF Test Report

APPLICANT	: Motorola Mobility LLC
EQUIPMENT	: Mobile Cellular Phone
BRAND NAME	: Motorola
MODEL NAME	: XT2523-2, XT2523-8
FCC ID	: IHDT56AT3
STANDARD	: FCC Part 15 Subpart C §15.247
CLASSIFICATION	: (DSS) Spread Spectrum Transmitter
TEST DATE(S)	: Sep. 12, 2024 ~ Sep. 24, 2024

We, Sporton International Inc. (Shenzhen), would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (Shenzhen), the test report shall not be reproduced except in full.

JasonJia

Approved by: Jason Jia

Sporton International Inc. (ShenZhen) 1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055 People's Republic of China

TABLE OF CONTENTS

		N HISTORY	
SU		Y OF TEST RESULT	
1	GENE	ERAL DESCRIPTION	.5
	1.1	Applicant	.5
	1.2	Manufacturer	
	1.3	Product Feature of Equipment Under Test	.5
	1.4	Product Specification of Equipment Under Test	.6
	1.5	Modification of EUT	.6
	1.6	Testing Location	.6
	1.7	Test Software	.7
	1.8	Applicable Standards	.7
	1.9	Specification of Accessory	.8
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	.9
	2.1	Carrier Frequency Channel	.9
	2.2	Test Mode	10
	2.3	Connection Diagram of Test System	11
	2.4	Support Unit used in test configuration and system	12
	2.5	EUT Operation Test Setup	
	2.6	Measurement Results Explanation Example	12
3	TEST	RESULT	13
	3.1	Number of Channel Measurement	
	3.2	Hopping Channel Separation Measurement	
	3.3	Dwell Time Measurement	21
	3.4	20dB and 99% Bandwidth Measurement	
	3.5	Output Power Measurement	34
	3.6	Conducted Band Edges Measurement	35
	3.7	Conducted Spurious Emission Measurement	42
	3.8	Radiated Band Edges and Spurious Emission Measurement	
	3.9	AC Conducted Emission Measurement	56
	3.10	Antenna Requirements	58
4	LIST	OF MEASURING EQUIPMENT	59
5	MEAS	SUREMENT UNCERTAINTY	60
		IX A. CONDUCTED TEST RESULTS	
AP	PEND	IX B. AC CONDUCTED EMISSION TEST RESULT	
AP	PEND	IX C. RADIATED SPURIOUS EMISSION	
AP	PEND	IX D. DUTY CYCLE PLOTS	

APPENDIX E. SETUP PHOTOGRAPHS

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR480701A	Rev. 01	Initial issue of report	Oct. 19, 2024

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(1)	Number of Channels	≥ 15Chs	Pass	-
3.2	15.247(a)(1)	Hopping Channel Separation	≥ 2/3 of 20dB BW	Pass	-
3.3	15.247(a)(1)	Dwell Time of Each Channel	≤ 0.4sec in 31.6sec period	Pass	-
3.4	15.247(a)(1)	20dB Bandwidth	-	Report only	-
3.4	-	99% Bandwidth	-	Report only	-
3.5	15.247(b)(1)	Peak Output Power	≤ 125 mW	Pass	-
3.6	15.247(d)	Conducted Band Edges	≤ 20dBc	Pass	-
3.7	3.7 15.247(d) Conducted Spurious Emission		≤ 20dBc	Pass	-
3.8	3.8 15.247(d) Radiated Band Edges a Emission		15.209(a) & 15.247(d)	Pass	Under limit 11.40 dB at 30.00 MHz
3.9	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 12.71 dB at 0.54 MHz
3.10	15.203 & 15.247(b)	Antenna Requirement	15.203 & 15.247(b)	Pass	-

Conformity Assessment Condition:

 The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.

2. The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty"

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

1 General Description

1.1 Applicant

Motorola Mobility LLC

222 W, Merchandise Mart Plaza, Chicago IL 60654, USA

1.2 Manufacturer

Motorola Mobility LLC

222 W, Merchandise Mart Plaza, Chicago IL 60654, USA

1.3 Product Feature of Equipment Under Test

Product Feature				
Equipment	Mobile Cellular Phone			
Brand Name	Motorola			
Model Name	Model Name XT2523-2, XT2523-8			
FCC ID IHDT56AT3				
IMEI Code Conducted: 351368280029931/35136828002994 IMEI Code Conduction: 351368280023470/35136828002348 Radiation: 351368280023991/351368280024007				
HW Version	DVT2			
SW Version	VVTA35.44, UUTB34.23			
EUT Stage	Identical Prototype			

Remark:

- 1. The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.
- 2. There are three types of EUT for each model name(XT2523-2, XT2523-8), the differences could be referred to the XT2523-2, XT2523-8_Operational Description of Product Equality Declaration which is exhibit separately. According to the difference, we choose sample 1 of XT2523-2 to full test. The test results of XT2523-8 are referred to the model name XT2523-2.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification			
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz		
Number of Channels	79		
Carrier Frequency of Each Channel	2402+n*1 MHz; n=0~78		
Maximum Output Power to Antenna	Bluetooth BR(1Mbps) : 11.30 dBm (0.0135 W) Bluetooth EDR (2Mbps) : 10.70 dBm (0.0117 W) Bluetooth EDR (3Mbps) : 10.70 dBm (0.0117 W)		
99% Occupied Bandwidth	Bluetooth BR(1Mbps) : 0.773MHz Bluetooth EDR (2Mbps) : 1.151MHz Bluetooth EDR (3Mbps) : 1.159MHz		
Antenna Type / Gain	PIFA Antenna type with gain -4.5 dBi		
Type of Modulation	Bluetooth BR (1Mbps) : GFSK Bluetooth EDR (2Mbps) :π/4-DQPSK Bluetooth EDR (3Mbps) : 8-DPSK		

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Sporton International Inc. (Shenzhen) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.01.

Test Firm	Sporton International Inc. (Shenzhen)					
Test Site Location	1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055 People's Republic of China TEL: +86-755-86379589 FAX: +86-755-86379595					
Test Site No.	Sporton Site No.	FCC Designation No.	FCC Test Firm Registration No.			
	CO01-SZ TH01-SZ	CN1256	421272			
Test Firm	Sporton International Inc. (Shenzhen)					
Test Site Location	Province 518103 People's Republic of China					
	Province 518103 People' TEL: +86-755-86066985	s Republic of China				
Test Site No.	·	s Republic of China FCC Designation No.	FCC Test Firm Registration No.			

1.7 Test Software

lt	em	Site	Manufacturer	Name	Version
	1.	03CH01-SZ	AUDIX	E3	6.2009-8-24
	2.	CO01-SZ	AUDIX	E3	6.120613b

1.8 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart C §15.247
- FCC KDB 558074 D01 15.247 Meas Guidance v05r02
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

1.9 Specification of Accessory

Accessories Information					
AC Adapter 1(US)	Brand Name	Motorola(AOHAI)	Model Name	MC-101	
AC Adapter 1(EU) Brand Name		Motorola(AOHAI)	Model Name	MC-102	
AC Adapter 1(UK)			Model Name	MC-103	
AC Adapter 1(IN)			Model Name	MC-104	
AC Adapter 1(AU)	Brand Name	Motorola(AOHAI)	Model Name	MC-105	
AC Adapter 1(AR)	Brand Name	Motorola(AOHAI)	Model Name	MC-106	
AC Adapter 2(US)	Brand Name	Motorola(CHENYANG)	Model Name	MC-101	
AC Adapter 2(EU)	Brand Name	Motorola(CHENYANG)	Model Name	MC-102	
AC Adapter 2(UK)	Brand Name	Motorola(CHENYANG)	Model Name	MC-103	
AC Adapter 2(AU)	Brand Name	Motorola(CHENYANG)	Model Name	MC-105	
AC Adapter 2(AR)	Brand Name	Motorola(CHENYANG)	Model Name	MC-106	
AC Adapter 2(BR)	Brand Name	Motorola(CHENYANG)	Model Name	MC-107	
AC Adapter 2(PRC)	Brand Name	Motorola(CHENYANG)	Model Name	MC-108	
AC Adapter 3(CHILE)	Brand Name	Motorola(SALCOMP)	Model Name	MC-109	
Battery 1	Brand Name	Motorola(ATL)	Model Name	RL52	
Battery 2	Brand Name	Motorola(Jiade)	Model Name	RL52	
Battery 3	Brand Name	Motorola(Sunwoda)	Model Name	RL52	
USB Cable 1	Brand Name	Motorola(Yihuaxing)	Model Name	T365-020 T365-020-01 T365-020-02	
USB Cable 2	Brand Name	Motorola(WASHIN)	Model Name	HX-TL-01 HX-TL-08 HX-TL-07	
USB Cable 3	Brand Name	Motorola(Juwei)	Model Name	JWUB1614-T03H JWUB1705-T03H JWUB1856-T03H	
USB Cable 4	Brand Name	Motorola(I-SHENG)	Model Name	SC18D38574	

2 Test Configuration of Equipment Under Test

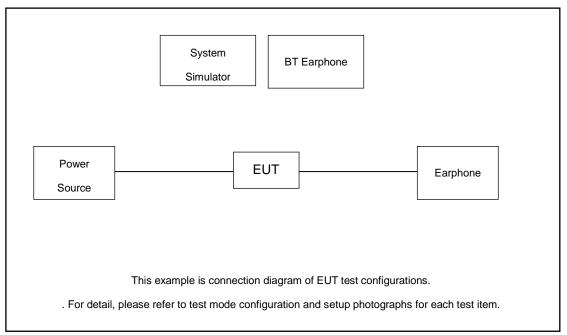
2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

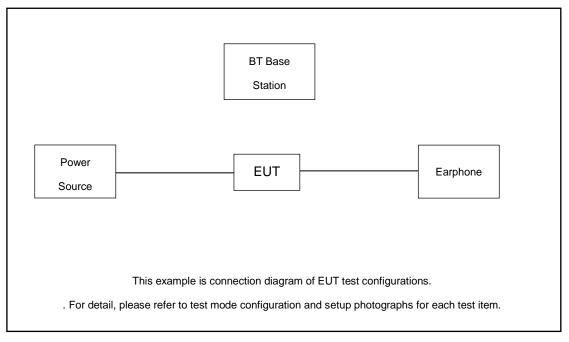
2.2 Test Mode

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Y plane) were recorded in this report, and the worst mode of radiated spurious emissions is Bluetooth 1Mbps mode, and recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

The following summary table is showing all test modes to demonstrate in compliance with the standard.


Summary table of Test Cases						
	Data Rate / Modulation					
Test Item	Bluetooth BR 1Mbps	Bluetooth EDR 2Mbps	Bluetooth EDR 3Mbps			
	GFSK	π/4-DQPSK	8-DPSK			
Conducted	Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz	Mode 7: CH00_2402 MHz			
	Mode 2: CH39_2441 MHz	Mode 5: CH39_2441 MHz	Mode 8: CH39_2441 MHz			
Test Cases	Mode 3: CH78_2480 MHz	Mode 6: CH78_2480 MHz	Mode 9: CH78_2480 MHz			
		Bluetooth BR 1Mbps GFSK				
Radiated		Mode 1: CH00_2402 MHz				
Test Cases Mode 2: CH39_2441 MH						
		Mode 3: CH78_2480 MHz				
AC	Mode 1 · CSM 850 Idle + B	Bluetooth Link + Adapter 1 +	LISE Cable 1 + Battory 1 +			
Conducted			USB Cable 1 + Ballery 1 +			
Emission	Earphone 1 for Sam					
Remark:						
1. For radiate	ed test cases, the worst mode	data rate 1Mbps was reported	only, because this data rate			
has the hig	hest RF output power at prelir	minary tests, and no other sign	ificantly frequencies found in			
conducted	spurious emission.					

2. For Radiated Test Cases, the tests were performed with Adapter1, Earphone1 and USB Cable1 .



2.3 Connection Diagram of Test System

AC Conducted Emission:

Radiated Emission:

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Base Station(LTE)	Anritsu	MT8820C	N/A	N/A	Unshielded,1.8m
2.	Bluetooth Earphone	Samsung	EO-MG900	PYAHS-107W	N/A	N/A
3.	Earphone	NA	MH202	NA	NA	NA

2.5 EUT Operation Test Setup

For Bluetooth function, the engineering test program was provided and enabled to make EUT connect with Bluetooth base station to continuous transmit.

For AC power line conducted emissions, the EUT was set to connect with the BT earphone.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 1.30 dB and 10dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

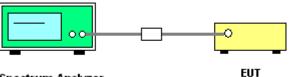
= 1.30 + 10 = 11.30 (dB)

3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

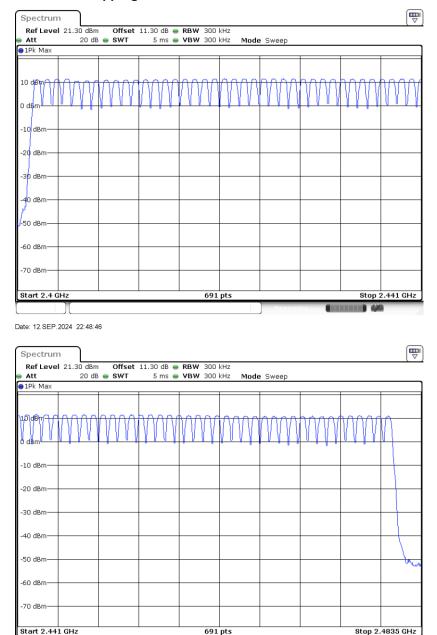

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

3.1.4 Test Setup



Spectrum Analyzer

3.1.5 Test Result of Number of Hopping Frequency

Please refer to Appendix A.

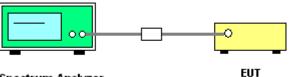
Number of Hopping Channel Plot on Channel 00 - 78

Date: 12.SEP.2024 22:49:17

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.


3.2.2 Measuring Instruments

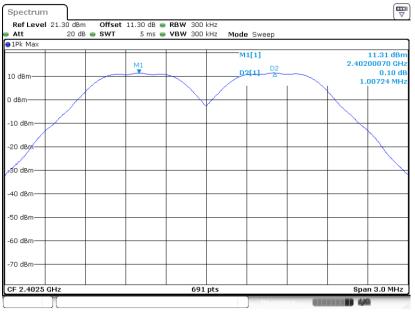
The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

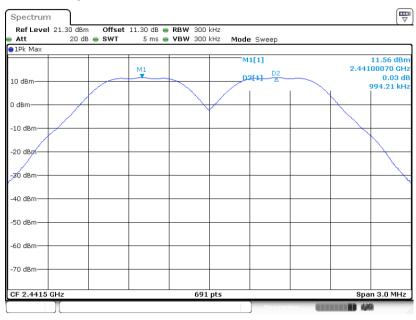
- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.2.4 Test Setup

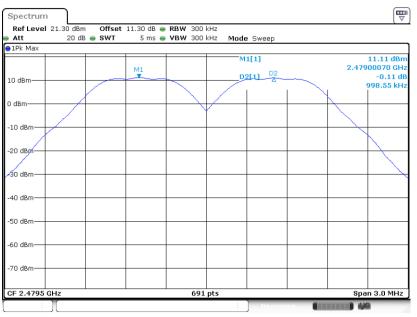
Spectrum Analyzer


3.2.5 Test Result of Hopping Channel Separation

Please refer to Appendix A.

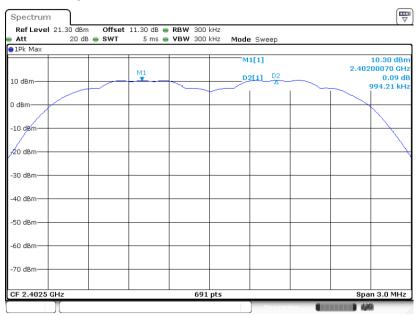

<1Mbps>

Channel Separation Plot on Channel 00 - 01


Date: 12.SEP.2024 22:42:53

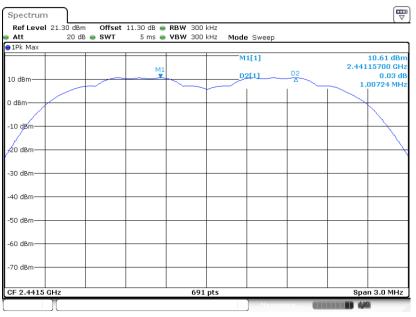
Channel Separation Plot on Channel 39 - 40

Date: 12.SEP.2024 22:41:19



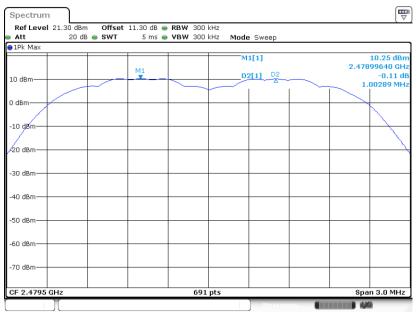
Channel Separation Plot on Channel 77 - 78

Date: 12.SEP.2024 22:44:08


<2Mbps>

Channel Separation Plot on Channel 00 - 01

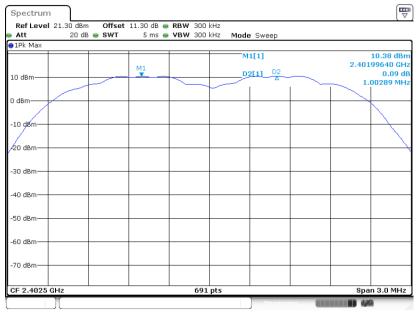
Date: 12.SEP.2024 23:22:07



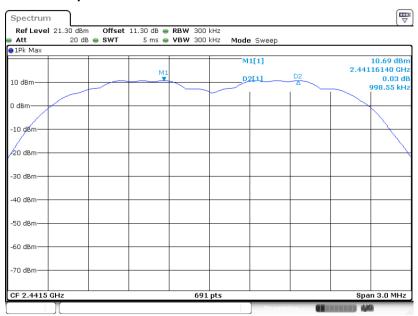
Channel Separation Plot on Channel 39 - 40

Date: 12.SEP.2024 23:23:15

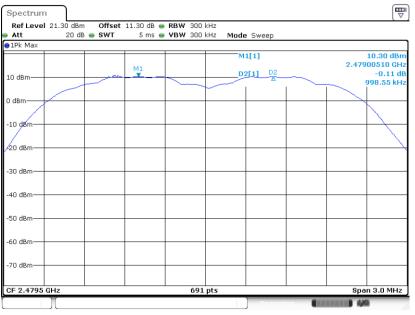
Channel Separation Plot on Channel 77 - 78



Date: 12.SEP.2024 23:24:20


<3Mbps>

Channel Separation Plot on Channel 00 - 01


Date: 12.SEP.2024 23:08:51

Channel Separation Plot on Channel 39 - 40

Date: 12.SEP.2024 23:11:32

Channel Separation Plot on Channel 77 - 78

Date: 12.SEP.2024 23:15:52

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

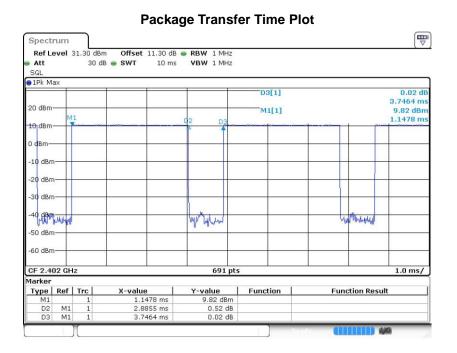
3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup



Spectrum Analyzer

3.3.5 Test Result of Dwell Time

Please refer to Appendix A.

Remark:

 In normal mode, hopping rate is 1600 hops/s with 6 slots (5 Transmit and 1 Receive slot) in 79 hopping channels.

With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.

- In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels.
 With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s),
 Hops Over Occupancy Time comes to (800 / 6 / 20) x (0.4 x 20) = 53.33 hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

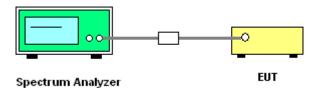
3.4 20dB and 99% Bandwidth Measurement

3.4.1 Limit of 20dB and 99% Bandwidth

Reporting only

3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

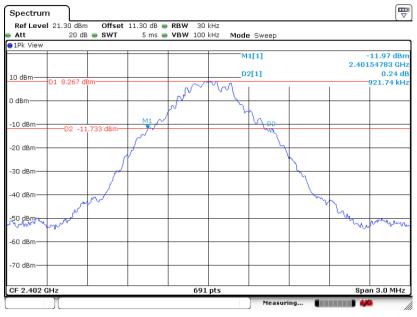

3.4.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Use the following spectrum analyzer settings for 20dB Bandwidth measurement.
 Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; The RBW is set to 1% to 5% of the 99% OBW, the VBW is set to 3 times the RBW;
 Sweep = auto; Detector function = peak; Trace = max hold.
- 5. Use the following spectrum analyzer settings for 99 % Bandwidth measurement.
 Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel; The RBW is set to 1% to 5% of the 99% OBW, the VBW is set to 3 times the RBW; Sweep = auto; Detector function = peak;

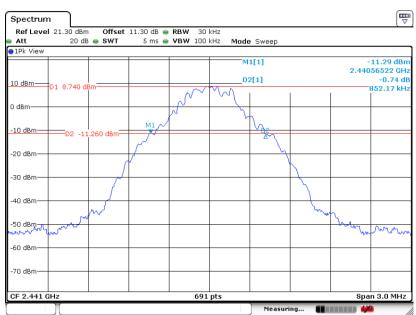
Trace = max hold.

6. Measure and record the results in the test report.

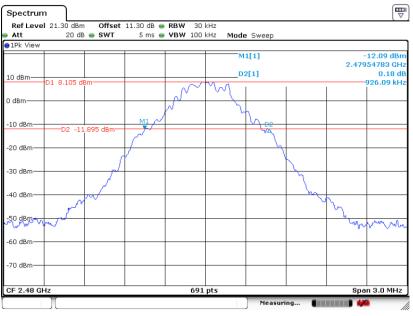
3.4.4 Test Setup


3.4.5 Test Result of 20dB Bandwidth

Please refer to Appendix A.

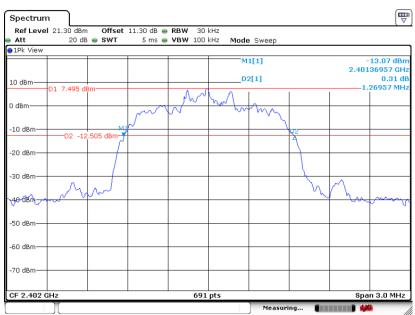

<1Mbps>

20 dB Bandwidth Plot on Channel 00


Date: 12.SEP.2024 22:33:31

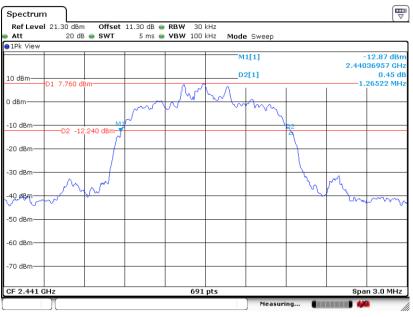
20 dB Bandwidth Plot on Channel 39

Date: 12.SEP.2024 22:38:59



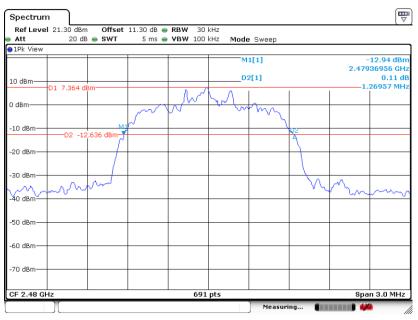
20 dB Bandwidth Plot on Channel 78

Date: 12.SEP.2024 22:45:51


<2Mbps>

20 dB Bandwidth Plot on Channel 00

Date: 12.SEP.2024 22:56:26



20 dB Bandwidth Plot on Channel 39

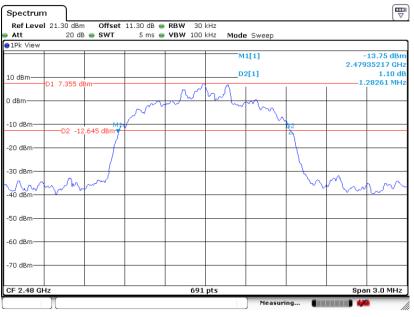
Date: 12.SEP.2024 22:58:48

20 dB Bandwidth Plot on Channel 78

Date: 12.SEP.2024 23:01:15

<3Mbps>

20 dB Bandwidth Plot on Channel 00

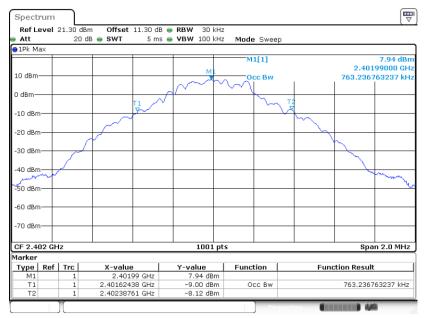

Date: 12.SEP.2024 23:04:54

20 dB Bandwidth Plot on Channel 39

Date: 12.SEP.2024 23:09:29

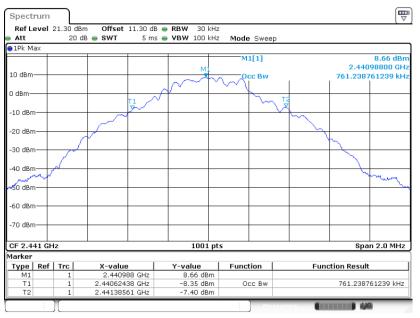
20 dB Bandwidth Plot on Channel 78

Date: 12.SEP.2024 23:13:56



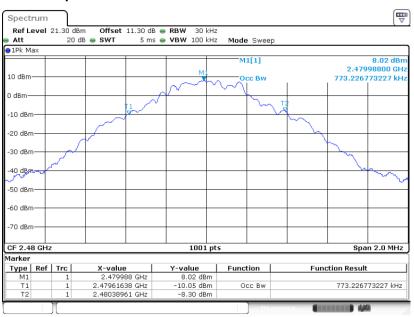
3.4.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.


<1Mbps>

99% Occupied Bandwidth Plot on Channel 00

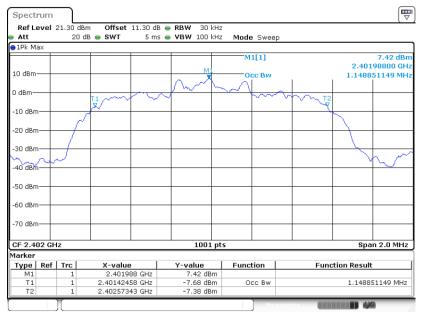
Date: 12.SEP.2024 22:29:33



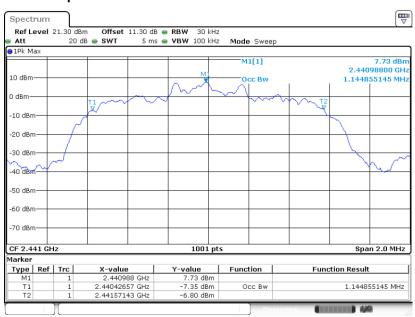
99% Occupied Bandwidth Plot on Channel 39

Date: 12.SEP.2024 22:38:19

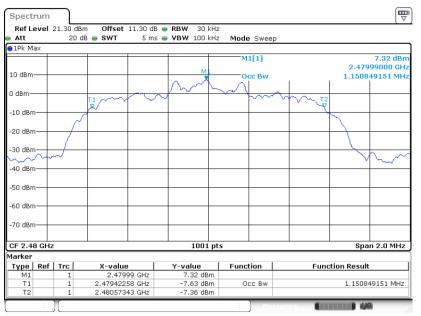
99% Occupied Bandwidth Plot on Channel 78



Date: 12.SEP.2024 22:45:00

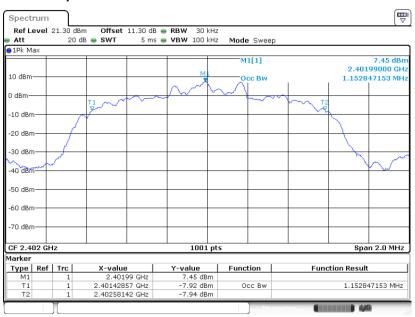

<2Mbps>

99% Occupied Bandwidth Plot on Channel 00


Date: 12.SEP.2024 22:55:29

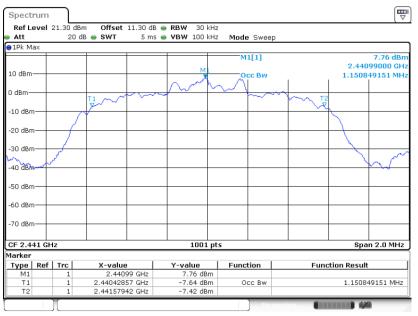
99% Occupied Bandwidth Plot on Channel 39

Date: 12.SEP.2024 22:58:27



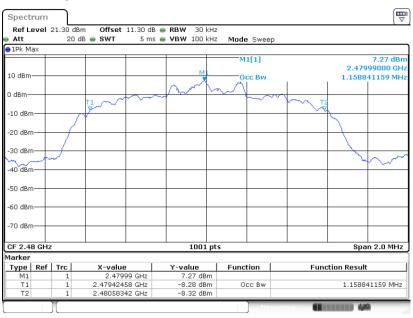
99% Occupied Bandwidth Plot on Channel 78

Date: 12.SEP.2024 23:00:21


<3Mbps>

99% Occupied Bandwidth Plot on Channel 00

Date: 12.SEP.2024 23:03:15



99% Occupied Bandwidth Plot on Channel 39

Date: 12.SEP.2024 23:09:17

99% Occupied Bandwidth Plot on Channel 78

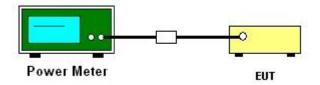
Date: 12.SEP.2024 23:12:23

Note : The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.5 Output Power Measurement

3.5.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts. The power limit for 1Mbps, 2Mbps, 3Mbps and AFH modes are 0.125 watts.


3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

3.5.5 Test Result of Peak Output Power

Please refer to Appendix A.

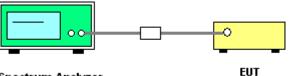
3.5.6 Test Result of Average Output Power (Reporting Only)

Please refer to Appendix A.

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.


3.6.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

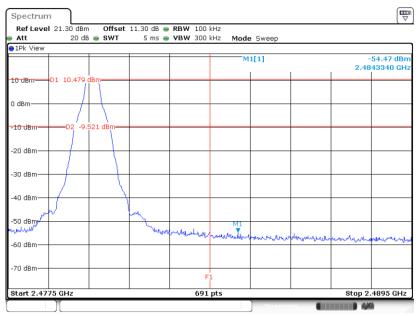
3.6.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Set RBW = 100kHz, VBW = 300kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2. and 3.
- 5. Measure and record the results in the test report.

3.6.4 Test Setup

Spectrum Analyzer

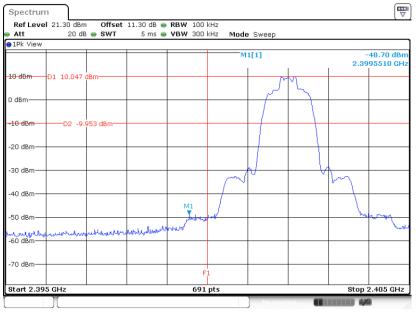
3.6.5 Test Result of Conducted Band Edges


<1Mbps>

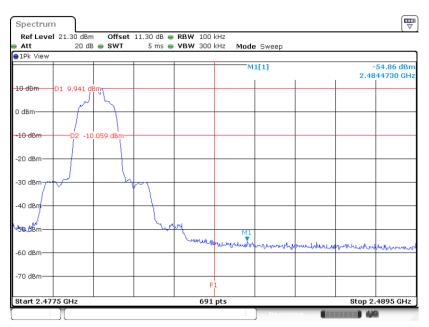
Low Band Edge Plot on Channel 00

Date: 12.SEP.2024 22:32:43

High Band Edge Plot on Channel 78



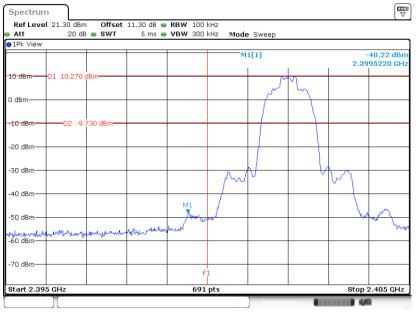
Date: 12.SEP.2024 22:45:34


<2Mbps>

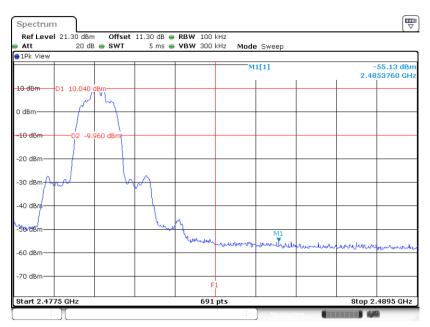
Low Band Edge Plot on Channel 00

Date: 12.SEP.2024 23:21:15

High Band Edge Plot on Channel 78



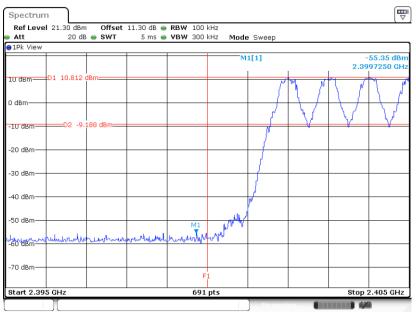
Date: 12.SEP.2024 23:00:50


<3Mbps>

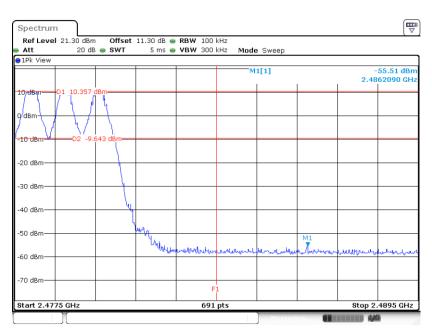
Low Band Edge Plot on Channel 00

Date: 12.SEP.2024 23:04:33

High Band Edge Plot on Channel 78


Date: 12.SEP.2024 23:13:10

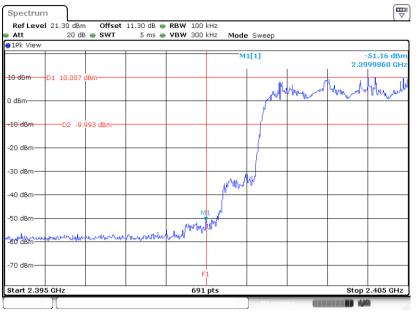
3.6.6 Test Result of Conducted Hopping Mode Band Edges


<1Mbps>

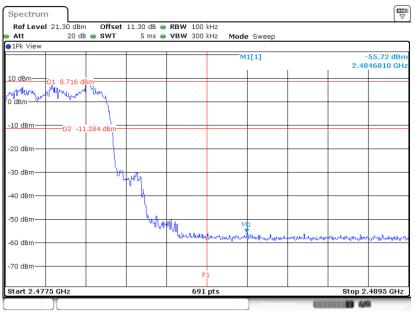
Hopping Mode Low Band Edge Plot

Date: 12.SEP.2024 22:48:08

Hopping Mode High Band Edge Plot



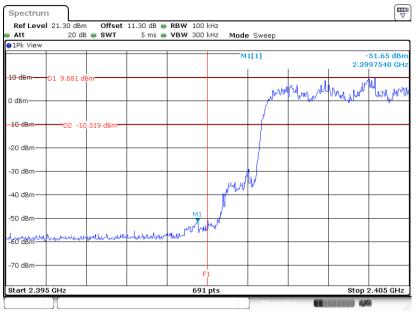
Date: 12.SEP.2024 22:47:38


<2Mbps>

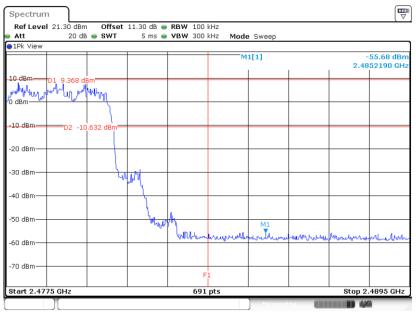
Hopping Mode Low Band Edge Plot

Date: 12.SEP.2024 22:53:30

Hopping Mode High Band Edge Plot



Date: 12.SEP.2024 22:54:38


<3Mbps>

Hopping Mode Low Band Edge Plot

Date: 12.SEP.2024 23:16:49

Hopping Mode High Band Edge Plot

Date: 12.SEP.2024 23:16:23

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

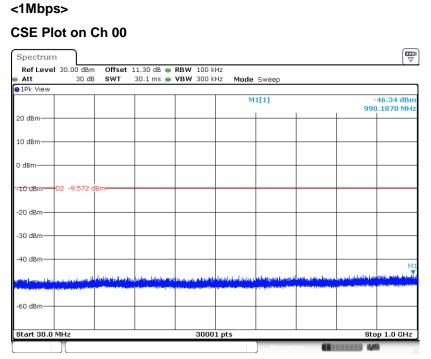
In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.


3.7.2 Measuring Instruments

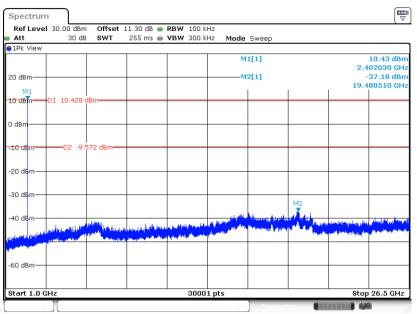
The measuring equipment is listed in the section 4 of this test report.

3.7.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.


3.7.4 Test Setup

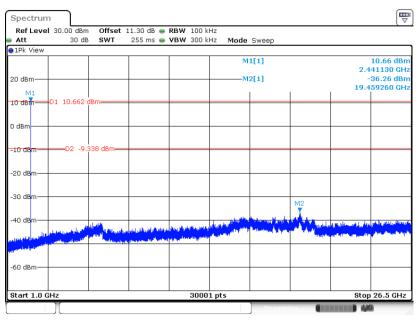
Sporton International Inc. (ShenZhen) TEL : +86-755-8637-9589 FAX : +86-755-8637-9595 FCC ID: IHDT56AT3



3.7.5 Test Result of Conducted Spurious Emission

Date: 12.SEP.2024 22:35:32

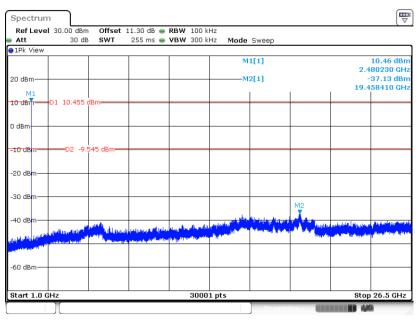
CSE Plot on Ch 00


Date: 12.SEP.2024 22:35:06

Spectrun									
	1 30.00 dBm			RBW 100 k					
Att	30 dB	SWT	30.1 ms 👄	VBW 300 k	Hz Mode	Sweep			
1Pk View									
					M	1[1]			-46.11 dBn 3.5680 MH:
20 dBm									
10 dBm									
0 dBm									
-10 dBm	=D2 -9.338 de	3m							
-20 dBm									
-30 dBm									
-40 dBm									M1
Internetical	September 1	untra korna	الدور الإيراني	an and all an all ar	والراميانية المريقي		to passad las	a na finita a india	
a provinsional and a provinsion of the	let de suscient per per p		and and an and and	a na shekara na shekara shekara	all card hough for stars.		and the second	and the second se	
-60 dBm									
Start 30.0	MHz			3000	1 pts			St	op 1.0 GHz
	T					Measur			8

Date: 12.SEP.2024 22:40:00

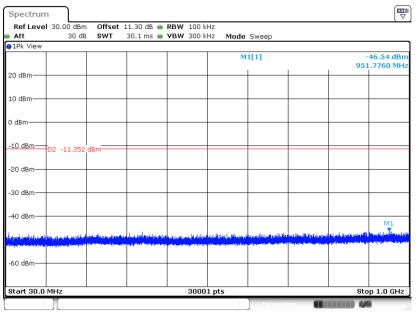
CSE Plot on Ch 39

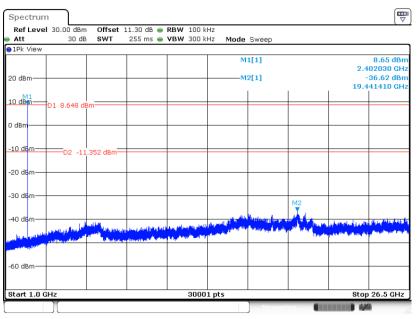

Date: 12.SEP.2024 22:39:34

Ref Level			11.30 dB 👄	RBW 100	kHz				
Att	30 dB	SWT	30.1 ms 👄	VBW 300	kHz Mode	Sweep			
1Pk View									
					M	1[1]			-45.86 dBm 1.5690 MHz
20 dBm							-	93.	1.3090 MH2
10 dBm									
0 dBm									
-10 dBm-0	2 -9.545 de	3m							
-20 dBm									
-30 dBm									
-40 dBm									M1
	والمتعادية والمتعاد	la atana ka mita ka mi	التحرير أنتاك المطريا أحا	dense statuteren	un bischerse ander	الحقريق الألوجيولي	فالمعاملة وملا		and and the
and the second second second	T	photo-block (perform	a loss a sub the sub-	and the second s		-	and the part of the part of the	and the state of t	a phanti an an Alfred a
60 d0m									
-60 dBm									
Start 30.0 M	IHz			300	D1 pts			Sto	op 1.0 GHz

Date: 12.SEP.2024 22:46:48

CSE Plot on Ch 78

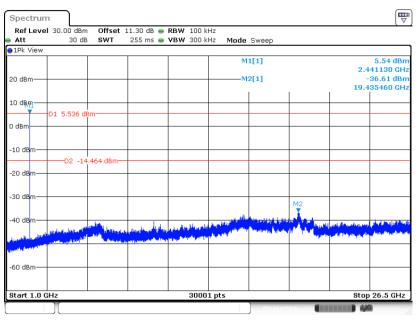

Date: 12.SEP.2024 22:46:20


<2Mbps>

CSE Plot on Ch 00

Date: 12.SEP.2024 22:57:30

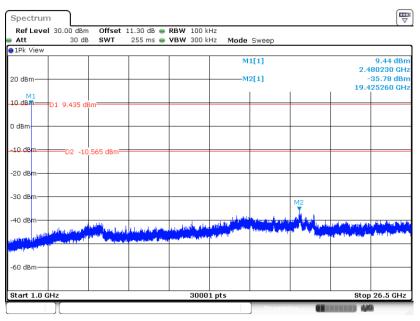
CSE Plot on Ch 00


Date: 12.SEP.2024 22:57:04

Spectrum Ref Level		Offset	11.30 dB 👄	RBW 100	kHz				(*
Att	30 dB	SWT	30.1 ms 👄	VBW 300	kHz Mode	Sweep			
∋1Pk View									
					M	1[1]			-46.18 dBm 8.8160 MHz
20 dBm									+
10 dBm									
0 dBm									
-10 dBm									
-20 dBm	02 -14.464	dBm							
-30 dBm									
-40 dBm									M1
water to be to be to be	ومرابعه المراجع	and a lateral	A Harring & Just	Wellingeneration	a sile of cost titles of	to and a bland	and a start fill and all	t and the set	· ·
-60 dBm	and of the product of the				1997 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 -				
-00 0011									
Start 30.0 M	/Hz			3000)1 pts	1	1	Sto	p 1.0 GHz
						Moneur	- 1 11	and the second second	6 4

Date: 12.SEP.2024 22:59:53

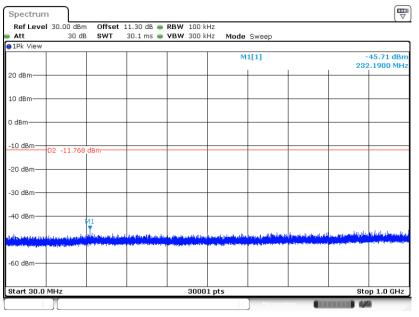
CSE Plot on Ch 39

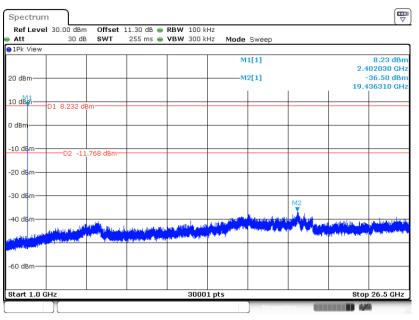

Date: 12.SEP.2024 22:59:26

Ref Level 30.00 dBm	Offset 11.30 dB 👄	RBW 100 kHz		
Att 30 dB	SWT 30.1 ms 👄	VBW 300 kHz Mode	Sweep	
1Pk View				
		M	1[1]	-46.04 dBm 948.3490 MHz
20 dBm				
10 dBm				
D dBm				
-10 dBmD2 -10.565 d	Bm			
-20 dBm				
-30 dBm				
-40 dBm				M1
here the last a conversion of the set	annan an breadshailer	uis, la a moltan nan datadata		ale to be restricted and the first sector of
	a second s	a bay here you have been a large of a particular to the star		
-60 dBm				
Start 30.0 MHz		30001 pts		Stop 1.0 GHz

Date: 12.SEP.2024 23:02:23

CSE Plot on Ch 78

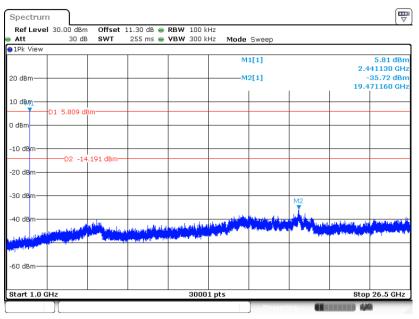

Date: 12.SEP.2024 23:01:58


<3Mbps>

CSE Plot on Ch 00

Date: 12.SEP.2024 23:05:53

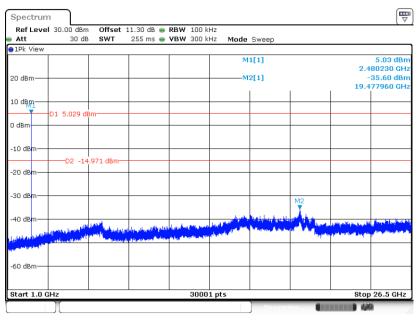
CSE Plot on Ch 00


Date: 12.SEP.2024 23:05:22

Spectrum Ref Level 3		Offset	11.30 dB 👄	PBW 100 l	/H7				
Att	30 dB		30.1 ms 👄			Sweep			
1Pk View									
					M	1[1]			-46.06 dBm 0.8390 MHz
20 dBm									+
10 dBm									
0 dBm									
-10 dBm		10							
-20 dBm	2 -14.191	dBm-							
-30 dBm									
-40 dBm									M1
المرابي المستعل الماليان	ماريديويين	toning helped	ولمريعوا ومنداء	ubdegales (ski	annon an	later, and read after	ond, to supplify the	بلدادات متحريص	an the solution of the solution of
-60 dBm	and the second secon		and as how we have	a de la construcción de la construc	ر پر میں ایک کار ہے ہے۔ 1997ء کی بی ایک کار کر کی کار کی ک 1997ء کی کار کی کی کار کی ک	distantial sites of the			
-ou asm									
Start 30.0 M	Hz			3000	1 pts	1	I	Ste	op 1.0 GHz
	(Measur			0

Date: 12.SEP.2024 23:10:29

CSE Plot on Ch 39


Date: 12.SEP.2024 23:10:03

Ref Level	30.00 dBm	Offset	11.30 dB 😑	RBW 100	kHz				
Att	30 dB	SWT	30.1 ms 😑	VBW 300	kHz Mode	Sweep			
∋1Pk View									
					M	1[1]			-46.42 dBm 0.8390 MHz
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm	02 -14.971	dBm							
-30 dBm									
-40 dBm									M1
det it is a second of the last	and contrade	e-lipstantano.	sa kilikera dhaddaan		allow-aster-openitie-opt	المقتور والمقارعين إلم	aparana	Longestation and Lotel	a series and a series of
CO. dD	Handler - Still Handler		all a la al	ير (الله ال	an a transfer for a land a start a star				
-60 dBm									
Start 30.0 M	1Hz			300	01 pts	I	I	Ste	pp 1.0 GHz
)(Manzour			64

Date: 12.SEP.2024 23:15:01

CSE Plot on Ch 78

Date: 12.SEP.2024 23:14:34

3.8 Radiated Band Edges and Spurious Emission Measurement

3.8.1 Limit of Radiated Band Edges and Spurious Emission

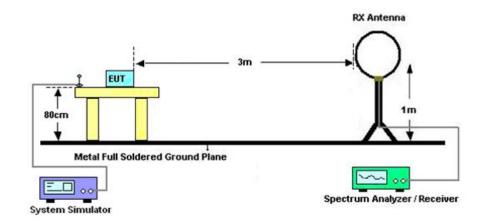
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

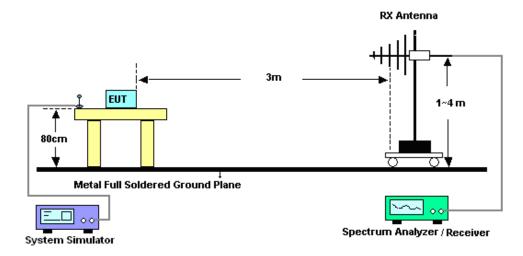
3.8.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

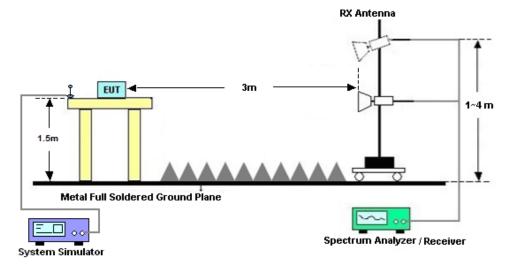
3.8.3 Test Procedures


- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz ; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds On time = N₁*L₁+N₂*L₂+...+N_{n-1}*LN_{n-1}+N_n*L_n Where N₁ is number of type 1 pulses, L₁ is length of type 1 pulses, etc. Average Emission Level = Peak Emission Level + 20*log(Duty cycle)
- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 8. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than peak limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (-24.79dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.



3.8.4 Test Setup


For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

Sporton International Inc. (ShenZhen) TEL : +86-755-8637-9589 FAX : +86-755-8637-9595 FCC ID: IHDT56AT3 Page Number : 54 of 60 Report Issued Date : Oct. 19, 2024 Report Version : Rev. 01 Report Template No.: BU5-FR15CBT Version 2.0

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.8.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C.

3.8.7 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic or 40GHz, whichever is lower)

Please refer to Appendix C.

3.8.8 Duty cycle correction factor for average measurement

Please refer to Appendix D.

3.9 AC Conducted Emission Measurement

3.9.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted limit (dBµV)				
Frequency of emission (MHZ)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

*Decreases with the logarithm of the frequency.

3.9.2 Measuring Instruments


The measuring equipment is listed in the section 4 of this test report.

3.9.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.9.4 Test Setup

3.9.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

3.10 Antenna Requirements

3.10.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.10.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.10.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
EMI Test Receiver&SA	Agilent	N9038A	MY522601 85	20Hz~26.5GHz	Dec. 27, 2023	Sep. 24, 2024	Dec. 26, 2024	Radiation (03CH01-SZ)
EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY551502 13	10Hz~44GHz	Jul. 03, 2024	Sep. 24, 2024	Jul. 02, 2025	Radiation (03CH01-SZ)
Loop Antenna	R&S	HFH2-Z2E	101141	9kHz~30MHz	Dec. 29, 2023	Sep. 24, 2024	Dec. 28, 2024	Radiation (03CH01-SZ)
Bilog Antenna	TeseQ	CBL6112D	35407	30MHz-2GHz	Oct. 24, 2023	Sep. 24, 2024	Oct. 23, 2025	Radiation (03CH01-SZ)
Double Ridge Horn Antenna	ETS-Lindgren	3117	00119436	1GHz~18GHz	Jul. 04, 2024	Sep. 24, 2024	Jul. 03, 2025	Radiation (03CH01-SZ)
SHF-EHF Horn	com-power	AH-840	101071	18Ghz-40GHz	Apr. 09,2024	Sep. 24, 2024	Apr. 08,2025	Radiation (03CH01-SZ)
LF Amplifier	Burgeon	BPA-530	102209	0.01~3000Mhz	Apr. 09, 2024	Sep. 24, 2024	Apr. 08,2025	Radiation (03CH01-SZ)
HF Amplifier	MITEQ	AMF-7D-0010 1800-30-10P- R	1943528	1GHz~18GHz	Oct. 18,2023	Sep. 24, 2024	Oct. 17,2024	Radiation (03CH01-SZ)
HF Amplifier	KEYSIGHT	83017A	MY532701 05	0.5GHz~26.5Gh z	Oct. 18,2023	Sep. 24, 2024	Oct. 17,2024	Radiation (03CH01-SZ)
HF Amplifier	MITEQ	TTA1840-35- HG	1871923	18GHz~40GHz	Jul. 03, 2024	Sep. 24, 2024	Jul. 02, 2025	Radiation (03CH01-SZ)
AC Power Source	Chroma	61601	616010001 985	N/A	Oct. 18,2023	Sep. 24, 2024	Oct. 17,2024	Radiation (03CH01-SZ)
Turn Table	EM	EM1000	N/A	0~360 degree	NCR	Sep. 24, 2024	NCR	Radiation (03CH01-SZ)
Antenna Mast	EM	EM1000	N/A	1 m~4 m	NCR	Sep. 24, 2024	NCR	Radiation (03CH01-SZ)
EMI Receiver	R&S	ESR7	101630	9kHz~7GHz;	Jul. 04, 2024	Sep. 12, 2024	Jul. 03, 2025	Conduction (CO01-SZ)
AC LISN	R&S	ENV216	100063	9kHz~30MHz	Jul. 04, 2024	Sep. 12, 2024	Jul. 03, 2025	Conduction (CO01-SZ)
AC LISN (for auxiliary equipment)	EMCO	3816/2SH	00103892	9kHz~30MHz	Oct. 16, 2023	Sep. 12, 2024	Oct. 15, 2024	Conduction (CO01-SZ)
AC Power Source	Chroma	61602	616020000 891	100Vac~250Vac	Aug. 14, 2024	Sep. 12, 2024	Aug. 13, 2025	Conduction (CO01-SZ)
Spectrum Analyzer	R&S	FSV40	101078	10Hz~40GHz	Apr. 09, 2024	Sep. 12, 2024	Apr. 08, 2025	Conducted (TH01-SZ)
Pulse Power Senor	Anritsu	MA2411B	1339473	30MHz~40GHz	Dec. 29, 2023	Sep. 12, 2024	Dec. 28, 2024	Conducted (TH01-SZ)
Thermo meter	Anymetre	JR593	#7	- 10℃ ~ 50℃ 10%RH~99%R H	Apr. 09, 2024	Sep. 12, 2024	Apr. 08, 2025	Conducted (TH01-SZ)

NCR: No Calibration Required

5 Measurement Uncertainty

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Uncertainty of Conducted Measurement

Test Item	Uncertainty
Conducted Spurious Emission & Bandedge	±1.34 dB
Occupied Channel Bandwidth	±0.012 MHz
Conducted Power	±1.34 dB
Conducted Power Spectral Density	±1.32 dB
Frequency	±1.3 Hz

Uncertainty of AC Conducted Emission Measurement (0.15 MHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.5 dB
of 95% (U = 2Uc(y))	2:5 dB

Uncertainty of Radiated Emission Measurement (9 KHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.8 dB
of 95% (U = 2Uc(y))	2.0 00

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	4 0 dB
of 95% (U = 2Uc(y))	4.2 dB

Uncertainty of Radiated Emission Measurement (1 GHz ~ 18 GHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	5.0 dB
--	--------

Uncertainty of Radiated Emission Measurement (18 GHz ~ 40 GHz)

Measuring Uncertainty for a Level of Confidence	4.3 dB
of 95% (U = 2Uc(y))	4.3 dB

----- THE END ------

Appendix A. Conducted Test Results

Report Number : FR480701A

Appendix A. Test Result of Conducted Test Items

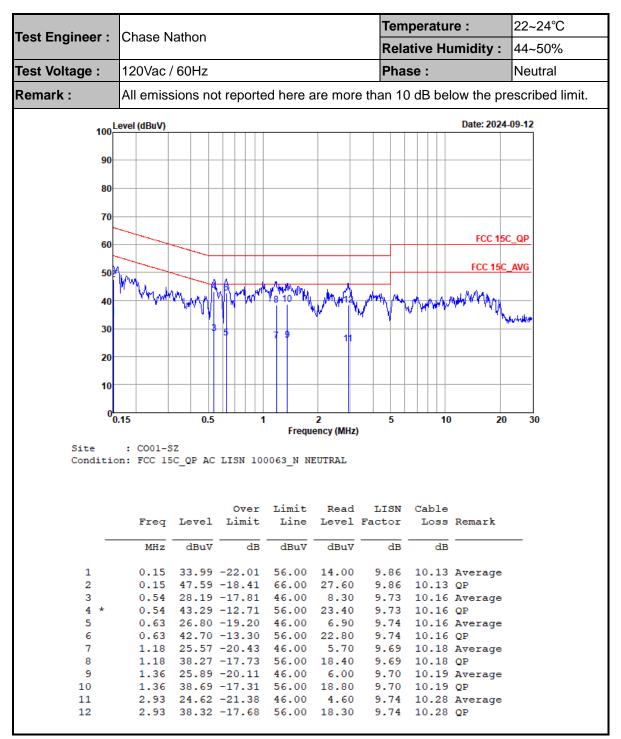
Test Engineer:	He Qingsheng	Temperature:	21~25	°C
Test Date:	2024/9/12	Relative Humidity:	51~54	%
Test Date.	2027/0/12	relative Harmany.	01 04	7

	20dB and 99% Occupied Bandwidth and Hopping Channel Separation													
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	20dB BW (MHz)	99% Bandwidth (MHz)	Hopping Channel Separation Measurement (MHz)	Hopping Channel Separation Measurement Limit (MHz)	Pass/Fail					
DH	1Mbps	1	0	2402	0.922	0.763	1.007	0.6145	Pass					
DH	1Mbps	1	39	2441	0.852	0.761	0.994	0.5681	Pass					
DH	1Mbps	1	78	2480	0.926	0.773	0.999	0.6173	Pass					
2DH	2Mbps	1	0	2402	1.270	1.149	0.994	0.8463	Pass					
2DH	2Mbps	1	39	2441	1.265	1.145	1.007	0.8435	Pass					
2DH	2Mbps	1	78	2480	1.270	1.151	1.003	0.8463	Pass					
3DH	3Mbps	1	0	2402	1.278	1.153	1.003	0.8521	Pass					
3DH	3Mbps	1	39	2441	1.283	1.151	0.999	0.8551	Pass					
3DH	3Mbps	1	78	2480	1.283	1.159	0.999	0.8551	Pass					

TEST RESULTS DATA Dwell Time Hops Over Occupancy Time(hops) Hopping Channel Number Package Transfer Dwell Time Limits Pass/Fail Mod. (sec) (sec) Rate Time (msec) 106.67 0.31 0.4 Nomal 79 2.89 Pass AFH 2.89 20 53.33 0.15 0.4 Pass

<u>TEST RESULTS DATA</u> Peak Power Table											
DH	CH.	NTX	Peak Power (dBm)	Power Level	Power Limit (dBm)	Test Result					
	0	1	11.00	Default	20.97	Pass					
DH5	39	1	11.30	Default	20.97	Pass					
	78	1	10.70	Default	20.97	Pass					
	0	1	10.40	Default	20.97	Pass					
2DH5	39	1	10.70	Default	20.97	Pass					
	78	1	10.30	Default	20.97	Pass					
	0	1	10.40	Default	20.97	Pass					
3DH5	39	1	10.70	Default	20.97	Pass					
	78	1	10.30	Default	20.97	Pass					

<u>TEST RESULTS DATA</u> <u>Average Power Table</u> (Reporting Only)											
DH	CH.	NTX	Average Power (dBm)	Duty Factor (dB)							
	0	1	10.60	1.13							
DH5	39	1	11.00	1.13							
Ī	78	1	10.20	1.13							
	0	1	7.90	1.15							
2DH5	39	1	8.10	1.15							
Ī	78	1	7.80	1.15							
	0	1	7.90	1.16							
3DH5	39	1	8.10	1.16							
Ī	78	1	7.80	1.16							


	<u>TEST RESULTS DATA</u> Number of Hopping Frequency										
	Number of Hopping (Channel)	Adaptive Frequency Hopping (Channel)	Limits (Channel)	Pass/Fail							
	79	20	> 15	Pass							

Appendix B. AC Conducted Emission Test Results

Tost Engineer	Chase N	lathan				Tem	peratu	re :	22~24°C	
Test Engineer :	Chase N	auion				Rela	ative Hu	imidity :	44~50%	
Test Voltage :	120Vac / 60Hz						se :		Line	
Remark :	All emiss	sions no	ot reporte	ed here a	are mor	e than 10) dB bel	ow the pr	escribed limit.	
100 ^L	Level (dBuV)							Date: 2024	-09-12	
100-										
<mark>90</mark> -										
80-										
70-										
10	~									
60								FCC 150	C_QP	
50		~						FCC 15C	AVG	
	1 When wh			An at the						
40	· · ·	"WAAH	We work		Math	My Mi		ANT MANYAL WARNA		
		Y	L M M I I I		A Survey	12	ut hin Arran Maine	MAY YAYA		
30			5					* 1778		
				1	9	11				
20										
10										
0	0.15	0.5	1	-	2	5	10	20	30	
				-	2 ency (MHz	-	10	20	30	
Site	0.15 : CO01-S on: FCC 15	SZ		Frequ	ency (MHz	-	10	20	30	
Site	: CO01-5 on: FCC 15	SZ SC_QP AC	LISN 10 Over	Frequ 0063_L L Limit	ency (MHz INE Read	LISN	Cable	20	30	
Site	: CO01-5 on: FCC 15	SZ SC_QP AC	LISN 10	Frequ 0063_L L Limit	ency (MHz INE Read)	Cable	20 Remark	30	
Site	: CO01-5 on: FCC 15	SZ SC_QP AC	LISN 10 Over	Frequ 0063_L L Limit Line	ency (MHz INE Read	LISN Factor	Cable] 	
Site	: CO01-S on: FCC 15 Freq MHz	SZ GC_QP AC Level dBuV	LISN 10 Over Limit dB	Frequ 0063_L L Limit Line	Read Level dBuV	LISN Factor 	Cable Loss ——————————————————————————————————		30	
Site Conditio	: CO01-S on: FCC 15 Freq MHz 0.15	SZ GC_QP AC Level dBuV 36.45	LISN 10 Over Limit dB -19.51	Frequ 0063_L L Limit Line 	Read Level dBuV 16.50	LISN Factor dB 9.82	Cable Loss dB 10.13	Remark Average	30	
Site Conditio — 1 2 3	: CO01-5 on: FCC 15 Freq MHz 0.15 0.15 0.55	22 C_QP AC Level dBuV 36.45 50.65 29.69	LISN 10 Over Limit 	Frequ 0063_L L Limit Line dBuV 55.96 65.96 46.00	Read Level dBuV 16.50 30.70 9.80	LISN Factor dB 9.82 9.82 9.73	Cable Loss dB 10.13 10.13 10.16	Remark Average QP Average	30	
Site Conditio 1 2 3 4 *	: C001-5 on: FCC 15 Freq MHz 0.15 0.15 0.55 0.55	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	LISN 10 Over Limit 	Frequ 0063_L L Limit Line dBuV 55.96 65.96 46.00 56.00	Read Level dBuV 16.50 30.70 9.80 21.70	LISN Factor dB 9.82 9.82 9.82 9.73 9.73	Cable Loss dB 10.13 10.13 10.16 10.16	Remark Average QP Average QP	30	
Site Conditio 	: C001-5 on: FCC 15 Freq MHz 0.15 0.15 0.55 0.55 0.66	22 C_QP AC Level dBuV 36.45 50.65 29.69 41.59 26.69	LISN 10 Over Limit dB -19.51 -15.31 -16.31 -14.41 -19.31	Frequ 0063_L L Limit Line dBuV 55.96 65.96 46.00 56.00 46.00	Read Level dBuV 16.50 30.70 9.80 21.70 6.80	LISN Factor dB 9.82 9.82 9.82 9.73 9.73 9.73 9.73	Cable Loss dB 10.13 10.13 10.16 10.16 10.16	Remark Average QP Average QP Average	30	
Site Conditio 1 2 3 4 * 5 6	: C001-5 on: FCC 15 Freq MHz 0.15 0.55 0.55 0.66 0.66	5Z Level dBuV 36.45 50.65 29.69 41.59 26.69 38.19	LISN 10 Over Limit dB -19.51 -15.31 -16.31 -14.41 -19.31 -17.81	Frequ 0063_L L Limit Line dBuV 55.96 65.96 46.00 56.00 46.00 56.00	Read Level dBuV 16.50 30.70 9.80 21.70 6.80 18.30	LISN Factor dB 9.82 9.82 9.73 9.73 9.73 9.73 9.73	Cable Loss dB 10.13 10.13 10.16 10.16 10.16 10.16	Remark Average QP Average QP Average QP	30	
Site Conditio 1 2 3 4 * 5 6 7	: C001-5 on: FCC 15 Freq MHz 0.15 0.15 0.55 0.55 0.66 0.66 1.51	5Z C_QP AC Level dBuV 36.45 50.65 29.69 41.59 26.69 38.19 24.34	LISN 10 Over Limit dB -19.51 -15.31 -16.31 -14.41 -19.31 -17.81 -21.66	Frequ 0063_L L Limit Line dBuV 55.96 65.96 46.00 56.00 46.00 56.00 46.00	Read Level dBuV 16.50 30.70 9.80 21.70 6.80 18.30 4.40	LISN Factor dB 9.82 9.73 9.73 9.73 9.73 9.73 9.73 9.74	Cable Loss dB 10.13 10.13 10.16 10.16 10.16 10.16 10.20	Remark Average QP Average QP Average QP Average		
Site Conditio 1 2 3 4 * 5 6 7 8	: C001-5 on: FCC 15 Freq MHz 0.15 0.55 0.55 0.66 0.66 1.51 1.51	5Z GC_QP AC Level dBuV 36.45 50.65 29.69 41.59 26.69 38.19 24.34 34.64	LISN 10 Over Limit dB -19.51 -15.31 -16.31 -14.41 -19.31 -17.81 -21.66 -21.36	Frequ 0063_L L Limit Line dBuV 55.96 65.96 46.00 56.00 46.00 56.00 46.00 56.00	Read Level dBuV 16.50 30.70 9.80 21.70 6.80 18.30 4.40 14.70	LISN Factor dB 9.82 9.73 9.73 9.73 9.73 9.73 9.73 9.74 9.74	Cable Loss dB 10.13 10.13 10.16 10.16 10.16 10.16 10.20 10.20	Remark Average QP Average QP Average QP Average QP		
Site Conditio 1 2 3 4 * 5 6 7	: C001-S on: FCC 15 Freq MHz 0.15 0.55 0.55 0.55 0.66 0.66 1.51 1.51 2.92	22 25 26 29 20 20 20 20 20 20 20 20 20 20	LISN 10 Over Limit dB -19.51 -15.31 -14.41 -19.31 -17.81 -21.66 -21.36 -23.36	Frequ 0063_L L Limit Line dBuV 55.96 65.96 46.00 56.00 46.00 56.00 46.00	Read Level dBuV 16.50 30.70 9.80 21.70 6.80 18.30 4.40 14.70 2.60	LISN Factor dB 9.82 9.82 9.73 9.73 9.73 9.73 9.73 9.73 9.74 9.74 9.74	Cable Loss dB 10.13 10.13 10.16 10.16 10.16 10.16 10.20 10.20 10.28	Remark Average QP Average QP Average QP Average QP Average		
Site Conditio 1 2 3 4 * 5 6 7 8 9	: C001-5 on: FCC 15 Freq MHz 0.15 0.55 0.55 0.66 0.66 1.51 1.51 2.92 2.92	5Z Level dBuV 36.45 50.65 29.69 41.59 26.69 38.19 24.34 34.64 22.64 35.24	LISN 10 Over Limit dB -19.51 -15.31 -16.31 -14.41 -19.31 -17.81 -21.66 -21.36 -23.36 -20.76	Frequ 0063_L L Limit Line dBuV 55.96 65.96 46.00 56.00 46.00 56.00 46.00 56.00 46.00	Read Level dBuV 16.50 30.70 9.80 21.70 6.80 18.30 4.40 14.70 2.60	LISN Factor dB 9.82 9.82 9.73 9.73 9.73 9.73 9.73 9.73 9.74 9.74 9.76 9.76	Cable Loss dB 10.13 10.13 10.16 10.16 10.16 10.20 10.20 10.28 10.28 10.32	Remark Average QP Average QP Average QP Average QP Average		

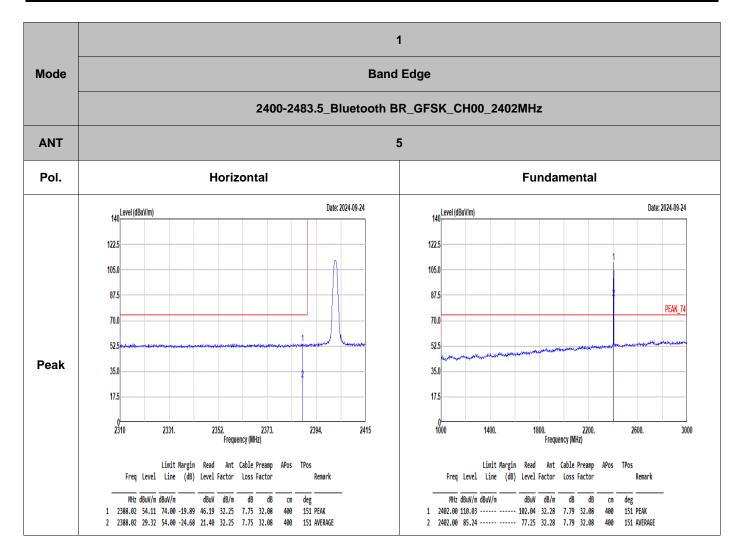
Note:

1. Level(dBµV) = Read Level(dBµV) + LISN Factor(dB) + Cable Loss(dB)

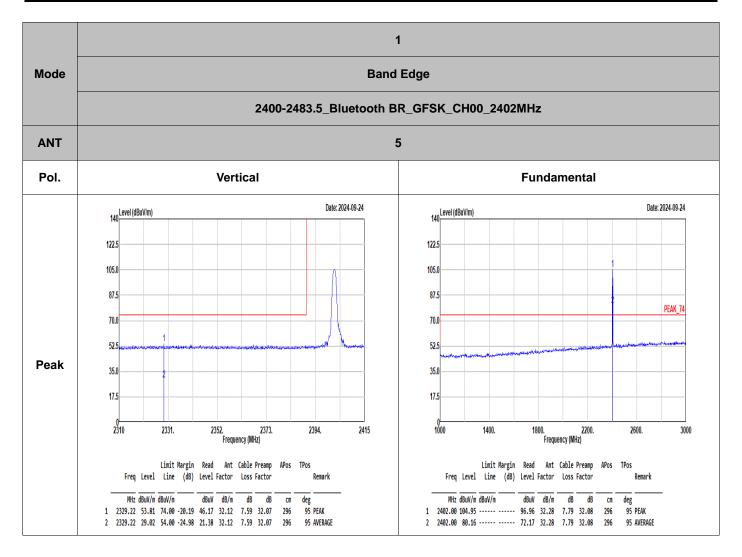
2. Over Limit(dB) = Level(dBµV) – Limit Line(dBµV)

Appendix C Radiated Spurious Emission Test Data

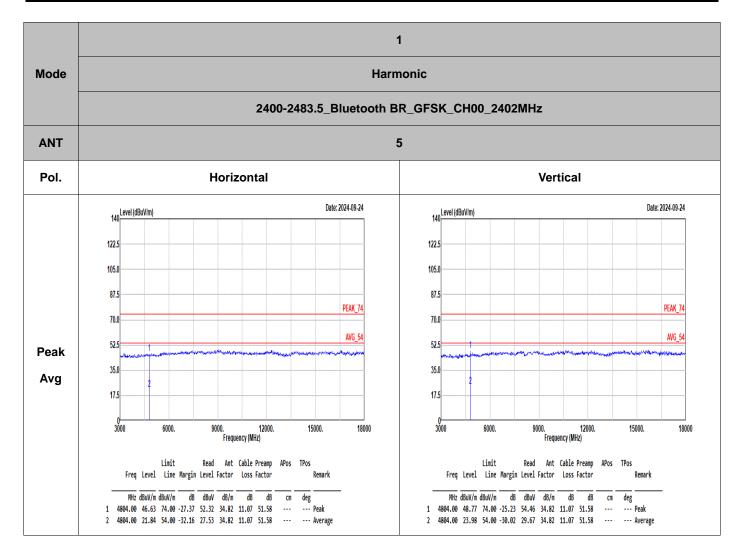
Test Engineer	lie Kusen	Relative Humidity :	48~49%
Test Engineer :	Jia Kuang	Temperature :	24-25℃

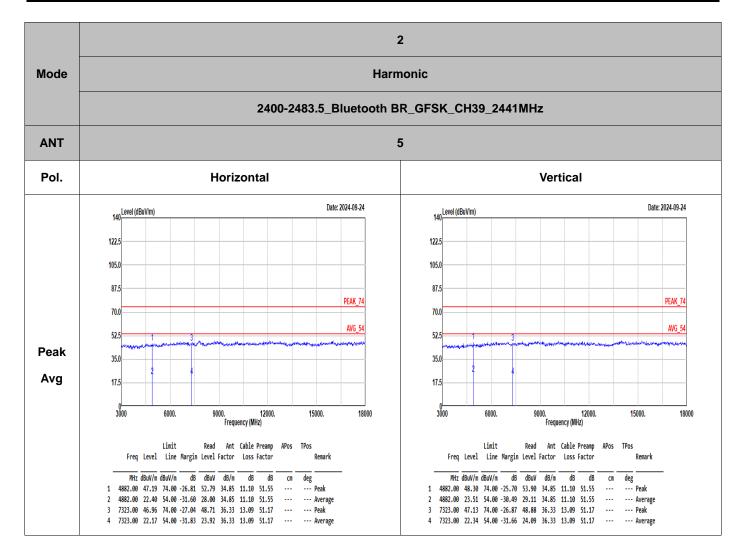

Radiated Spurious Emission Test Modes

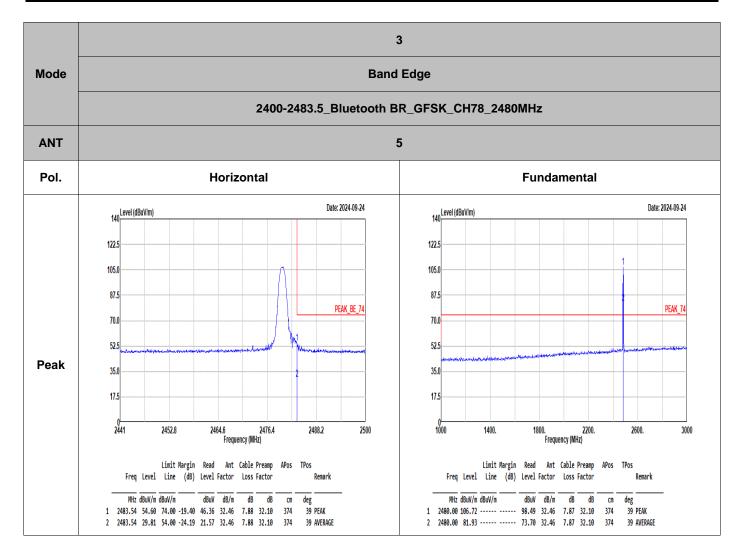
Mode	Band (MHz)	Antenna	Modulation	Channel	Frequency	Data Rate	RU	Remark
Mode 1	2400-2483.5	5	Bluetooth BR_GFSK	00	2402	1DH5	-	-
Mode 2	2400-2483.5	5	Bluetooth BR_GFSK	39	2441	1DH5	-	-
Mode 3	2400-2483.5	5	Bluetooth BR_GFSK	78	2480	1DH5	-	-
Mode 4	2400-2483.5	5	Bluetooth BR_GFSK	78	2480	1DH5	-	LF

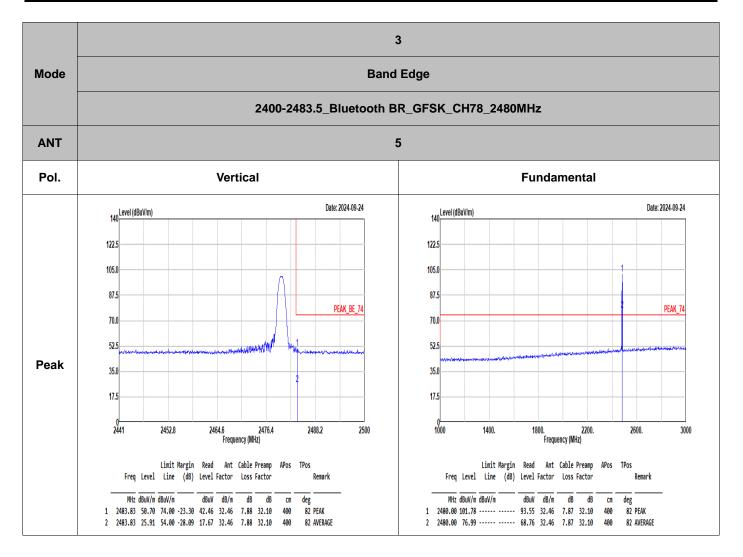

Summary of each worse mode

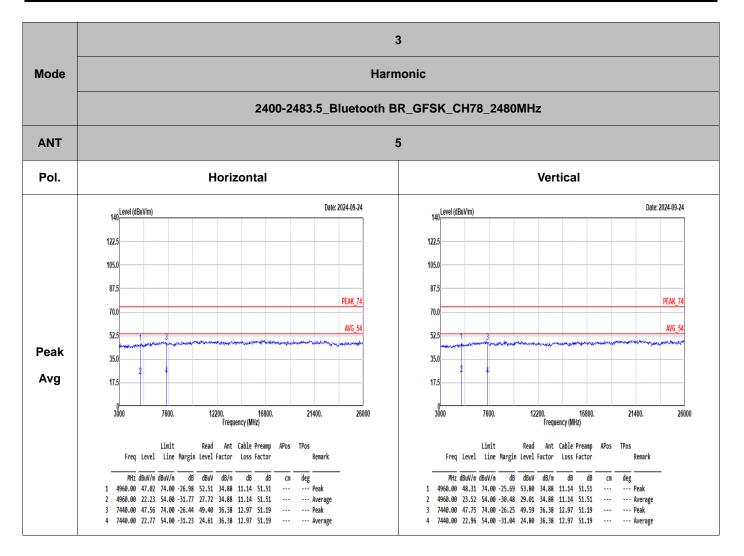
Mode	Modulation	Ch.	Freq. (MHz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pol.	Peak Avg.	Result	Remark
1	Bluetooth BR_GFSK	00	2388.02	54.11	74.00	-19.89	н	PEAK	Pass	Band Edge
1	Bluetooth BR_GFSK	00	4804.00	48.77	74.00	-25.23	V	Peak	Pass	Harmonic
2	Bluetooth BR_GFSK	39	-	-	-	-	-	-	-	Band Edge
2	Bluetooth BR_GFSK	39	4882.00	48.30	74.00	-25.70	V	Peak	Pass	Harmonic
3	Bluetooth BR_GFSK	78	2483.54	54.60	74.00	-19.40	Н	PEAK	Pass	Band Edge
3	Bluetooth BR_GFSK	78	4960.00	48.31	74.00	-25.69	V	Peak	Pass	Harmonic
4	Bluetooth BR_GFSK	78	30.00	28.60	40.00	-11.40	V	Peak	Pass	LF

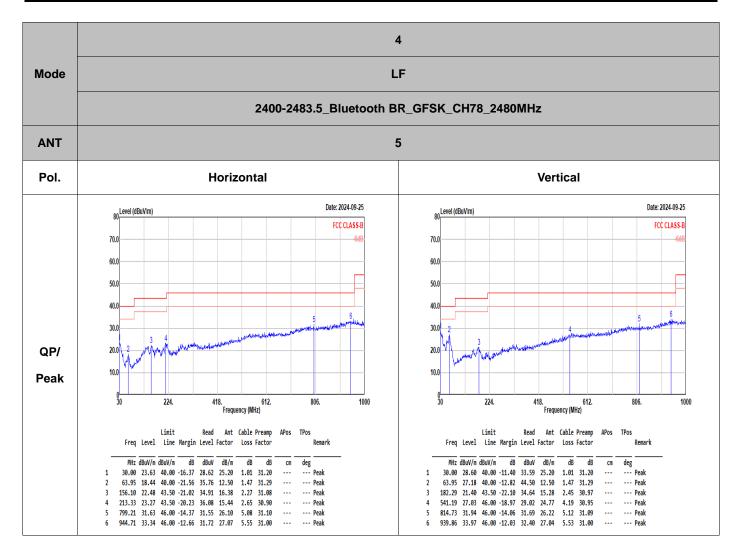


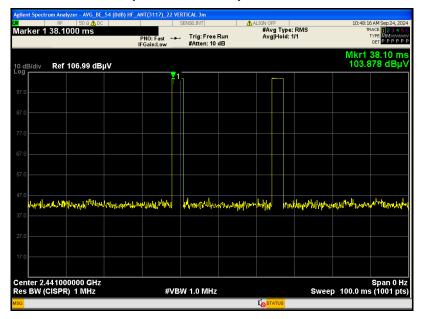












Appendix D. Duty Cycle Plots

Applied Sysettrum Analyser. - WG, BE, 54 (0.40); HE_ANT(3117), 22 VERTICAL 3m Cell Store 500 & DC Store 500 & DC Store 500 & DC Analysis of the store 40, 2024 Ref Offset 6.00 dB PHO: Fast the store 40, 2024 Trig: Free Run Analysis of the store 40, 2024 Mkrd 42, 610 ms tore 40, 2024 Ref Offset 6 dB Mkrd 42, 610 ms tore 40, 2024 Mkrd 42, 610 ms tore 40, 2024 Mkrd 42, 610 ms tore 40, 2024 Ref Offset 6 dB Mkrd 42, 610 ms tore 40, 2024 Mkrd 42, 610 ms tore 40, 2024 Mkrd 42, 610 ms tore 40, 2024 100 dB/d/w Ref 112.99 dB_UV 44 O1402 Store 40, 2024 Mkrd 42, 610 ms tore 40, 2024 100 dB/d/w Ref 112.99 dB_UV 44 O1402 Store 40, 2024 Mkrd 42, 610 ms tore 40, 2024 100 dB/d/w Ref 112.99 dB_UV 44 O1402 Store 40, 2024 Mkrd 42, 610 ms tore 40, 2024 100 dB/d/w Ref 112.99 dB_UV 44 O1402 Store 40, 2024 Mkrd 42, 610 ms tore 40, 2024 100 dB/d/w Ref 112.99 dB_UV 44 O1402 Store 40, 2024 Mkrd 42, 610 ms tore 40, 2024 100 dB/d/w Ref 112.99 dB_UV 44 Mkrd 42, 610 ms tore 40, 2024 Mkrd 42, 610 ms tore 40, 2024 Mkrd 42, 2010 ms tore 40, 2024

DH5 on time (One Pulse) Plot on Channel 39

DH5 on time (Count Pulses) Plot on Channel 39

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = $2 \times 2.88 / 100 = 5.76 \%$
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.79 dB
- 3. DH5 has the highest duty cycle worst case and is reported.