

FCC RF Test Report

APPLICANT :	Motorola Mobility LLC
EQUIPMENT :	Mobile Cellular Phone
BRAND NAME :	Motorola
MODEL NAME :	XT2363-2, XT2363-1
FCC ID :	IHDT56AQ1
STANDARD :	FCC Part 15 Subpart C §15.247
CLASSIFICATION :	(DTS) Digital Transmission System
TEST DATE(S) :	Oct. 07, 2023 ~ Oct. 23, 2023

We, Sporton International Inc. (Kunshan), would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (Kunshan), the test report shall not be reproduced except in full.

JasonJia

Approved by: Jason Jia

Sporton International Inc. (Kunshan) No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China

TABLE OF CONTENTS

RE\	/ISION	N HISTORY	3
SUN	MAR	Y OF TEST RESULT	4
1	GENE	ERAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Manufacturer	5
	1.3	Product Feature of Equipment Under Test	5
	1.4	Product Specification of Equipment Under Test	5
	1.5	Modification of EUT	5
	1.6	Specification of Accessory	6
	1.7	Testing Location	7
	1.8	Test Software	7
	1.9	Applicable Standards	7
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	8
	2.1	Carrier Frequency Channel	
	2.2	Test Mode	9
	2.3	Connection Diagram of Test System	
	2.4	Support Unit used in test configuration and system	
	2.5	EUT Operation Test Setup	11
	2.6	Measurement Results Explanation Example	
3	TEST	RESULT	
	3.1	6dB and 99% Bandwidth Measurement	
	3.2	Output Power Measurement	13
	3.3	Power Spectral Density Measurement	
	3.4	Conducted Band Edges and Spurious Emission Measurement	15
	3.5	Radiated Band Edges and Spurious Emission Measurement	
	3.6	AC Conducted Emission Measurement	
	3.7	Antenna Requirements	
		OF MEASURING EQUIPMENT	
			24
		X A. CONDUCTED TEST RESULTS	
		X B. AC CONDUCTED EMISSION TEST RESULT	
		X C. RADIATED SPURIOUS EMISSION	
		X D. DUTY CYCLE PLOTS	
APF	PENDI	X E. SETUP PHOTOGRAPHS	

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR392114B	Rev. 01	Initial issue of report	Oct. 31, 2023

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(2)	6dB Bandwidth	≥ 0.5MHz	Pass	-
3.1	-	99% Bandwidth	-	Report only	-
3.2	15.247(b)(3)	Peak Output Power	≤ 30dBm	Pass	-
3.3	15.247(e)	Power Spectral Density	≤ 8dBm/3kHz	Pass	-
3.4	3.4 15.247(d) Conducted Band Edges a Spurious Emission		≤ 20dBc	Pass	-
3.5	15.247(d)	Radiated Band Edges and Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 5.07 dB at 2483.50 MHz
3.6	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 10.60 dB at 10.072 MHz
3.7	15.203 & 15.247(b)	Antenna Requirement	15.203 & 15.247(b)	Pass	-

Conformity Assessment Condition:

 The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.

2. The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty"

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

1 General Description

1.1 Applicant

Motorola Mobility LLC

222 W, Merchandise Mart Plaza, Chicago IL 60654 USA

1.2 Manufacturer

Motorola Mobility LLC

222 W,Merchandise Mart Plaza, Chicago IL 60654 USA

1.3 Product Feature of Equipment Under Test

Product Feature		
Equipment	Mobile Cellular Phone	
Brand Name	Motorola	
Model Name	XT2363-2, XT2363-1	
FCC ID	IHDT56AQ1	
IMEI Code Conducted: 350735340022877/350735340022885 Conduction: 350735340031993/350735340032009 Radiation: 350735340018859/350735340018867		
HW Version	DVT2	
SW Version	UUG34.30	
EUT Stage	Identical Prototype	

Remark:

- 1. The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.
- 2. The two model name is only for different market segment purpose.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification		
Tx/Rx Frequency Range2402 MHz ~ 2480 MHz		
Number of Channels 40		
Carrier Frequency of Each Channel	40 Channel(37 hopping + 3 advertising channel)	
Maximum Output Bower to Antonno	BLE 1Mbps: 10.43 dBm (0.0110 W)	
Maximum Output Power to Antenna	BLE 2Mbps: 10.65 dBm (0.0116 W)	
99% Occupied Bandwidth	BLE 1Mbps: 1.031 MHz	
	BLE 2Mbps: 2.046 MHz	
Antenna Type / Gain	IFA Antenna with gain -1.5 dBi	
Type of Modulation	Bluetooth LE : GFSK	

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Specification of Accessory

Specification of Accessory				
AC Adapter 1(US)	Brand Name	Motorola (Aohai)	Model Name	MC-201L
AC Adapter 1(EU)	Brand Name	Motorola (Aohai)	Model Name	MC-202L
AC Adapter 1(UK)	Brand Name	Motorola (Aohai)	Model Name	MC-203L
AC Adapter 1(AU)	Brand Name	Motorola (Aohai)	Model Name	MC-205L
AC Adapter 1(AR)	Brand Name	Motorola (Aohai)	Model Name	MC-206L
AC Adapter 1(IN)	Brand Name	Motorola (Aohai)	Model Name	MC-204
AC Adapter 2(US)	Brand Name	Motorola (Salcomp)	Model Name	MC-201L
AC Adapter 2(EU)	Brand Name	Motorola (Salcomp)	Model Name	MC-202L
AC Adapter 2(UK)	Brand Name	Motorola (Salcomp)	Model Name	MC-203L
AC Adapter 2(AU)	Brand Name	Motorola (Salcomp)	Model Name	MC-205L
AC Adapter 2(AR)	Brand Name	Motorola (Salcomp)	Model Name	MC-206L
AC Adapter 2(BR)	Brand Name	Motorola (Salcomp)	Model Name	MC-207L
AC Adapter 2(Chile)	Brand Name	Motorola (Salcomp)	Model Name	MC-209L
AC Adapter 3(BR)	Brand Name	Motorola (Chenyang)	Model Name	MC-207L
AC Adapter 4(BR local)	Brand Name	Motorola (Cliptech)	Model Name	MC-207L
AC Adapter 5(IN local)	Brand Name	Motorola (XIHI)	Model Name	MC-204
Battery 1	Brand Name	Motorola (ATL)	Model Name	QF50
Battery 2	Brand Name	Motorola (SCUD)	Model Name	QF50
Battery 3	Brand Name	Motorola (Sunwoda)	Model Name	QF50
USB Cable 1	Brand Name	Motorola (Saibao)	Model Name	SZN-A026A
USB Cable 2	Brand Name	Motorola (Ju wei)	Model Name	JWUB1606-ZN01H
USB Cable 3	Brand Name	Motorola (Washin)	Model Name	HX-ZN-19

1.7 Testing Location

Sporton International Inc. (Kunshan) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

Test Firm	Sporton International Inc. (Kunshan)			
	No. 1098, Pengxi North Road, Kunshan Economic Development Zone			
Test Site Location	Jiangsu Province 215300 People's Republic of China			
	TEL : +86-512-57900158			
	Sporton Site No.	FCC Designation No.	FCC Test Firm	
Test Site No.	Sporton Sile No.	FCC Designation No.	Registration No.	
Test one NU.	CO01-KS 03CH06-KS TH01-KS	CN1257	314309	

1.8 Test Software

ltem	Site	Manufacturer	Name	Version
1.	TH01-KS	Tonscend	JS1120-3 test system China_210602	3.3.10
2.	03CH06-KS	AUDIX	E3	210616
3.	CO01-KS	AUDIX	E3	6.2009-8-24

1.9 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart C §15.247
- FCC KDB 558074 D01 15.247 Meas Guidance v05r02
- ANSI C63.10-2013

Remark:

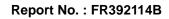
1. All test items were verified and recorded according to the standards and without any deviation during the test.

This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

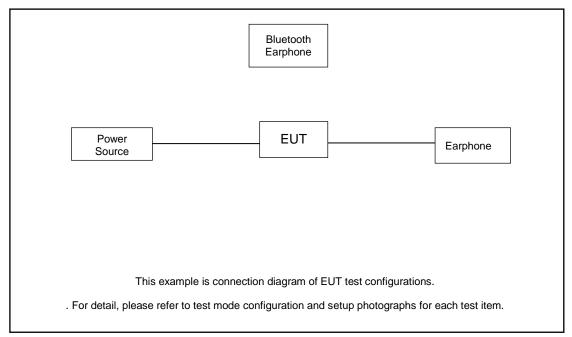
Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	21	2444
	1	2404	22	2446
	2	2406	23	2448
	3	2408	24	2450
	4	2410	25	2452
	5	2412	26	2454
	6	2414	27	2456
	7	2416	28	2458
	8	2418	29	2460
	9	2420	30	2462
2400-2483.5 MHz	10	2422	31	2464
	11	2424	32	2466
	12	2426	33	2468
	13	2428	34	2470
	14	2430	35	2472
	15	2432	36	2474
	16	2434	37	2476
	17	2436	38	2478
	18	2438	39	2480
	19	2440	-	-
	20	2442	-	-

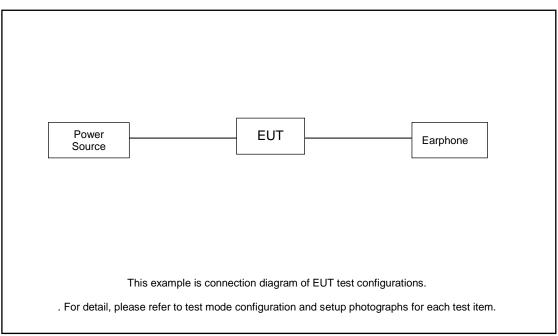


2.2 Test Mode

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Z plane) were recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

The following summary	u tahla is showing	n all taet modae to	n damonetrata in com	pliance with the standard.
The following summar	y lable is showing			pliance with the standard.


	Summary table of Test Cases			
Test Item	Data Rate / Modulation			
Test item	Bluetooth – LE / GFSK			
	Mode 1: Bluetooth Tx CH00_2402 MHz_BLE 1Mbps			
	Mode 2: Bluetooth Tx CH19_2440 MHz_BLE 1Mbps			
Conducted	Mode 3: Bluetooth Tx CH39_2480 MHz_BLE 1Mbps			
TCs	Mode 4: Bluetooth Tx CH00_2402 MHz _BLE 2Mbps			
	Mode 5: Bluetooth Tx CH19_2440 MHz _BLE 2Mbps			
	Mode 6: Bluetooth Tx CH39_2480 MHz _BLE 2Mbps			
	Mode 1: Bluetooth Tx CH00_2402 MHz_BLE 1Mbps			
	Mode 2: Bluetooth Tx CH19_2440 MHz_BLE 1Mbps			
Radiated	Mode 3: Bluetooth Tx CH39_2480 MHz_BLE 1Mbps			
TCs	Mode 4: Bluetooth Tx CH00_2402 MHz _BLE 2Mbps			
	Mode 5: Bluetooth Tx CH19_2440 MHz _BLE 2Mbps			
	Mode 6: Bluetooth Tx CH39_2480 MHz _BLE 2Mbps			
AC	Made 1, CSM 950 Idle + Divetesth Link + W/I AN Link (2,4C) + LISD Cable1 + Adopter1 +			
Conducted	Mode 1: GSM 850 Idle + Bluetooth Link + WLAN Link (2.4G) + USB Cable1 + Adapter1 +			
Emission	Earphone			
Remark:For Ra	diated Test Cases, The tests were performance with Adapter 1, Earphone and USB Cable2			



2.3 Connection Diagram of Test System

AC Conducted Emission:

Radiated Emission:

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord	
1.	LTE Base Station	Anritus	MT8821C	N/A	N/A	Unshielded,1.8m	
2.	Bluetooth Earphone	Lenovo	thinkplus-BH3	N/A	N/A	N/A	
3.	Notebook	Lenovo	G480	QDS-BRCM1050I		shielded cable DC O/P 1.8m , Unshielded AC I/P cable 1.8m	
4.	WLAN AP	D-link	DIR-655	KA21R655B1	N/A	Unshielded,1.8m	
5.	Earphone	N/A	N/A	N/A	N/A	N/A	

2.5 EUT Operation Test Setup

For BLE function, the engineering test program was provided and enabled to make EUT continuous transmit.

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 2.19 dB and 10dB attenuator.

 $Offset(dB) = RF \ cable \ loss(dB) + attenuator \ factor(dB).$ = 2.19 + 10 = 12.19 (dB)

3 Test Result

3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.


3.1.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.1.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 11.8
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1% to 5% of the 99% OBW and the VBW is set to 3 times of the RBW.
- 6. Measure and record the results in the test report.

3.1.4 Test Setup

Spectrum Analyzer

3.1.5 Test Result of 6dB Bandwidth

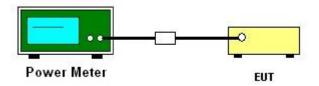
Please refer to Appendix A.

3.1.6 Test Result of 99% Occupied Bandwidth

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6 dBi.


3.2.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.2.3 Test Procedures

- The testing follows the Measurement Procedure of ANSI C63.10-2013 clause 11.9.1.3 PKPM1 Peak power meter or ANSI C63.10-2013 clause 11.9.2.3.1 Method AVGPM method.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power and record the results in the test report.

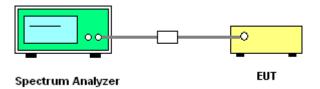
3.2.4 Test Setup

3.2.5 Test Result of Peak Output Power

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.


3.3.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.3.3 Test Procedures

- 1. The testing follows Measurement Procedure of ANSI C63.10-2013 clause 11.10.2 Method PKPSD.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz.
 Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- 7. The Measured power density (dBm)/ 100kHz is a reference level and used as 20dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

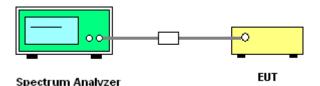
3.3.4 Test Setup

3.3.5 Test Result of Power Spectral Density

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission

All harmonics/spurious must be at least 20 dB down from the highest emission level within the authorized band.


3.4.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.4.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 11.13
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.4.4 Test Setup

3.4.5 Test Result of Conducted Band Edges Plots

Please refer to Appendix A.

3.4.6 Test Result of Conducted Spurious Emission Plots

3.5 Radiated Band Edges and Spurious Emission Measurement

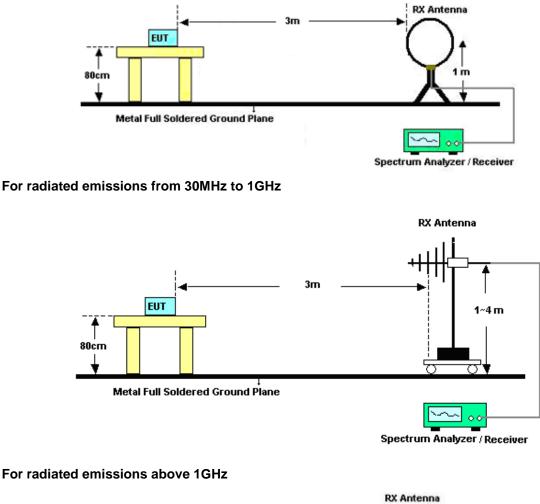
3.5.1 Limit of Radiated Band Edges and Spurious Emission

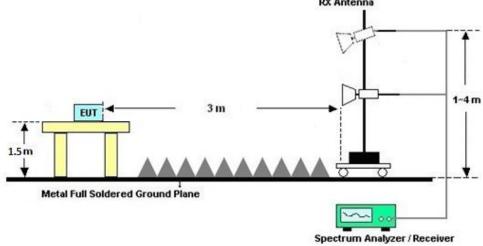
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance		
(MHz)	(microvolts/meter)	(meters)		
0.009 - 0.490	2400/F(kHz)	300		
0.490 – 1.705	24000/F(kHz)	30		
1.705 – 30.0	30	30		
30 – 88	100	3		
88 – 216	150	3		
216 - 960	200	3		
Above 960	500	3		

3.5.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.


3.5.3 Test Procedures


- 1. The testing follows ANSI C63.10-2013 clause 11.11 & 11.12
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than peak limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 8. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for $f \ge 1$ GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

3.5.4 Test Setup

For radiated emissions below 30MHz

3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C.

3.5.7 Duty Cycle

Please refer to Appendix D.

3.5.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic or 40GHz, whichever is lower)

3.6 AC Conducted Emission Measurement

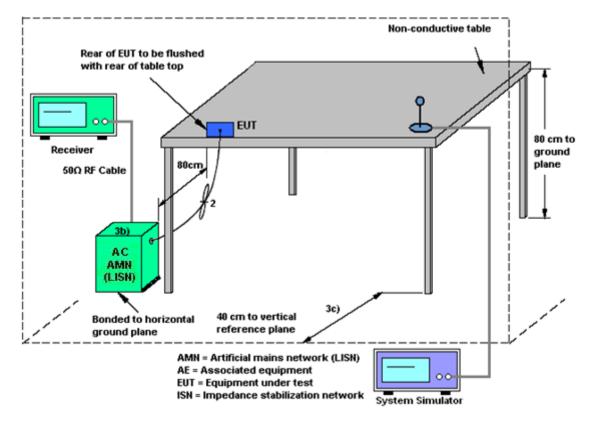
3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted limit (dBµV)			
Frequency of emission (MHZ)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

*Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments


The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.6.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.6.4 Test Setup

3.6.5 Test Result of AC Conducted Emission

3.7 Antenna Requirements

3.7.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
EMI Test Receiver	Keysight	N9038A	MY564000 04	3Hz~8.5GHz;M ax 30dBm	Oct. 13, 2022	Oct. 07, 2023~ Oct. 09, 2023	Oct. 12, 2023	Radiation (03CH06-KS)
EXA Spectrum Analyzer	Keysight	N9010B	MY602421 26	10Hz-44GHz	Oct. 13, 2022	Oct. 07, 2023~ Oct. 09, 2023	Oct. 12, 2023	Radiation (03CH06-KS)
Loop Antenna	R&S	HFH2-Z2	100321	9kHz~30MHz	Oct. 16, 2022	Oct. 07, 2023~ Oct. 09, 2023	Oct. 15, 2023	Radiation (03CH06-KS)
Bilog Antenna	TeseQ	CBL6111D	49921	30MHz-1GHz	Apr. 09, 2023	Oct. 07, 2023~ Oct. 09, 2023	Apr. 08, 2024	Radiation (03CH06-KS)
Double Ridge Horn Antenna	ETS-Lindgren	3117	00218652	1GHz~18GHz	Apr. 06, 2023	Oct. 07, 2023~ Oct. 09, 2023	Apr. 05, 2024	Radiation (03CH06-KS)
SHF-EHF Horn	Com-power	AH-840	101093	18GHz~40GHz	Jan. 08, 2023	Oct. 07, 2023~ Oct. 09, 2023	Jan. 07, 2024	Radiation (03CH06-KS)
Amplifier	SONOMA	310N	380827	9KHz ~1GHZ	Jul. 06, 2023	Oct. 07, 2023~ Oct. 09, 2023	Jul. 05, 2024	Radiation (03CH06-KS)
Amplifier	MITEQ	EM18G40GG A	060728	18~40GHz	Jan. 05, 2023	Oct. 07, 2023~ Oct. 09, 2023	Jan. 04, 2024	Radiation (03CH06-KS)
high gain Amplifier	MITEQ	AMF-7D-0010 1800-30-10P	2082395	1Ghz-18Ghz	Jan. 05, 2023	Oct. 07, 2023~ Oct. 09, 2023	Jan. 04, 2024	Radiation (03CH06-KS)
Amplifier	Keysight	83017A	MY532703 19	500MHz~26.5G Hz	Oct. 12, 2022	Oct. 07, 2023~ Oct. 09, 2023	Oct. 11, 2023	Radiation (03CH06-KS)
AC Power Source	Chroma	61601	F1040900 04	N/A	NCR	Oct. 07, 2023~ Oct. 09, 2023	NCR	Radiation (03CH06-KS)
Turn Table	ChamPro	EM 1000-T	060762-T	0~360 degree	NCR	Oct. 07, 2023~ Oct. 09, 2023	NCR	Radiation (03CH06-KS)
Antenna Mast	ChamPro	EM 1000-A	060762-A	1 m~4 m	NCR	Oct. 07, 2023~ Oct. 09, 2023	NCR	Radiation (03CH06-KS)
Spectrum Analyzer	R&S	FSV40	101040	10Hz~40GHz	Oct. 12, 2022	Oct. 08, 2023	Oct. 11, 2023	Conducted (TH01-KS)
Pulse Power Senor	Anritsu	MA2411B	0917070	300MHz~40GH z	Jan. 05, 2023	Oct. 08, 2023	Jan. 04, 2024	Conducted (TH01-KS)
Power Meter	Anritsu	ML2495A	1005002	50MHz Bandwidth	Jan. 05, 2023	Oct. 08, 2023	Jan. 04, 2024	Conducted (TH01-KS)
EMI Receiver	R&S	ESCI7	100768	9kHz~7GHz;	May 16, 2023	Oct. 23, 2023	May 15, 2024	Conduction (CO01-KS)
AC LISN (for auxiliary equipment)	MessTec	AN3016	060103	9kHz~30MHz	Oct. 11, 2023	Oct. 23, 2023	Oct. 10, 2024	Conduction (CO01-KS)
AC LISN	MessTec	AN3016	060105	9kHz~30MHz	May 16, 2023	Oct. 23, 2023	May 15, 2024	Conduction (CO01-KS)
AC Power Source	Chroma	61602	ABP00000 0811	AC 0V~300V, 45Hz~1000Hz	Oct. 11, 2023	Oct. 23, 2023	Oct. 10, 2024	Conduction (CO01-KS)

NCR: No Calibration Required

5 Measurement Uncertainty

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Uncertainty of Conducted Measurement

Test Item	Uncertainty
Conducted Power	±0.46 dB
Conducted Emissions	±2.26 dB
Occupied Channel Bandwidth	±0.1 %
Conducted Power Spectral Density	±0.88 dB

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.94 dB
of 95% (U = 2Uc(y))	2.94 UB

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	6.26 dB	
of 95% (U = 2Uc(y))	0.20 08	

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	5.02 dB
0195% (0 = 200(y))	

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

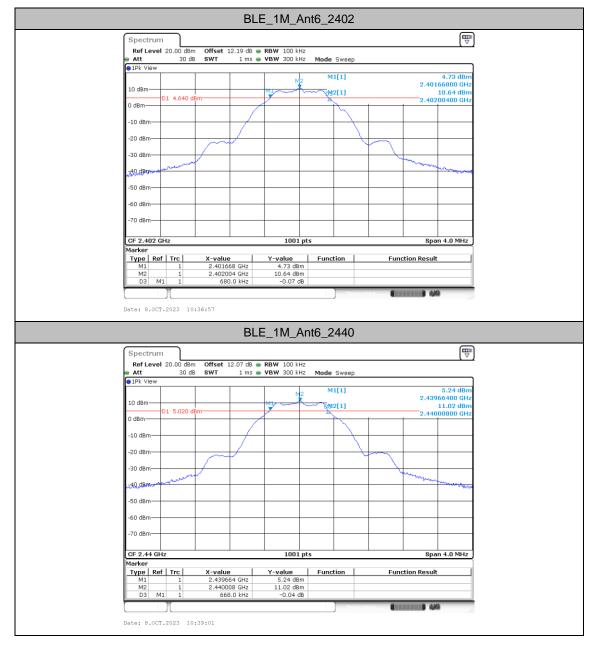
Measuring Uncertainty for a Level of Confidence	5.26 dB
of 95% (U = 2Uc(y))	5.20 UB

----- THE END ------

Appendix A. Conducted Test Results

Ambient Condition: <u>25</u> ℃, <u>45</u> %RH

 Test Date:
 2023.10.8
 Test Engineer:
 Gene Wang


DTS Bandwidth

Test Result

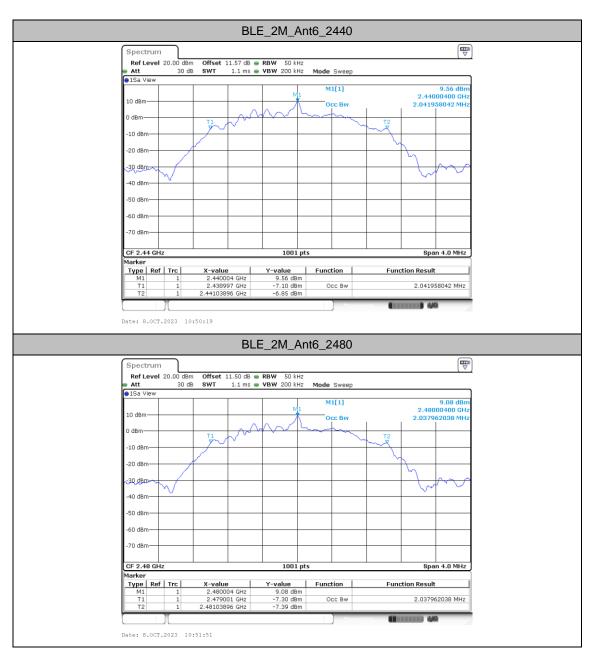
TestMode	Antenna	a Freq(MHz)	DTS BW	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
Testimode	Antonna		[MHz]				
BLE_1M		2402	0.68	2401.67	2402.35	0.5	PASS
	Ant6	2440	0.67	2439.66	2440.33	0.5	PASS
		2480	0.67	2479.66	2480.33	0.5	PASS
		2402	1.14	2401.44	2402.58	0.5	PASS
BLE_2M	Ant6	2440	1.14	2439.44	2440.58	0.5	PASS
		2480	1.14	2479.44	2480.58	0.5	PASS

Test Graphs

Occupied Channel Bandwidth

Test Result

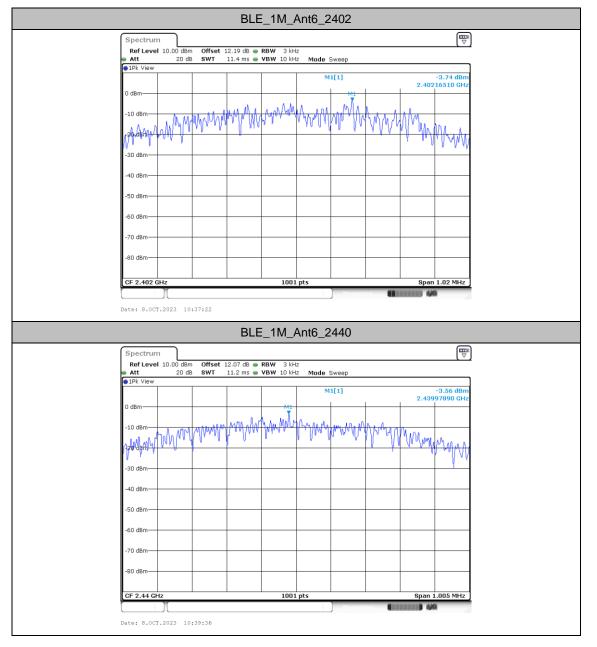
TestMode	Antenna	Freq(MHz)	OCB [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
	Ant6	2402	1.031	2401.4965	2402.5275		
BLE_1M		2440	1.023	2439.4965	2440.5195		
		2480	1.023	2479.4965	2480.5195		
	Ant6	2402	2.046	2400.9970	2403.0430		
BLE_2M		2440	2.042	2438.9970	2441.0390		
		2480	2.038	2479.0010	2481.0390		


Test Graphs

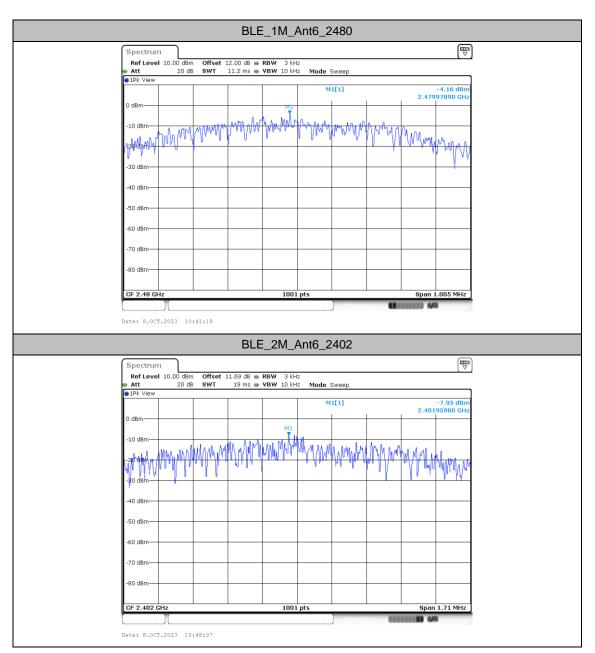
Maximum conducted output power

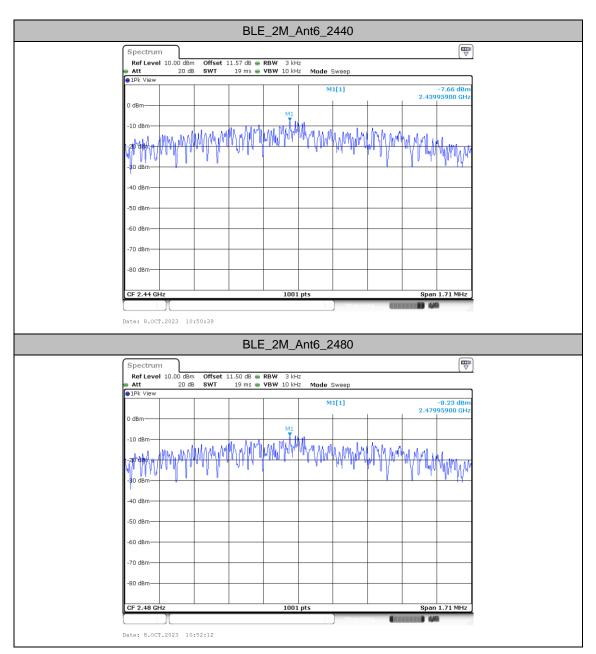
Test Result Peak

TestMode	Antenna	CH.	Peak Conducted Power (dBm)	Conducted Power Limit	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit	Pass/Fail
		0	10.10	30.00	-1.5	8.60	36.00	Pass
BLE1M	Ant6	39	10.43	30.00	-1.5	8.93	36.00	Pass
		78	10.15	30.00	-1.5	8.65	36.00	Pass
		0	10.46	30.00	-1.5	8.96	36.00	Pass
BLE2M	Ant6	39	10.65	30.00	-1.5	9.15	36.00	Pass
		78	10.28	30.00	-1.5	8.78	36.00	Pass


Maximum power spectral density

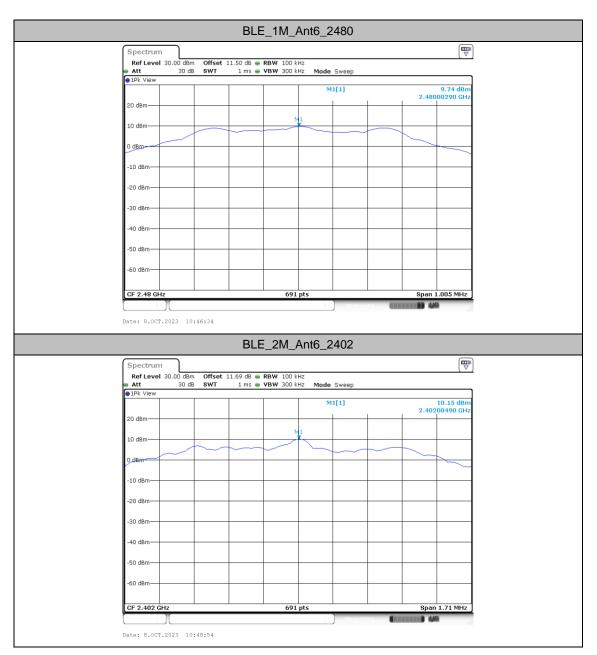
Test Result

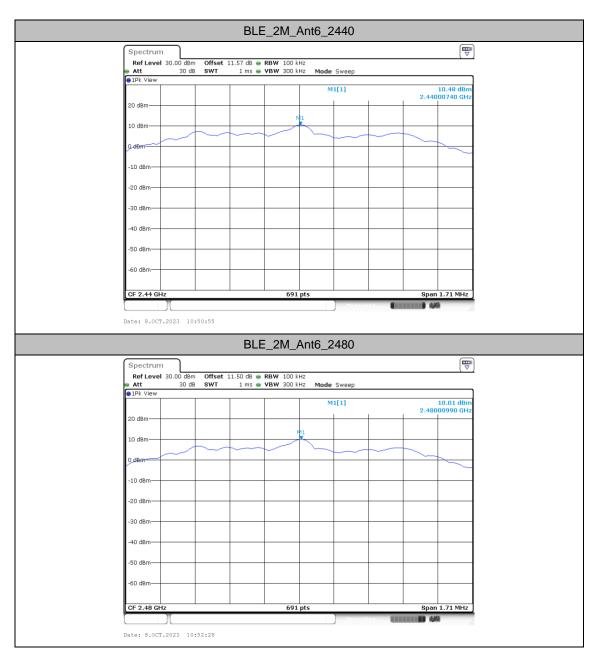

TestMode	Antenna	Freq(MHz)	Result[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
BLE_1M	Ant6	2402	-3.74	≤8.00	PASS
		2440	-3.56	≤8.00	PASS
		2480	-4.16	≤8.00	PASS
BLE_2M	Ant6	2402	-7.95	≤8.00	PASS
		2440	-7.66	≤8.00	PASS
		2480	-8.23	≤8.00	PASS

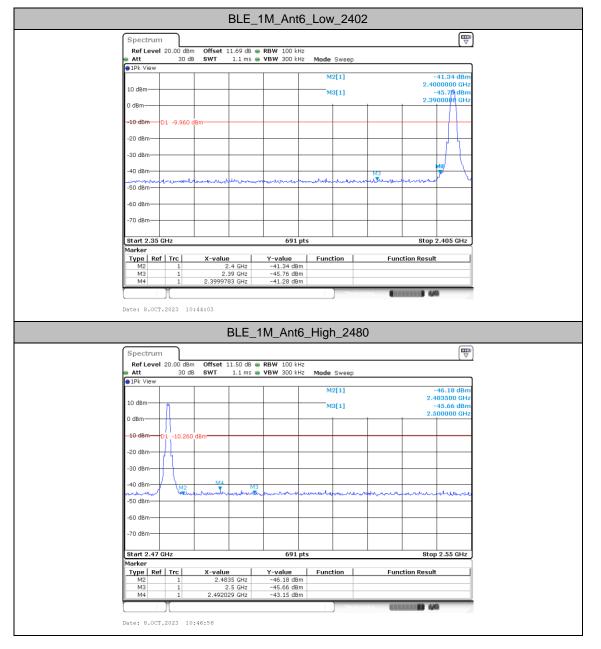

Test Graphs


Reference level measurement

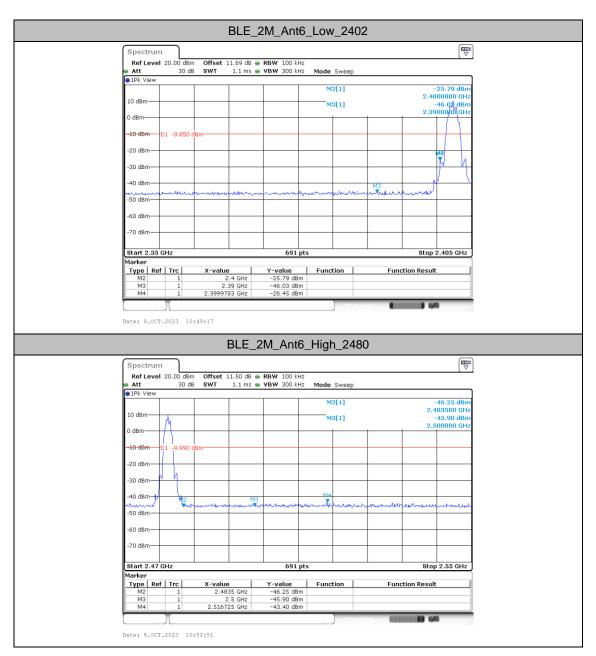
Test Result


TestMode	Antenna	Freq(MHz)	Max.Point[MHz]	Result[dBm/100KHz]
		2402	2402.00	10.04
BLE_1M	Ant6	2440	2440.00	10.18
		2480	2480.00	9.74
BLE_2M Ant		2402	2402.00	10.15
	Ant6	2440	2440.01	10.48
		2480	2480.01	10.01

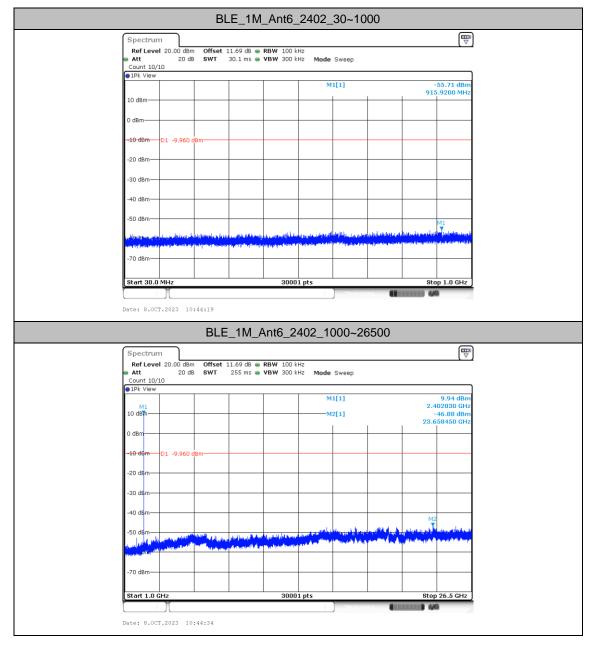

Test Graphs


Band edge measurements

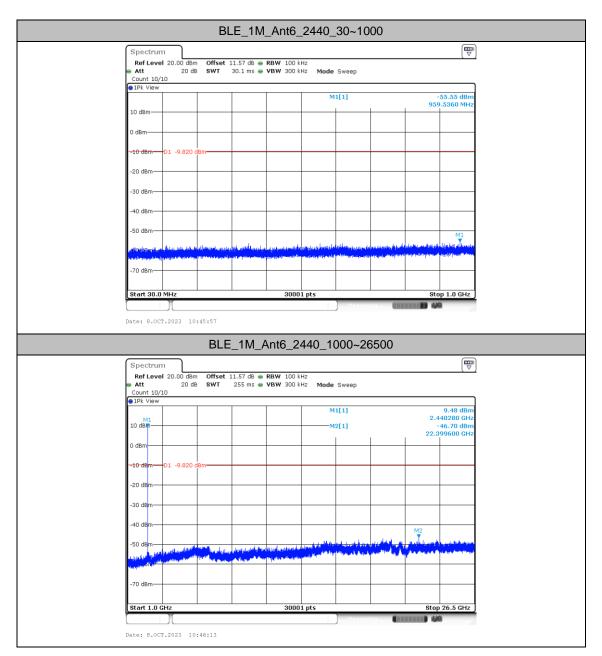
Test Result

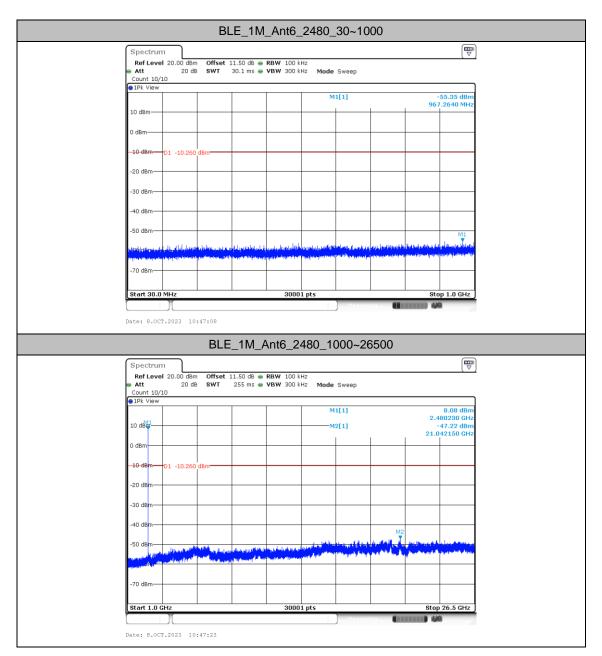

TestMode Antenna	Antonno	ChName	Freq	RefLevel	Result	Limit	Verdict
	Antenna	Chiname	(MHz)	[dBm/100KHz]	[dBm/100KHz]	[dBm/100KHz]	verdict
BLE 1M	Ant6	Low	2402	10.04	-41.28	≤-9.96	PASS
	High	2480	9.74	-43.15	≤-10.26	PASS	
		Low	2402	10.15	-26.45	≤-9.85	PASS
BLE_2M	Ant6	High	2480	10.01	-43.4	≤-9.99	PASS

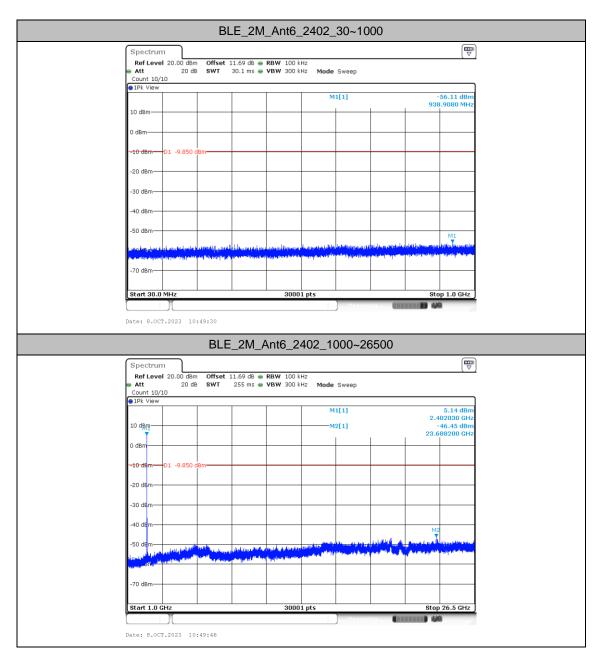
Test Graphs

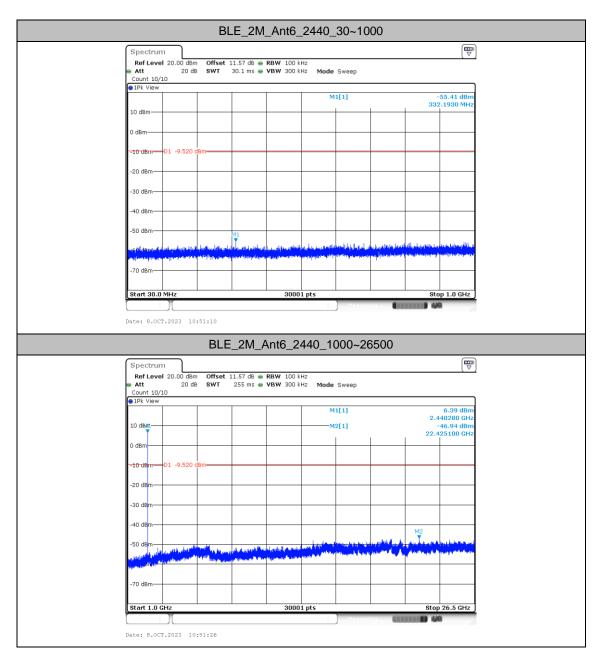

Conducted Spurious Emission

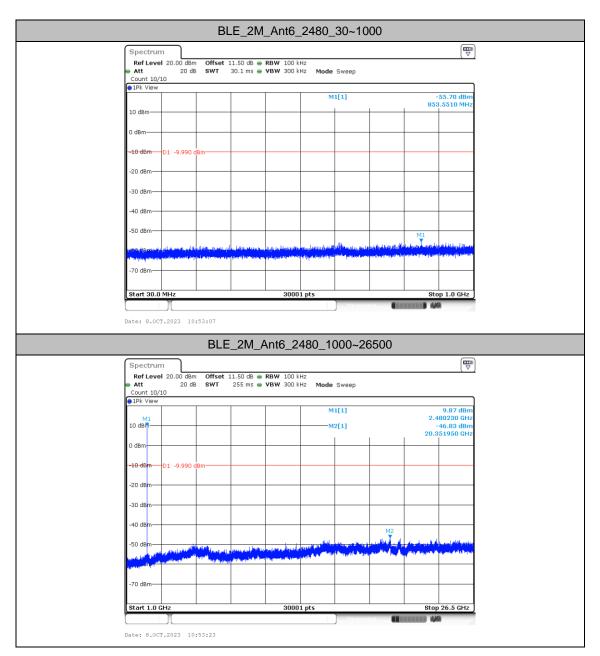
Test Result

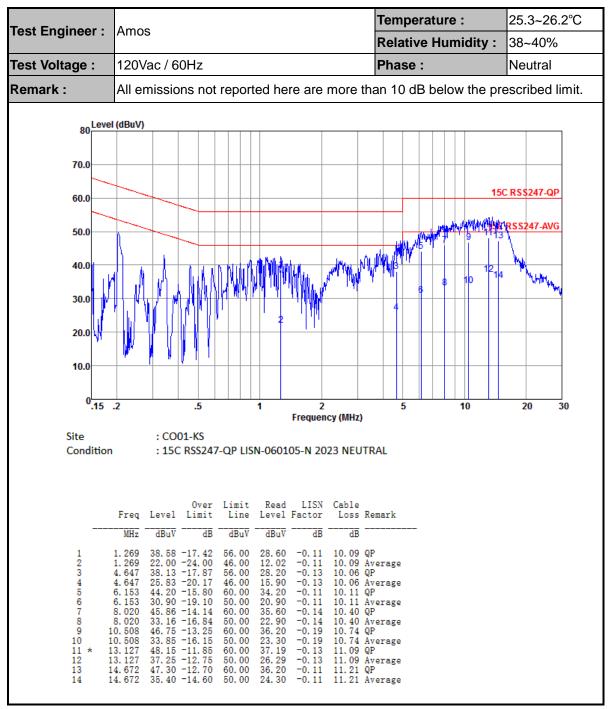

TestMode	Antenna		FreqRange	RefLevel	Result	Limit	Vardiat
Testivioue Antenna		Freq(MHz)	[MHz]	[dBm/100KHz]	[dBm/100KHz]	[dBm/100KHz]	Verdict
		2402	30~1000	10.04	-55.71	≤-9.96	PASS
		2402	1000~26500	10.04	-46.88	≤-9.96	PASS
	Ante	2440	30~1000	10.18	-55.55	≤-9.82	PASS
BLE_1M	Ant6	2440	1000~26500	10.18	-46.7	≤-9.82	PASS
		2480	30~1000	9.74	-55.35	≤-10.26	PASS
		2400	1000~26500	9.74	-47.22	≤-10.26	PASS
		2402	30~1000	10.15	-56.11	≤-9.85	PASS
		2402	1000~26500	10.15	-46.45	≤-9.85	PASS
BLE 2M	Ant6	2440	30~1000	10.48	-55.41	≤-9.52	PASS
	Anto	2440	1000~26500	10.48	-46.94	≤-9.52	PASS
		2480	30~1000	10.01	-55.7	≤-9.99	PASS
		2400	1000~26500	10.01	-46.83	≤-9.99	PASS


Test Graphs



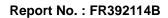






Appendix B. AC Conducted Emission Test Results

Toot Engineer	4.200	Temperature :	25.3~26.2°C	
Test Engineer :	Amos	Relative Humidity :	38~40%	
Test Voltage :	120Vac / 60Hz	Phase :	Line	
Remark :	All emissions not reported here are more that	an 10 dB below the pre	escribed limit.	
80Level	(dBuV)			
70.0				
60.0		150	RSS247-QP	
50.0		HALL AND A THE A	RSS247-AVG	
40.0	tu n ^a tilla va bilmantu attalahan katatan ava ^{nas} "Ma ^{nta}	8 10 ¹² 14	The second se	
30.0		6 4		
20.0				
10.0				
0 15		5 10	20 30	
Site	Frequency (MHz) : CO01-KS			
Condition	: 15C RSS247-QP LISN-060105-L 2023 LINE			
	Over Limit Read LISN Cable Freq Level Limit Line Level Factor Loss Ren	mark		
	MHz dBuV dB dBuV dBuV dB dB			
2 3 4 5 6 7	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	erage		
9 * 1 10 1 11 1 12 1	0.072 49.40 -10.60 60.00 38.90 -0.16 10.66 QP 0.072 36.10 -13.90 50.00 25.60 -0.16 10.66 Av. 2.784 49.02 -10.98 60.00 38.10 -0.14 11.06 Av. 2.784 37.02 -12.98 50.00 26.10 -0.14 11.06 Av. 2.784 37.02 -12.98 50.00 26.10 -0.14 11.06 Av. 4.907 47.31 -12.69 60.00 36.20 -0.12 11.23 Av. 4.907 36.01 -13.99 50.00 24.90 -0.12 11.23 Av.	erage		



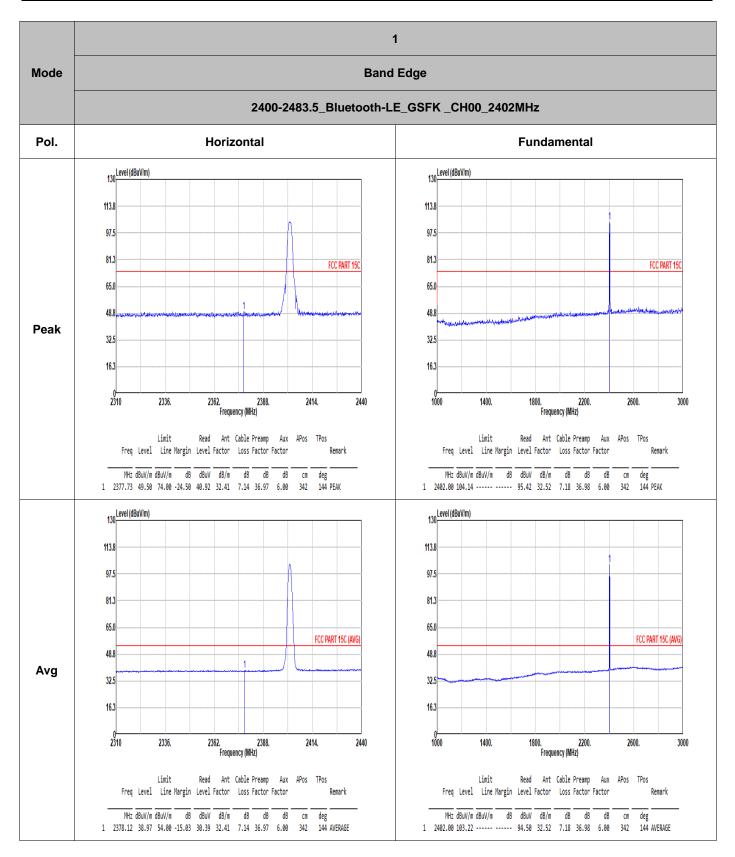
Note:

1. Level(dB μ V) = Read Level(dB μ V) + LISN Factor(dB) + Cable Loss(dB)

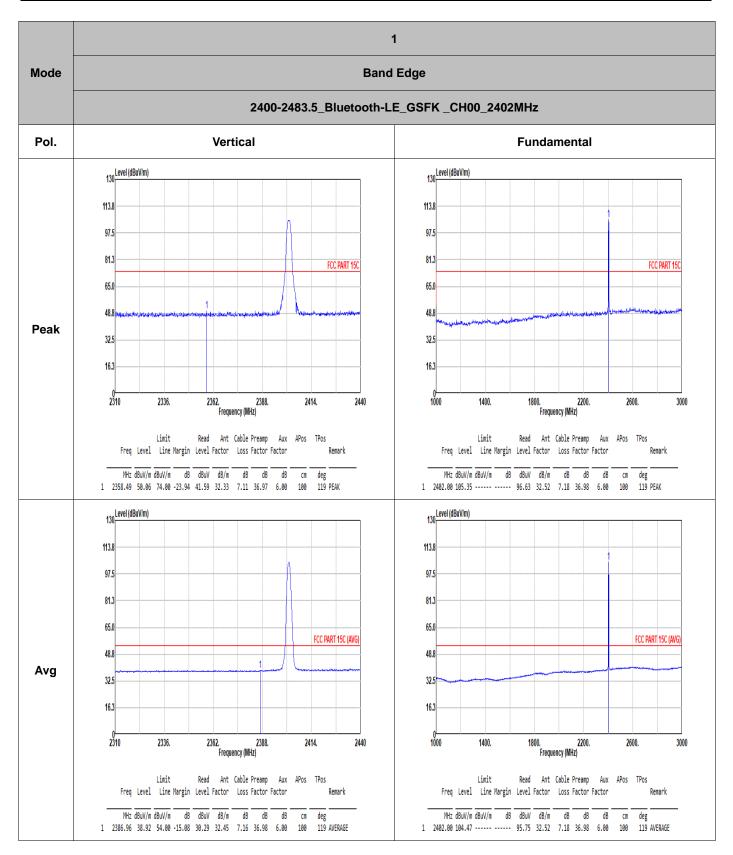
2. Over Limit(dB) = Level(dB μ V) – Limit Line(dB μ V)

Appendix C. Radiated Spurious Emission Test Data

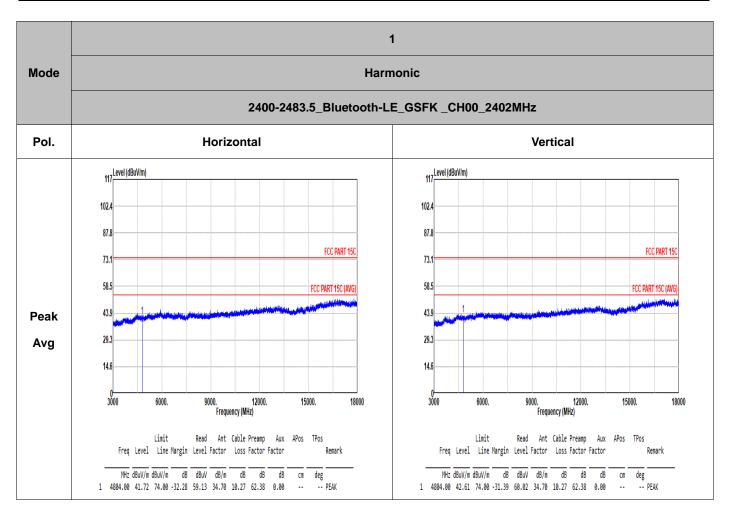
Test Engineer :	Jiankang Jiang	Relative Humidity :	41~42%
		Temperature :	22~23°C

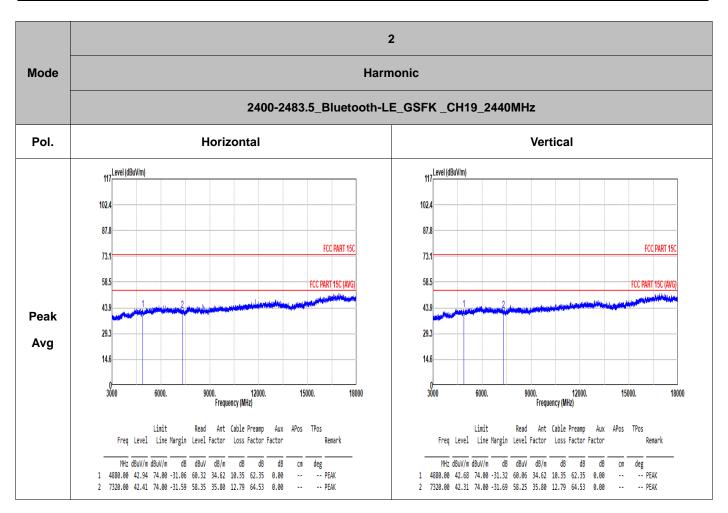

Radiated Spurious Emission Test Modes

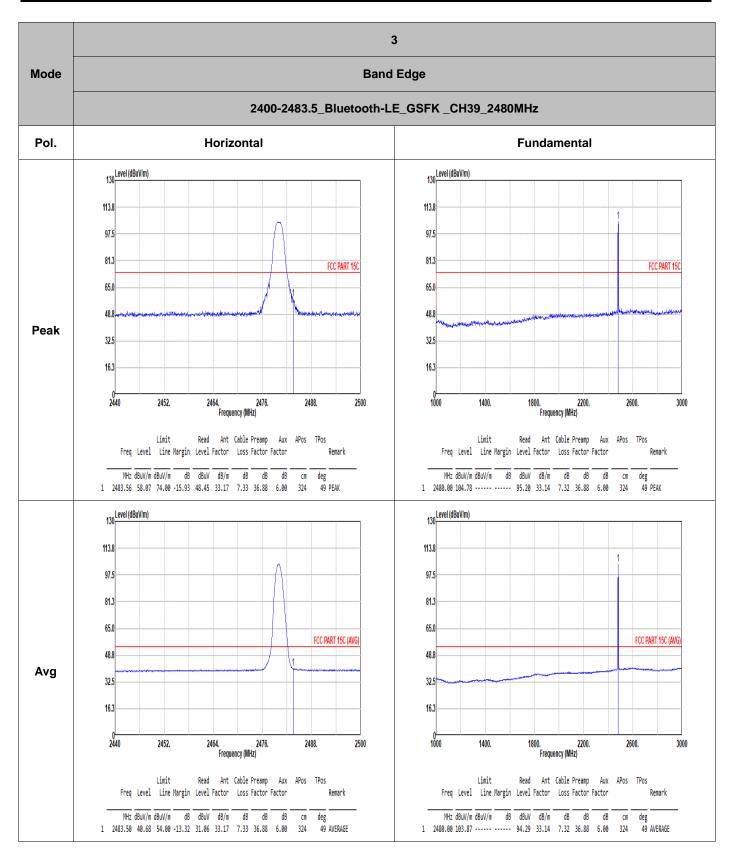
Mode	Band (MHz)	Antenna	Modulation	Channel	Frequency	Data Rate	RU	Remark
Mode 1	2400-2483.5	6	Bluetooth-LE_GSFK	00	2402	1Mbps	-	-
Mode 2	2400-2483.5	6	Bluetooth-LE_GSFK	19	2440	1Mbps	-	-
Mode 3	2400-2483.5	6	Bluetooth-LE_GSFK	39	2480	1Mbps	-	-
Mode 4	2400-2483.5	6	Bluetooth-LE_GSFK	00	2402	2Mbps	-	-
Mode 5	2400-2483.5	6	Bluetooth-LE_GSFK	19	2440	2Mbps	-	-
Mode 6	2400-2483.5	6	Bluetooth-LE_GSFK	39	2480	2Mbps	-	-

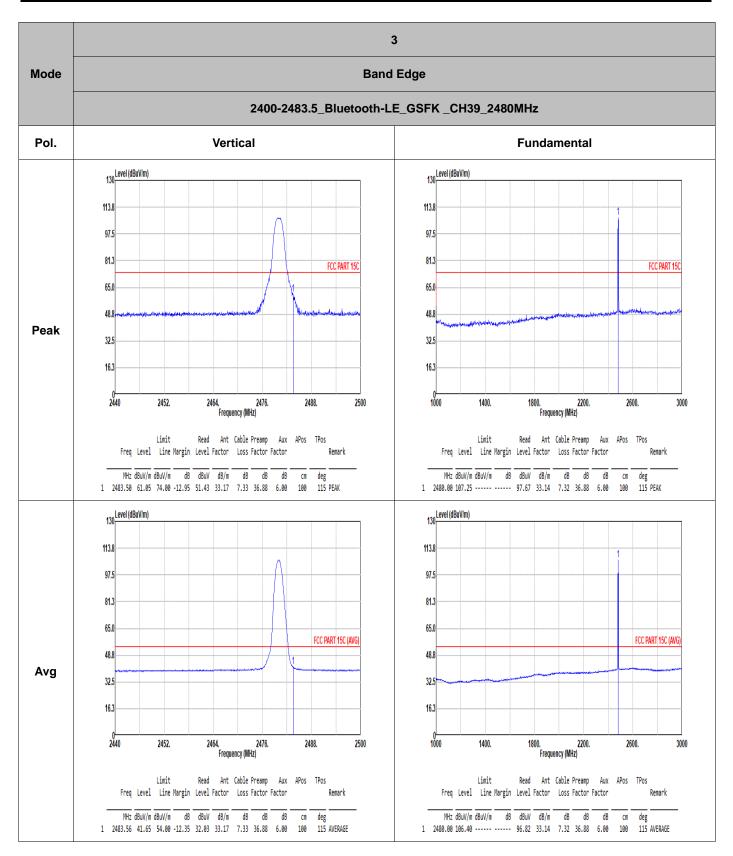

Summary of each worse mode

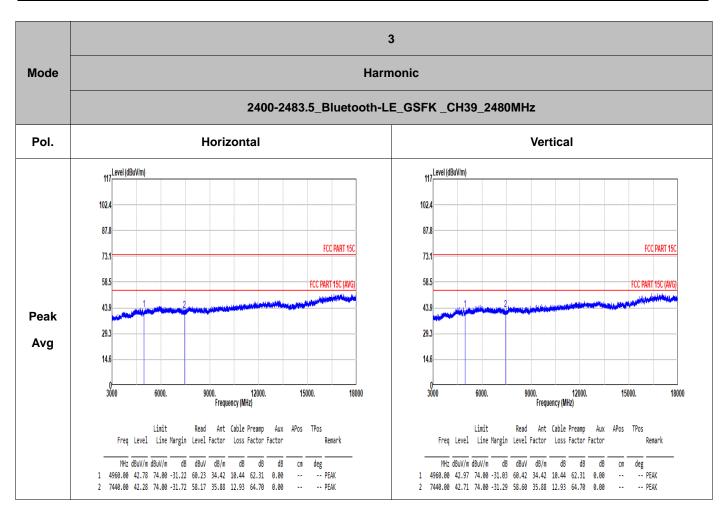
Mode	Modulation	Ch.	Freq. (MHz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pol.	Peak Avg.	Result	Remark
1	Bluetooth-LE_GSFK	00	2378.12	38.97	54.00	-15.03	н	AVERAGE	Pass	Band Edge
1	Bluetooth-LE_GSFK	00	4804.00	42.61	74.00	-31.39	V	PEAK	Pass	Harmonic
2	Bluetooth-LE_GSFK	19	-	-	-	-	-	-	-	Band Edge
2	Bluetooth-LE_GSFK	19	4880.00	42.94	74.00	-31.06	Н	PEAK	Pass	Harmonic
3	Bluetooth-LE_GSFK	39	2483.56	41.65	54.00	-12.35	V	AVERAGE	Pass	Band Edge
3	Bluetooth-LE_GSFK	39	4960.00	42.97	74.00	-31.03	V	PEAK	Pass	Harmonic
4	Bluetooth-LE_GSFK	00	2384.88	39.62	54.00	-14.38	V	AVERAGE	Pass	Band Edge
4	Bluetooth-LE_GSFK	00	4804.00	42.64	74.00	-31.36	Н	PEAK	Pass	Harmonic
5	Bluetooth-LE_GSFK	19	-	-	-	-	-	-	-	Band Edge
5	Bluetooth-LE_GSFK	19	7320.00	42.98	74.00	-31.02	V	PEAK	Pass	Harmonic
6	Bluetooth-LE_GSFK	39	2483.50	48.93	54.00	-5.07	V	AVERAGE	Pass	Band Edge
6	Bluetooth-LE_GSFK	39	4960.00	43.57	74.00	-30.43	V	PEAK	Pass	Harmonic
6	Bluetooth-LE_GSFK	39	31.94	33.76	40.00	-6.24	V	PEAK	Pass	LF

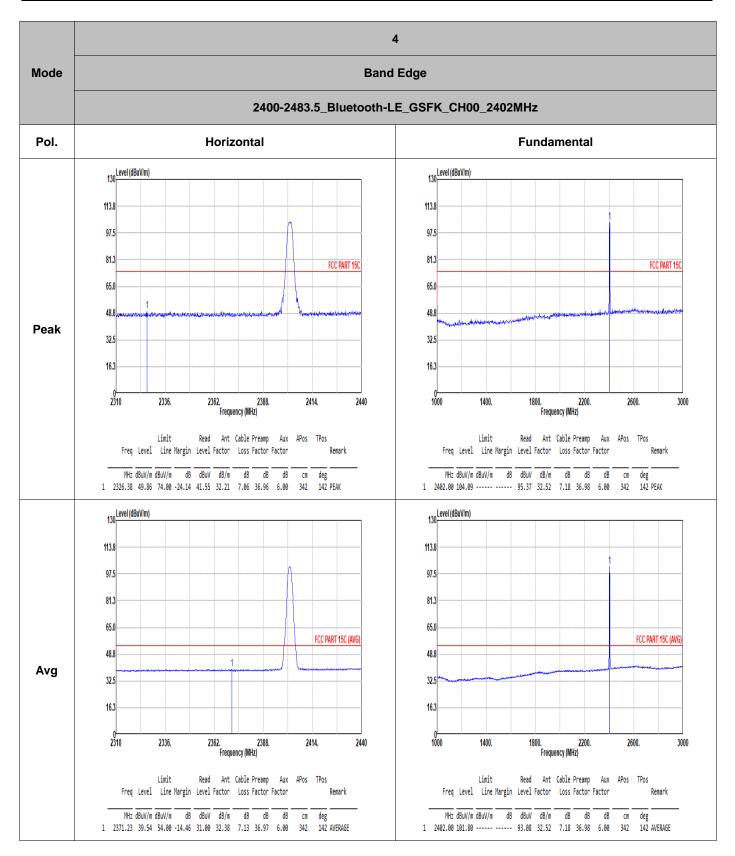


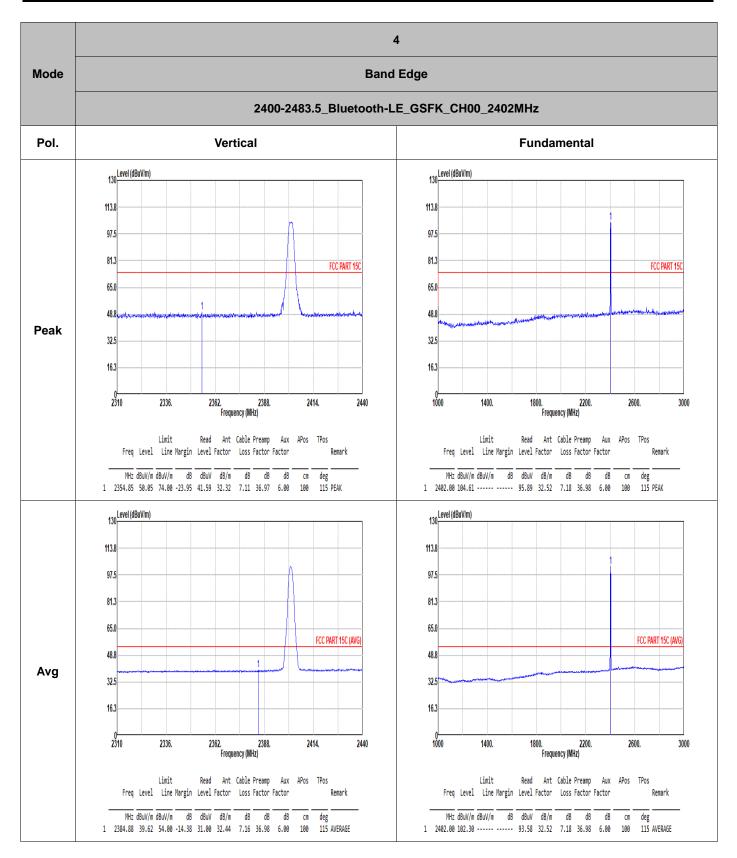


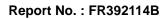


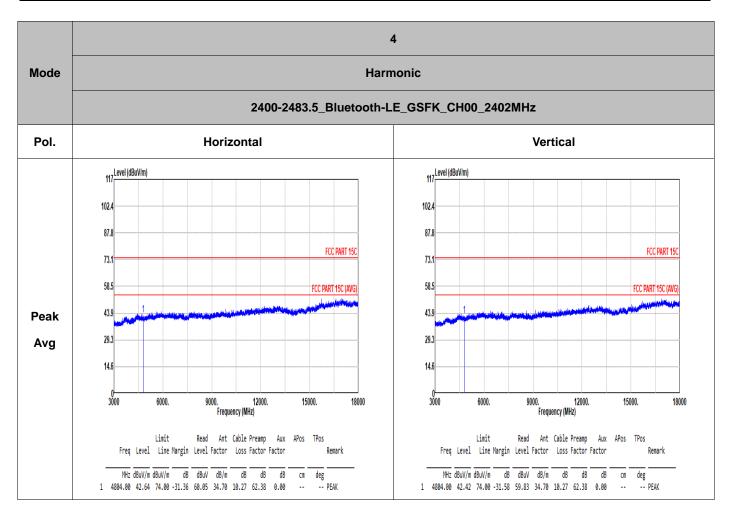


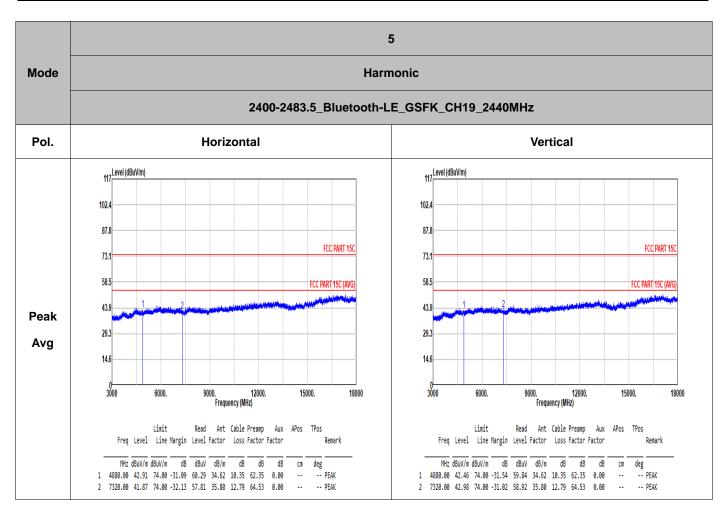


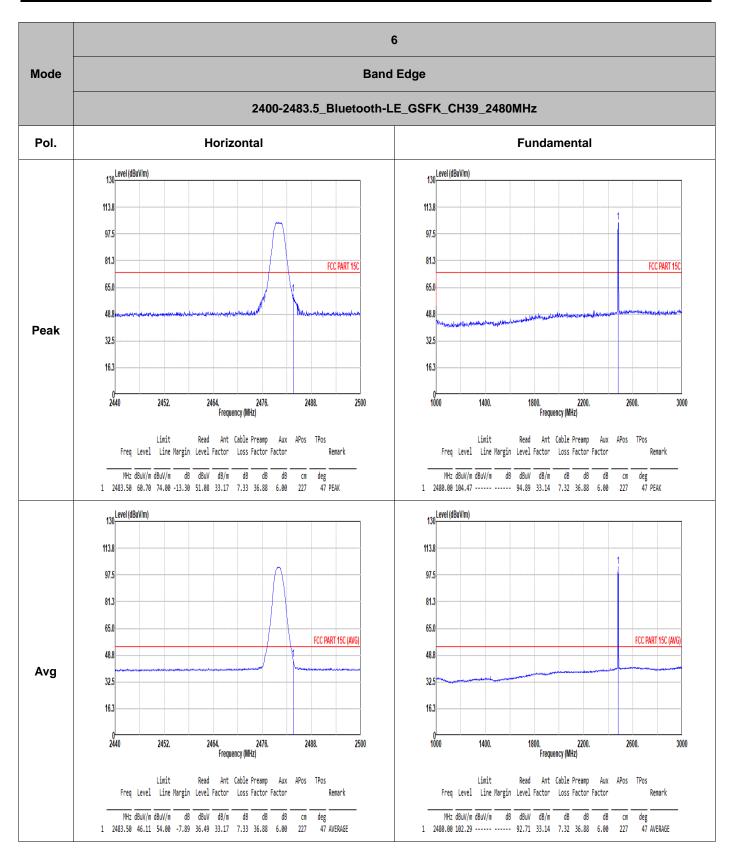


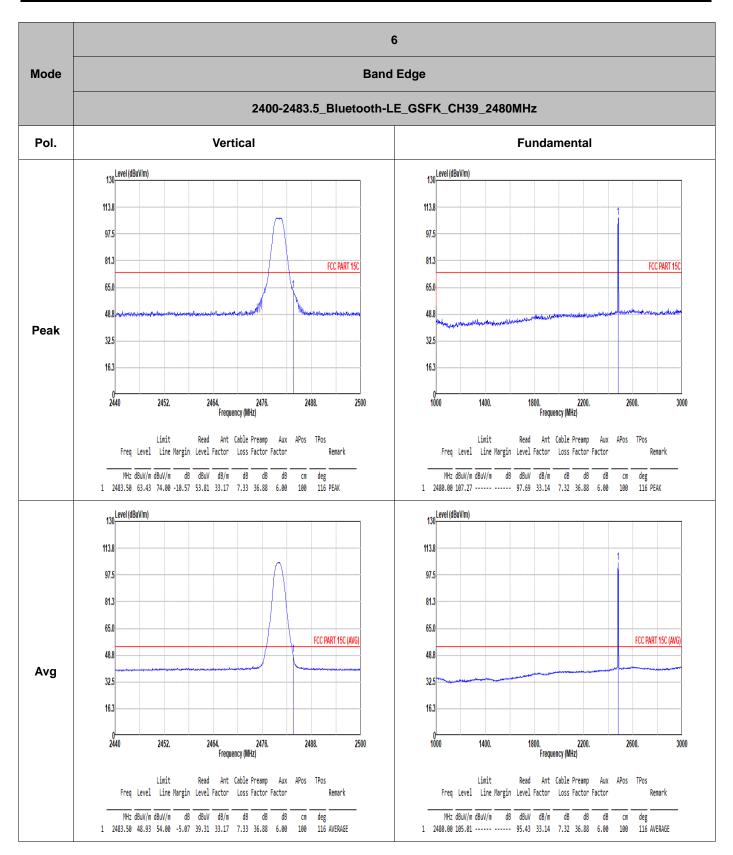


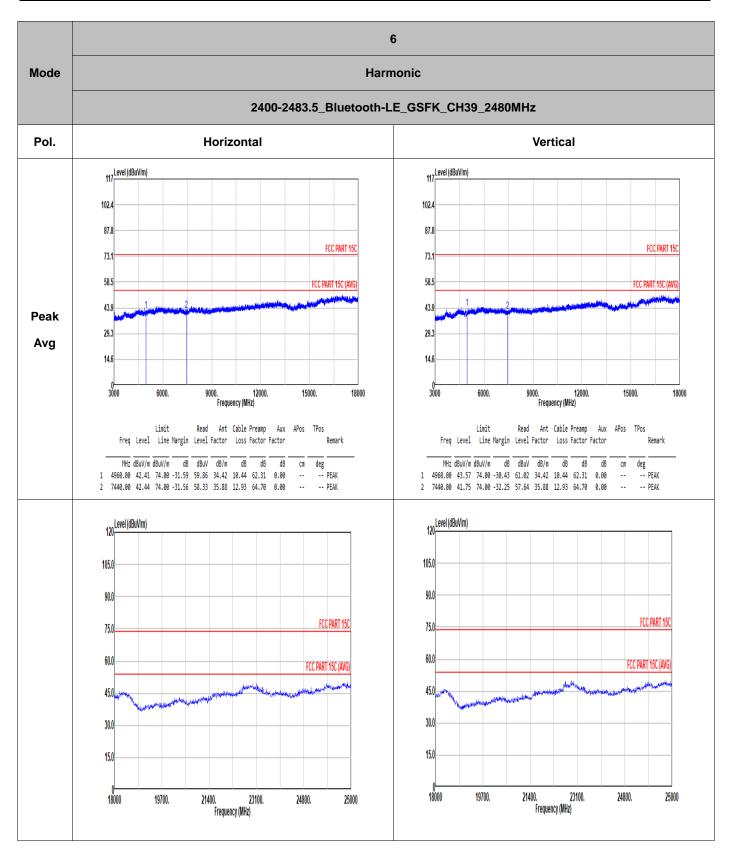


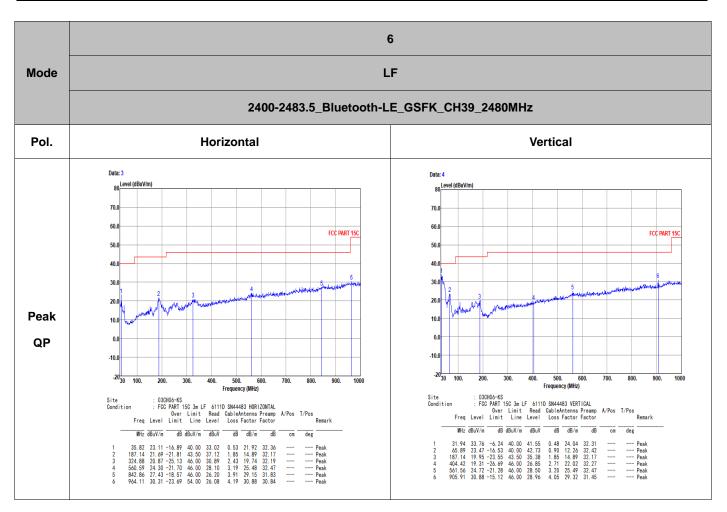


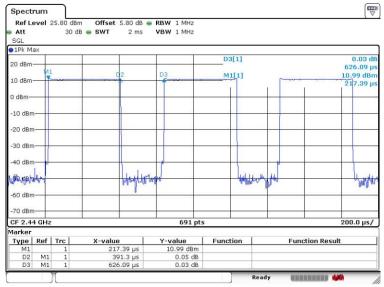




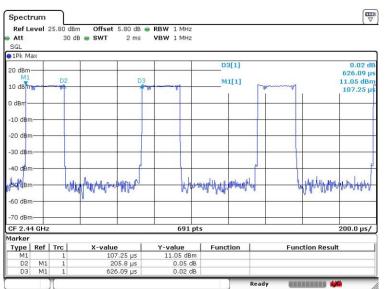








Appendix D. Duty Cycle Plots


Band	Duty Cycle(%)	T(ms)	1/T(kHz)	VBW Setting
Bluetooth LE 1Mbps	62.50	0.391	2.556	2.7KHz
Bluetooth LE 2Mbps	32.87	0.206	4.860	5.1KHz

Bluetooth LE 1Mbps

Date: 7.0CT.2023 09:55:27

Bluetooth LE 2Mbps

Date: 7.0CT.2023 09:58:05