

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, Chi Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Certificate No: Z21-60551

CALIBRATION CERTIFICATE

Sporton

Object

D835V2 - SN: 4d162

e

Calibration Procedure(s)

Client

FF-Z11-003-01 Calibration Procedures for dipole validation kits

Calibration date:

December 17, 2021

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106277	24-Sep-21 (CTTL, No.J21X08326)	Sep-22
Power sensor NRP8S	104291	24-Sep-21 (CTTL, No.J21X08326)	Sep-22
Reference Probe EX3DV4	SN 7307	26-May-21(SPEAG,No.EX3-7307_May21)	May-22
DAE4	SN 1556	15-Jan-21(SPEAG,No.DAE4-1556_Jan21)	Jan-22
Secondary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	01-Feb-21 (CTTL, No.J21X00593)	Jan-22
NetworkAnalyzer E5071C	MY46110673	14-Jan-21 (CTTL, No.J21X00232)	Jan-22

0.17	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	23
Reviewed by:	Lin Hao	SAR Test Engineer	林戏
Approved by:	Qi Dianyuan	SAR Project Leader	dia
This settle is		Issued:	December 24, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z21-60551

Page 1 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

In Collaboration with

CALIBRATION LABORATORY

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z21-60551

Page 2 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

p

e

а

a

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.8 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.44 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.64 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.58 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.26 W/kg ± 18.7 % (k=2)

Page 3 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.7Ω- 2.20jΩ	
Return Loss	- 27.7dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	
Electrical Delay (one direction)	1.346 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by		SPEAG
icate No: Z21-60551	Page 4 of 6	

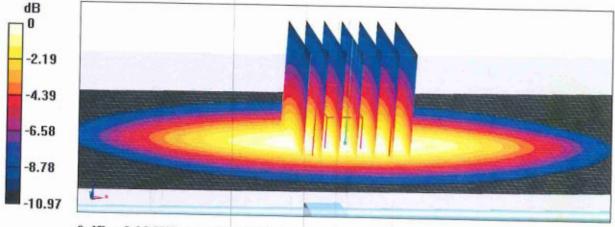
Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d162 Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.91$ S/m; $\epsilon_r = 40.77$; $\rho = 1000$ kg/m³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration:

e

- Probe: EX3DV4 SN7307; ConvF(10.13, 10.13, 10.13) @ 835 MHz; Calibrated: 2021-05-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2021-01-15
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 59.81 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.70 W/kg

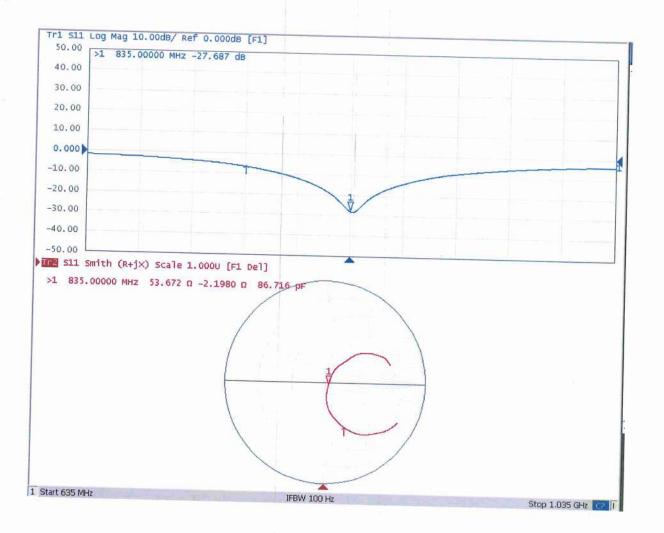
SAR(1 g) = 2.44 W/kg; SAR(10 g) = 1.58 W/kg

Smallest distance from peaks to all points 3 dB below = 20.5 mm

Ratio of SAR at M2 to SAR at M1 = 65.7%

Maximum value of SAR (measured) = 3.28 W/kg

0 dB = 3.28 W/kg = 5.16 dBW/kg


Page 5 of 6

Date: 2021-12-17

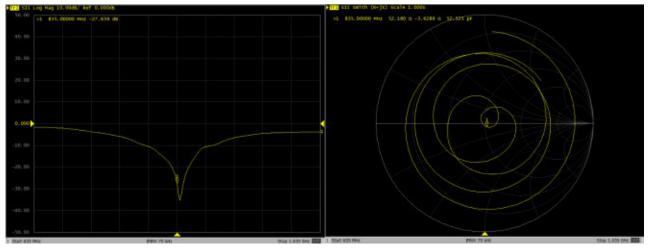
Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2079E-mail: cttl@chinattl.comFax: +86-10-62304633-2504http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

D835V2, Serial No. 4d162 Extended Dipole Calibrations

Referring to KDB 865664 D01, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

D835V2 – serial no. 4d162						
		835 Head				
Date of	Return-Loss	Return-Loss Delta Real Impedance Delta Imaginary Impedance Delta				Delta
Measurement	(dB)	(%)	(ohm)	(ohm)	(ohm)	(ohm)
2021.12.17	-27.7 53.7 -2.2					
2022.12.16	-27.7	0.0	52.2	1.5	-3.6	1.4


<Justification of the extended calibration>

The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

Dipole Verification Data> 835V2, serial no. 4d162

835MHz - Head----2022.12.16

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, Chi Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Certificate No: Z21-60553

中国认可

国际石认

CALIBRATION

CNAS L0570

CALIBRATION CERTIFICATE

Sporton

Object

D1900V2 - SN: 5d182

Calibration Procedure(s)

Client

FF-Z11-003-01 Calibration Procedures for dipole validation kits

Calibration date:

December 20, 2021

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2 Power sensor NRP8S	106277 104291	24-Sep-21 (CTTL, No.J21X08326)	Sep-22
Reference Probe EX3DV4	Care Internation	24-Sep-21 (CTTL, No.J21X08326) 26-May-21(SPEAG,No.EX3-7307_May21)	Sep-22 May-22
DAE4	SN 1556	15-Jan-21(SPEAG,No.DAE4-1556_Jan21)	Jan-22
Secondary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C NetworkAnalyzer E5071C	MY49071430 MY46110673	01-Feb-21 (CTTL, No.J21X00593) 14-Jan-21 (CTTL, No.J21X00232)	Jan-22 Jan-22

• •••	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	是怎
Reviewed by:	Lin Hao	SAR Test Engineer	the are
Approved by:	Qi Dianyuan	SAR Project Leader	da
		Issued:	December 27, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z21-60553

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

e

lossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z21-60553

Page 2 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2079E-mail: cttl@chinattl.comFax: +86-10-62304633-2504http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.4 ± 6 %	1.41 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.0 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.6 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.07 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.2 W/kg ± 18.7 % (k=2)

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.3Ω+ 6.57jΩ	
Return Loss	- 22.5dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.112 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

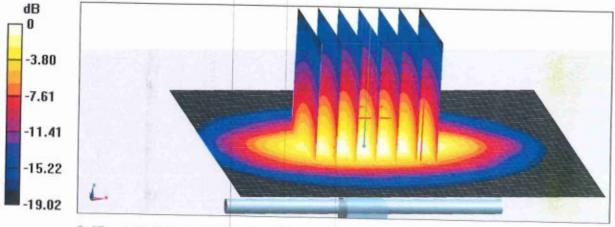
Additional EUT Data

Manufactured by		SPEAC	,
		SFEAC	2
	1 A A A A A A A A A A A A A A A A A A A		

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China

Date: 2021-12-20

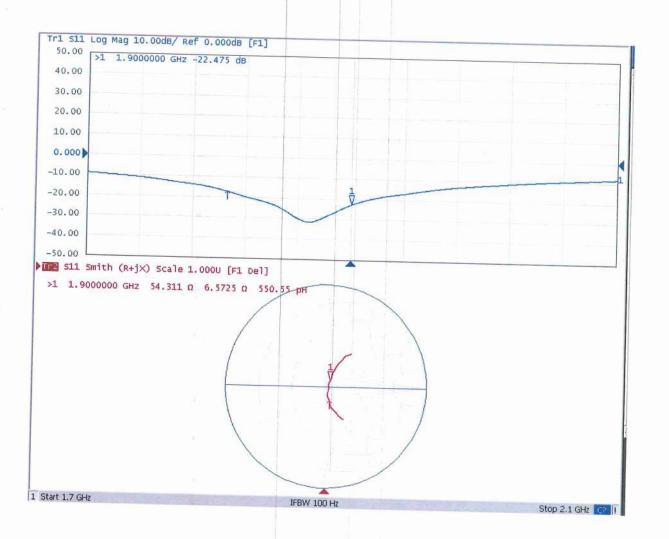

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d182 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.414$ S/m; $\epsilon_r = 39.36$; $\rho = 1000$ kg/m³ Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration:

- Probe: EX3DV4 SN7307; ConvF(8.32, 8.32, 8.32) @ 1900 MHz; Calibrated: 2021-05-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2021-01-15
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm Reference Value = 101.3 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 19.6 W/kg SAR(1 g) = 10 W/kg; SAR(10 g) = 5.07 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 51% Maximum value of SAR (measured) = 15.9 W/kg


0 dB = 15.9 W/kg = 12.01 dBW/kg

Page 5 of 6

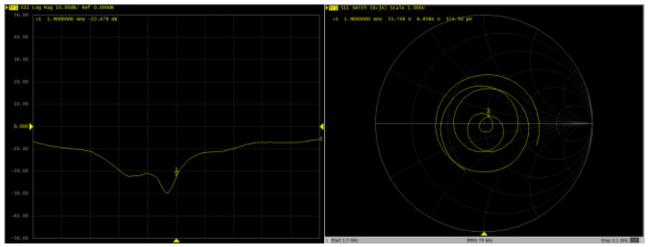
Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2079E-mail: cttl@chinattl.comFax: +86-10-62304633-2504http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

D1900V2, Serial No. 5d182 Extended Dipole Calibrations

Referring to KDB 865664 D01, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

D1900V2 – serial no. 5d182						
	1900 Head					
Date of	Return-Loss	Delta	Real Impedance	Delta	Imaginary Impedance	Delta
Measurement	(dB)	(%)	(ohm)	(ohm)	(ohm)	(ohm)
2021.12.20	-22.5		54.3		6.57	
2022.12.19	-22.5	0.0	53.7	0.6	6.9	-0.33


<Justification of the extended calibration>

The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

Dipole Verification Data> D1900V2, serial no. 5d182

1900MHz – Head----2022.12.19

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura

S

Swiss Calibration Service

Certificate No. D2450V2-1040_Apr23

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Sporton

Kunshan City, China

Object	D2450V2 - SN:1	040	
Calibration procedure(s)	QA CAL-05.v12		
	Calibration Proce	edure for SAR Validation Sources	between 0.7-3 GHz
Calibration date:	April 25, 2023		
This calibration certificate docume	nts the traceability to nati	onal standards, which realize the physical uni	its of measurements (SI)
he measurements and the uncert	ainties with confidence p	robability are given on the following pages an	d are part of the certificate.
		ry facility: environment temperature (22 ± 3)°C	
	cu in the closed laborator	Ty facility, environment temperature (22 ± 3) ⁻ C	2 and numidity < 70%.
	critical for collibration)		
Calibration Equipment used (M&TE	critical for calibration)		
	D #	Cal Date (Certificate No.)	Scheduled Calibration
rimary Standards	i	Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805)	Scheduled Calibration Mar-24
rimary Standards ower meter NRP2	ID #		
rimary Standards ower meter NRP2 ower sensor NRP-Z91	ID # SN: 104778	30-Mar-23 (No. 217-03804/03805)	Mar-24
Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	ID # SN: 104778 SN: 103244	30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804)	Mar-24 Mar-24
rimary Standards ower meter NRP2 ower sensor NRP-Z91 ower sensor NRP-Z91 leference 20 dB Attenuator ype-N mismatch combination	ID # SN: 104778 SN: 103244 SN: 103245	30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805)	Mar-24 Mar-24 Mar-24
rimary Standards ower meter NRP2 ower sensor NRP-Z91 ower sensor NRP-Z91 leference 20 dB Attenuator ype-N mismatch combination	ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k)	30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810)	Mar-24 Mar-24 Mar-24 Mar-24
Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327	30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809)	Mar-24 Mar-24 Mar-24 Mar-24 Mar-24
Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349	30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 10-Jan-23 (No. EX3-7349_Jan23)	Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Jan-24
Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards	ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601	30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 10-Jan-23 (No. EX3-7349_Jan23) 19-Dec-22 (No. DAE4-601_Dec22)	Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Jan-24 Dec-23
Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Sype-N mismatch combination Reference Probe EX3DV4 PAE4 Recondary Standards Power meter E4419B	ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID #	30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 10-Jan-23 (No. EX3-7349_Jan23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house)	Mar-24 Mar-24 Mar-24 Mar-24 Jan-24 Jan-24 Dec-23 Scheduled Check In house check: Oct-24
Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Sype-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter E4419B Power sensor HP 8481A	ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475	30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 10-Jan-23 (No. EX3-7349_Jan23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22)	Mar-24 Mar-24 Mar-24 Mar-24 Jan-24 Jan-24 Dec-23 Scheduled Check In house check: Oct-24 In house check: Oct-24
Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A	ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783	30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 10-Jan-23 (No. EX3-7349_Jan23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22)	Mar-24 Mar-24 Mar-24 Mar-24 Jan-24 Jan-24 Dec-23 Scheduled Check In house check: Oct-24 In house check: Oct-24 In house check: Oct-24
Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A Re generator R&S SMT-06	ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: US37292783 SN: MY41093315	30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 10-Jan-23 (No. 217-03810) 10-Jan-23 (No. EX3-7349_Jan23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22)	Mar-24 Mar-24 Mar-24 Mar-24 Jan-24 Jan-24 Dec-23 Scheduled Check In house check: Oct-24 In house check: Oct-24
Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A Reference R&S SMT-06	ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972	30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 10-Jan-23 (No. 217-03810) 10-Jan-23 (No. EX3-7349_Jan23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 15-Jun-15 (in house check Oct-22) 31-Mar-14 (in house check Oct-22) Function	Mar-24 Mar-24 Mar-24 Mar-24 Jan-24 Jan-24 Dec-23 Scheduled Check In house check: Oct-24 In house check: Oct-24
Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 DAE4 Recondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Retwork Analyzer Agilent E8358A	ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477	30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 10-Jan-23 (No. 217-03810) 10-Jan-23 (No. EX3-7349_Jan23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 15-Jun-15 (in house check Oct-22) 31-Mar-14 (in house check Oct-22) Function	Mar-24 Mar-24 Mar-24 Mar-24 Jan-24 Jan-24 Dec-23 <u>Scheduled Check</u> In house check: Oct-24 In house check: Oct-24
Calibration Equipment used (M&TE Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Vetwork Analyzer Agilent E8358A Calibrated by:	ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477 Name	30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 10-Jan-23 (No. 217-03810) 10-Jan-23 (No. EX3-7349_Jan23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 15-Jun-15 (in house check Oct-22) 31-Mar-14 (in house check Oct-22) Function	Mar-24 Mar-24 Mar-24 Mar-24 Jan-24 Jan-24 Dec-23 <u>Scheduled Check</u> In house check: Oct-24 In house check: Oct-24 In house check: Oct-24 In house check: Oct-24 In house check: Oct-24

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura
 - Swiss Calibration Service

Accreditation No.: SCS 0108

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.7 ± 6 %	1.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.5 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.7 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	6.24 W/kg

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.1 Ω + 2.6 jΩ	
Return Loss	- 28.2 dB	

General Antenna Parameters and Design

Electrical Delaw (and disastina)	
Electrical Delay (one direction)	1.153 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

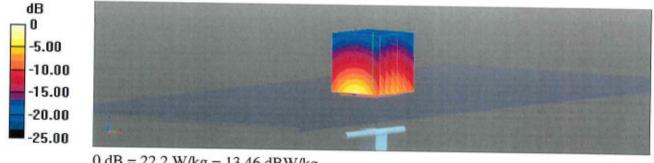
Maguératural	
Manufactured by	SPEAG
	SFEAG

DASY5 Validation Report for Head TSL

Date: 25.04.2023

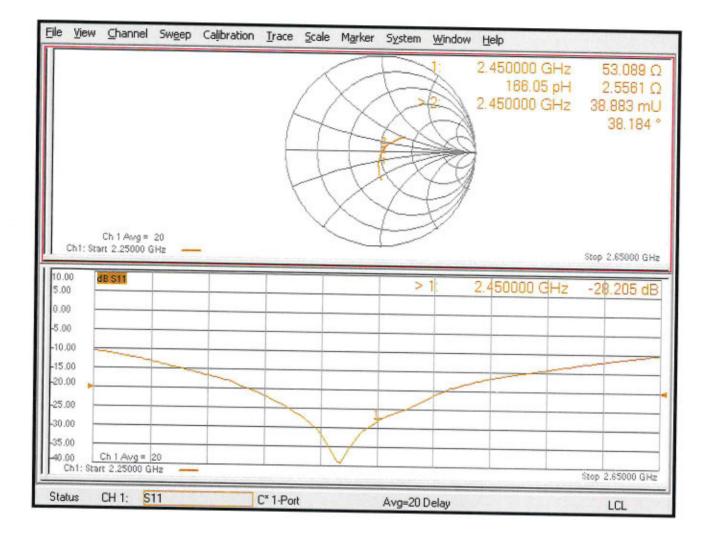
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 1040


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.86$ S/m; $\varepsilon_r = 37.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.88, 7.88, 7.88) @ 2450 MHz; Calibrated: 10.01.2023
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 19.12.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 .
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) .


Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 117.6 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 26.7 W/kg SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.24 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 50.3% Maximum value of SAR (measured) = 22.2 W/kg

0 dB = 22.2 W/kg = 13.46 dBW/kg

Impedance Measurement Plot for Head TSL

Sporton

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, Chi Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Certificate No: Z21-60554

CALIBRATION CERTIFICATE

Object

D2600V2 - SN: 1070

e

Calibration Procedure(s)

Client

FF-Z11-003-01 Calibration Procedures for dipole validation kits

Calibration date:

December 20, 2021

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106277	24-Sep-21 (CTTL, No.J21X08326)	Sep-22
Power sensor NRP8S	104291	24-Sep-21 (CTTL, No.J21X08326)	Sep-22
Reference Probe EX3DV4	SN 7307	26-May-21(SPEAG,No.EX3-7307_May21)	May-22
DAE4	SN 1556	15-Jan-21(SPEAG,No.DAE4-1556_Jan21)	Jan-22
Secondary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	01-Feb-21 (CTTL, No.J21X00593)	Jan-22
Network Analyzer E5071C	MY46110673	14-Jan-21 (CTTL, No.J21X00232)	Jan-22

O-libert 11	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	22
Reviewed by:	Lin Hao	SAR Test Engineer	the state
Approved by:	Qi Dianyuan	SAR Project Leader	dua
This calibration certifi	cate shall not be reprodu	Issued ced except in full without written app	1: December 27, 2021 proval of the laboratory

Certificate No: Z21-60554

Page 1 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.cn

Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

In Collaboration with

p

e

CALIBRATION LABORATORY

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z21-60554

Page 2 of 6

 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	102.10.4
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	and option
Frequency	2600 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.1 ± 6 %	1.97 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.0 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	56.2 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.14 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.6 W/kg ± 18.7 % (k=2)

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.5Ω- 6.60jΩ	
Return Loss	- 23.6dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.058 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

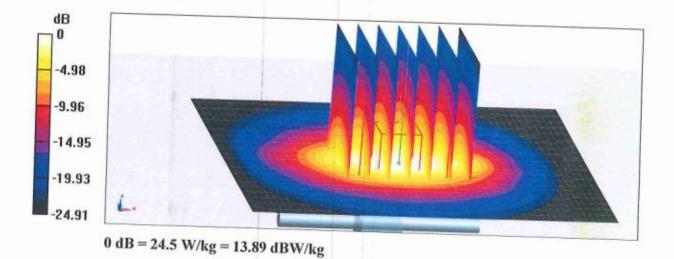
Additional EUT Data

Manufactured by		SPEAG	_
		OF END	_
ficate No: Z21-60554			
10. 221-00554	Page 4 of 6		

e p а CALIBRATION LABORATORY

In Collaboration with

Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com


Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

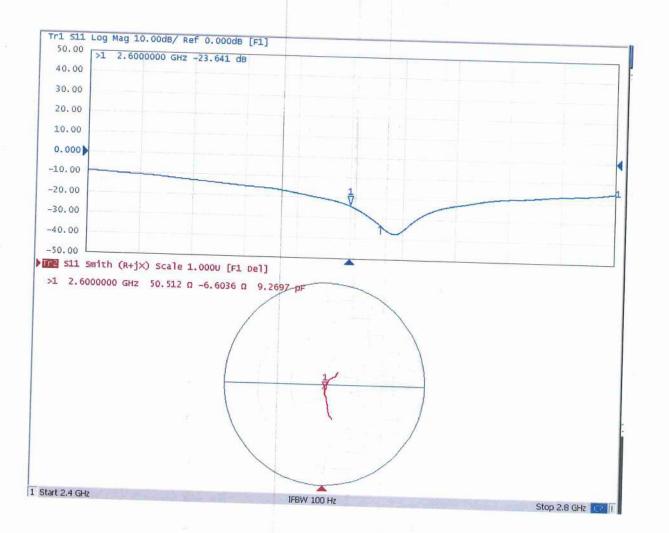
DASY5 Validation Report for Head TSL Date: 2021-12-20 Test Laboratory: CTTL, Beijing, China DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1070 Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; σ = 1.97 S/m; ϵ_r = 40.05; ρ = 1000 kg/m³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

- DASY5 Configuration:
 - Probe: EX3DV4 SN7307; ConvF(7.5, 7.5, 7.5) @ 2600 MHz; Calibrated: . 2021-05-26
 - Sensor-Surface: 1.4mm (Mechanical Surface Detection)
 - Electronics: DAE4 Sn1556; Calibrated: 2021-01-15
 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 ٠
 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 106.3 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 30.8 W/kg SAR(1 g) = 14 W/kg; SAR(10 g) = 6.14 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 44.7% Maximum value of SAR (measured) = 24.5 W/kg

Page 5 of 6



Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

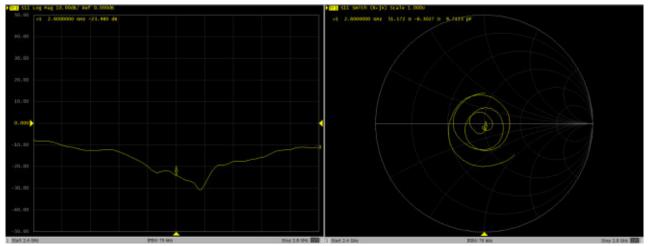
Impedance Measurement Plot for Head TSL

Certificate No: Z21-60554

D2600V2, Serial No. 1070 Extended Dipole Calibrations

Referring to KDB 865664 D01, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

D2600V2 – serial no. 1070						
2600 Head						
Date of	Return-Loss	Delta	Real Impedance	Delta	Imaginary Impedance	Delta
Measurement	(dB)	(%)	(ohm)	(ohm)	(ohm)	(ohm)
2021.12.20	-23.6		50.5		-6.6	
2022.12.19	-24.0	1.6%	51.2	-0.7	-6.3	-0.3


<Justification of the extended calibration>

The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

Dipole Verification Data> D2600V2, serial no. 1070

2600MHz - Head----2022.12.19

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Sporton

Certificate No: D5GHzV2-1341_Dec21

CALIBRATION CERTIFICATE

Object	D5GHzV2 - SN:1	1341	
Calibration procedure(s)	QA CAL-22.v6		
	Calibration Proce	edure for SAR Validation Sources	s between 3-10 GHz
Calibration date:	December 13, 20	021	
This calibration codificate document			
This calibration certificate documer	nts the traceability to nat	ional standards, which realize the physical ur	nits of measurements (SI).
ins measurements and the uncert	annies with confidence p	robability are given on the following pages ar	nd are part of the certificate.
All calibrations have been conduct	od in the closed leberate		
in calibrations have been conducte	ed in the closed laborato	ry facility: environment temperature (22 \pm 3)°	C and humidity < 70%.
Colibration Equipment and (Martin			
Calibration Equipment used (M&TE	critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	09-Apr-21 (No. 217-03291/03292)	Apr-22
Power sensor NRP-Z91	SN: 103244	09-Apr-21 (No. 217-03291)	Apr-22
ower sensor NRP-Z91	SN: 103245	09-Apr-21 (No. 217-03292)	Apr-22
Reference 20 dB Attenuator	SN: BH9394 (20k)	09-Apr-21 (No. 217-03343)	Apr-22
ype-N mismatch combination	SN: 310982 / 06327	09-Apr-21 (No. 217-03344)	Apr-22
Reference Probe EX3DV4	SN: 3503	30-Dec-20 (No. EX3-3503_Dec20)	Dec-21
DAE4	SN: 601	01-Nov-21 (No. DAE4-601_Nov21)	Nov-22
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
ower sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-20)	In house check: Oct-22
letwork Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-22
	Name	Function	Signature
	Jeffrey Katzman	Laboratory Technician	No I A
alibrated by:			
Calibrated by:			ORA
		X	197
	Niels Kuster	Quality Manager	J. Ko
Calibrated by: Approved by:		Quality Manager	Issued: December 14, 2021

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura
- S Swiss Calibration Service

S

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	· · · · · · · · · · · · · · · · · · ·
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.9 ± 6 %	4.56 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	n ai n a i nai
SAR measured	100 mW input power	8.12 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.1 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.4 ± 6 %	4.91 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.52 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	84.5 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.42 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.0 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.2 ± 6 %	5.06 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		""

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition		
SAR measured	100 mW input power	8.13 W/kg	
SAR for nominal Head TSL parameters	normalized to 1W	80.6 W/kg ± 19.9 % (k=2)	
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition		
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	2.29 W/kg	

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	48.4 Ω + 0.1 jΩ
Return Loss	- 35.7 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	53.8 Ω + 7.2 jΩ
Return Loss	- 22.2 dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	51.4 Ω + 5.0 jΩ
Return Loss	- 25.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.211 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
	Joread J

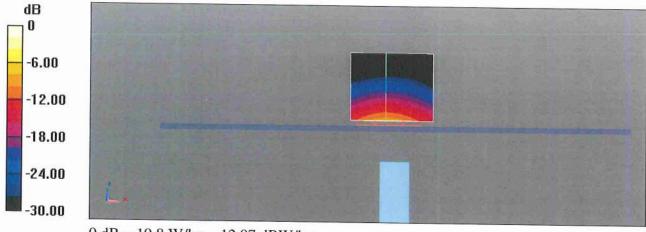
Date: 13.12.2021

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1341

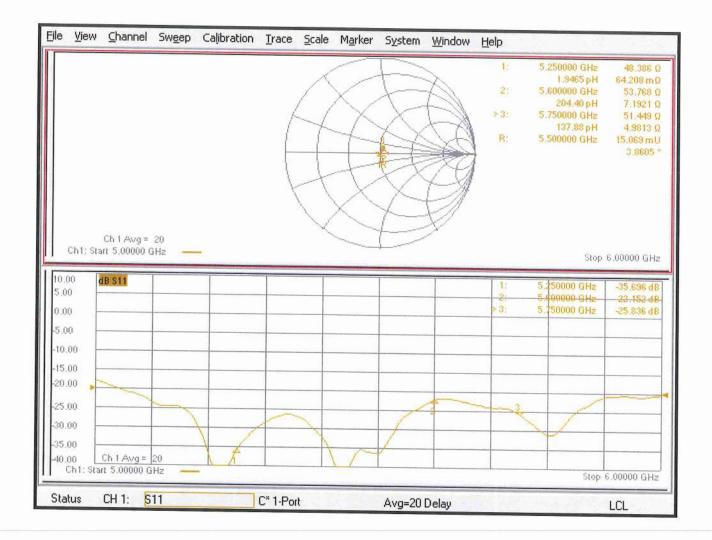
Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; σ = 4.56 S/m; ϵ_r = 34.9; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 4.91 S/m; ϵ_r = 34.4; ρ = 1000 kg/m³, Medium parameters used: f = 5750 MHz; σ = 5.06 S/m; ϵ_r = 34.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN3503; ConvF(5.5, 5.5, 5.5) @ 5250 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.08, 5.08, 5.08) @ 5750 MHz; Calibrated: 30.12.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 01.11.2021
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 77.28 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 27.0 W/kg SAR(1 g) = 8.12 W/kg; SAR(10 g) = 2.33 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 71.5% Maximum value of SAR (measured) = 18.5 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 77.67 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 30.9 W/kg SAR(1 g) = 8.52 W/kg; SAR(10 g) = 2.42 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 68.6% Maximum value of SAR (measured) = 20.2 W/kg


Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 74.44 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 31.2 W/kg SAR(1 g) = 8.13 W/kg; SAR(10 g) = 2.29 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 66.7% Maximum value of SAR (measured) = 19.8 W/kg

0 dB = 19.8 W/kg = 12.97 dBW/kg

Impedance Measurement Plot for Head TSL

D5GHzV2, Serial No. 1341 Extended Dipole Calibrations

Referring to KDB 865664 D01, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

			D5GV2 – serial no. 134	1		
			5250	Head		
Date of	Return-Loss	Delta	Real Impedance	Delta	Imaginary Impedance	Delta
Measurement	(dB)	(%)	(ohm)	(ohm)	(ohm)	(ohm)
2021.12.13	-35.7		48.4		0.1	
2022.12.12	-35.7	0.0	50.1	-1.7	-1.6	1.7

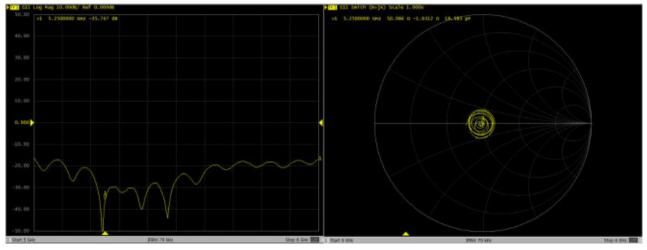
5250MHz

5600MHz

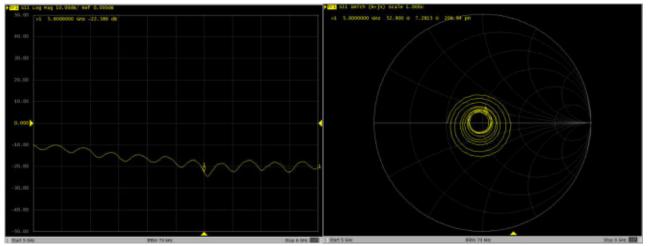
			D5GV2 – serial no. 134	1		
	5600 Head					
Date of	Return-Loss	Delta	Real Impedance	Delta	Imaginary Impedance	Delta
Measurement	(dB)	(dB) (%) (ohm) (ohm) (ohm) (ohm)				
2021.12.13	-22.2		53.8		7.2	
2022.12.12	-22.4	0.9	52.9	0.9	7.3	-0.1

5750MHz

			D5GV2 – serial no. 134	1		
		5750 Head				
Date of	Return-Loss	Delta	Real Impedance	Delta	Imaginary Impedance	Delta
Measurement	(dB)	(dB) (%) (ohm) (ohm) (ohm) (ohm)				
2021.12.13	-25.8		51.4		5	
2022.12.12	-26.1	1.2	50.1	1.3	5	0

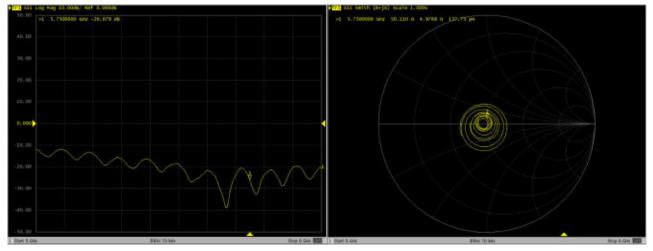

<Justification of the extended calibration>

The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.



Dipole Verification Data> D5GHzV2, serial no. 1341

5250MHz – Head----2022.12.12



5600MHz - Head----2022.12.12

5750MHz - Head----2022.12.12

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 www.speag.swiss, info@speag.swiss

speag

IMPORTANT NOTICE

USAGE OF THE DAE4

The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points:

Battery Exchange: The battery cover of the DAE4 unit is fixed using a screw, over tightening the screw may cause the threads inside the DAE to wear out.

Shipping of the DAE: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside.

E-Stop Failures: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements.

Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect.

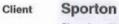
DASY Configuration Files: Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file.

Important Note:

Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer.

Important Note:

Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the Estop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure.


Important Note:

To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE.

Calibration Laboratory of Schmid & Partner **Engineering AG**

Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Shenzhen City

a p ac-MR/ dula

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

C Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 0108

S

Certificate No: DAE4-1664_Jun23

CALIBRATION (CERTIFICATE		
Object	DAE4 - SD 000 D	04 BO - SN: 1664	
Calibration procedure(s)	QA CAL-06.v30 Calibration procee	dure for the data acquisition elec	ctronics (DAE)
Calibration date:	June 06, 2023		
The measurements and the unce	rtainties with confidence pro	nal standards, which realize the physical un obability are given on the following pages ar facility: environment temperature (22 ± 3)%	nd are part of the certificate. C and humidity < 70%.
Keithley Multimeter Type 2001	SN: 0810278	Cal Date (Certificate No.) 29-Aug-22 (No:34389)	Scheduled Calibration Aug-23
Secondary Standards	ID #		
Auto DAE Calibration Unit Calibrator Box V2.1	SE UWS 053 AA 1001	Check Date (in house) 27-Jan-23 (in house check) 27-Jan-23 (in house check)	Scheduled Check In house check: Jan-24 In house check: Jan-24
	News		
Calibrated by:	Name Adrian Gehring	Function Laboratory Technician	Signature
Approved by:	Sven Kühn	Technical Manager	i.V. & lun
This calibration certificate shall no	t be reproduced except in fi	ull without written approval of the laboratory	Issued: June 6, 2023

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

Service suisse d'étalonnage

C Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary DAE Connector angle

data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by . comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically . by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a . result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter . corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of . zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery . alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement A/D - Converter Resolution nominal

High Range: Low Range:	1LSB = 1LSB =	6.1μV, 61nV,	-	-100+300 mV
DASY measurement p			sec; Measuring	-1+3mV time: 3 sec

Calibration Factors	x	Y	Z
High Range	404.897 ± 0.02% (k=2)	404.795 ± 0.02% (k=2)	405.064 ± 0.02% (k=2)
Low Range	4.01050 ± 1.50% (k=2)	4.00216 ± 1.50% (k=2)	4.00196 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	103.5 ° ± 1 °

Appendix (Additional assessments outside the scope of SCS0108)

High Range		Reading (μV)	Difference (µV)	Error (%)
Channel X	+ Input	199996.49	1.23	0.00
Channel X	+ Input	20003.73	1.27	0.01
Channel X	- Input	-20000.04	1.60	-0.01
Channel Y	+ Input	199995.81	0.34	0.00
Channel Y	+ Input	20002.06	-0.36	-0.00
Channel Y	- Input	-20002.46	-0.66	0.00
Channel Z	+ Input	199995.02	-0.07	-0.00
Channel Z	+ Input	20001.24	-1.05	-0.01
Channel Z	- Input	-20002.15	-0.27	0.00

1. DC Voltage Linearity

Low Range		Reading (μV)	Difference (µV)	Error (%)
Channel X	+ Input	2001.54	0.04	0.00
Channel X	+ Input	201.62	-0.05	-0.02
Channel X	- Input	-198.09	0.08	-0.04
Channel Y	+ Input	2001.73	0.37	0.02
Channel Y	+ Input	200.69	-0.93	-0.46
Channel Y	- Input	-199.64	-1.44	0.73
Channel Z	+ Input	2001.50	0.19	0.01
Channel Z	+ Input	201.01	-0.48	-0.24
Channel Z	- Input	-198.99	-0.67	0.34

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (µV)
Channel X	200	-3.60	-5.77
	- 200	7.18	5.56
Channel Y	200	6.87	6.45
	- 200	-8.88	-9.42
Channel Z	200	10.81	10.07
	- 200	-12.23	-12.25

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (µV)	Channel Z (μV)
Channel X	200	-	2.19	-2.29
Channel Y	200	7.21	_	4.40
Channel Z	200	8.40	3.86	-

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)	
Channel X	15994	15578	
Channel Y	16016	16505	
Channel Z	16025	13608	

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MΩ

- <u></u>	Average (µV)	min. Offset (µV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.83	-1.42	2.59	0.60
Channel Y	-0.68	-2.31	0.41	0.40
Channel Z	-0.14	-0.90	0.93	0.36

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)	
Channel X	200	200	
Channel Y	200	200	
Channel Z	200	200	

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

The second second	In Co	ollabora	tion wit	h			
	S	p	е	а	g		
	CALIBRATION LAB				ORATORY		

Auden

Client :

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn <u>http://www.caict.ac.cn</u>

Certificate No: Z22-60556

CALIBRATION	CERTIFICA	TE				
Object		DAE3 - SN: 360				
Calibration Procedure(s)	Calibr	FF-Z11-002-01 Calibration Procedure for the Data Acquisition Electronics (DAEx)				
Calibration date: December 28, 2022						
	measurements and	traceability to national standards, which the uncertainties with confidence proba				
All calibrations have be humidity<70%.	een conducted in	the closed laboratory facility: environ	ment temperature(22±3)°C and			
Calibration Equipment us	sed (M&TE critical	for calibration)				
Primary Standards	ID # Ca	al Date(Calibrated by, Certificate No.)	Scheduled Calibration			
Process Calibrator 753	1971018	14-Jun-22 (CTTL, No.J22X04180)	Jun-23			
	Name	Function	Signature			
Calibrated by:	Yu Zongying	SAR Test Engineer	Ant			
Reviewed by:	Lin Hao	SAR Test Engineer	林治			
Approved by:	Qi Dianyuan	SAR Project Leader	and /			
This calibration certificate	e shall not be repre	ا oduced except in full without written app	ssued: January 01, 2023 roval of the laboratory.			