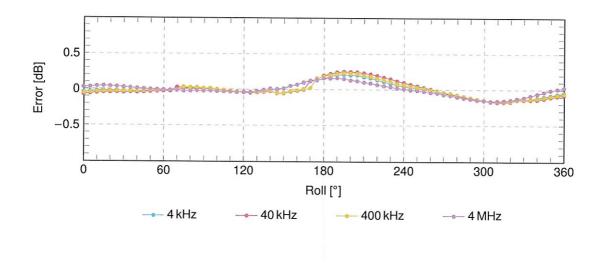
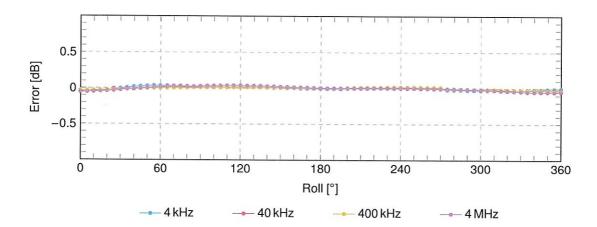

Isotropy E-Field


E-Field Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$


E-Field Receiving Pattern (ϕ), $\theta = 90^{\circ}$

E-Field Receiving Pattern (ϕ), $\vartheta = \mathbf{0}^{\circ}$

E-Field Receiving Pattern (ϕ), $\theta = 90^{\circ}$

SPEAG axial deviation from the ideal response tolerance for E-field: $\pm 0.8 \, \text{dB}$

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

Sporton, Taoyuan

Certificate No:V-Coil350/85-1023_May23

CALIBRATION	N CERTIFICAT	TE								
Object	V-Coil350/85 -	SN: 1023								
Calibration procedure(s)	QA CAL-47.v1 Calibration Procedure for MAGPy Validation Source									
Calibration date:	May 16, 2023									
The measurements and the i	uncertainties with confidence	national standards, which realize the physical e probability are given on the following pages	and are part of the certificate.							
Calibration Equipment used (atory facility: environment temperature (22 ± 3	3)°C and humidity < 70%.							
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration							
MAGPy-H3D/DAS	SN: 1017/1017	20-Jun-21 (MAGPy-H3D-1017)	Jun-23							
Secondary Standards	ID#	Check Date (in house)	Scheduled Check							
Calibrated by	Name	Function	Signature							
Calibrated by:	Jingtian Xi	Project leader	Trytian							
Approved by:	Niels Kuster	Quality Manager								
This calibration certificate sha	all not be reproduced except	in full without written approval of the laborate	Issued: May 16, 2023							

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Glossary:

V-Coil350/85 system check and validation source

Calibration is Performed According to the Following Standards:

Internal procedure QA CAL-47-Calibration procedure for sources from 3 kHz to 10 MHz

Additional Documentation:

a) DASY8 Module WPT Manual

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: The verification sources are switched on for at least 10 minutes. The current in time domain is measured prior and after the measurement with the oscilloscope to verify that harmonics can be neglected. Then the current is measured with the voltmeter and an FFT analysis of the time domain signal is performed to derive the amplitude of the fundamental current component (see the Appendix for the conversion).
- Source Positioning: The Validation Source is placed in the center of the platform such that the device surface is parallel to phantom surface. Initial probe location is the center of the coil and the distance of the probe tip to the surface of <0.1mm is verified using mechanical gauge.
- H-field distribution: H field is measured in the volume above the Validation Source in a rectilinear grid of 7mm x 7mm x 7mm.
- H-field at 2mm and Induced Values at 2mm: The H-field and the induced field and current quantities at the surface inside the infinite the virtual half space phantom ($\epsilon_r = 8.50 \times 10^3$, $\sigma = 0.355$ S/m) at the distance of 2mm from the surface are reconstructed quantities.

Calibrated Quantity

The calibration quantities are induced peak E-field (2mm cube average), induced peak E-field (5mm line average), induced peak current density (1cm² area average), induced peak spatial SAR (1g and 10g averaged) at 2mm (+/-0.1) from the surface or 4.7 mm from the physical coil (PCB thickness = 1.7 mm, surface film thickness = 1.0 mm).

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

Object model	V-Coil350/85	1023
- Joot model	Frequency	85 kHz
	MAGPy-H3D	1017
Probe model	MAGPy-DAS	1017
	MAGPy FPGA Board	WP000029
	cDASY6 Module WPT	
Software version	Notebook GUI	1.2.5
	Sim4Life	6.2.0.4280
Scan setup	Туре	Dynamic
	Grid size	85 kHz 1017 1017 WP000029 1.2.0.8 1.2.5 6.2.0.4280

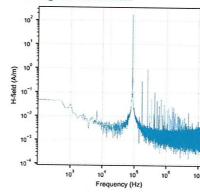
Calibrated Parameters: 85 kHz

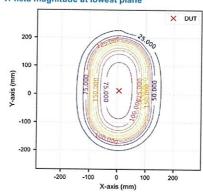
Distance of the Virtual	al H- U		Unc. peak current		peak E- V/m)	peak sp (m\	Unc.	
Phantom from the Surface		(dB)	area avg. (A/m²)	2mm cube avg.	5mm line avg.	1g avg.	10g avg.	(k=2) (dB)
2.00 mm	183	1.23	1.08	3.24	3.27	2.90	2.11	1.59

Appendix (Additional assessments outside the scope of SCS 0108)

Total current measurement

	U (V)	I (A, = 2×U)
Total current (RMS)	0.3977	0.7954


Current spectrum measurement


Frequency (kHz)			U (V) (R = 50 Ω)	I (A)	I _{normalized} (A)	
85	4.98	3.15E-03	0.3967	0.7934	0.7878	
170	-41.93	6.41E-08	0.0018	0.0036	0.0036	
255	-40.87	8.18E-08	0.0020	0.0040	0.0040	

Measurement report

cDASY6 Module WPT Measurement Report

	•	
Device under test	Hardware setup	Scan setup
Model / Manufacturer: V-Coil350/85 & SPEAG	DASY version: cDASY6 Module WPT, 1.2.0.8	Type: Dynamic
Serial number: 1023	Notebook version: 1.2.5	Resolution: X: 7.00 mm, Y: 7.00 mm, Z: 7.00 mm
Dimensions: 350 mm	Probe model / serial number: Single Probe with reference / WP000029	Dimensions: X: 462.00 mm, Y: 567.00 mm, Z: 21.00 mm
Measurement scenario: Source calibration		Completed on: 2023/05/16 09:20:17
Measurement results	H-field magnitude at maximum	H-field magnitude at lowest plane
Maximum H-field: 129.25 A/m (rms)	102	X

Induced quantities in the anatomical model (f = 85.00 kHz, $\sigma = 0.355 \text{ S/m}$, reconstruction error = 81.4%)

Spacing (mm)	Peak Hinc (A/m, rms)	Peak Eind (V/m, rms) Cube avg. Line avg.		Peak Jind (A/m^2, rms)	psSAR (mW/kg)		
		Couc org.	Cine avg.	Surface avg.	1g avg.	10g avg.	-20 dB radius (mm)
2.00 *	183	3.24	3.27	1.08	2.90	2.11	183

Standard compliance evaluation

Location of maximum relative to DUT:

175.34 A/m, 166.32 A/m, 131.86 A/m

Distance to -20.0 dB boundary:

Maximum H-field (x, y, z):

Peak frequency: 85.03 kHz (median)

66.04 mm

X: 84.00 mm, Y: -98.00 mm, Z: 9.00 mm

ICNIRP 2020 (dB)		ICNIRP 199	98 (dB)		IEEE 2019	IEEE 2019 (dB)			FCC 2020 (dB)			HC Code 6 (dB)			
Spacing (mm)	Peak Hinc (RL)	Peak Eind (BR)	psSAR (BR)	Peak Hinc (RL)	Peak Jind (BR)	psSAR (BR)	Peak Hinc (RL)	Peak Eind (BR)	psSAR (BR)	Peak Hinc (RL)	Peak Eind (BR)	psSAR (BR)	Peak Hinc (RL)	Peak Eind (BR)	psSAR (BR)
2.00 *	10.9	-35.6	-48.4	32.6	16.1	-48.4	1.04	-14.7	-48.4	17.7	-10.9	-46.1	27.4	-10.9	-46.1

$\textbf{Standard compliance evaluation (coverage factor-adjusted)} \qquad \textit{(Coefficients: $w_{E_0} = 3.0$, $w_{E_j} = 2.0$, $w_{J} = 1.0$, $w_{SARTQj} = 1.0$. $w_{SARTQj} = 1.0$.} \\ \textit{(Standard compliance evaluation (coverage factor-adjusted) } \qquad \textit{(Coefficients: $w_{E_0} = 3.0$, $w_{E_j} = 2.0$, $w_{J} = 1.0$, $w_{SARTQj} = 1.0$.} \\ \textit{(Coefficients: $w_{E_0} = 3.0$, $w_{E_j} = 2.0$, $w_{J} = 1.0$, $w_{SARTQj} = 1.0$.} \\ \textit{(Coefficients: $w_{E_0} = 3.0$, $w_{E_j} = 2.0$, w_{E_j}

Spacing (mm)			The second secon			IEEE 2019 (dB)			HC Code 6 (dB)	
	reak Eind (BR)	psSAR (BR)	Peak Jind (BR)	psSAR (BR)	Peak Eind (BR)	psSAR (BR)	Peak Eind (BR)	psSAR (BR)	Peak Eind (BR)	psSAR (BR)
2.00 *	-14.8	-42.8	27.4	-42.8	2.63	-42.8	9.87	-40.4	9.87	-40.4

Document generated at 2023/05/16 13:11:20, Sim4Life version: 6.2.0.4280