

FCC RF Test Report

APPLICANT	: Motorola Mobility LLC
EQUIPMENT	: Mobile Cellular Phone
BRAND NAME	: Motorola
MODEL NAME	: XT2419-1, XT2419-2, XT2419-3, XT2419V
FCC ID	: IHDT56AQ4
STANDARD	: FCC Part 15 Subpart C §15.247
CLASSIFICATION	: (DSS) Spread Spectrum Transmitter
TEST DATE(S)	: Dec. 19, 2023 ~ Jan. 13, 2024

We, Sporton International Inc. (Shenzhen), would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (Shenzhen), the test report shall not be reproduced except in full.

JasonJia

Approved by: Jason Jia

Sporton International Inc. (ShenZhen) 1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055 People's Republic of China

TABLE OF CONTENTS

		N HISTORY	
SU	MMAR	Y OF TEST RESULT	4
1	GENE	ERAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Manufacturer	5
	1.3	Product Feature of Equipment Under Test	5
	1.4	Product Specification of Equipment Under Test	5
	1.5	Modification of EUT	6
	1.6	Testing Location	6
	1.7	Test Software	6
	1.8	Applicable Standards	
	1.9	Specification of Accessory	7
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	
	2.1	Carrier Frequency Channel	8
	2.2	Test Mode	9
	2.3	Connection Diagram of Test System	10
	2.4	Support Unit used in test configuration and system	11
	2.5	EUT Operation Test Setup	
	2.6	Measurement Results Explanation Example	11
3	TEST	RESULT	12
	3.1	Number of Channel Measurement	12
	3.2	Hopping Channel Separation Measurement	
	3.3	Dwell Time Measurement	20
	3.4	20dB and 99% Bandwidth Measurement	
	3.5	Output Power Measurement	
	3.6	Conducted Band Edges Measurement	
	3.7	Conducted Spurious Emission Measurement	
	3.8	Radiated Band Edges and Spurious Emission Measurement	
	3.9	AC Conducted Emission Measurement	
	3.10	Antenna Requirements	
		OF MEASURING EQUIPMENT	
		SUREMENT UNCERTAINTY	59
		X A. CONDUCTED TEST RESULTS	
		X B. AC CONDUCTED EMISSION TEST RESULT	
		X C. RADIATED SPURIOUS EMISSION	
		X D. DUTY CYCLE PLOTS	
AP	PEND	X E. SETUP PHOTOGRAPHS	

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR3D0836A	Rev. 01	Initial issue of report	Feb. 07, 2024

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(1)	Number of Channels	≥ 15Chs	Pass	-
3.2	15.247(a)(1)	Hopping Channel Separation	≥ 2/3 of 20dB BW	Pass	-
3.3	15.247(a)(1)	Dwell Time of Each Channel	≤ 0.4sec in 31.6sec period	Pass	-
3.4	15.247(a)(1)	20dB Bandwidth	-	Report only	-
3.4	-	99% Bandwidth	-	Report only	-
3.5	15.247(b)(1)	Peak Output Power	≤ 125 mW	Pass	-
3.6	15.247(d)	Conducted Band Edges	≤ 20dBc	Pass	-
3.7	15.247(d)	Conducted Spurious Emission	≤ 20dBc	Pass	-
3.8	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 12.92 dB at 945.68 MHz
3.9	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 6.33 dB at 0.55 MHz
3.10	15.203 & 15.247(b)	Antenna Requirement	15.203 & 15.247(b)	Pass	-

Conformity Assessment Condition:

 The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.

2. The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty"

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

1 General Description

1.1 Applicant

Motorola Mobility LLC

222 W,Merchandise Mart Plaza, Chicago IL 60654 USA

1.2 Manufacturer

Motorola Mobility LLC

222 W, Merchandise Mart Plaza, Chicago IL 60654 USA

1.3 Product Feature of Equipment Under Test

Product Feature				
Equipment	Mobile Cellular Phone			
Brand Name	Motorola			
Model Name	XT2419-1, XT2419-2, XT2419-3, XT2419V			
FCC ID IHDT56AQ4				
IMEI Code Conducted: 355199400022597/355199400022605 Conduction: 355199400027893/355199400027901 Radiation: 355199400020476/355199400020484				
HW Version	DVT2			
SW Version	U2UB34.18			
EUT Stage	Identical Prototype			

Remark:

- **1.** The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.
- 2. The four model names are only for market segment, no other difference.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification			
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz		
Number of Channels	79		
Carrier Frequency of Each Channel	2402+n*1 MHz; n=0~78		
Maximum Output Power to Antenna	Bluetooth BR(1Mbps) : 13.70 dBm (0.0234 W) Bluetooth EDR (2Mbps) : 12.00 dBm (0.0158 W) Bluetooth EDR (3Mbps) : 12.20 dBm (0.0166 W)		
99% Occupied Bandwidth	Bluetooth BR(1Mbps) : 0.853 MHz Bluetooth EDR (2Mbps) : 1.177 MHz Bluetooth EDR (3Mbps) : 1.187 MHz		
Antenna Type / Gain	PIFA Antenna type with gain -5.5 dBi		
Type of Modulation	Bluetooth BR (1Mbps) : GFSK Bluetooth EDR (2Mbps) :π/4-DQPSK Bluetooth EDR (3Mbps) : 8-DPSK		

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Sporton International Inc. (Shenzhen) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.01.

Test Firm	Sporton International Inc. (Shenzhen)					
Test Site Location	1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055 People's Republic of China TEL: +86-755-86379589 FAX: +86-755-86379595					
Test Site No.	Sporton Site No.	FCC Designation No.	FCC Test Firm Registration No.			
	CO01-SZ TH01-SZ	CN1256	421272			
To a f Elma	Sporton International Inc. (Shenzhen)					
Test Firm	Sporton International Inc.	(Shenzhen)				
Test Site Location	101, 1st Floor, Block B, B	Building 1, No. 2, Tengfeng 4 et, Baoan District, Shenzhe				
	101, 1st Floor, Block B, B Community, Fuyong Stre Province 518103 People' TEL: +86-755-86066985	Building 1, No. 2, Tengfeng 4 et, Baoan District, Shenzhe s Republic of China				
	101, 1st Floor, Block B, B Community, Fuyong Stree Province 518103 People'	Building 1, No. 2, Tengfeng 4 et, Baoan District, Shenzhe	n City, Guangdong			

1.7 Test Software

ltem	Site	Manufacturer	Name	Version
1.	03CH04-SZ	AUDIX	E3	6.2009-8-24
2.	CO01-SZ	AUDIX	E3	6.120613b

1.8 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart C §15.247
- FCC KDB 558074 D01 15.247 Meas Guidance v05r02
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

1.9 Specification of Accessory

Specification of Accessory						
Battery 1 Brand Name Motorola(ATL) Model Name QS50						
Battery 2	Brand Name	Motorola(Jiade)	Model Name	QS50		
USB Cable 1	Brand Name	Motorola(Saibao)	Model Name	SC18D86732		
USB Cable 1	Brand Name	Motorola(Cabletech)	Model Name	SC18E05246		

2 Test Configuration of Equipment Under Test

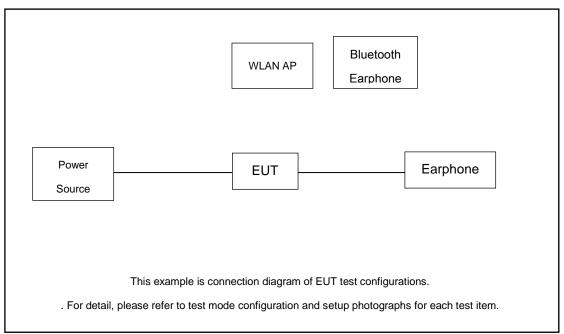
2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

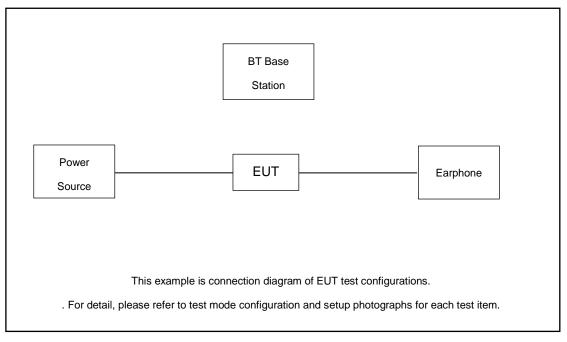
2.2 Test Mode

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (X plane) were recorded in this report, and the worst mode of radiated spurious emissions is Bluetooth 1Mbps mode, and recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

The following summary table is showing all test modes to demonstrate in compliance with the standard.						
Summary table of Test Cases						
		Data Rate / Modulation				
Test Item	Bluetooth BR 1Mbps	Bluetooth EDR 2Mbps	Bluetooth EDR 3Mbps			
	GFSK	π/4-DQPSK	8-DPSK			
Conducted	Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz	Mode 7: CH00_2402 MHz			
	Mode 2: CH39_2441 MHz	Mode 5: CH39_2441 MHz	Mode 8: CH39_2441 MHz			
Test Cases	Mode 3: CH78_2480 MHz	Mode 6: CH78_2480 MHz	Mode 9: CH78_2480 MHz			
		Bluetooth BR 1Mbps GFSK				
Radiated	Mode 1: CH00_2402 MHz					
Test Cases	Mode 2: CH39_2441 MHz					
	Mode 3: CH78_2480 MHz					
AC						
Conducted		Bluetooth Link + Adapter + I	JSB Cable 1 + Battery 1 +			
Emission	Earphone					
Remark:						
1. For radiate	1. For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate					
has the hig	hest RF output power at prelir	minary tests, and no other sign	ificantly frequencies found in			
conducted spurious emission.						


The following summary table is showing all test modes to demonstrate in compliance with the standard.

2. For Radiated Test Cases, The tests were performed with Adapter , Earphone and USB Cable .



2.3 Connection Diagram of Test System

AC Conducted Emission:

Radiated Emission:

ltem	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Base Station(LTE)	Anritsu	MT8820C	N/A	N/A	Unshielded,1.8m
2.	Earphone	apple	DCAY1V-A900FZJW3-000	N/A	N/A	N/A
3.	WLAN AP	Dlink	DIR-820L	KA2IR820LA1	N/A	Unshielded,1.8m
4.	Bluetooth Earphone	Nokia	BH-102	PYAHS-107W	N/A	N/A
5.	Adapter	Moto	MC-681L	N/A	N/A	N/A

2.4 Support Unit used in test configuration and system

2.5 EUT Operation Test Setup

For Bluetooth function, the engineering test program was provided and enabled to make EUT connect with Bluetooth base station to continuous transmit.

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 1.50 dB and 10dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

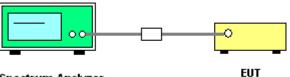
= 1.50 + 10 = 11.50 (dB)

3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

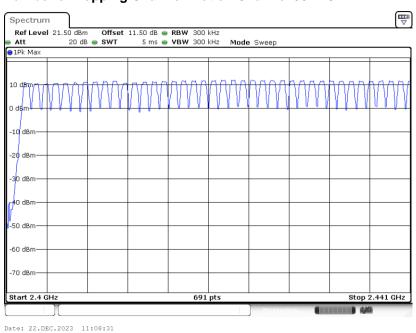

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

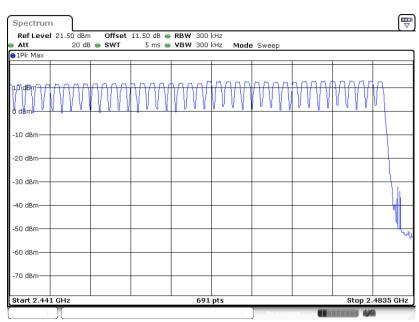
3.1.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

3.1.4 Test Setup



Spectrum Analyzer


3.1.5 Test Result of Number of Hopping Frequency

Please refer to Appendix A.

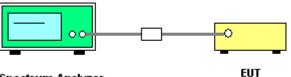
Number of Hopping Channel Plot on Channel 00 - 78

Date: 22.DEC.2023 11:08:52

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.


3.2.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

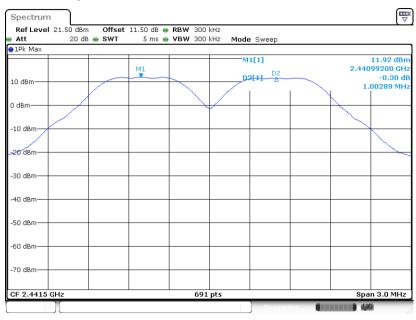
- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.2.4 Test Setup

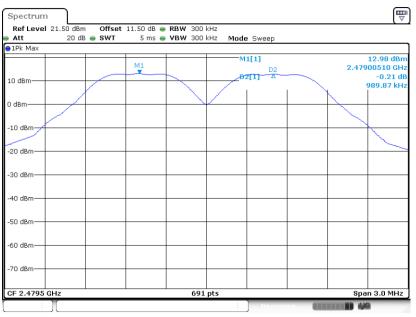
Spectrum Analyzer


3.2.5 Test Result of Hopping Channel Separation

Please refer to Appendix A.


<1Mbps>

Channel Separation Plot on Channel 00 - 01

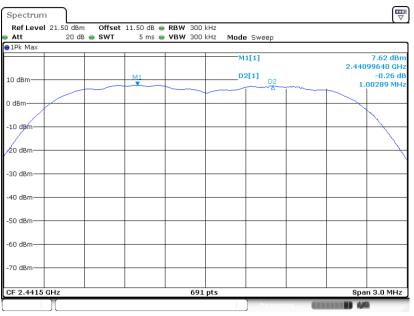

Date: 22.DEC.2023 10:59:06

Channel Separation Plot on Channel 39 - 40

Date: 22.DEC.2023 11:00:21

Channel Separation Plot on Channel 77 - 78

Date: 22.DEC.2023 11:06:20


<2Mbps>

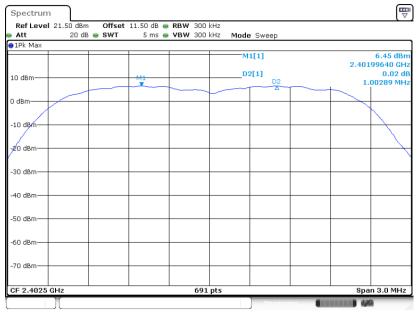
Channel Separation Plot on Channel 00 - 01

Date: 22.DEC.2023 11:13:07

Channel Separation Plot on Channel 39 - 40

Date: 22.DEC.2023 11:17:27

Channel Separation Plot on Channel 77 - 78



Date: 22.DEC.2023 11:21:13

<3Mbps>

Channel Separation Plot on Channel 00 - 01


Date: 22.DEC.2023 11:29:59

Channel Separation Plot on Channel 39 - 40

Date: 22.DEC.2023 11:36:42

Channel Separation Plot on Channel 77 - 78

Date: 22.DEC.2023 11:44:00

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

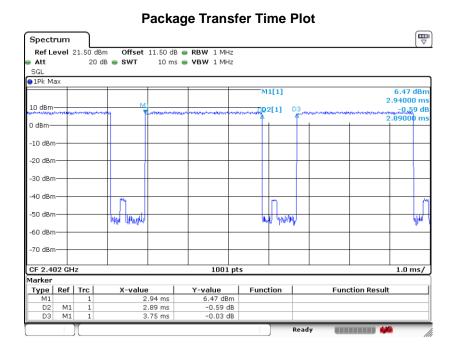

3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup



Spectrum Analyzer

3.3.5 Test Result of Dwell Time

Please refer to Appendix A.

Remark:

 In normal mode, hopping rate is 1600 hops/s with 6 slots (5 Transmit and 1 Receive slot) in 79 hopping channels.

With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.

- In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels.
 With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s),
 Hops Over Occupancy Time comes to (800 / 6 / 20) x (0.4 x 20) = 53.33 hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

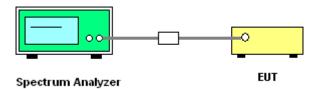
3.4 20dB and 99% Bandwidth Measurement

3.4.1 Limit of 20dB and 99% Bandwidth

Reporting only

3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

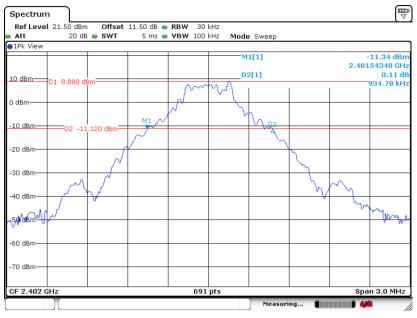

3.4.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Use the following spectrum analyzer settings for 20dB Bandwidth measurement.
 Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; The RBW is set to 1% to 5% of the 99% OBW, the VBW is set to 3 times the RBW;
 Sweep = auto; Detector function = peak; Trace = max hold.
- 5. Use the following spectrum analyzer settings for 99 % Bandwidth measurement.
 Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel; The RBW is set to 1% to 5% of the 99% OBW, the VBW is set to 3 times the RBW; Sweep = auto; Detector function = peak;

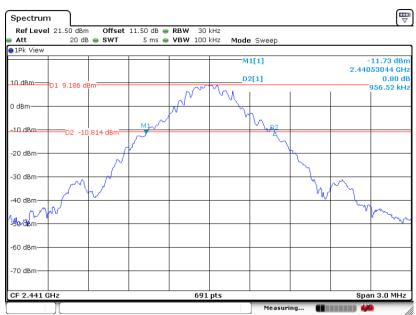
Trace = max hold.

6. Measure and record the results in the test report.

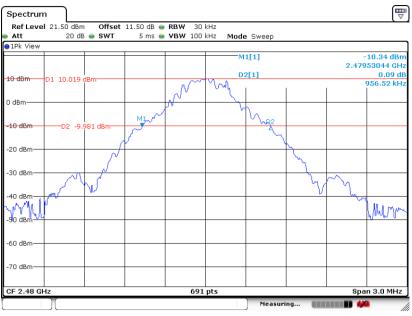
3.4.4 Test Setup


3.4.5 Test Result of 20dB Bandwidth

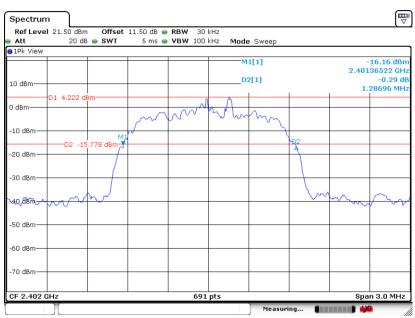
Please refer to Appendix A.


<1Mbps>

20 dB Bandwidth Plot on Channel 00

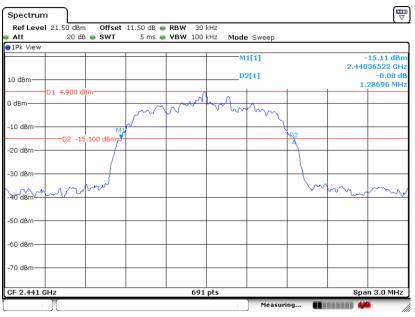

Date: 22.DEC.2023 10:56:36

Date: 22.DEC.2023 11:01:27



20 dB Bandwidth Plot on Channel 78

Date: 22.DEC.2023 11:03:39


<2Mbps>

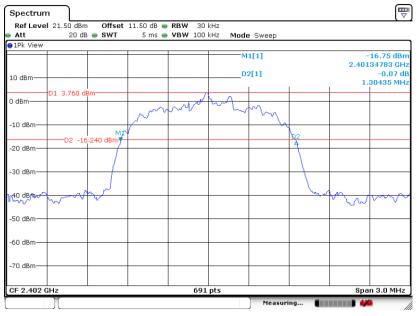
20 dB Bandwidth Plot on Channel 00

Date: 22.DEC.2023 11:10:56

20 dB Bandwidth Plot on Channel 39

Date: 22.DEC.2023 11:13:53

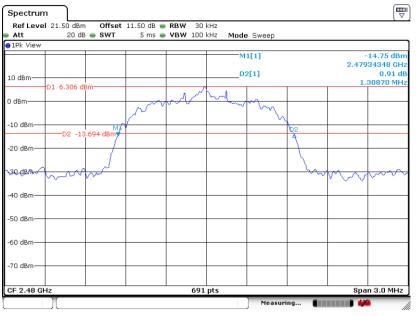
20 dB Bandwidth Plot on Channel 78



Date: 22.DEC.2023 11:18:51

<3Mbps>

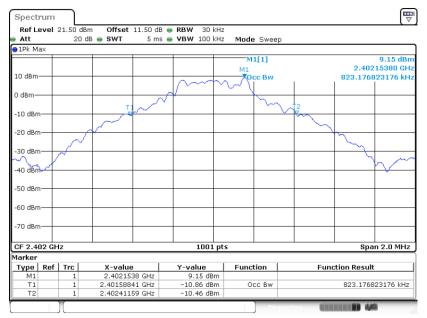
20 dB Bandwidth Plot on Channel 00


Date: 22.DEC.2023 11:27:01

Date: 22.DEC.2023 11:30:53

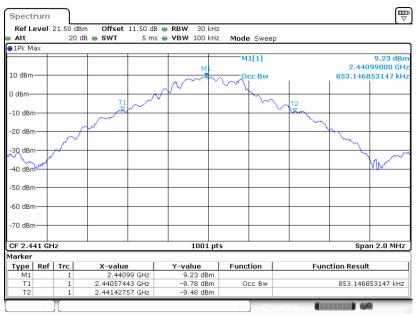
20 dB Bandwidth Plot on Channel 78

Date: 22.DEC.2023 11:38:01



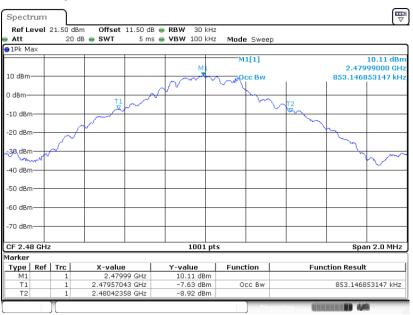
3.4.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.


<1Mbps>

99% Occupied Bandwidth Plot on Channel 00

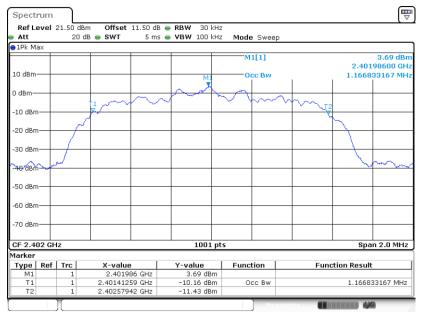
Date: 22.DEC.2023 10:56:18



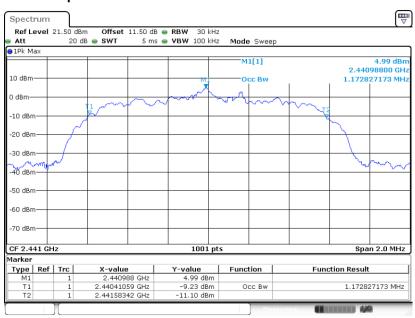
99% Occupied Bandwidth Plot on Channel 39

Date: 22.DEC.2023 10:59:26

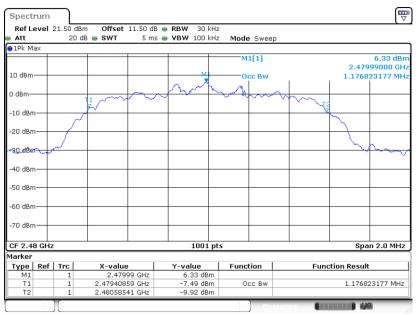
99% Occupied Bandwidth Plot on Channel 78



Date: 22.DEC.2023 11:02:58

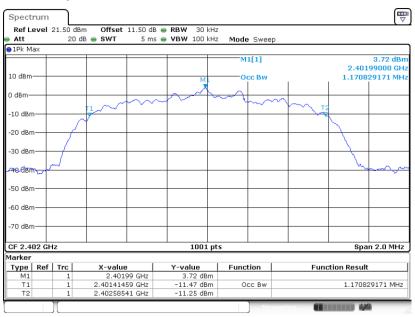

<2Mbps>

99% Occupied Bandwidth Plot on Channel 00


Date: 22.DEC.2023 11:09:42

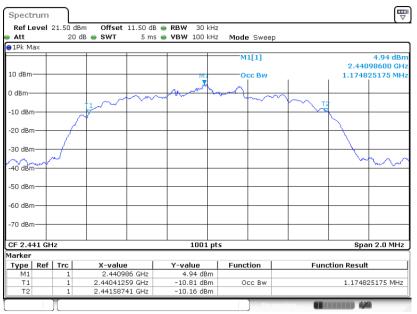
99% Occupied Bandwidth Plot on Channel 39

Date: 22.DEC.2023 11:13:39



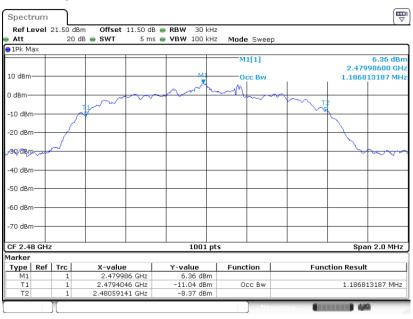
99% Occupied Bandwidth Plot on Channel 78

Date: 22.DEC.2023 11:17:53


<3Mbps>

99% Occupied Bandwidth Plot on Channel 00

Date: 22.DEC.2023 11:26:19



99% Occupied Bandwidth Plot on Channel 39

Date: 22.DEC.2023 11:30:28

99% Occupied Bandwidth Plot on Channel 78

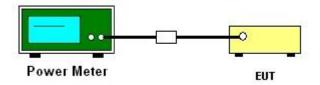
Date: 22.DEC.2023 11:37:15

Note : The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.5 Output Power Measurement

3.5.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts. The power limit for 1Mbps, 2Mbps, 3Mbps and AFH modes are 0.125 watts.


3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

3.5.5 Test Result of Peak Output Power

Please refer to Appendix A.

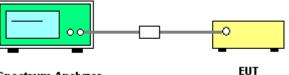
3.5.6 Test Result of Average Output Power (Reporting Only)

Please refer to Appendix A.

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

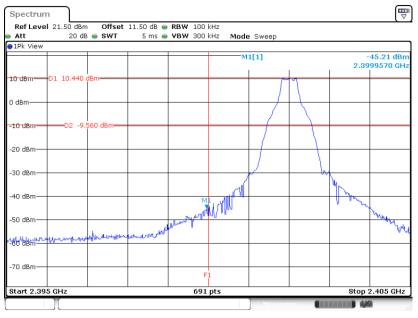

3.6.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

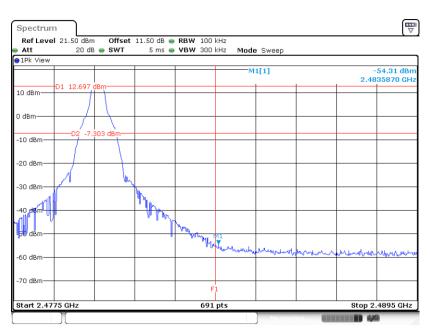
3.6.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Set RBW = 100kHz, VBW = 300kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2. and 3.
- 5. Measure and record the results in the test report.

3.6.4 Test Setup


Spectrum Analyzer

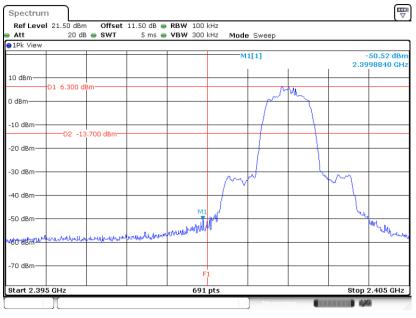
3.6.5 Test Result of Conducted Band Edges


<1Mbps>

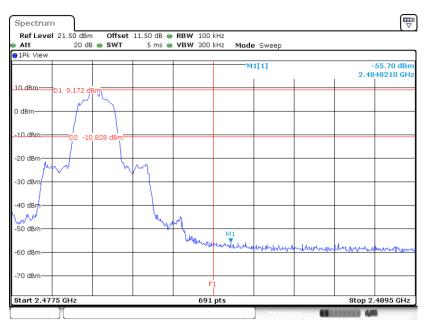
Low Band Edge Plot on Channel 00

Date: 22.DEC.2023 10:58:08

High Band Edge Plot on Channel 78



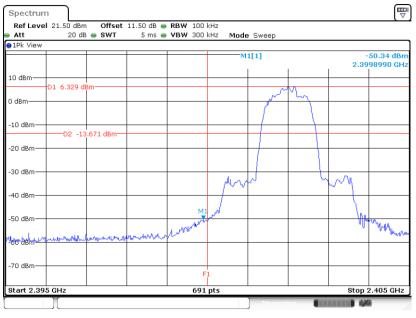
Date: 22.DEC.2023 11:03:25


<2Mbps>

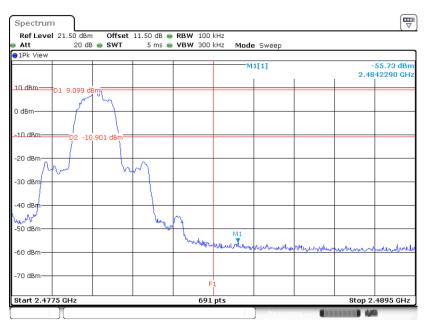
Low Band Edge Plot on Channel 00

Date: 22.DEC.2023 11:10:13

High Band Edge Plot on Channel 78



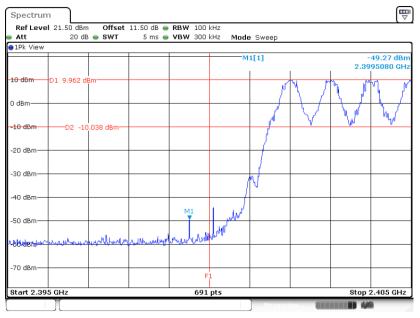
Date: 22.DEC.2023 11:18:30


<3Mbps>

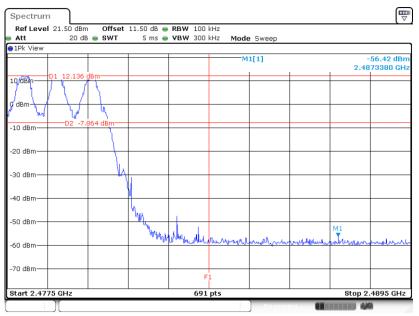
Low Band Edge Plot on Channel 00

Date: 22.DEC.2023 11:26:48

High Band Edge Plot on Channel 78


Date: 22.DEC.2023 11:37:39

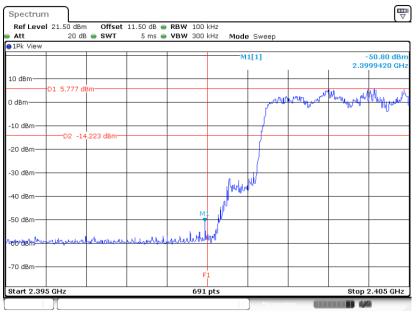
3.6.6 Test Result of Conducted Hopping Mode Band Edges


<1Mbps>

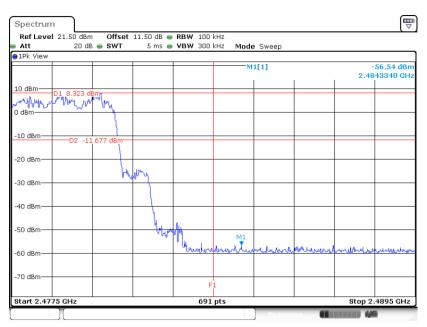
Hopping Mode Low Band Edge Plot

Date: 22.DEC.2023 11:07:33

Hopping Mode High Band Edge Plot



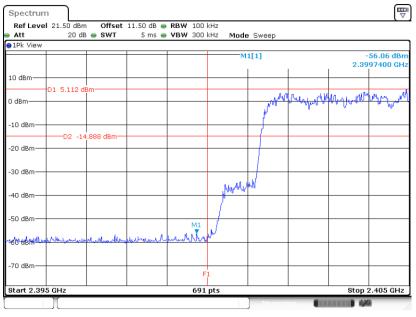
Date: 22.DEC.2023 11:08:11


<2Mbps>

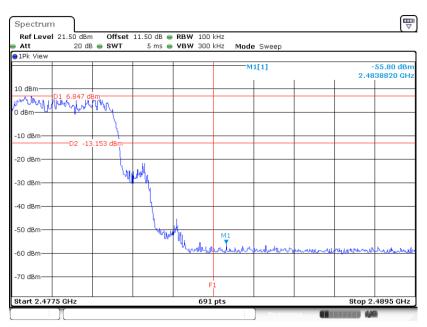
Hopping Mode Low Band Edge Plot

Date: 22.DEC.2023 11:21:56

Hopping Mode High Band Edge Plot



Date: 22.DEC.2023 11:22:41


<3Mbps>

Hopping Mode Low Band Edge Plot

Date: 22.DEC.2023 11:25:16

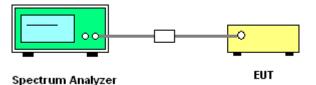
Hopping Mode High Band Edge Plot

Date: 22.DEC.2023 11:25:42

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

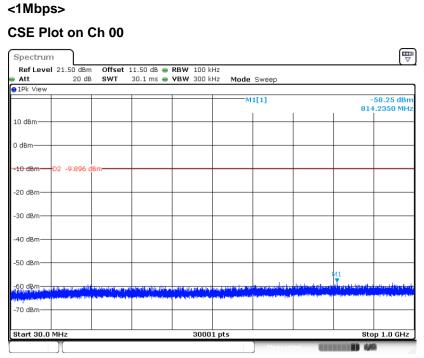
In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.


3.7.2 Measuring Instruments

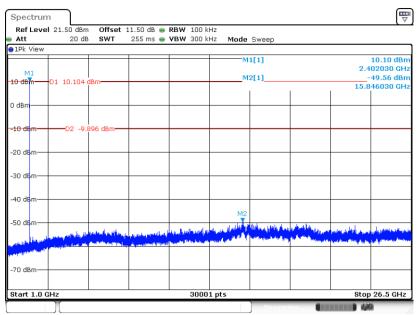
The measuring equipment is listed in the section 4 of this test report.

3.7.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.


3.7.4 Test Setup

Sporton International Inc. (ShenZhen) TEL : +86-755-8637-9589 FAX : +86-755-8637-9595 FCC ID: IHDT56AQ4



3.7.5 Test Result of Conducted Spurious Emission

Date: 22.DEC.2023 10:57:35

CSE Plot on Ch 00

Date: 22.DEC.2023 10:57:09

Ref Level 21.50 dBm	Offset 11.50 dB 👄		_	
Att 20 dB	SWT 30.1 ms 👄	VBW 300 kHz Mode	Sweep	
IPK VIEW		м	1[1]	-57.84 dBn 834.6690 MH
10 dBm				+
) dBm				
10 dBm D2 -8.742 dBi	m			
20 dBm				
30 dBm				
40 dBm				
50 dBm				M1
of the state of th				
70 dBm				
Start 30.0 MHz		30001 pts		Stop 1.0 GHz

Date: 22.DEC.2023 11:02:23

CSE Plot on Ch 39

Spectrum								
Ref Level 21.50 (Att 20	IBm Offset	11.50 dB 👄	VBW 100 k		Sweep			
1Pk View				ing induc	04000			
M1					1[1]		2.4	11.26 dBm 41130 GHz
10 dBm D1 11.2	58 dBm			(Y)	2[1]	I		48.88 dBm 79730 GHz
D dBm	_							
-10 dBmD2	-8.742 dBm							
-20 dBm								
30 dBm								
40 dBm								
-50 dBm				M2	و بال ال ال	يان ب يواويون		
a line of the state	and a second	Alexander and	and the second second second	Murtue and the	Millional Market		ing an	a yang di pang kang sang sang sang sang sang sang sang s
and a state of the second s		posta materia di	-	P				
70 dBm								
Start 1.0 GHz			3000	1 pts			Stop	26.5 GHz
					Measur			9

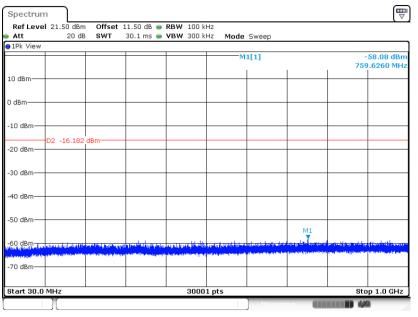
Date: 22.DEC.2023 11:01:57

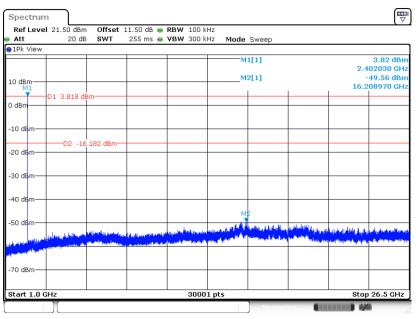
Ref Level 21.50 dBm	Offset 11.50 dB 🖷			
Att 20 dB	SWT 30.1 ms 🥃	VBW 300 kHz Mode Sw	/eep	
IPK VIEW		M1[1]	-57.73 dBn 747.6310 MH:
10 dBm				
) dBm				
-10 dBm D2 -8.113 dB	m			
20 dBm				
30 dBm				
40 dBm				
50 dBm			M1	
the stand should be a set of the stand s	an fer til fredation få ferta state af state			مروا الفروسية ومالية أحماسي وما الأورية ماليون محرور أورية الأمر ومعري مرور محمد وجرية وم
70 dBm		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Start 30.0 MHz	I	30001 pts		Stop 1.0 GHz

Date: 22.DEC.2023 11:04:33

CSE Plot on Ch 78

Spectrum Ref Level 21.50 dBm	Offset 11.50 dB 👄	BBUL 100 HU-			⊽
Att 20 dB		VBW 300 kHz	Mode Sweep		
1Pk View			inous encop		
M1			M1[1]		11.89 dBm 2.480230 GH
0 dBm D1 11.887 dB	m		M2[1]		-49.72 dBn 15.831580 GH:
I dBm					
10 dBm D2 -8.11	3 dBm				
20 dBm					
30 dBm					
40 dBm					
50 dBm		t, bay dada patata ang di	M2	and the second second second second	
and the second lease of the second	ما است الارون وسائلة وعام أحمر (فروا ما ما الأخلال منه محمد المربوع عن مربوع من ومربوع الما مع ما ما الأخلال		State Provident States	and the place of the second	
70 dBm					
start 1.0 GHz		30001 pt	5		Stop 26.5 GHz


Date: 22.DEC.2023 11:04:07


<2Mbps>

CSE Plot on Ch 00

Date: 22.DEC.2023 11:11:51

CSE Plot on Ch 00

Date: 22.DEC.2023 11:11:24

Ref Level 21.5	OdBm Offset	11.50 dB 😑 RBV	/ 100 kHz		
	20 dB SWT	30.1 ms 👄 VBV		Sweep	
1Pk View					
			M	11[1]	-58.16 dBn 763.7970 MH
10 dBm					
D dBm					
-10 dBm					
-20 dBm	6.631 dBm				
-30 dBm					
-40 dBm					
-50 dBm				M	1
				upudan teater	: talaka 10 ya 1999 talah ya 1994 ya da da sa da ang patisa
70 dBm	nd againth the Dina March Analas an an		and a provide the providence of the state of	nt en	an fan de fan De fan de fan
Start 30.0 MHz			30001 pts		Stop 1.0 GHz

Date: 22.DEC.2023 11:16:09

CSE Plot on Ch 39

Poflovo	21.50 dBm	Offset	11.50 dB 👄	RBW 100 k	H7				
Att	20 dB	SWT		VBW 300 k		Sweep			
1Pk View									
					M	1[1]			3.37 dBr
									41130 GH
LO dBm					M	2[1]			-49.50 dBr 84280 GH
M1	D1 3.369 dBr							13.6	
) dBm	DT 3.369 UB	11							
10 dBm-									
10 0000									
20 dBm—	D2 -16.0	531 dBm—							
20 aBm—									
30 dBm—									
40 dBm—									
					M2				
50 dBm—						and a set of the later.	المالية الم		
h	فأكاف والسريان والروار	addeepthe		daustra Austr		lainet.co. L.S. di a			Auge of the filles
	and the second second	undit tooling	وطائفا أصعد بالمتغير فري	a da a sera de la dela de a sera de la del	and the second second			handben til de site pie	
and the local state of the local									
70 dBm									
start 1.0 (Hz			3000	1 nts			Stor	26.5 GHz
	112			3000	1 pt3				, 20.0 GHZ

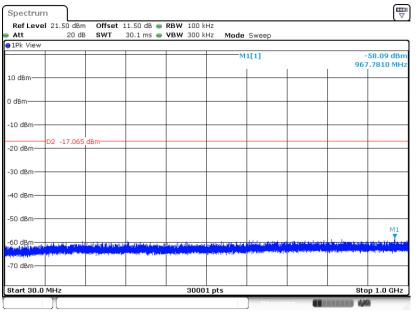
Date: 22.DEC.2023 11:15:42

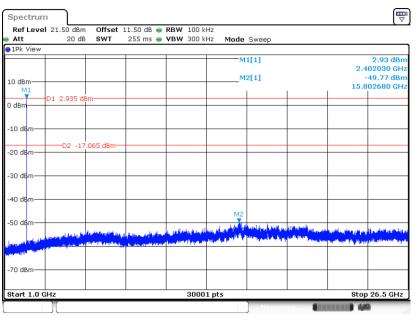
Ref Level 21.50 dBm	Offset 11.50 dB 👄			
Att 20 dB	SWT 30.1 ms 👄	VBW 300 kHz Mode Sv	weep	
IPK VIEW		M1[1]	-57.97 dBn 987.3100 MH
10 dBm				
D dBm				
-10 dBm	Bm			
-20 dBm				
-30 dBm				
-40 dBm				
-50 dBm				M
-60 dBm	and the state of the second strategy of	aligned and the strong front a strong of	pat de processante de la constante de la const	in the second station of the
-70 dBm	ين من ((دارير (ما) الذير الروانية (الارماني (الأمني الارماني (الأمنية) المنافقة (الأمن 			and a facilities along the first of the second
Start 30.0 MHz		30001 pts		Stop 1.0 GHz

Date: 22.DEC.2023 11:20:09

CSE Plot on Ch 78

Spectrum								
Ref Level 21. Att	20 dBm Offset	11.50 dB 👄	VBW 300 k		Sweep			
1Pk View	20 00 011	200 115 🖕	1011 000 1	He Hous	2466b			
				м	1[1]		2.4	6.30 dBn 180230 GH:
10 dBm	5.303 dBm			M	2[1]	1		-48.62 dBn 358780 GH
D dBm								
-10 dBm	-D2 -13.697 dBm-							
-20 dBm	D2 -13.097 dBm							
-30 dBm								
40 dBm								
-50 dBm		_		M2	and to be	a da se da s		
In Laborer	فأفتحه الالتك مريقيه إن	والايون ومروري مر	Land History		Party of the second	and and and an and a second	Ballinesine (Ballin	land Alberta from
	n i _n a ang _n a katika UKA Banga (Katika Manga katika tang atau tang ata Manga katika tang atau tang ata	ala a dingananya din dikati s						
-70 dBm								
Start 1.0 GHz			3000	1 pts			Stop	26.5 GHz


Date: 22.DEC.2023 11:19:43


<3Mbps>

CSE Plot on Ch 00

Date: 22.DEC.2023 11:28:16

CSE Plot on Ch 00

Date: 22.DEC.2023 11:27:49

Ref Leve	21.50 dBm	Offset	11.50 dB 👄	RBW 100 k	Hz				
Att	20 dB	SWT	30.1 ms 👄	VBW 300 k	Hz Mode	Sweep			
1Pk View									
					м	1[1]			-58.03 dBn 0.8590 MH:
10 dBm									
0 dBm									
-10 dBm—	D2 -13.670	dBm							
-20 dBm—	02 10.070								
-30 dBm—									
-40 dBm—									
-50 dBm							M1		
-60 dBm	والمراجع والمراجع			a da sala sana da sa		the strategies had	The second se	and and and shale	and the state of
	Arrest geotic processing and		ngalistika ang sakariti Ang sakariti ng sakariti			-		and the second state of th	Interior and American
-70 dBm									
Start 30.0	MHz			3000	1 pts			Ste	p 1.0 GHz
						Measurin			6

Date: 22.DEC.2023 11:31:48

CSE Plot on Ch 39

Spectrum Ref Level	21.50 dBm	Offect	11.50 dB 👄	DBW 100 k	·U7				V
Att	21.50 UBIN 20 dB			VBW 300 k		Sweep			
1Pk View									
					M	1[1]			6.33 dBr
									141130 GH
LO dem					M	2[1]			-50.33 dBn 540040 GH
	D1 6.330 de	3m-						10.0	
) dBm									
10 dBm-									
		.670 dBm—							
20 dBm—									
-30 dBm									
-40 dBm									
-50 dBm					M2				
50 abiii	1		مدادس ورارو	الدروية فصفقا مريراني	المحاطية فيعي	and the state of the	in the second	يريد والانتقاريين	يعبار بالمراجي
المتعمينا ليتعريرن	nan kanalan kanalan Manalan kanalan	the station of the sec	a provide a second s	a transmitter and the second	president and the first	Supervised at	a forest and the second	and the distances	policitaria di co
And the second second second	and as for the second								
70 dBm									
-/U asm									
Start 1.0 G									06 5 011
start 1.0 G	HZ			3000	1 pts			stop	26.5 GHz

Date: 22.DEC.2023 11:31:23

Spectrum Ref Level		Offcot	11.50 dB 👄	PRW 100 l					
Att	21.50 UBIN 20 dB	SWT		VBW 300 k		Sweep			
1Pk View					ine mode	онсор			
					м	1[1]			57.85 dBn 1.8370 MHz
10 dBm									
0 dBm									
-10 dBm)2 -10.746 (dBm							
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm									
60 dBm	k. stalt. milanti		त्यान्य प्र ान्ध हम्। त्रम् व	I reducted below a	ata, data bia bi		and a state of the	M:	and spectra to
and an and the state of the sta		and a set of the second second			with a commenter this way		وور باختر الدوم اللي وم	a a police a pole so de con	and any set of some of the set of the
-70 dBm									
Start 30.0 M	4Hz			3000	1 pts			Sto	p 1.0 GHz
						Measur			94

Date: 22.DEC.2023 11:39:32

CSE Plot on Ch 78

Ref Leve	21.50 dBm	Offset	11.50 dB 👄	RBW 100 k	Hz				
Att	20 dB	SWT	255 ms 👄	VBW 300 k	Hz Mode	Sweep			
1Pk View									
					M	1[1]			9.25 dBr
M1					м	2[1]			180230 GH -48.98 dBr
.0 dBm	D1 9.254 dB	m				2[1]			213220 GH
) dBm									
10 dBm—	D2 -10	.746 dBm=							
20 dBm—									
30 dBm—									
40 dBm—									
					м	2			
-50 dBm									
	ويتر والمرجع ال	ويعلموا	L	بالبريدية الإفساع وا	a she ba	bish-sedara bis	and the state of the second	بوالى فكالتطلقين	الهدينا ليعينه
المراده واستراجها		pates pates.	يقو المناكرات محمد ال	providentes	novelet the second	a second a second a	PROFESSION PROFESSION	and the state of the state	(Million Bar
and the second second									
70 dBm									
start 1.0 (H7			3000	1 nts			Stor	26.5 GHz
	Y			0000					

Date: 22.DEC.2023 11:38:56

3.8 Radiated Band Edges and Spurious Emission Measurement

3.8.1 Limit of Radiated Band Edges and Spurious Emission

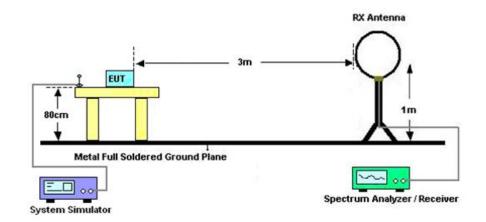
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 - 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

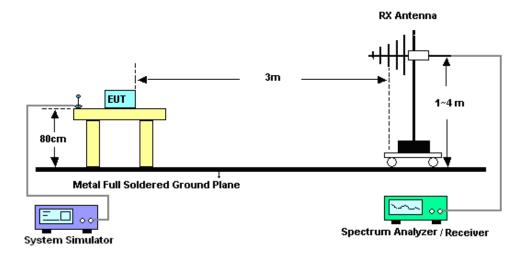
3.8.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

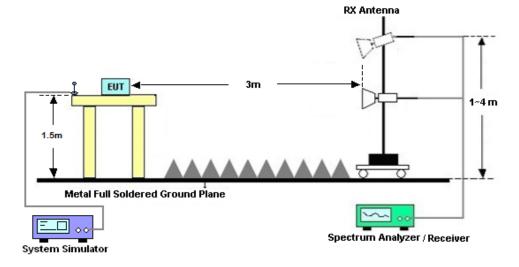
3.8.3 Test Procedures


- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz ; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds On time = N₁*L₁+N₂*L₂+...+N_{n-1}*LN_{n-1}+N_n*L_n Where N₁ is number of type 1 pulses, L₁ is length of type 1 pulses, etc. Average Emission Level = Peak Emission Level + 20*log(Duty cycle)
- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 8. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than peak limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (-24.79dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.



3.8.4 Test Setup


For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz

Sporton International Inc. (ShenZhen) TEL : +86-755-8637-9589 FAX : +86-755-8637-9595 FCC ID: IHDT56AQ4 Page Number: 53 of 59Report Issued Date: Feb. 07, 2024Report Version: Rev. 01Report Template No.: BU5-FR15CBT Version 2.0

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.8.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C.

3.8.7 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic or 40GHz, whichever is lower)

Please refer to Appendix C.

3.8.8 Duty cycle correction factor for average measurement

Please refer to Appendix D.

3.9 AC Conducted Emission Measurement

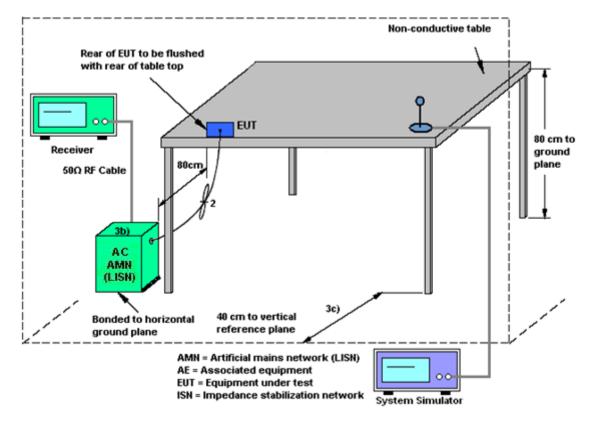
3.9.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted	limit (dBµV)
Frequency of emission (MHZ)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

3.9.2 Measuring Instruments


The measuring equipment is listed in the section 4 of this test report.

3.9.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.9.4 Test Setup

3.9.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

3.10 Antenna Requirements

3.10.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.10.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.10.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
EMI Test Receiver	R&S	ESR7	101404	9kHz~7GHz	Oct. 18, 2023	Jan. 13, 2024	Oct. 17, 2024	Radiation (03CH04-SZ)
EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY551502 13	10Hz~44GHz	Jul. 07, 2023	Jan. 13, 2024	Jul. 06, 2024	Radiation (03CH04-SZ)
Loop Antenna	R&S	HFH2-Z2	100354	9kHz~30MHz	Jun. 28, 2022	Jan. 13, 2024	Jun. 27, 2024	Radiation (03CH04-SZ)
Bilog Antenna	TeseQ	CBL6111D	41909	30MHz~1GHz	May. 14, 2023	Jan. 13, 2024	May. 13, 2024	Radiation (03CH04-SZ)
Double Ridge Horn Antenna	SCHWARZBE CK	BBHA9120D	9120D-147 4	1GHz~18GHz	Jul. 07, 2023	Jan. 13, 2024	Jul. 06, 2024	Radiation (03CH04-SZ)
Horn Antenna	SCHWARZBE CK	BBHA9170	9170#679	15GHz~40GHz	Jul. 08, 2023	Jan. 13, 2024	Jul. 07, 2024	Radiation (03CH04-SZ)
Amplifier	Burgeon	BPA-530	102211	0.01Hz ~3000MHz	Oct. 18, 2023	Jan. 13, 2024	Oct. 17, 2024	Radiation (03CH04-SZ)
HF Amplifier	MITEQ	AMF-7D-0010 1800-30-10P- R	1943528	1GHz~18GHz	Oct. 18, 2023	Jan. 13, 2024	Oct. 17, 2024	Radiation (03CH04-SZ)
HF Amplifier	MITEQ	TTA1840-35- HG	1871923	18GHz~40GHz	Jul. 07, 2023	Jan. 13, 2024	Jul. 06, 2024	Radiation (03CH04-SZ)
Amplifier	Agilent Technologies	83017A	MY572801 36	500MHz~26.5GH z	Aug. 21, 2023	Jan. 13, 2024	Aug. 20, 2024	Radiation (03CH04-SZ)
AC Power Source	APC	AFV-S-600B	F11905001 9	N/A	Oct. 18, 2023	Jan. 13, 2024	Oct. 17, 2024	Radiation (03CH04-SZ)
Turn Table	EM	EM1000	N/A	0~360 degree	NCR	Jan. 13, 2024	NCR	Radiation (03CH04-SZ)
Antenna Mast	EM	EM1000	N/A	1 m~4 m	NCR	Jan. 13, 2024	NCR	Radiation (03CH04-SZ)
EMI Receiver	R&S	ESR7	101630	9kHz~7GHz;	Jul. 06, 2023	Dec. 19, 2023	Jul. 05, 2024	Conduction (CO01-SZ)
AC LISN	R&S	ENV216	100063	9kHz~30MHz	Aug. 21, 2023	Dec. 19, 2023	Aug. 20, 2024	Conduction (CO01-SZ)
AC LISN (for auxiliary equipment)	EMCO	3816/2SH	00103892	9kHz~30MHz	Oct. 16, 2023	Dec. 19, 2023	Oct. 15, 2024	Conduction (CO01-SZ)
AC Power Source	Chroma	61602	616020000 891	100Vac~250Vac	Jul. 07, 2023	Dec. 19, 2023	Jul. 06, 2024	Conduction (CO01-SZ)
Spectrum Analyzer	R&S	FSV40	101078	10Hz~40GHz	Apr. 06, 2023	Dec. 22, 2023	Apr. 05, 2024	Conducted (TH01-SZ)
Pulse Power Senor	Anritsu	MA2411B	1339473	30MHz~40GHz	Dec. 27, 2022	Dec. 22, 2023	Dec. 26, 2023	Conducted (TH01-SZ)
Thermo meter	Anymetre	JR593	#7	- 10℃ ~ 50℃ 10%RH~99%RH	Apr. 08, 2023	Dec. 22, 2023	Apr. 07, 2024	Conducted (TH01-SZ)

NCR: No Calibration Required

5 Measurement Uncertainty

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Uncertainty of Conducted Measurement

Test Item	Uncertainty
Conducted Spurious Emission & Bandedge	±1.34 dB
Occupied Channel Bandwidth	±0.1 MHz
Conducted Power	±1.34 dB
Conducted Power Spectral Density	±1.32 dB
Frequency	±1.3 Hz

Uncertainty of AC Conducted Emission Measurement (0.15 MHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.7 dB
of 95% (U = 2Uc(y))	2.7 08

Uncertainty of Radiated Emission Measurement (9 KHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	5.1 dB
01.93 / 8 (0 = 200 (y))	

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.1 dB
of 95% (U = 2Uc(y))	5.1 dB

Uncertainty of Radiated Emission Measurement (1 GHz ~ 18 GHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	4.8 dB
--	--------

Uncertainty of Radiated Emission Measurement (18 GHz ~ 40 GHz)

of 95% (U = 2Uc(y))	Confidence 5.1 dB
---------------------	-------------------

----- THE END ------

Appendix A. Conducted Test Results

Report Number : FR3D0836A

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Liu Qiu Qiu	Temperature:	21~25	°C
Test Date:	2023/12/22	Relative Humidity:	51~54	%

			<u>20d</u>	B and S	99% Occu		<u>ULTS DATA</u> th and Hopping (Channel Separat	ion
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	20dB BW (MHz)	99% Bandwidth (MHz)	Hopping Channel Separation Measurement (MHz)	Hopping Channel Separation Measurement Limit (MHz)	Pass/Fail
DH	1Mbps	1	0	2402	0.935	0.823	0.999	0.6232	Pass
DH	1Mbps	1	39	2441	0.957	0.853	1.003	0.6377	Pass
DH	1Mbps	1	78	2480	0.957	0.853	0.990	0.6377	Pass
2DH	2Mbps	1	0	2402	1.287	1.167	1.007	0.8580	Pass
2DH	2Mbps	1	39	2441	1.287	1.173	1.003	0.8580	Pass
2DH	2Mbps	1	78	2480	1.326	1.177	0.999	0.8841	Pass
3DH	3Mbps	1	0	2402	1.304	1.171	1.003	0.8696	Pass
3DH	3Mbps	1	39	2441	1.300	1.175	1.003	0.8667	Pass
3DH	3Mbps	1	78	2480	1.309	1.187	1.007	0.8725	Pass

	<u>TEST RESULTS DATA</u> <u>Dwell Time</u>								
			Declarate						
Mod.	Hopping Channel Number Rate	Hops Over Occupancy Time(hops)	Package Transfer Time (msec)	Dwell Time (sec)	Limits (sec)	Pass/Fail			
Nomal	79	106.67	2.89	0.31	0.4	Pass			
AFH	20	53.33	2.89	0.15	0.4	Pass			

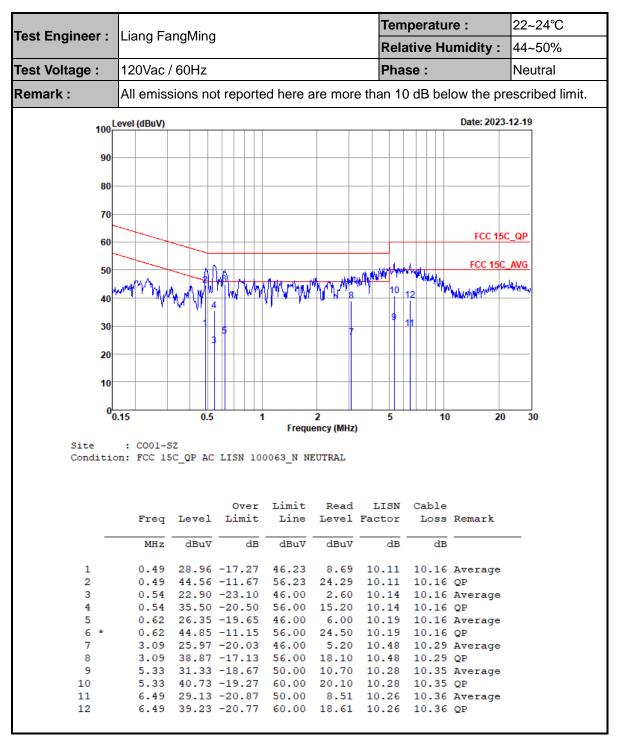
	<u>TEST RESULTS DATA</u> <u>Peak Power Table</u>												
DH	CH.	NTX	Peak Power (dBm)	Power Limit (dBm)	Test Result								
	0	1	12.00	20.97	Pass								
DH5	39	1	13.30	20.97	Pass								
	78	1	13.70	20.97	Pass								
	0	1	9.60	20.97	Pass								
2DH5	39	1	10.90	20.97	Pass								
	78	1	12.00	20.97	Pass								
	0	1	9.70	20.97	Pass								
3DH5	39	1	11.20	20.97	Pass								
	78	1	12.20	20.97	Pass								

<u>TEST RESULTS DATA</u> <u>Average Power Table</u> <u>(Reporting Only)</u>

DH	CH.	NTX	Average Power (dBm)	Duty Factor (dB)
	0	1	10.60	1.15
DH5	39	1	12.20	1.15
	78	1	12.80	1.15
	0	1	6.40	1.13
2DH5	39	1	7.90	1.13
	78	1	9.10	1.13
	0	1	6.40	1.13
3DH5	39	1	7.90	1.13
	78	1	9.10	1.13

Remark : Power setting is the default (power setting = 0).

<u>TEST RESULTS DATA</u> <u>Number of Hopping Frequency</u>


Number of Hopping (Channel)	Adaptive Frequency Hopping (Channel)	Limits (Channel)	Pass/Fail
79	20	> 15	Pass

Appendix B. AC Conducted Emission Test Results

Test Engineer :	Liang Fa	naMina	1			Tem	peratu	re :	22~24°C
rest Engineer .		angiviing	1			Rela	ative Hu	umidity :	44~50%
Test Voltage :	120Vac	/ 60Hz				Pha	se :		Line
Remark :	All emiss	sions no	ot reporte	ed here a	are mor	e than 10) dB bel	low the pr	escribed limit.
100	Level (dBuV)							Date: 2023	-12-19
100									
90									
80									
70									
								FCC 150	C OP
60									
50								FCC 15C	
30				1800 MAR	the market	W. Water Water	mound	emphicida	Whates
40	Nor VM	WW AND	TW M	Werth - A	1 12	· ·		alataban temphatin	
		W.F		5 7	. 11				
30			3						
20									
20									
10									
	0.15	0.5		1	2	5	10	20	
0	0.15			-	2 ency (MHz	-	10	20	30
0 Site	0.15 : CO01-S on: FCC 15	SZ		Frequ	ency (MHz	-	10	20	30
0 Site	: CO01-S on: FCC 15	SZ SC_QP AC	LISN 10 Over	Frequ 0063_L L Limit	ency (MHz INE Read	LISN	Cable		30
0 Site	: CO01-S on: FCC 15	SZ SC_QP AC	LISN 10	Frequ 0063_L L Limit	ency (MHz INE Read)	Cable	20 Remark	30
0 Site	: CO01-S on: FCC 15	SZ SC_QP AC	LISN 10 Over	Frequ 0063_L L Limit	ency (MHz INE Read	LISN	Cable] 30
0 Site	: COO1-S on: FCC 15 Freq MHz 0.55	SZ GC_QP AC Level dBuV 39.67	LISN 10 Over Limit dB -6.33	Frequ 0063_L L Limit Line dBuV 46.00	Read Level dBuV 19.30	LISN Factor dB 10.21	Cable Loss dB]
Site Condition 1 * 2	: C001-S on: FCC 15 Freq MHz 0.55 0.55	52 50_QP AC Level dBuV 39.67 49.07	LISN 10 Over Limit dB -6.33 -6.93	Frequ 0063_L L Limit Line dBuV 46.00 56.00	Read Level 	LISN Factor dB 10.21 10.21	Cable Loss dB 10.16 10.16	Remark Average QP	30
0 Site Conditio 1 * 2 3	: C001-S on: FCC 15 Freq MHz 0.55 0.55 0.60	22 5C_QP AC Level dBuV 39.67 49.07 24.61	LISN 10 Over Limit 	Frequ 0063_L L Limit Line dBuV 46.00 56.00 46.00	Read Level 	LISN Factor dB 10.21 10.21 10.15	Cable Loss dB 10.16 10.16 10.16	Remark Average QP Average	30
Site Condition 1 * 2 3 4	: C001-S on: FCC 15 Freq MHz 0.55 0.55 0.60 0.60	22 5C_QP AC Level dBuV 39.67 49.07 24.61 41.71	LISN 10 Over Limit dB -6.33 -6.93 -21.39 -14.29	Frequ 0063_L L Limit Line dBuV 46.00 56.00 46.00 56.00	Read Level 	LISN Factor dB 10.21 10.21 10.15 10.15	Cable Loss dB 10.16 10.16 10.16 10.16	Remark Average QP Average QP	30
0 Site Conditio 1 * 2 3 4 5	: C001-S on: FCC 15 Freq MHz 0.55 0.55 0.60 0.60 1.10	22 5C_QP AC Level dBuV 39.67 49.07 24.61 41.71 31.57	LISN 10 Over Limit dB -6.33 -6.93 -21.39 -14.29 -14.43	Frequ 0063_L L Limit Line dBuV 46.00 56.00 46.00 56.00 46.00	Read Level dBuV 19.30 28.70 4.30 21.40 11.20	LISN Factor dB 10.21 10.21 10.15 10.15 10.20	Cable Loss dB 10.16 10.16 10.16 10.16 10.17	Remark Average QP Average QP Average	30
0 Site Conditio 1 * 2 3 4 5 6	: C001-S on: FCC 15 Freq MHz 0.55 0.55 0.60 0.60 1.10 1.10	22 5C_QP AC Level dBuV 39.67 49.07 24.61 41.71 31.57 42.57	LISN 10 Over Limit dB -6.33 -6.93 -21.39 -14.29 -14.43 -13.43	Frequ 0063_L L Limit Line dBuV 46.00 56.00 46.00 56.00 46.00 56.00	Read Level 	LISN Factor dB 10.21 10.21 10.15 10.15 10.20 10.20	Cable Loss dB 10.16 10.16 10.16 10.16 10.17 10.17	Remark Average QP Average QP Average QP	
0 Site Condition 1 * 2 3 4 5 6 7	: C001-S on: FCC 15 Freq MHz 0.55 0.60 0.60 1.10 1.10 1.57	2 3 3 3 3 3 3 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 5 7 3 2 4 8 3 3 5 7 3 2 4 8 3 3 5 7 3 2 4 8 3 3 5 7 3 3 3 5 7 3 2 4 8 3 3 3 3 3 3 3 3 3 3 3 3 3	LISN 10 Over Limit dB -6.33 -6.93 -21.39 -14.29 -14.43 -13.43 -13.52	Frequ 0063_L L Limit Line dBuV 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	Read Level dBuV 19.30 28.70 4.30 21.40 11.20 22.20 11.59	LISN Factor dB 10.21 10.15 10.15 10.20 10.20 10.68	Cable Loss dB 10.16 10.16 10.16 10.16 10.17 10.17 10.21	Remark Average QP Average QP Average QP Average	
0 Site Condition 1 * 2 3 4 5 6 7 8	: C001-S on: FCC 15 Freq MHz 0.55 0.60 0.60 1.10 1.10 1.57 1.57	Eevel dBuV 39.67 49.07 24.61 41.71 31.57 42.57 32.48 42.08	LISN 10 Over Limit dB -6.33 -6.93 -21.39 -14.29 -14.43 -13.43 -13.52 -13.92	Frequ 0063_L L Limit Line dBuV 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	Read Level dBuV 19.30 28.70 4.30 21.40 11.20 22.20 11.59 21.19	LISN Factor dB 10.21 10.15 10.15 10.15 10.20 10.20 10.68 10.68	Cable Loss dB 10.16 10.16 10.16 10.16 10.17 10.17 10.21	Average QP Average QP Average QP Average QP	
0 Site Condition 1 * 2 3 4 5 6 7 8 9	: C001-S on: FCC 15 Freq MHz 0.55 0.55 0.60 0.60 1.10 1.10 1.57 1.57 1.96	Eevel dBuV 39.67 49.07 24.61 41.71 31.57 42.57 32.48 42.08 29.68	LISN 10 Over Limit dB -6.33 -6.93 -21.39 -14.29 -14.43 -13.43 -13.52 -13.92 -16.32	Frequ 0063_L L Limit Line dBuV 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00	Read Level dBuV 19.30 28.70 4.30 21.40 11.20 22.20 11.59 21.19 8.80	LISN Factor dB 10.21 10.21 10.15 10.15 10.20 10.20 10.20 10.68 10.68 10.65	Cable Loss dB 10.16 10.16 10.16 10.17 10.17 10.17 10.21 10.21 10.23	Remark Average QP Average QP Average QP Average QP Average	
0 Site Condition 1 * 2 3 4 5 6 7 8 9 10	: C001-S on: FCC 15 Freq MHz 0.55 0.60 0.60 0.60 1.10 1.10 1.57 1.57 1.96 1.96	Eevel dBuV 39.67 49.07 24.61 41.71 31.57 42.57 32.48 42.08 29.68 42.38	LISN 10 Over Limit dB -6.33 -6.93 -21.39 -14.29 -14.43 -13.43 -13.52 -13.92 -16.32 -13.62	Frequ 0063_L L Limit Line dBuV 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	Read Level dBuV 19.30 28.70 4.30 21.20 22.20 11.59 21.19 8.80 21.50	LISN Factor dB 10.21 10.21 10.15 10.15 10.20 10.20 10.20 10.68 10.68 10.65 10.65	Cable Loss dB 10.16 10.16 10.16 10.17 10.17 10.17 10.21 10.21 10.23 10.23	Remark Average QP Average QP Average QP Average QP Average QP	
0 Site Condition 1 * 2 3 4 5 6 7 8 9	: C001-S on: FCC 15 Freq MHz 0.55 0.60 0.60 1.10 1.57 1.57 1.96 1.96 2.81	Eevel Level dBuV 39.67 49.07 24.61 41.71 31.57 42.57 32.48 42.08 29.68 42.38 29.94	LISN 10 Over Limit dB -6.33 -6.93 -21.39 -14.29 -14.29 -14.43 -13.43 -13.52 -13.92 -16.32 -13.62 -16.06	Frequ 0063_L L Limit Line dBuV 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00	Read Level dBuV 19.30 28.70 4.30 21.40 21.40 22.20 11.59 21.19 8.80 21.50 9.51	LISN Factor dB 10.21 10.15 10.15 10.20 10.20 10.68 10.65 10.65 10.16	Cable Loss dB 10.16 10.16 10.16 10.17 10.17 10.21 10.21 10.23 10.23 10.27	Remark Average QP Average QP Average QP Average QP Average QP Average	

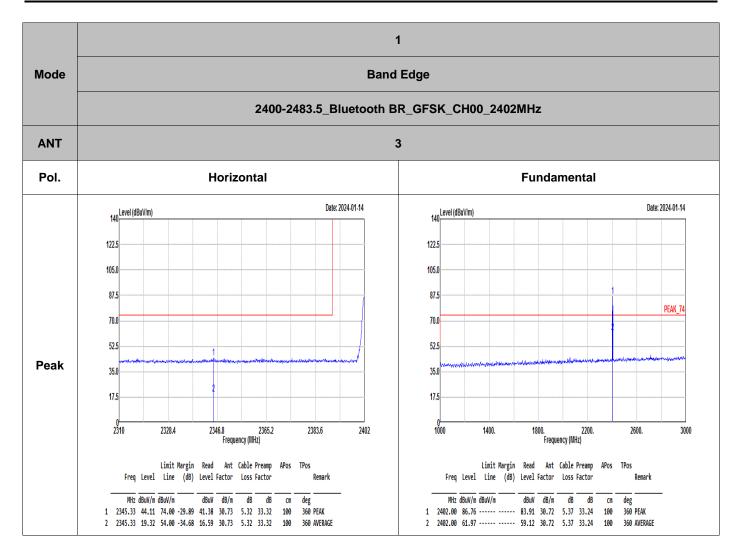
Note:

1. Level(dBµV) = Read Level(dBµV) + LISN Factor(dB) + Cable Loss(dB)

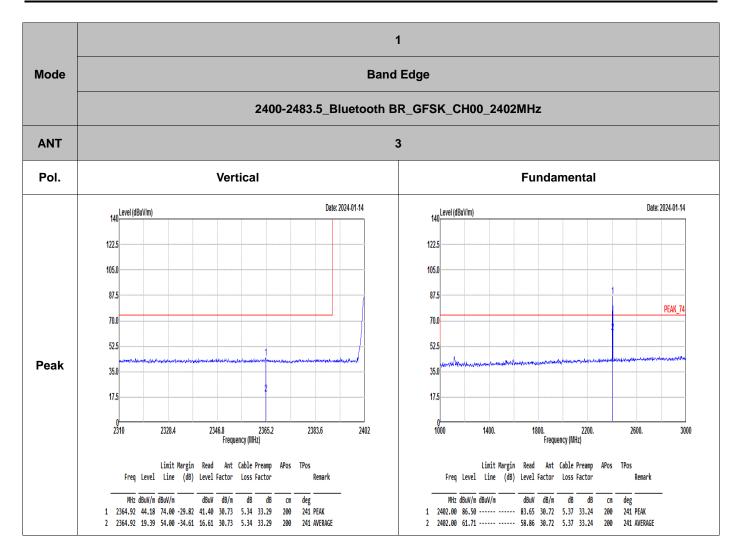
2. Over Limit(dB) = Level(dBµV) – Limit Line(dBµV)

Appendix C. Radiated Spurious Emission Test Data

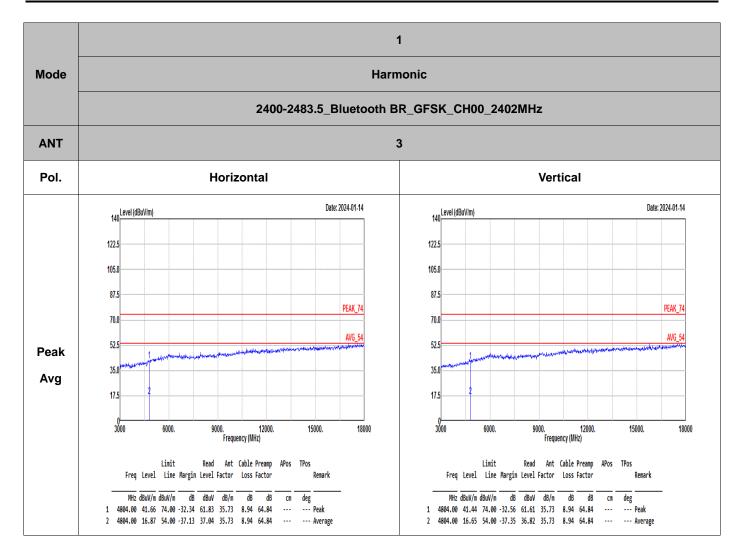
Test Engineer :	ZhangXu	Relative Humidity :	48~49%
rest Engineer.		Temperature :	24-25 ℃

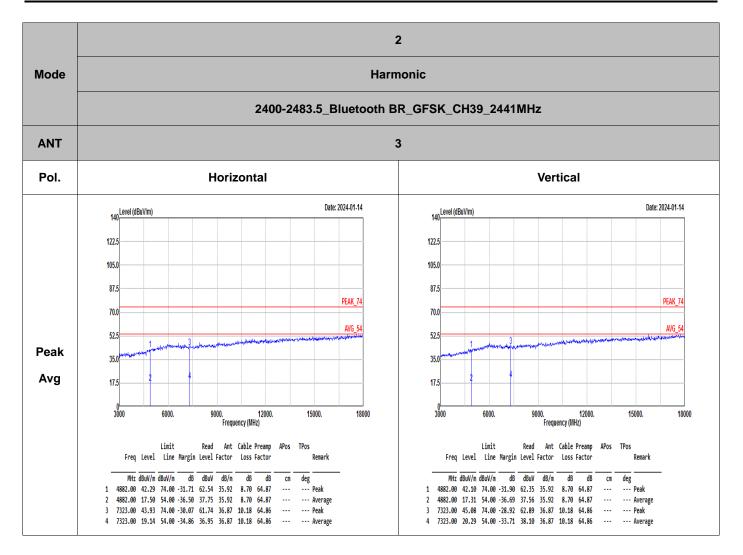

Radiated Spurious Emission Test Modes

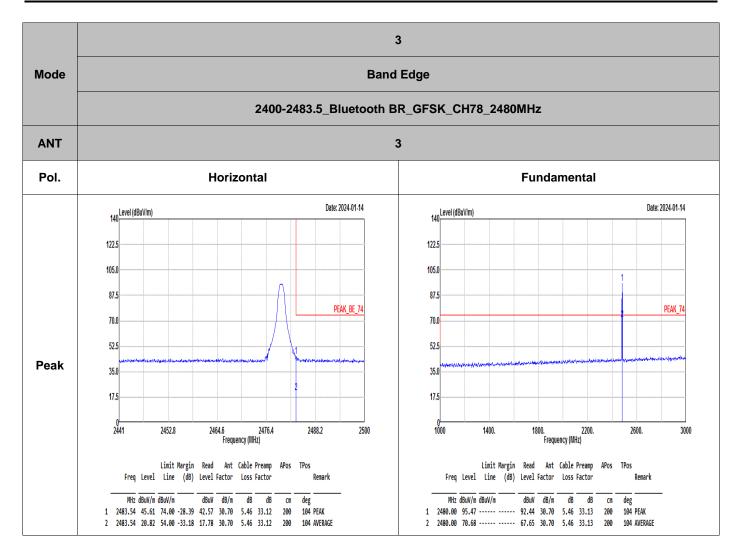
Mode	Band (MHz)	Antenna	Modulation	Channel	Frequency	Data Rate	RU	Remark
Mode 1	2400-2483.5	3	Bluetooth BR_GFSK	00	2402	1DH5	-	-
Mode 2	2400-2483.5	3	Bluetooth BR_GFSK	39	2441	1DH5	-	-
Mode 3	2400-2483.5	3	Bluetooth BR_GFSK	78	2480	1DH5	-	-
Mode 4	2400-2483.5	3	Bluetooth BR_GFSK	78	2480	1DH5	-	LF

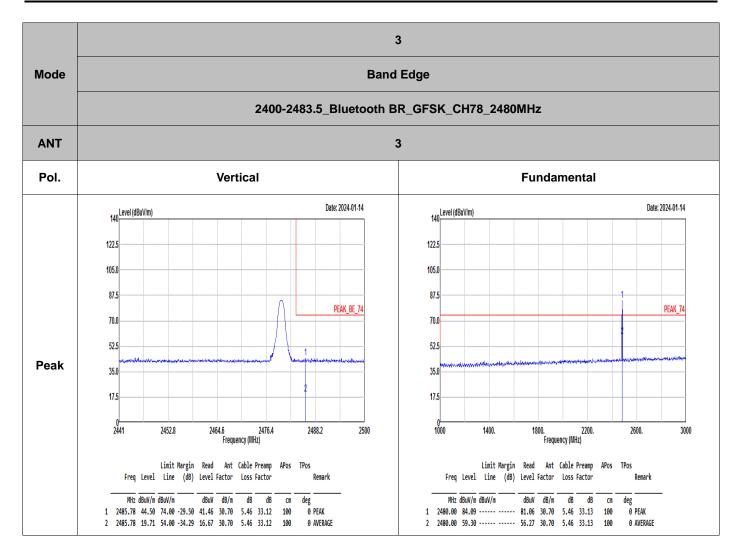

Summary of each worse mode

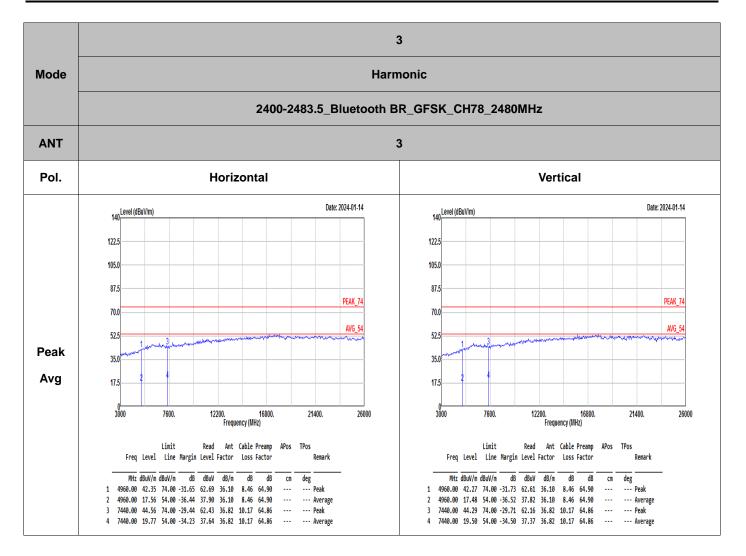
Mode	Modulation	Ch.	Freq. (MHz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pol.	Peak Avg.	Result	Remark
1	Bluetooth BR_GFSK	00	2364.92	44.18	74.00	-29.82	V	PEAK	Pass	Band Edge
1	Bluetooth BR_GFSK	00	4804.00	41.66	74.00	-32.34	н	Peak	Pass	Harmonic
2	Bluetooth BR_GFSK	39	-	-	-	-	-	-	-	Band Edge
2	Bluetooth BR_GFSK	39	7323.00	45.08	74.00	-28.92	V	Peak	Pass	Harmonic
3	Bluetooth BR_GFSK	78	2483.54	45.61	74.00	-28.39	н	PEAK	Pass	Band Edge
3	Bluetooth BR_GFSK	78	7440.00	44.56	74.00	-29.44	н	Peak	Pass	Harmonic
4	Bluetooth BR_GFSK	78	945.68.	33.08	46	-12.92	V	Peak	Pass	LF
4	Bluetooth BR_GFSK	78	-	-	-	-	-	-	-	

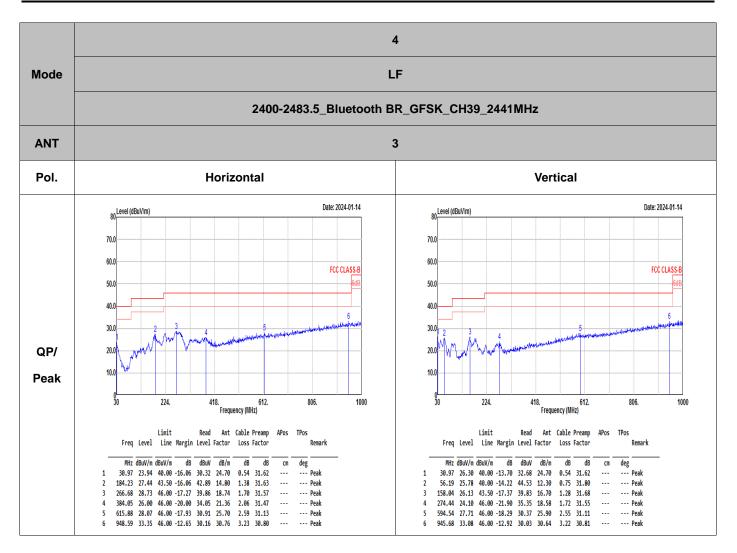


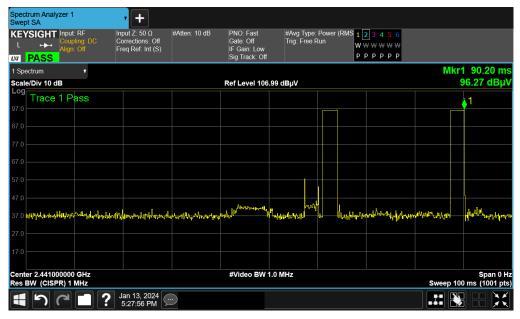












Appendix D. Duty Cycle Plots

DH5 on time (One Pulse) Plot on Channel 39

ectrum Ana ept SA	lyzer 1			+											
EYSIGH1 -≁-	Couplir Align: C	ig: DC	Co	ut Ζ: 50 Ω rrections: Off eq Ref: Int (S)	#Atten: 1	0 dB	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	# T	Avg Type: Pe rig: Free Rur	ower (RM n	1S <mark>1 2</mark> 3 ₩₩₩ ₽ ₽ ₽	₩₩₩			
ipectrum		v											N		1.240 n
ale/Div 10	dB						Ref Level 106	.99 dE	μV					96	.48 dBj
g		•4_					<u> </u>	3∆4							
0 															
ס ר															
0															
	Marketalor	w _u					hillyoursteared						gallas month		
o 															
nter 2.4410 s BW 1.0 N		€Hz					#Video BW [/]	1.0 M⊦	Z				Sweep	o 10.0 m	Span 0 1s (1001 p
larker Table		•													
Mode	Trace	Scale		Х			Y		unction	F	unction W	lidth	Fur	iction Va	alue
1 Δ2	1	t	(Δ)		2.880 ms		0.08746 d								
2 N 3 Δ4	1	t +	(Δ)		1.240 ms 3.750 ms		96.48 dBµ -0.001470 d								
4 N	1	t			1.240 ms	()	96.48 dBµ								
5 6															
				an 13, 2024											

DH5 on time (Count Pulses) Plot on Channel 39

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = $2 \times 2.88 / 100 = 5.76 \%$
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.79 dB
- 3. DH5 has the highest duty cycle worst case and is reported.