

FCC RF Test Report

APPLICANT	: Motorola Mobility LLC
EQUIPMENT	: Mobile Cellular Phone
BRAND NAME	: Motorola
MODEL NAME	: XT2423-6, XT2423-1
FCC ID	: IHDT56AP1
STANDARD	: FCC Part 15 Subpart C §15.247
CLASSIFICATION	: (DSS) Spread Spectrum Transmitter
TEST DATE(S)	: Oct. 25, 2023 ~ Nov. 03, 2023

We, Sporton International Inc. (Shenzhen), would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (Shenzhen), the test report shall not be reproduced except in full.

JasonJia

Approved by: Jason Jia

Sporton International Inc. (ShenZhen) 1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055 People's Republic of China

TABLE OF CONTENTS

		N HISTORY	-
SUI		Y OF TEST RESULT	
1	GENE	ERAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Manufacturer	-
	1.3	Product Feature of Equipment Under Test	5
	1.4	Product Specification of Equipment Under Test	6
	1.5	Modification of EUT	6
	1.6	Specification of Accessory	6
	1.7	Testing Location	7
	1.8	Test Software	7
	1.9	Applicable Standards	
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	
	2.1	Carrier Frequency Channel	
	2.2	Test Mode	
	2.3	Connection Diagram of Test System	11
	2.4	Support Unit used in test configuration and system	
	2.5	EUT Operation Test Setup	
	2.6	Measurement Results Explanation Example	12
3	TEST	RESULT	
	3.1	Number of Channel Measurement	
	3.2	Hopping Channel Separation Measurement	
	3.3	Dwell Time Measurement	21
	3.4	20dB and 99% Bandwidth Measurement	
	3.5	Output Power Measurement	34
	3.6	Conducted Band Edges Measurement	
	3.7	Conducted Spurious Emission Measurement	
	3.8	Radiated Band Edges and Spurious Emission Measurement	
	3.9	AC Conducted Emission Measurement	
		Antenna Requirements	
		OF MEASURING EQUIPMENT	
		SUREMENT UNCERTAINTY	60
		X A. CONDUCTED TEST RESULTS	
		X B. AC CONDUCTED EMISSION TEST RESULT	
		IX C. RADIATED SPURIOUS EMISSION	
		X D. DUTY CYCLE PLOTS	
API	PEND	IX E. SETUP PHOTOGRAPHS	

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR301717A	Rev. 01	Initial issue of report	Nov. 13, 2023

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(1)	Number of Channels	≥ 15Chs	Pass	-
3.2	15.247(a)(1)	Hopping Channel Separation	≥ 2/3 of 20dB BW	Pass	-
3.3	15.247(a)(1)	Dwell Time of Each Channel	≤ 0.4sec in 31.6sec period	Pass	-
3.4	15.247(a)(1)	20dB Bandwidth	-	Report only	-
3.4	-	99% Bandwidth	-	Report only	-
3.5	15.247(b)(1)	Peak Output Power	≤ 125 mW	Pass	-
3.6	15.247(d)	Conducted Band Edges	≤ 20dBc	Pass	-
3.7	15.247(d)	Conducted Spurious Emission	≤ 20dBc	Pass	-
3.8	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 7.92 dB at 41.64 MHz
3.9	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 10.34 dB at 14.29 MHz
3.10	15.203 & 15.247(b)	Antenna Requirement	15.203 & 15.247(b)	Pass	-

Conformity Assessment Condition:

 The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.

2. The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty"

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

1 General Description

1.1 Applicant

Motorola Mobility LLC

222 W. Merchandise Mart Plaza, Chicago IL 60654, USA

1.2 Manufacturer

Motorola Mobility LLC

222 W. Merchandise Mart Plaza, Chicago IL 60654, USA

1.3 Product Feature of Equipment Under Test

	Product Feature				
Equipment	Mobile Cellular Phone				
Brand Name	Motorola				
Model Name	XT2423-6, XT2423-1				
FCC ID IHDT56AP1					
IMEI Code	Conducted: 357674240009184/357674240013756 Conduction: 357674240008665/357674240013236 Radiation: 357674240008525/357674240013095				
HW Version	DVT2				
SW Version UTA34.66					
EUT Stage	Identical Prototype				

Remark:

- 1. The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.
- 2. The two model names are only for market segment purpose, there is no other difference.
- 3. There are two samples under test, sample 1 is 1st source, sample 2 is 2nd source, the main difference are shown as below table and the detailed differences could be referred to the XT2423-6, XT2423-1_Operational Description of Product Equality Declaration which is exhibit separately. According to the difference, we choose sample 1 to perform full test and the sample 2 verify the RSE worst case.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification				
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz			
Number of Channels	79			
Carrier Frequency of Each Channel	2402+n*1 MHz; n=0~78			
Maximum Output Power to Antenna	Bluetooth BR(1Mbps) : 11.75 dBm (0.0150 W) Bluetooth EDR (2Mbps) : 11.09 dBm (0.0129 W) Bluetooth EDR (3Mbps) : 11.11 dBm (0.0129 W)			
99% Occupied Bandwidth	Bluetooth BR(1Mbps) : 0.767 MHz Bluetooth EDR (2Mbps) : 1.151 MHz Bluetooth EDR (3Mbps) : 1.155 MHz			
Antenna Type / Gain	PIFA Antenna type with gain -4.5 dBi			
Type of Modulation	Bluetooth BR (1Mbps) : GFSK Bluetooth EDR (2Mbps) :π/4-DQPSK Bluetooth EDR (3Mbps) : 8-DPSK			

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Specification of Accessory

Accessories Information					
AC Adapter 1(US)	Brand Name	Motorola(Salcomp)	Model Name	MC-201L	
AC Adapter 1(EU)	Brand Name	Motorola(Salcomp)	Model Name	MC-202L	
AC Adapter 1(UK)	Brand Name	Motorola(Salcomp)	Model Name	MC-203L	
AC Adapter 1(AR)	Brand Name	Motorola(Salcomp)	Model Name	MC-206L	
AC Adapter 1(AU)	Brand Name	Motorola(Salcomp)	Model Name	MC-205L	
AC Adapter 2(US)	Brand Name	Motorola(Chenyang)	Model Name	MC-201L	
AC Adapter 2(EU)	Brand Name	Motorola(Chenyang)	Model Name	MC-202L	
AC Adapter 2(AR)	Brand Name	Motorola(Chenyang)	Model Name	MC-206L	
AC Adapter 3(US)	Brand Name	Motorola(AOHAI)	Model Name	MC-201L	
AC Adapter 3(EU)	Brand Name	Motorola(AOHAI)	Model Name	MC-202L	
AC Adapter 3(UK)	Brand Name	Motorola(AOHAI)	Model Name	MC-203L	
AC Adapter 3(AR)	Brand Name	Motorola(AOHAI)	Model Name	MC-206L	
AC Adapter 3(AU)	Brand Name	Motorola(AOHAI)	Model Name	MC-205L	
Battery 1	Brand Name	Motorola(ATL)	Model Name	QF50	
Battery 2	Brand Name	Motorola(sunwoda)	Model Name	QF50	
USB Cable 1	Brand Name	Motorola(Juwei)	Model Name	JWUB1614-T03H	
USB Cable 2	Brand Name	Motorola(saibao)	Model Name	STN-A128A	

1.7 Testing Location

Sporton International Inc. (Shenzhen) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.01.

Test Firm	Sporton International Inc. (Shenzhen)						
Test Site Location	1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055 People's Republic of China TEL: +86-755-86379589 FAX: +86-755-86379595						
	Sporton Site No.	FCC Designation No.	FCC Test Firm				
Test Site No.	Sporton Site No.	FCC Designation No.	Registration No.				
	CO01-SZ TH01-SZ	CN1256	421272				

Test Firm	Sporton International Inc. (Shenzhen)				
Test Site Location	101, 1st Floor, Block B, Building 1, No. 2, Tengfeng 4th Road, Fenghuang Community, Fuyong Street, Baoan District, Shenzhen City, Guangdong Province 518103 People's Republic of China TEL: +86-755-86066985				
Test Site No.	Sporton Site No.	FCC Designation No.	FCC Test Firm Registration No.		
	03CH01-SZ	CN1256	421272		

1.8 Test Software

ltem	Site	Manufacturer	Name	Version
1.	03CH01-SZ	AUDIX	E3	6.2009-8-24
2.	CO01-SZ	AUDIX	E3	6.120613b

1.9 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart C §15.247
- FCC KDB 558074 D01 15.247 Meas Guidance v05r02
- ANSI C63.10-2013

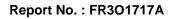
Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

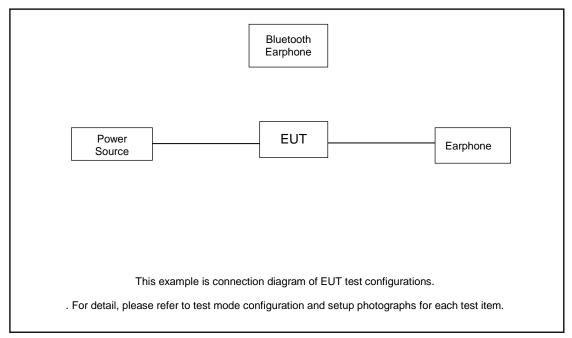
Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

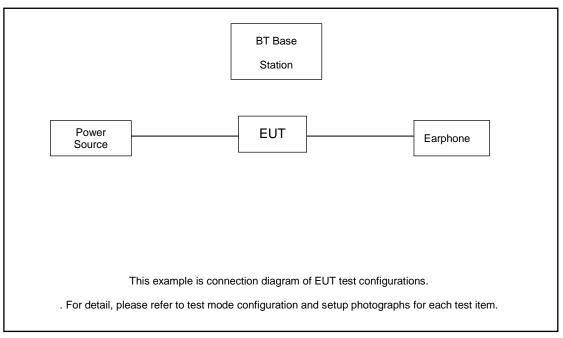

2.2 Test Mode

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Y / Z plane) were recorded in this report, and the worst mode of radiated spurious emissions is Bluetooth 1Mbps mode, and recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

	Summary table of Test Cases					
		Data Rate / Modulation				
Test Item	Bluetooth BR 1Mbps	Bluetooth EDR 2Mbps	Bluetooth EDR 3Mbps			
	GFSK	π/4-DQPSK	8-DPSK			
Conducted	Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz	Mode 7: CH00_2402 MHz			
	Mode 2: CH39_2441 MHz	Mode 5: CH39_2441 MHz	Mode 8: CH39_2441 MHz			
Test Cases	Mode 3: CH78_2480 MHz	Mode 6: CH78_2480 MHz	Mode 9: CH78_2480 MHz			
		Bluetooth BR 1Mbps GFSK				
Radiated		Mode 1: CH00_2402 MHz				
Test Cases		Mode 2: CH39_2441 MHz				
		Mode 3: CH78_2480 MHz				
AC						
Conducted		Bluetooth Link + Adapter 2 +	USB Cable 1 + Battery 1 +			
Emission	Emission Earphone					
Remark:						
1. For radiate	. For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate					
has the hig	has the highest RF output power at preliminary tests, and no other significantly frequencies found in					
conducted	conducted spurious emission.					

The following summary table is showing all test modes to demonstrate in compliance with the standard.


2. For Radiated Test Cases, The tests were performed with Adapter 1, Earphone1 and USB Cable 1.



2.3 Connection Diagram of Test System

AC Conducted Emission:

Radiated Emission:

ltem	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Base Station(LTE)	Anritsu	MT8820C	N/A	N/A	Unshielded,1.8m
2.	Base Station	Anritsu	MT8821C	N/A	N/A	N/A
3.	Earphone	apple	DCAY1V-A900FZJW3-000	N/A	N/A	N/A
4.	Earphone	sony	MT755	N/A	Fcc DoC	N/A
5.	Bluetooth Earphone	Samsung	EO-MG900	PYAHS-107W	N/A	N/A
6.	WLAN AP	Dlink	DIR-820L	KA2IR820LA1	N/A	Unshielded,1.8m

2.4 Support Unit used in test configuration and system

2.5 EUT Operation Test Setup

For Bluetooth function, the engineering test program was provided and enabled to make EUT connect with Bluetooth base station to continuous transmit.

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 13.60 dB and 10dB attenuator.

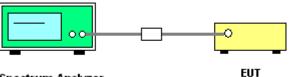
 $Offset(dB) = RF \ cable \ loss(dB) + attenuator \ factor(dB).$ = 13.60 + 10 = 23.60 (dB)

3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

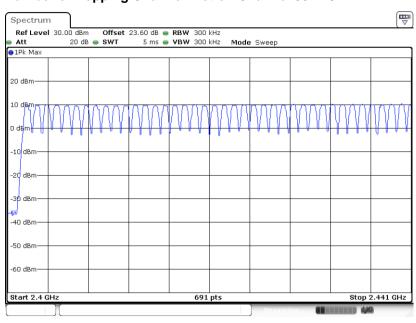

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedure

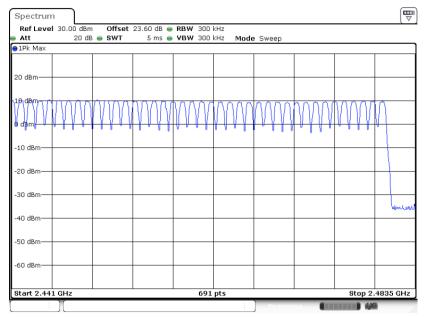
- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

3.1.4 Test Setup



Spectrum Analyzer

3.1.5 Test Result of Number of Hopping Frequency


Please refer to Appendix A.

Number of Hopping Channel Plot on Channel 00 - 78

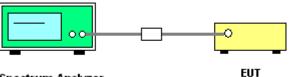
Date: 26.0CT.2023 16:44:27

Date: 26.0CT.2023 16:44:36

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.


3.2.2 Measuring Instruments

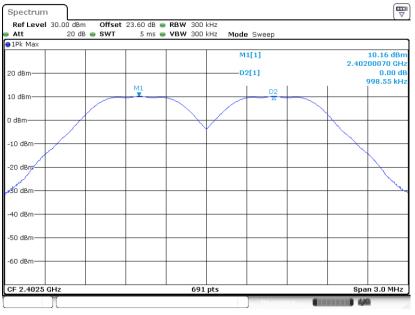
The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

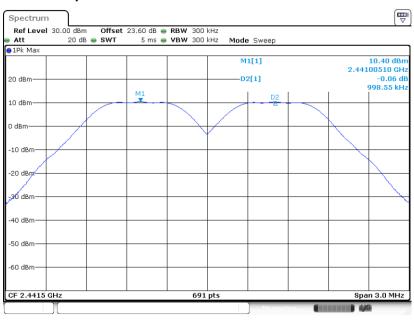
- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.2.4 Test Setup

Spectrum Analyzer


3.2.5 Test Result of Hopping Channel Separation

Please refer to Appendix A.

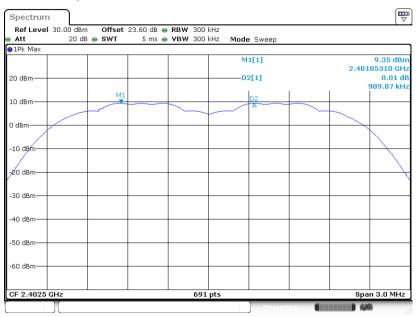

<1Mbps>

Channel Separation Plot on Channel 00 - 01

Date: 26.0CT.2023 16:45:23

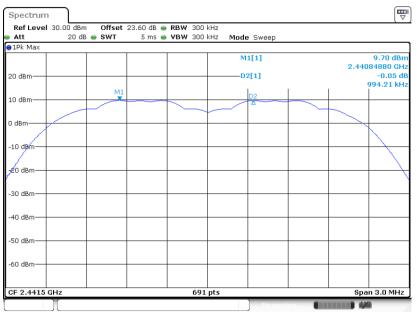
Channel Separation Plot on Channel 39 - 40

Date: 26.0CT.2023 16:49:59



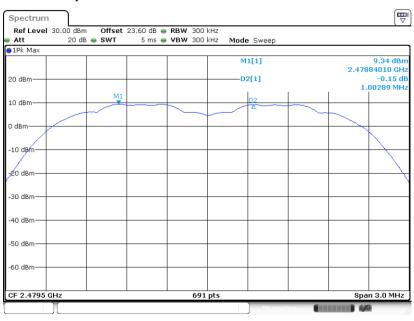
Channel Separation Plot on Channel 77 - 78

Date: 26.0CT.2023 16:52:12


<2Mbps>

Channel Separation Plot on Channel 00 - 01

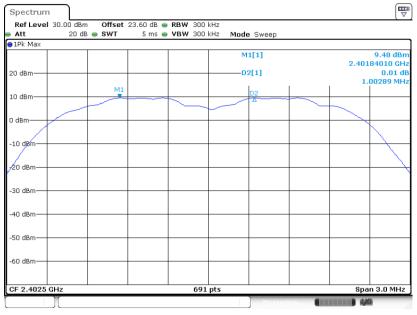
Date: 26.0CT.2023 16:57:42



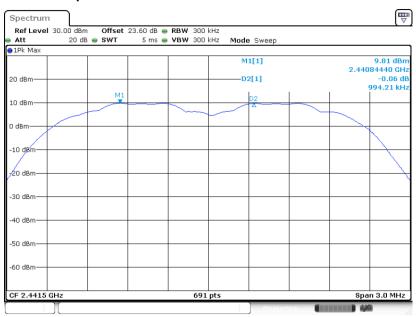
Channel Separation Plot on Channel 39 - 40

Date: 26.0CT.2023 17:01:31

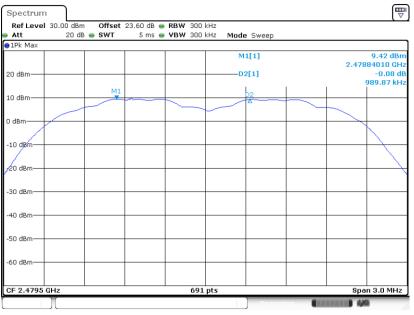
Channel Separation Plot on Channel 77 - 78



Date: 26.0CT.2023 17:04:10


<3Mbps>

Channel Separation Plot on Channel 00 - 01


Date: 26.0CT.2023 17:12:02

Channel Separation Plot on Channel 39 - 40

Date: 26.0CT.2023 17:14:59

Channel Separation Plot on Channel 77 - 78

Date: 26.0CT.2023 17:17:43

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

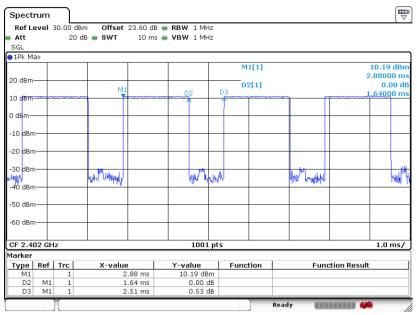
3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup



Spectrum Analyzer

3.3.5 Test Result of Dwell Time

Please refer to Appendix A.

Package Transfer Time Plot

Date: 25.0CT.2023 22:16:34

Remark:

 In normal mode, hopping rate is 1600 hops/s with 6 slots (5 Transmit and 1 Receive slot) in 79 hopping channels.

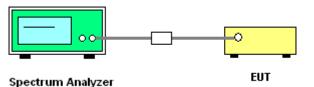
With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.

- In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels.
 With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s),
 Hops Over Occupancy Time comes to (800 / 6 / 20) x (0.4 x 20) = 53.33 hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

3.4 20dB and 99% Bandwidth Measurement

3.4.1 Limit of 20dB and 99% Bandwidth

Reporting only

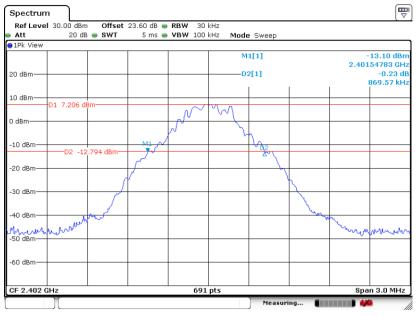

3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

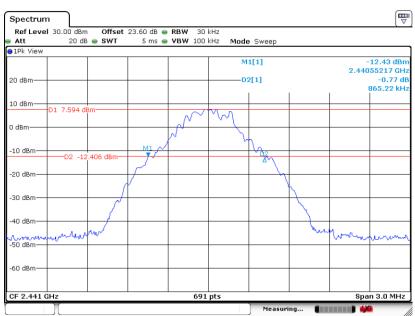
3.4.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Use the following spectrum analyzer settings for 20dB Bandwidth measurement.
 Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; The RBW is set to 1% to 5% of the 99% OBW, the VBW is set to 3 times the RBW;
 Sweep = auto; Detector function = peak; Trace = max hold.
- 5. Use the following spectrum analyzer settings for 99 % Bandwidth measurement.
 Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel; The RBW is set to 1% to 5% of the 99% OBW, the VBW is set to 3 times the RBW;
 Sweep = auto; Detector function = peak;
 - Trace = max hold.
- 6. Measure and record the results in the test report.

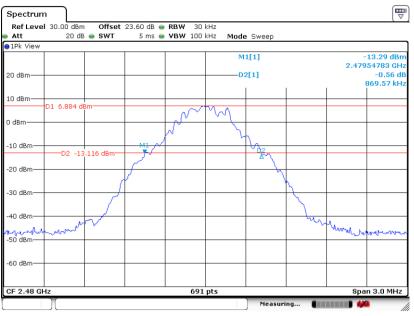
3.4.4 Test Setup


3.4.5 Test Result of 20dB Bandwidth

Please refer to Appendix A.

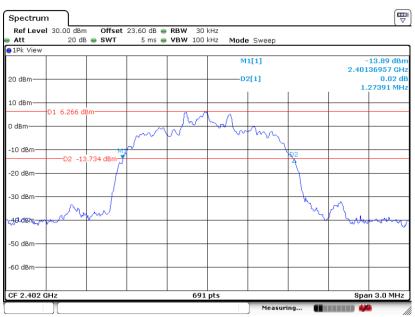

<1Mbps>

20 dB Bandwidth Plot on Channel 00


Date: 26.0CT.2023 16:45:57

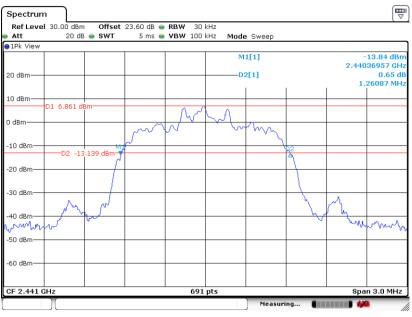
20 dB Bandwidth Plot on Channel 39

Date: 26.0CT.2023 16:50:12



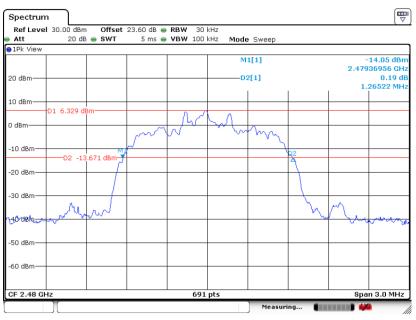
20 dB Bandwidth Plot on Channel 78

Date: 26.0CT.2023 16:53:31


<2Mbps>

20 dB Bandwidth Plot on Channel 00

Date: 26.0CT.2023 16:58:48



20 dB Bandwidth Plot on Channel 39

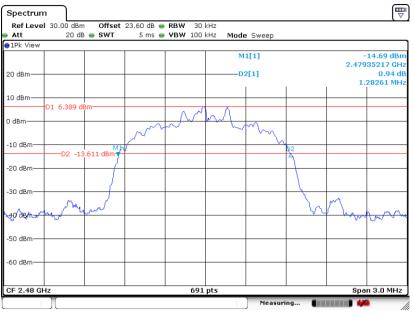
Date: 26.0CT.2023 17:01:46

20 dB Bandwidth Plot on Channel 78

Date: 26.0CT.2023 17:04:41

<3Mbps>

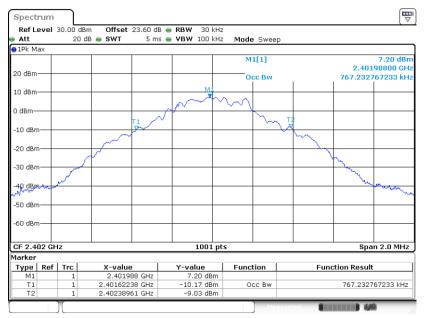
20 dB Bandwidth Plot on Channel 00


Date: 26.0CT.2023 17:12:32

Date: 26.0CT.2023 17:15:09

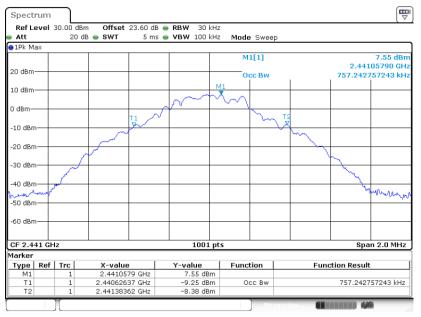
20 dB Bandwidth Plot on Channel 78

Date: 26.0CT.2023 17:18:16



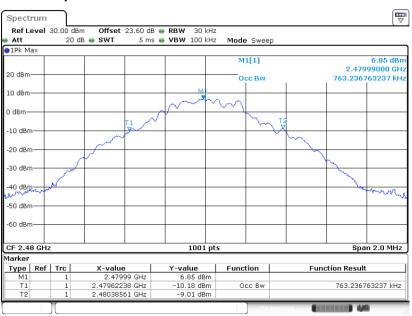
3.4.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.


<1Mbps>

99% Occupied Bandwidth Plot on Channel 00

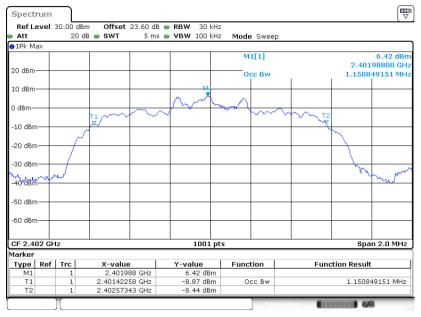
Date: 26.0CT.2023 16:43:36



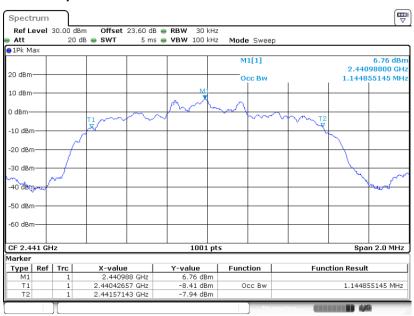
99% Occupied Bandwidth Plot on Channel 39

Date: 26.0CT.2023 16:47:22

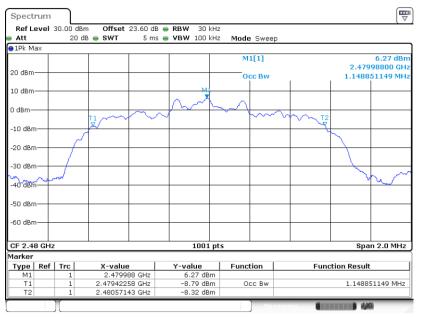
99% Occupied Bandwidth Plot on Channel 78



Date: 26.0CT.2023 16:51:25

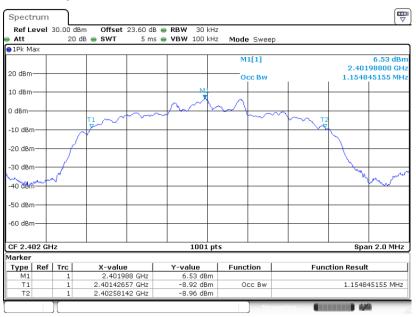

<2Mbps>

99% Occupied Bandwidth Plot on Channel 00


Date: 26.0CT.2023 16:56:46

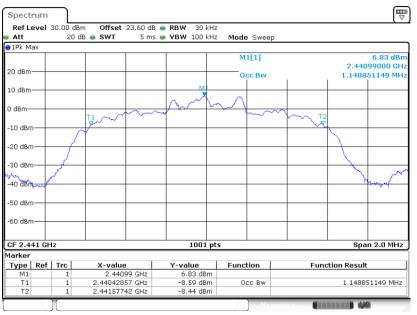
99% Occupied Bandwidth Plot on Channel 39

Date: 26.0CT.2023 17:00:40

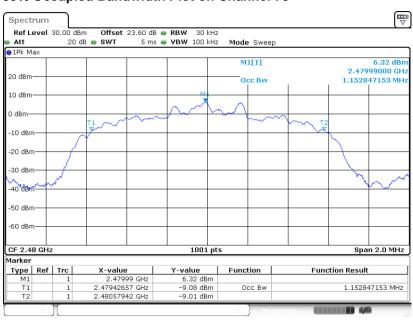


99% Occupied Bandwidth Plot on Channel 78

Date: 26.0CT.2023 17:03:18


<3Mbps>

99% Occupied Bandwidth Plot on Channel 00


Date: 26.0CT.2023 17:11:08

99% Occupied Bandwidth Plot on Channel 39

Date: 26.0CT.2023 17:14:15

99% Occupied Bandwidth Plot on Channel 78

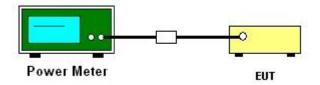
Date: 26.0CT.2023 17:16:23

Note : The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.5 Output Power Measurement

3.5.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts. The power limit for 1Mbps, 2Mbps, 3Mbps and AFH modes are 0.125 watts.


3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

3.5.5 Test Result of Peak Output Power

Please refer to Appendix A.

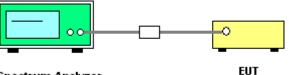
3.5.6 Test Result of Average Output Power (Reporting Only)

Please refer to Appendix A.

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

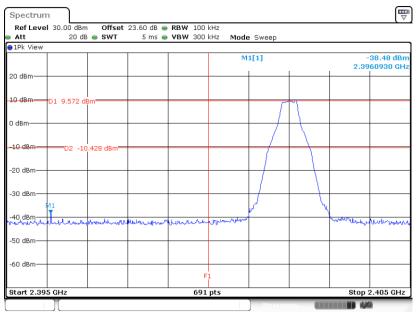

3.6.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

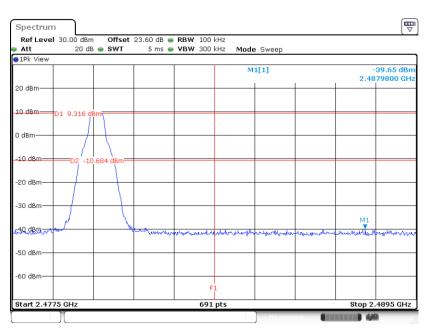
3.6.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Set RBW = 100kHz, VBW = 300kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2. and 3.
- 5. Measure and record the results in the test report.

3.6.4 Test Setup


Spectrum Analyzer

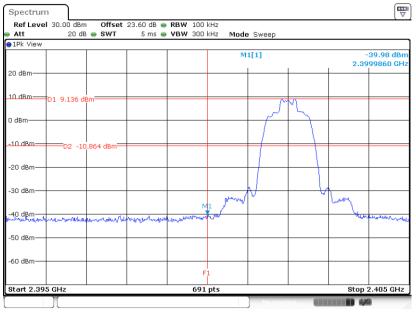
3.6.5 Test Result of Conducted Band Edges


<1Mbps>

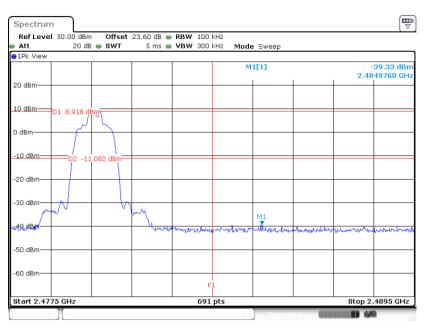
Low Band Edge Plot on Channel 00

Date: 26.0CT.2023 17:21:06

High Band Edge Plot on Channel 78



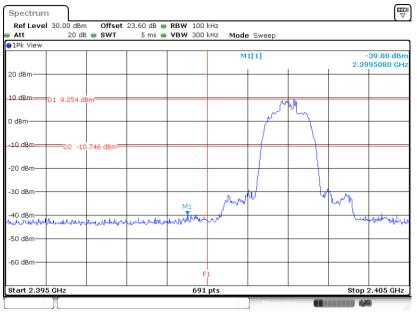
Date: 26.0CT.2023 16:52:37


<2Mbps>

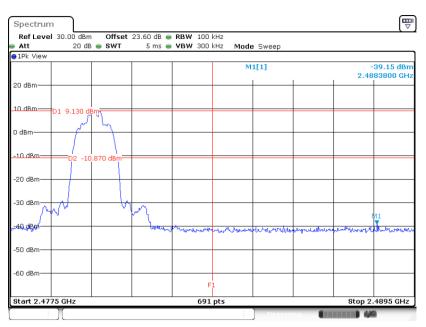
Low Band Edge Plot on Channel 00

Date: 26.0CT.2023 16:58:09

High Band Edge Plot on Channel 78



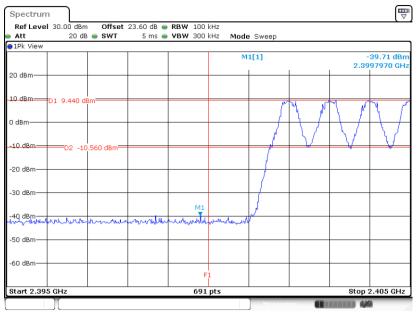
Date: 26.0CT.2023 17:04:31


<3Mbps>

Low Band Edge Plot on Channel 00

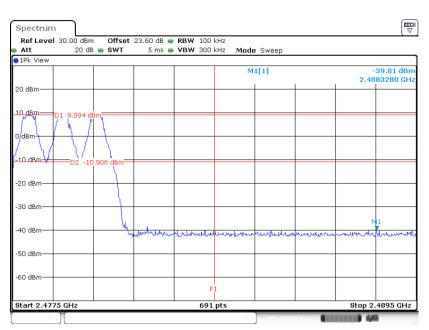
Date: 26.0CT.2023 17:12:23

High Band Edge Plot on Channel 78



Date: 26.0CT.2023 17:18:05

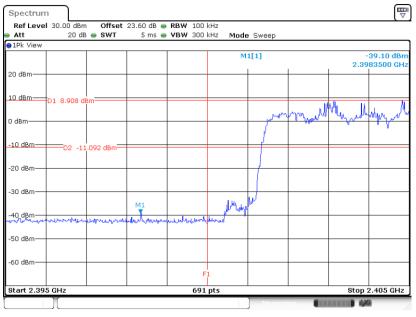
3.6.6 Test Result of Conducted Hopping Mode Band Edges


<1Mbps>

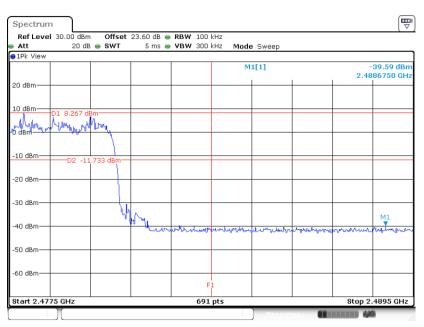
Hopping Mode Low Band Edge Plot

Date: 26.0CT.2023 17:21:28

Hopping Mode High Band Edge Plot



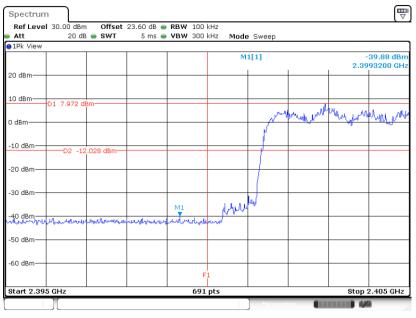
Date: 26.0CT.2023 16:55:23


<2Mbps>

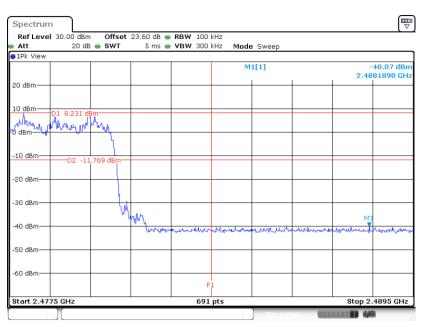
Hopping Mode Low Band Edge Plot

Date: 26.0CT.2023 17:22:46

Hopping Mode High Band Edge Plot



Date: 26.0CT.2023 17:06:05


<3Mbps>

Hopping Mode Low Band Edge Plot

Date: 26.0CT.2023 17:13:57

Hopping Mode High Band Edge Plot

Date: 26.0CT.2023 17:19:41

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

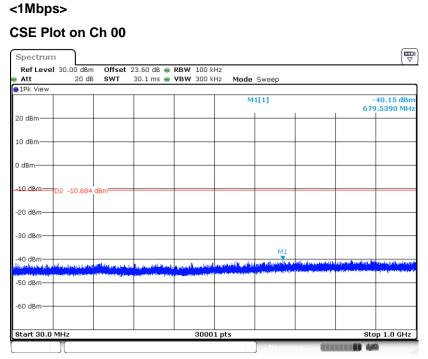
In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.


3.7.2 Measuring Instruments

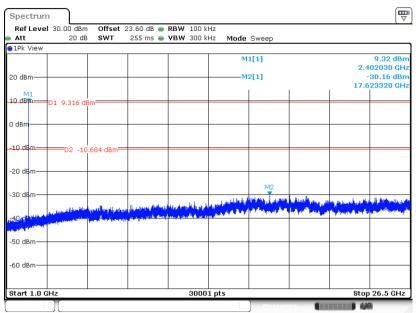
The measuring equipment is listed in the section 4 of this test report.

3.7.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.


3.7.4 Test Setup

Sporton International Inc. (ShenZhen) TEL : +86-755-8637-9589 FAX : +86-755-8637-9595 FCC ID: IHDT56AP1



3.7.5 Test Result of Conducted Spurious Emission

Date: 26.0CT.2023 16:46:46

CSE Plot on Ch 00

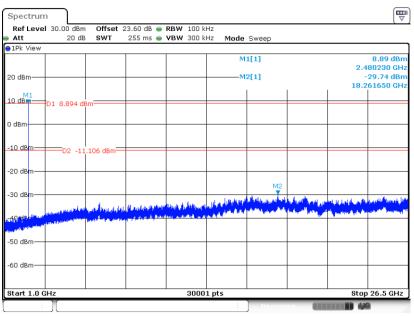
Date: 26.0CT.2023 16:46:22

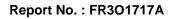
Spectrum									
Ref Level	30.00 dBm	Offset 2	23.60 dB 👄	RBW 100 k	Hz				
Att	20 dB	SWT	30.1 ms 👄	VBW 300 k	Hz Mode	Sweep			
1Pk View									
					M	1[1]			39.39 dBn 2.6450 MH;
20 dBm									
10 dBm									
0 dBm									
10 dBm-0	2 -10.137	dBm							
-20 dBm									
-30 dBm									
-40 dBm	1. http://www.income	and the second second	r. K. , de administra de ser	a constant and at	والمعروفة والمعروبات	المربي المراجع المراجع المراجع	alog tilds of a good by		M1 V
Printing of the second se	West Stations and Last	and the second second	the second standards	and the second	Laboration in the state of the	Later and a state of the	and the second second second	procession de la consta	adversion possible adverse
-50 dBm									
-60 dBm									
Start 30.0 M	1Hz			3000	1 pts			Sto	p 1.0 GHz
)[]					Measuri			M

Date: 26.0CT.2023 16:51:03

CSE Plot on Ch 39

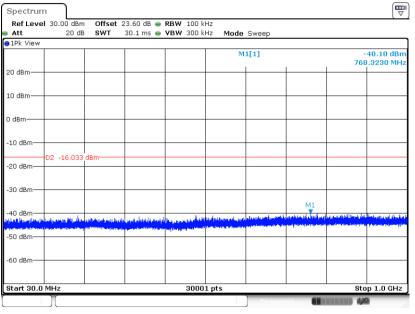
Mode Sweep M1[1] 9.86 de 2.441130 G 2.441130 G M2[1] -30.09 de 18.334750 G 18.334750 G 1 1
2.441130 G
2.441130 G
18.334750 G
NO.
الملقا العبيدة إعراف فيروين بفاص ويتميا الفعر أبط فترأ تفرير وفاقته أرويواريا ور
s Stop 26.5 GH
5

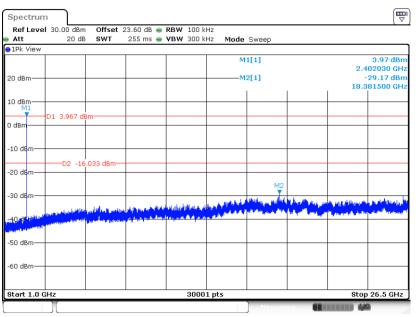

Date: 26.0CT.2023 16:50:38


Spectrum Ref Level 30.00 dBm	Offset	23.60 dB 👄	RBW 100 k	'H7				(V
Att 20 dB			VBW 300 k		Sweep			
1Pk View								
				М	1[1]			-40.13 dBm 7.9720 MHz
20 dBm								
10 dBm								
0 dBm								
-10 dBm02 -11.106	dBm							
-20 dBm								
-30 dBm								
-40 dBm	المرابع		المرابية المرابية	and the second	اردى ئىلغان رومى بى ي	Mi	at a delay the state of the state	فالروبة بقمر وزليا الطبال
-50 dBm	And a second second second			and the second state of the second		langer a land a sa garang sa	lein a stirlighteachampi	
-60 dBm								
Start 30.0 MHz			3000	1 pts			Sti	op 1.0 GHz

Date: 26.0CT.2023 16:56:17

CSE Plot on Ch 78 between


Date: 26.0CT.2023 16:55:52


<2Mbps>

CSE Plot on Ch 00

Date: 26.0CT.2023 16:59:54

CSE Plot on Ch 00

Date: 26.0CT.2023 16:59:28

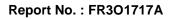
Ref Level 30.00 dBm Att 20 dB 1Pk View		23.60 dB 👄						(.
	SWI	30.1 ms 👄	VBW 300 k	Hz Mode	Sweep			
DIDK AIGM			1					
				M	1[1]			-39.70 dBm 5.3040 MHz
20 dBm								
10 dBm								
0 dBm								
-10 dBm								
D2 -14.510	dBm							
-20 dBm								
-30 dBm								
							м1	
-40 dBm					1.10	al su that the set	-	اللعادية والمراجع
-40 dBm	terona antapa materia	(Internet and a second s	de tana di tanya	ligenti anti atti tatti peritti Alexandri atti atti atti atti	References and address	and the provident		and an interaction of the
-50 dBm			and the second se					
-60 dBm								
Start 30.0 MHz			3000	1 pts			Sto	p 1.0 GHz
					Measuri			

Date: 26.0CT.2023 17:02:56

CSE Plot on Ch 39

Ref Level 30	1.00 dBm	Offset	23.60 dB 👄	RBW 100 k	Hz				
Att	20 dB	SWT	255 ms 😑	VBW 300 k	Hz Mode	Sweep			
1Pk View									
					M	1[1]			5.49 dBn
20 dBm					M	2[1]			41130 GH 30.44 dBn
						2[1]			73880 GH
10 dBm									
	5.490 dBm								
D dBm									
-10 dBm									
	-D2 -14.5	10 dBm-							
-20 dBm									
									M2
-30 dBm						منطب ورواسه		d and an and the	La sullate a la
	لر امتاند ان	ومناطر ويسأأمن	المحادثة والمراجع	الشريا وأنسا والدادا		A Mark and A Mark		an darih keratan dari s	
40.48 N 1	and the state of the	. Antoports	میں <u>درکر میں اور اور اور اور اور اور اور اور اور اور</u>	م مر له کر به ب ر مح	and the second second		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
and and a descent the other									
-50 dBm									
-60 dBm									
Start 1.0 GHz				3000	1 nts			Stor	26.5 GHz
start 1.0 GHZ				3000	r hrs	<u> </u>			, 20.0 GAZ

Date: 26.0CT.2023 17:02:30

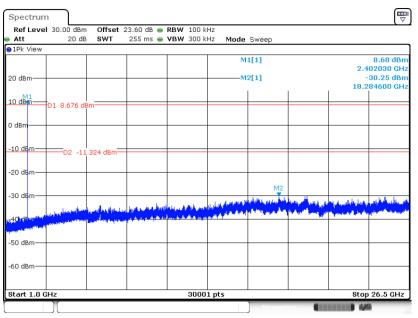

Ref Level	1 30.00 dBm	Offset	23.60 dB 👄	RBW 100 k	Hz				
Att	20 dB	SWT	30.1 ms 👄	VBW 300 k	Hz Mode	Sweep			
1Pk View									
					м	1[1]			39.85 dBm .9180 MHz
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
	D2 -16.590	dBm							
-20 dBm									
-30 dBm								M1	
-40 dBm	المربعية المربع	ورالي ورادا بناويسان	و الألبية الألبية الورينيا		a na panalana na palan	ind the ard and	nhadisələri	· · · ·	understandelige
-50 dBm	and place of the second se			n bindi ora zunt zunt ihnin					
-60 dBm									
				0.000					
Start 30.0	MHZ			3000	1 pts		_	Sto	p 1.0 GHz

Date: 26.0CT.2023 17:05:41

CSE Plot on Ch 78

Ref Level	30.00 dBm	Offset	23.60 dB 👄	RBW 100 k	Hz				
Att	20 dB	SWT	255 ms 😑	VBW 300 k	Hz Mode	Sweep			
1Pk View									
					M	1[1]		2	3.41 dBm #80230 GHz
20 dBm					M	2[1]			-30.08 dBm
									282900 GH
10 dBm									
M1									
0 dBm	01 3.410 dB	m							
o ubili									
-10 dBm									
-10 UBIII									
-20 dBm	D2 -16.	590 dBm-							
-20 uBm									
0.0 10						M2			
-30 dBm				an an an the second		الأسرابي الالقا	ور المالية الحوالية	the a hadden some	أبار عاوة ما أحفارتنى
1	العادلنان المعاسمان	a bie stand sta	es places and a second s	اروا دا دادو دور وسال کار ور در اساله داد و برسوار د	a substant	And in substa	A ALAN MALE	A manual data	post the same
40.do	a constant of the second of th	a, Alifford J., Kopel	1						
and the second									
-50 dBm									
-60 dBm									
Start 1.0 Gł	Ηz		1	3000	1 pts	1	1	Stop	26.5 GHz
) (Measuri			6

Date: 26.0CT.2023 17:05:10


<3Mbps>

CSE Plot on Ch 00

Ref Level 30.00 dBm Att 20 dB	Offset 23.60 dB = SWT 30.1 ms =		Sweep	•
1Pk View	3W1 30.1 IIIS 🖷	VBW 300 KH2 MUUE	Sweep	
		M	1[1]	-39.30 dBm 845.7590 MHz
20 dBm				
10 dBm				
0 dBm				
-10 dBm D2 -11.324 d	dBm			
-20 dBm				
-30 dBm				
-40 dBm	States (allowed as the second as the st	ويترجع والمحمد المراسل والمحرور والمحاو	and water the first of the production for the	M1
			n y genet en en y sek ste konstantelike sin sek en syn hen fig benet en de finskelen.	
-60 dBm				
Start 30.0 MHz		30001 pts		Stop 1.0 GHz

Date: 26.0CT.2023 17:13:33

CSE Plot on Ch 00

Date: 26.0CT.2023 17:13:09

Spectrum									
Ref Level	30.00 dBm	Offset	23.60 dB 👄	RBW 100 k	Hz				
Att	20 dB	SWT	30.1 ms 👄	VBW 300 k	Hz Mode	Sweep			
1Pk View									
					M	1[1]			-39.87 dBm 3.6530 MHz
20 dBm									
10 dBm									
0 dBm									
-10 dBm-0	2 -11.496	dBm							
-20 dBm									
-30 dBm									
-40 dBm	. Inserve taket de te	and a second second second		والمرور وتفتل من فاعماده	و معرف المعرفة الم	ale and the destruction	akthenik formen		ىلىكى ئەرىلىرىكى ئەرىكى ئە ئەرىكى ئەرىكى
-50 dBm	- and the second se	glovel de comptere		a Million and Alberta	n de fan de f	landen, son demacken bis sentret b		and a second (product due	
-60 dBm									
Start 30.0 M	1117			3000	1 nts			St.	op 1.0 GHz
ocure 30.0 If	12			3000	1 pc3			a.	

Date: 26.0CT.2023 17:16:08

CSE Plot on Ch 39

Spectrum								∇
Ref Level 30.0 Att	0 dBm Offse 20 dB SWT	t 23.60 dB 👄	RBW 100 k VBW 300 k		C			
1Pk View	20 08 3 81	255 ms 🖶	YDW 300 K	H2 MODE	Sweep			
IFK VIEW				м	1[1]		2.4	8.50 dBn H41130 GH:
20 dBm				M	2[1]	I		-30.37 dBn 959890 GH: 1
10 dBm D1 8.	504 dBm							
D dBm								
-10 dBmC	2 -11.496 dBm							
-20 dBm						M2		
-30 dBm	ارى او الدار ھە يىلى	. In the second states	ales de la factoria de si			la de la casa de	h, a se populé de	i a da anti-
	and the second secon	top and in the address	م <u>بندر کا طام کن بر محمولا</u>		i fan i			1
50 dBm								
-60 dBm								
Start 1.0 GHz			3000	1 pts			Stor	26.5 GHz
					Moneur			(A)

Date: 26.0CT.2023 17:15:44

Ref Level	30.00 dBm	Offset	23.60 dB 😑	RBW 100 k	Hz				
Att	20 dB	SWT	30.1 ms 👄	VBW 300 k	Hz Mode	Sweep			
1Pk View									
					м	1[1]			39.37 dBn 7.4030 MH:
20 dBm									
10 dBm									
0 dBm									
-10 dBm	D2 -11.877	dBm							
-20 dBm									
-30 dBm									
-40 dBm					State of the last state of t	r a statua turi	state francis a	M1	A REAL & LAULE
Andre Maryles	n hol er etter product	in Chine has being	يمريك والأماريك أستريبها و	الكالونايين ويتواريني	(n) Ethiopia and a base of	alle her en alle state de la superior de	pland-re-batting	distant in the second second	al-other to part (and a
-50 dBm	all of the second second second		and the second						
-60 dBm									
Start 30.0	MHz			3000	1 pts			Sto	p 1.0 GHz

Date: 26.0CT.2023 17:19:15

CSE Plot on Ch 78

Spectrum									∇
Ref Level 30. Att	00 dBm 20 dB	Offset 2 SWT		RBW 100 k		Sweep			
1Pk View	20 UB	3111	233 113	YBW 3001	Inz Moue	Sweep			
20 dBm						1[1] 2[1]		-	8.12 dBm 80230 GHz 30.31 dBm 83250 GHz
10 dB	3.123 dBm							10.0	
D dBm									
-10 dBm	-D2 -11.8	77 dBm							
-20 dBm									
-30 dBm			1			M2	و _{ل ا} سرا ^{ر ا} اروسه	المراجع والمراجع	ر. ارور اروماليور الي
40. 08 100 10	ول البالاسميني	and the second		ren maar propositieser Geboort, staat die die jaard	A DAMAGE AND A	Although the dealer	all and a second and	A Report Autors	and the second
- Address of the									
-50 dBm									
-60 dBm									
Start 1.0 GHz				3000	1 pts			Stop	26.5 GHz
						Measur			8

Date: 26.0CT.2023 17:18:42

3.8 Radiated Band Edges and Spurious Emission Measurement

3.8.1 Limit of Radiated Band Edges and Spurious Emission

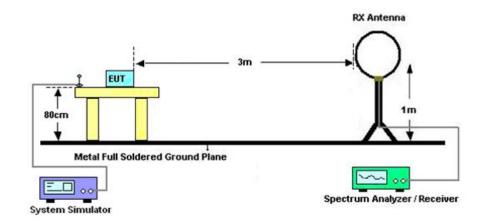
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 - 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

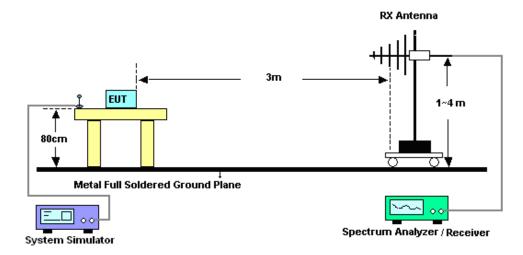
3.8.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

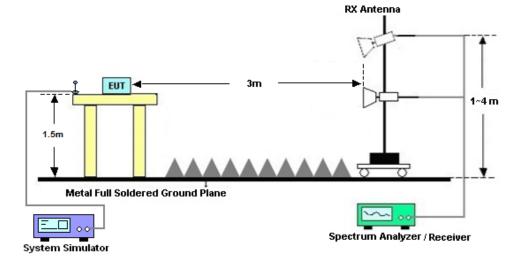
3.8.3 Test Procedures


- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz ; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds On time = N₁*L₁+N₂*L₂+...+N_{n-1}*LN_{n-1}+N_n*L_n Where N₁ is number of type 1 pulses, L₁ is length of type 1 pulses, etc. Average Emission Level = Peak Emission Level + 20*log(Duty cycle)
- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 8. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than peak limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (-24.79dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.



3.8.4 Test Setup


For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz

Sporton International Inc. (ShenZhen) TEL : +86-755-8637-9589 FAX : +86-755-8637-9595 FCC ID: IHDT56AP1 Page Number : 54 of 60 Report Issued Date : Nov. 13, 2023 Report Version : Rev. 01 Report Template No.: BU5-FR15CBT Version 2.0

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.8.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C.

3.8.7 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic or 40GHz, whichever is lower)

Please refer to Appendix C.

3.8.8 Duty cycle correction factor for average measurement

Please refer to Appendix D.

3.9 AC Conducted Emission Measurement

3.9.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted	limit (dBµV)
Frequency of emission (MHZ)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

3.9.2 Measuring Instruments


The measuring equipment is listed in the section 4 of this test report.

3.9.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.9.4 Test Setup

3.9.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

3.10 Antenna Requirements

3.10.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.10.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.10.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
EMI Test Receiver&SA	Agilent	N9038A	MY522601 85	20Hz~26.5GHz	Dec. 26, 2022	Oct. 28, 2023~ Nov. 03, 2023	Dec. 25, 2023	Radiation (03CH01-SZ)
EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY551502 13	10Hz~44GHz	Jul. 07, 2023	Oct. 28, 2023~ Nov. 03, 2023	Jul. 06, 2024	Radiation (03CH01-SZ)
Loop Antenna	R&S	HFH2-Z2	100354	9kHz~30MHz	Jul. 28, 2022	Oct. 28, 2023~ Nov. 03, 2023	Jul. 27, 2024	Radiation (03CH01-SZ)
Bilog Antenna	TeseQ	CBL6112D	35407	30MHz-2GHz	Oct. 24, 2023	Oct. 28, 2023~ Nov. 03, 2023	Oct. 23, 2025	Radiation (03CH01-SZ)
Double Ridge Horn Antenna	ETS-Lindgren	3117	00119436	1GHz~18GHz	Jul. 08, 2023	Oct. 28, 2023~ Nov. 03, 2023	Jul. 07, 2024	Radiation (03CH01-SZ)
SHF-EHF Horn	com-power	AH-840	101071	18Ghz-40GHz	Apr. 08,2023	Oct. 28, 2023~ Nov. 03, 2023	Apr. 07,2024	Radiation (03CH01-SZ)
LF Amplifier	Burgeon	BPA-530	102209	0.01~3000Mhz	Apr. 04, 2023	Oct. 28, 2023~ Nov. 03, 2023	Apr. 03,2024	Radiation (03CH01-SZ)
HF Amplifier	MITEQ	AMF-7D-0010 1800-30-10P- R	1943528	1GHz~18GHz	Oct. 18,2023	Oct. 28, 2023~ Nov. 03, 2023	Oct. 17,2024	Radiation (03CH01-SZ)
HF Amplifier	KEYSIGHT	83017A	MY532701 05	0.5GHz~26.5Ghz	Oct. 18,2023	Oct. 28, 2023~ Nov. 03, 2023	Oct. 17,2024	Radiation (03CH01-SZ)
HF Amplifier	MITEQ	TTA1840-35- HG	1871923	18GHz~40GHz	Jul. 07, 2023	Oct. 28, 2023~ Nov. 03, 2023	Jul. 06, 2024	Radiation (03CH01-SZ)
AC Power Source	Chroma	61601	616010001 985	N/A	Oct. 18,2023	Oct. 28, 2023~ Nov. 03, 2023	Oct. 17,2024	Radiation (03CH01-SZ)
Turn Table	EM	EM1000	N/A	0~360 degree	NCR	Oct. 28, 2023~ Nov. 03, 2023	NCR	Radiation (03CH01-SZ)
Antenna Mast	EM	EM1000	N/A	1 m~4 m	NCR	Oct. 28, 2023~ Nov. 03, 2023	NCR	Radiation (03CH01-SZ)
EMI Receiver	R&S	ESR7	101630	9kHz~7GHz;	Jul. 06, 2023	Oct. 30, 2023	Jul. 05, 2024	Conduction (CO01-SZ)
AC LISN	R&S	ENV216	100063	9kHz~30MHz	Aug. 21, 2023	Oct. 30, 2023	Aug. 20, 2024	Conduction (CO01-SZ)
AC LISN (for auxiliary equipment)	EMCO	3816/2SH	00103892	9kHz~30MHz	Oct. 16, 2023	Oct. 30, 2023	Oct. 15, 2024	Conduction (CO01-SZ)
AC Power Source	Chroma	61602	616020000 891	100Vac~250Vac	Jul. 07, 2023	Oct. 30, 2023	Jul. 06, 2024	Conduction (CO01-SZ)
Spectrum Analyzer	R&S	FSV40	101078	10Hz~40GHz	Apr. 06, 2023	Oct. 25, 2023~ Oct. 26, 2023	Apr. 05, 2024	Conducted (TH01-SZ)
Pulse Power Senor	Anritsu	MA2411B	1339473	30MHz~40GHz	Dec. 27, 2022	Oct. 25, 2023~ Oct. 26, 2023	Dec. 26, 2023	Conducted (TH01-SZ)
Power Meter	Anritsu	ML2495A	1542004	50MHz Bandwidth	Dec. 27, 2022	Oct. 25, 2023~ Oct. 26, 2023	Dec. 26, 2023	Conducted (TH01-SZ)
Thermo meter	Anymetre	JR593	#7	- 10℃ ~ 50℃ 10%RH~99%RH	Apr. 08, 2023	Oct. 25, 2023~ Oct. 26, 2023	Apr. 07, 2024	Conducted (TH01-SZ)

NCR: No Calibration Required

5 Measurement Uncertainty

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Uncertainty of Conducted Measurement

Test Item	Uncertainty
Conducted Spurious Emission & Bandedge	±1.34 dB
Occupied Channel Bandwidth	±0.012 MHz
Conducted Power	±1.34 dB
Conducted Power Spectral Density	±1.32 dB
Frequency	±1.3 Hz

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.7 dB
of 95% (U = 2Uc(y))	2.7 48

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	4.2 dB
of 95% (U = 2Uc(y))	4.2 u B

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0 dB
of 95% (U = 2Uc(y))	5.0 dB

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	4.3 dB
of 95% (U = 2Uc(y))	4.3 dB

----- THE END ------

Appendix A. Conducted Test Results

Appendix A. Test Result of Conducted Test Items

Report Number : FR3O1717A

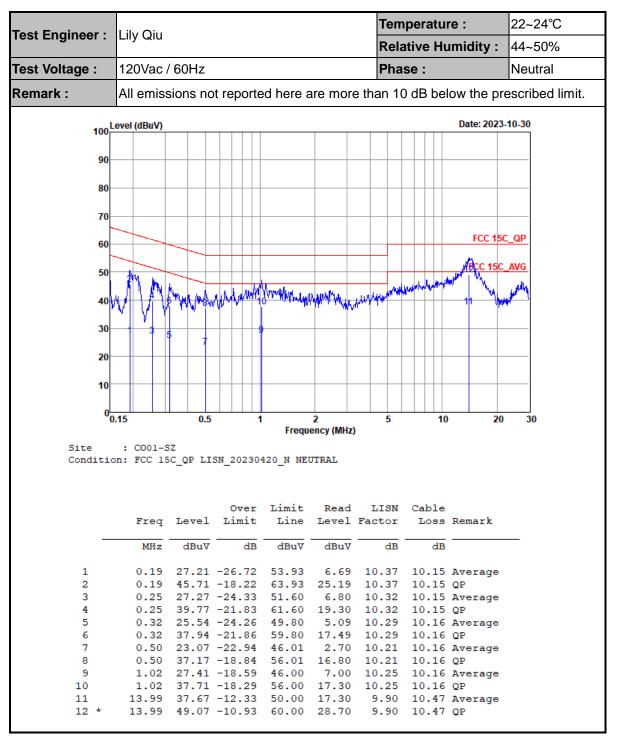
Test Engineer:	Zhang Jiang	Temperature:	21~25	°C
Test Date:	2023/10/25~2023/1026	Relative Humidity:	51~54	%

						<u>TEST RES</u>	ULTS DATA		
			<u>20a</u>	B and	99% Occu	pied Bandwid	th and Hopping	Channel Separati	ion
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	20dB BW (MHz)	99% Bandwidth (MHz)	Hopping Channel Separation Measurement (MHz)	Hopping Channel Separation Measurement Limit (MHz)	Pass/Fail
DH	1Mbps	1	0	2402	0.870	0.767	0.999	0.5797	Pass
DH	1Mbps	1	39	2441	0.865	0.757	0.999	0.5768	Pass
DH	1Mbps	1	78	2480	0.870	0.763	0.999	0.5797	Pass
2DH	2Mbps	1	0	2402	1.274	1.151	0.990	0.8493	Pass
2DH	2Mbps	1	39	2441	1.261	1.145	0.994	0.8406	Pass
2DH	2Mbps	1	78	2480	1.265	1.149	1.003	0.8435	Pass
3DH	3Mbps	1	0	2402	1.287	1.155	1.003	0.8580	Pass
3DH	3Mbps	1	39	2441	1.274	1.149	0.994	0.8493	Pass
3DH	3Mbps	1	78	2480	1.283	1.153	0.990	0.8551	Pass

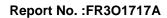
			<u>TE</u> \$	ST RESULTS Dwell Time		
Mod.	Hopping Channel Number Rate	Hops Over Occupancy Time(hops)	Package Transfer Time (msec)	Dwell Time (sec)	Limits (sec)	Pass/Fail
Nomal	79	106.67	2.89	0.31	0.4	Pass
AFH	20	53.33	2.89	0.15	0.4	Pass

					<u>ST RESUL</u> Peak Powe
DH	CH.	NTX	Peak Power	Power Limit	Test
DIT	011.		(dBm)	(dBm)	Result
	0	1	11.47	20.97	Pass
DH5	39	1	11.75	20.97	Pass
	78	1	11.24	20.97	Pass
	0	1	10.95	20.97	Pass
2DH5	39	1	11.09	20.97	Pass
	78	1	10.72	20.97	Pass
	0	1	10.97	20.97	Pass
3DH5	39	1	11.11	20.97	Pass
	78	1	10.74	20.97	Pass

<u>TEST RESULTS DATA</u> <u>Average Power Table</u> <u>(Reporting Only)</u>								
DH	CH.	NTX	Average Power (dBm)	Duty Factor (dB)				
	0	1	10.40	1.15				
DH5	39	1	10.90	1.15				
	78	1	10.00	1.15				
	0	1	8.50	1.15				
2DH5	39	1	8.50	1.15				
	78	1	8.00	1.15				
	0	1	8.50	1.14				
3DH5	39	1	8.50	1.14				
-	78	1	8.00	1.14				


<u>TEST RESULTS DATA</u> <u>Number of Hopping Frequency</u>								
Number of Hopping (Channel)	Adaptive Frequency Hopping (Channel)	Limits (Channel)	Pass/Fail					
79	20	> 15	Pass					

Appendix B. AC Conducted Emission Test Results

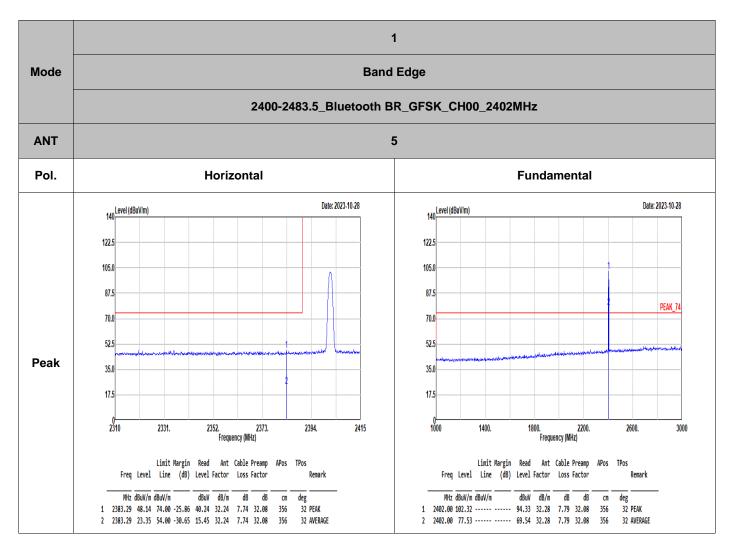

Test Engineer :	Lily Qiu						peratu	22~24°C		
rest Engineer .						Rela	ative Hu	44~50%		
Test Voltage :	120Vac / 60Hz					Pha	se :		Line	
Remark :	All emissions not reported here are more t						han 10 dB below the prescribed lim			
100	Level (dBuV)							Date: 2023	-10-30	
100										
90-										
80-										
70										
60-								FCC 150	<u>QP</u>	
								FCC 15C	AVG	
50	\/// a)	m-						12		
40	W W U	8 Million	1	_				1 11 North		
40	3 "	10	the when the second	WHAT AND	a sharen he	a sumpliment	NA IAAA MARAA	* ***		
30		7		1 • MW	M	Manager				
		9								
20										
10										
0										
OL O	0.15	0.5	1		2	5	10	20	30	
			1		2 ency (MHz)	-	10	20	30	
Site	: CO01-S	Z		Frequ	ency (MHz)	-	10	20	30	
Site		Z		Frequ	ency (MHz)	-	10	20	30	
Site	: CO01-S	Z		Frequ	ency (MHz)	-	10	20] 30	
Site	: CO01-S	Z	SN_20230	Frequ	ency (MHz) NE		Cable	20] 30	
Site	: CO01-S on: FCC 15	SZ SC_QP LI	SN_20230	Frequ 420_L LI Limit	ency (MHz) NE Read		Cable	20 Remark	30	
Site	: COO1-S on: FCC 15 Freq	GZ GC_QP LI Level	SN_20230 Over Limit	Frequ 420_L LII Limit Line	Read Level	LISN Factor	Cable Loss		30	
Site	: CO01-S on: FCC 15	SZ SC_QP LI	SN_20230 Over	Frequ 420_L LI Limit	ency (MHz) NE Read	LISN	Cable		30	
Site	: COO1-S on: FCC 15 Freq MHz	SZ SC_QP LI Level dBuV	SN_20230 Over Limit dB	Frequ 420_L LI Limit Line dBuV	NE Read Level dBuV	LISN Factor	Cable Loss dB] 	
Site Conditi(: CO01-S on: FCC 15 Freq MHz 0.15	SZ GC_QP LI Level dBuV 32.30	SN_20230 Over Limit 	Frequ 420_L LI Limit Line dBuV	Read Level dBuV 11.70	LISN Factor dB 10.47	Cable Loss dB 10.13	Remark] 	
Site Conditio 	: CO01-S on: FCC 15 Freq MHz 0.15 0.15 0.19	22 C_QP LI Level dBuV 32.30 49.50 34.68	Over Limit -23.70 -16.50 -19.34	Frequ 420_L LI Limit Line dBuV 56.00 66.00 54.02	Read Level dBuV 11.70 28.90 14.10	LISN Factor dB 10.47 10.47 10.43	Cable Loss dB 10.13 10.13 10.15	Remark Average QP Average] 	
Site Conditio 1 2 3 4	: CO01-S on: FCC 15 Freq MHz 0.15 0.15 0.19 0.19	22 C_QP LI Level dBuV 32.30 49.50 34.68 53.58	Over Limit -23.70 -16.50 -19.34 -10.44	Frequ 420_L LI Limit 	Read Level dBuV 11.70 28.90 14.10 33.00	LISN Factor dB 10.47 10.43 10.43	Cable Loss dB 10.13 10.13 10.15 10.15	Remark Average QP Average QP		
Site Conditio — 1 2 3 4 5	: CO01-S on: FCC 15 Freq MHz 0.15 0.15 0.19 0.19 0.28	22 C_QP LI Level dBuV 32.30 49.50 34.68 53.58 27.83	Over Limit -23.70 -16.50 -19.34 -10.44 -23.02	Frequ 420_L LII Limit Line dBuV 56.00 66.00 54.02 64.02 50.85	Read Level dBuV 11.70 28.90 14.10 33.00 7.31	LISN Factor dB 10.47 10.43 10.43 10.43 10.37	Cable Loss dB 10.13 10.13 10.15 10.15 10.15	Remark Average QP Average QP Average		
Site Conditio — 1 2 3 4 5 6	: CO01-S on: FCC 15 Freq MHz 0.15 0.15 0.19 0.19 0.28 0.28	2 5C_QP LI Level dBuV 32.30 49.50 34.68 53.58 27.83 45.13	Over Limit 	Frequ 420_L LI Limit Line dBuV 56.00 66.00 54.02 64.02 50.85 60.85	Read Level dBuV 11.70 28.90 14.10 33.00 7.31 24.61	LISN Factor dB 10.47 10.43 10.43 10.43 10.37	Cable Loss dB 10.13 10.13 10.15 10.15 10.15 10.15	Remark Average QP Average QP Average QP		
Site Conditio — 1 2 3 4 5	: CO01-S on: FCC 15 Freq MHz 0.15 0.15 0.19 0.19 0.28 0.28 0.33	2 3 3 3 2 3 2 3 3 4 3 2 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 5 3 4 5 5 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5	Over Limit 	Frequ 420_L LI Limit Line dBuV 56.00 66.00 54.02 64.02 50.85 60.85	Read Level dBuV 11.70 28.90 14.10 33.00 7.31 24.61 7.79	LISN Factor dB 10.47 10.43 10.43 10.43 10.37 10.37	Cable Loss dB 10.13 10.13 10.15 10.15 10.15 10.15 10.16	Remark Average QP Average QP Average QP Average		
Site Conditio 	: CO01-S on: FCC 15 Freq MHz 0.15 0.15 0.19 0.19 0.28 0.28 0.28 0.33 0.33	2 3C_QP LI Level dBuV 32.30 49.50 34.68 53.58 27.83 45.13 28.28 41.08	Over Limit 	Frequ 420_L LI Limit Line dBuV 56.00 66.00 54.02 64.02 50.85 60.85 49.35	Read Level dBuV 11.70 28.90 14.10 33.00 7.31 24.61 7.79	LISN Factor dB 10.47 10.43 10.43 10.43 10.37 10.37 10.33 10.33	Cable Loss dB 10.13 10.13 10.15 10.15 10.15 10.15 10.16 10.16	Remark Average QP Average QP Average QP Average		
Site Conditio 1 2 3 4 5 6 7 8	: CO01-S on: FCC 15 Freq MHz 0.15 0.15 0.19 0.19 0.28 0.28 0.28 0.33 0.33 0.44	2 3 3 3 3 3 3 4 3 2 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 5 8 2 7 8 3 4 5 5 8 2 7 8 3 4 5 5 8 5 7 8 3 4 5 5 8 8 8 8 8 8 8 8 8 8 8 8 8	Over Limit 	Frequ 420_L LI Limit Line dBuV 56.00 66.00 54.02 64.02 50.85 60.85 49.35 59.35	Read Level dBuV 11.70 28.90 14.10 33.00 7.31 24.61 7.79 20.59 2.50	LISN Factor dB 10.47 10.43 10.43 10.37 10.37 10.33 10.33 10.33	Cable Loss dB 10.13 10.13 10.15 10.15 10.15 10.15 10.16 10.16 10.16	Remark Average QP Average QP Average QP Average QP Average		
Site Conditio 1 2 3 4 5 6 7 8 9	: CO01-S on: FCC 15 Freq MHz 0.15 0.15 0.19 0.19 0.28 0.28 0.33 0.33 0.33 0.44 0.44 14.29	22 22 23 23 23 23 23 24 23 24 25 23 24 25 25 24 25 25 25 25 25 25 25 25 25 25 25 25 25	Over Limit 	Frequ 420_L LII Limit Line dBuV 56.00 64.02 64.02 50.85 60.85 49.35 59.35 47.07	Read Level dBuV 11.70 28.90 14.10 33.00 7.31 24.61 7.79 20.59 2.50 13.20 19.30	LISN Factor dB 10.47 10.43 10.43 10.37 10.33 10.33 10.33 10.27 10.27 9.88	Cable Loss dB 10.13 10.15 10.15 10.15 10.15 10.16 10.16 10.16	Remark Average QP Average QP Average QP Average QP Average QP Average		

Note:

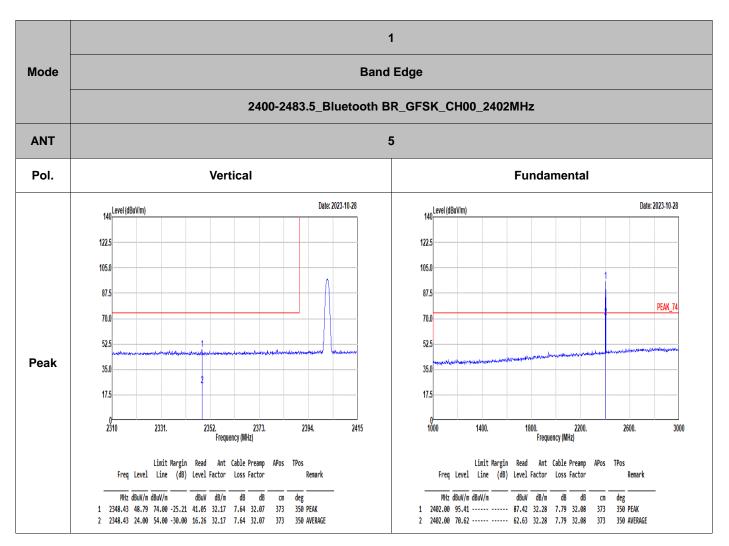
- 1. Level(dB μ V) = Read Level(dB μ V) + LISN Factor(dB) + Cable Loss(dB)
- 2. Over Limit(dB) = Level(dB μ V) Limit Line(dB μ V)

Appendix C. Radiated Spurious Emission Test Data

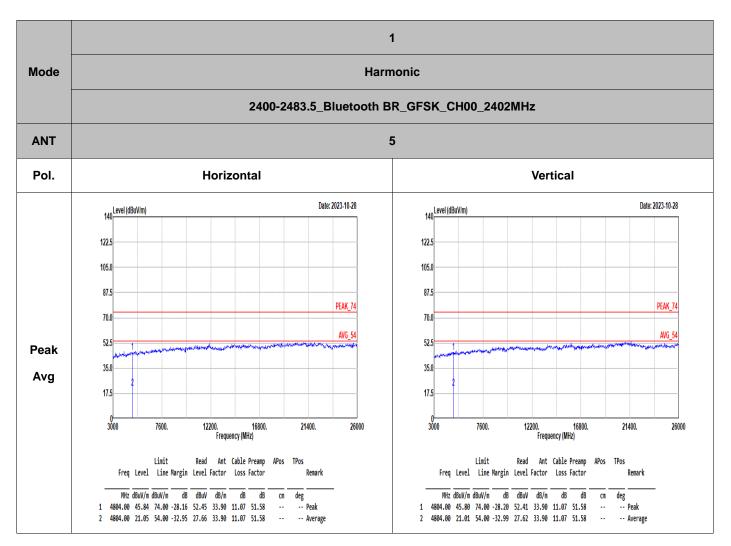
Tost Engineer :	Hue Cong Liong	Relative Humidity :	48~49%
Test Engineer :	Hua Cong Liang	Temperature :	24-25 ℃

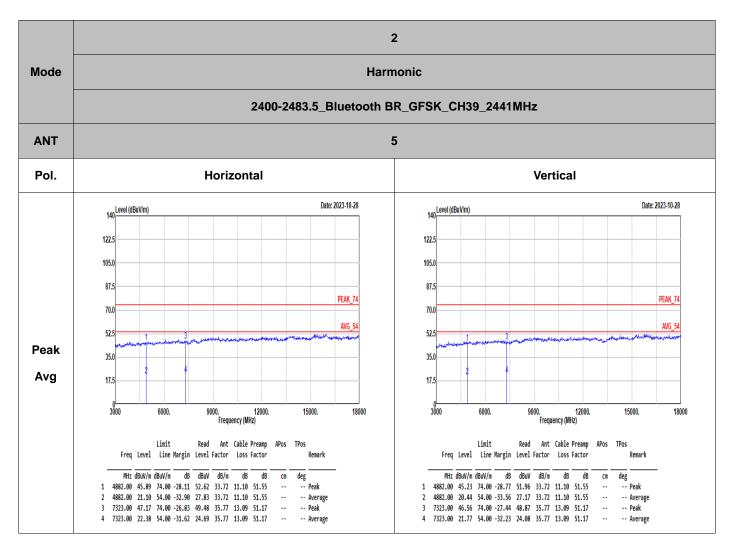

Radiated Spurious Emission Test Modes

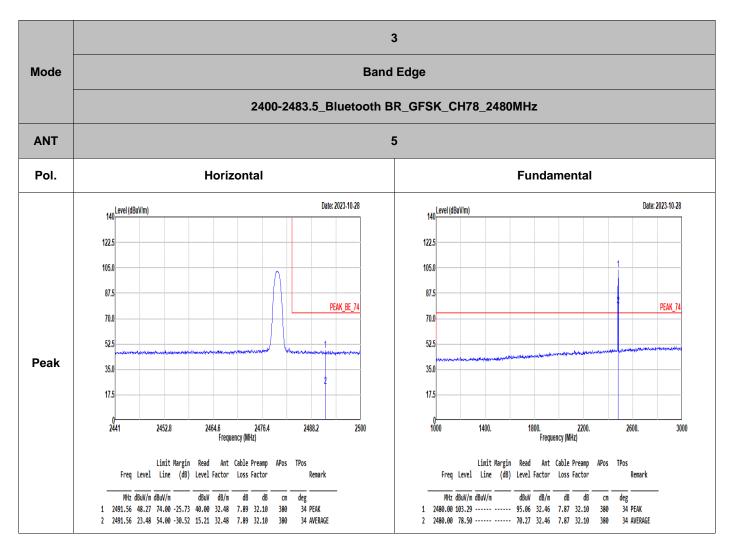
Mode	Band (MHz)	Antenna	Modulation	Channel	Frequency	Data Rate	RU	Remark
Mode 1	2400-2483.5	5	Bluetooth BR_GFSK	00	2402	1DH5	-	-
Mode 2	2400-2483.5	5	Bluetooth BR_GFSK	39	2441	1DH5	-	-
Mode 3	2400-2483.5	5	Bluetooth BR_GFSK	78	2480	1DH5	-	-
Mode 4	2400-2483.5	5	Bluetooth BR_GFSK	00	2402	1DH5	-	LF
Mode 5	2400-2483.5	5	Bluetooth BR_GFSK	00	2402	1DH5	-	Sample 2

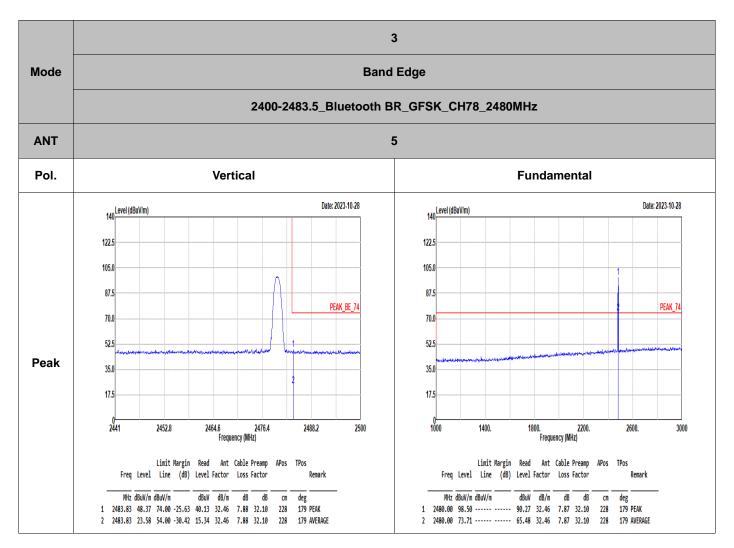

Summary of each worse mode

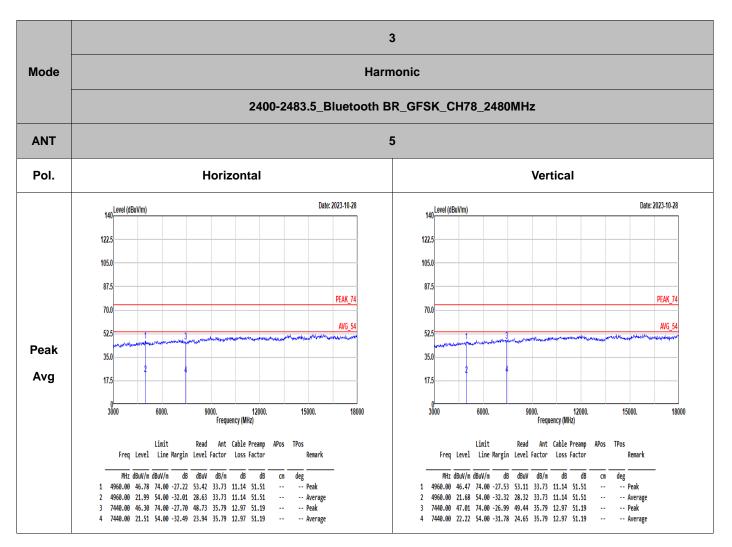
Mode	Modulation	Ch.	Freq. (MHz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pol.	Peak Avg.	Result	Remark
1	Bluetooth BR_GFSK	00	2348.43	48.79	74.00	-25.21	V	Peak	Pass	Band Edge
1	Bluetooth BR_GFSK	00	4804.00	45.84	74.00	-28.16	Н	Peak	Pass	Harmonic
2	Bluetooth BR_GFSK	39	-	-	-	-	-	-	-	Band Edge
2	Bluetooth BR_GFSK	39	7323.00	47.17	74.00	-26.83	Н	Peak	Pass	Harmonic
3	Bluetooth BR_GFSK	78	2483.83	48.37	74.00	-25.63	V	Peak	Pass	Band Edge
3	Bluetooth BR_GFSK	78	7440.00	47.01	74.00	-26.99	V	Peak	Pass	Harmonic
4	Bluetooth BR_GFSK	00	41.64	32.08	40	-7.92	V	Peak	Pass	LF
5	Bluetooth BR_GFSK	00	2325.75	49.41	74.00	-24.59	Н	PEAK	Pass	Band Edge
5	Bluetooth BR_GFSK	00	4804.00	46.07	74.00	-27.93	Н	Peak	Pass	Harmonic

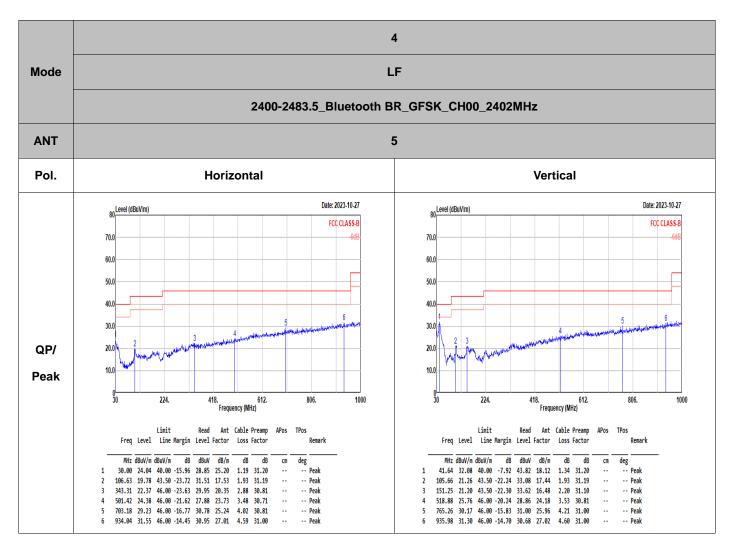


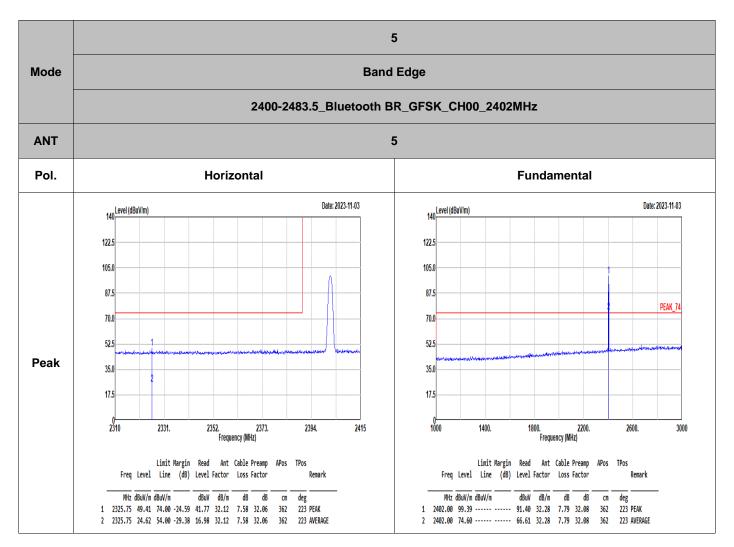


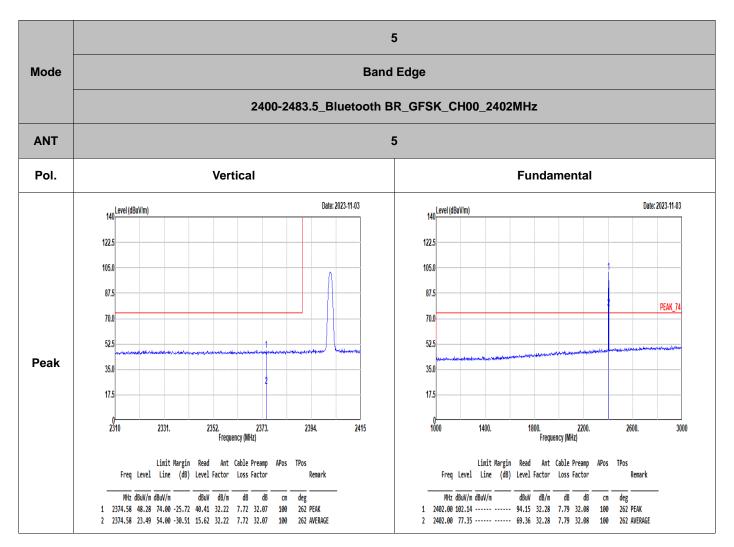


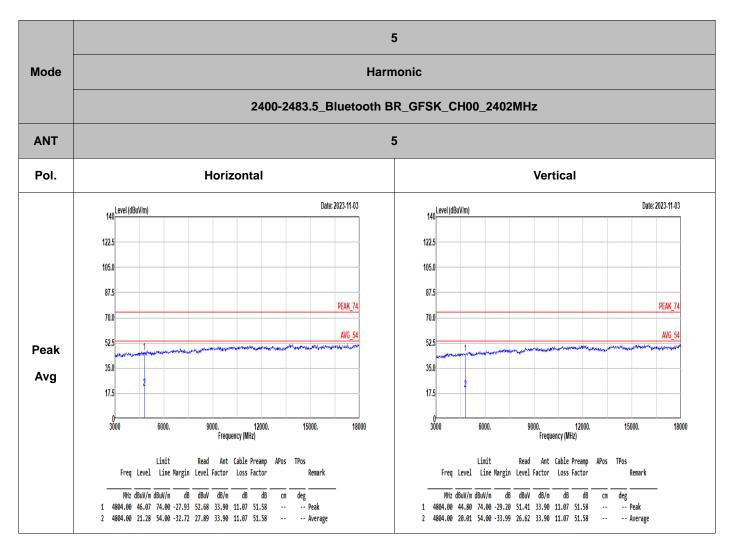




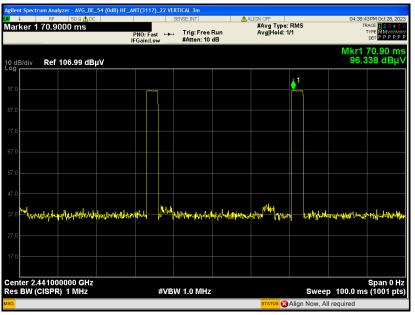












Appendix D. Duty Cycle Plots

DH5 on time (One Pulse) Plot

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = $2 \times 2.88 / 100 = 5.76 \%$
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.79 dB
- 3. DH5 has the highest duty cycle worst case and is reported.