Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.1 Ω + 2.6 jΩ	
Return Loss	- 28.2 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.153 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

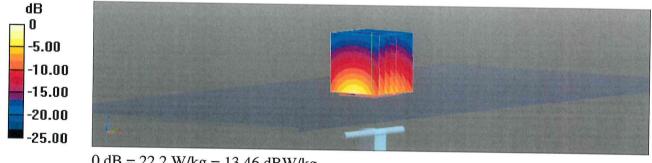
Manufacture	
Manufactured by	SPEAC
	SFEAG

DASY5 Validation Report for Head TSL

Date: 25.04.2023

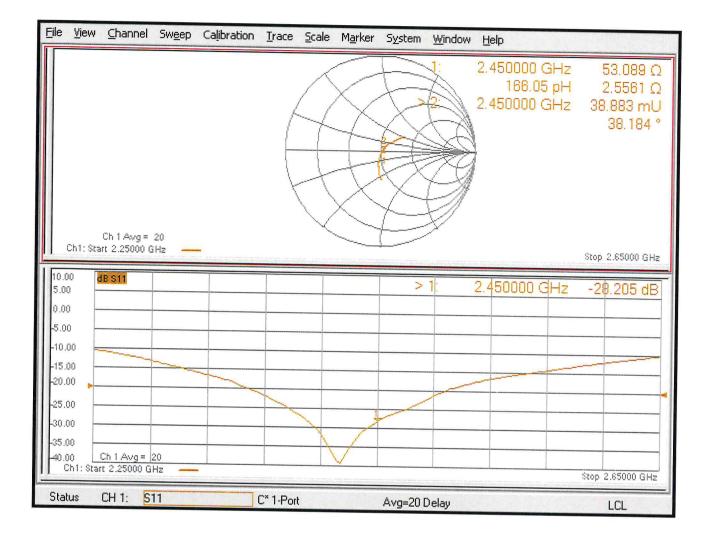
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 1040


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.86$ S/m; $\varepsilon_r = 37.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.88, 7.88, 7.88) @ 2450 MHz; Calibrated: 10.01.2023
- Sensor-Surface: 1.4mm (Mechanical Surface Detection) •
- Electronics: DAE4 Sn601; Calibrated: 19.12.2022 •
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 •
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)


Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 117.6 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 26.7 W/kgSAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.24 W/kgSmallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 50.3%Maximum value of SAR (measured) = 22.2 W/kg

0 dB = 22.2 W/kg = 13.46 dBW/kg

Impedance Measurement Plot for Head TSL

Sporton

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, Chi Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Certificate No: Z21-60554

CALIBRATION CERTIFICATE

Object

D2600V2 - SN: 1070

December 20, 2021

e

Calibration Procedure(s)

Client

FF-Z11-003-01 Calibration Procedures for dipole validation kits

Calibration date:

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106277	24-Sep-21 (CTTL, No.J21X08326)	Sep-22
Power sensor NRP8S	104291	24-Sep-21 (CTTL, No.J21X08326)	Sep-22
Reference Probe EX3DV4	SN 7307	26-May-21(SPEAG,No.EX3-7307_May21)	May-22
DAE4	SN 1556	15-Jan-21(SPEAG,No.DAE4-1556_Jan21)	Jan-22
Secondary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	01-Feb-21 (CTTL, No.J21X00593)	Jan-22
Network Analyzer E5071C	MY46110673	14-Jan-21 (CTTL, No.J21X00232)	Jan-22

0 17 1 1	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	ALL ALL
Reviewed by:	Lin Hao	SAR Test Engineer	##28
Approved by:	Qi Dianyuan	SAR Project Leader	tha
This calibration certifi	cate shall not be reproduc	Issue ced except in full without written ap	d: December 27, 2021 proval of the laboratory

Certificate No: Z21-60554

Page 1 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

e CALIBRATION LABORATORY

In Collaboration with P

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole . positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. 0 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z21-60554

Page 2 of 6

In Collaboration with **S D C A G** CALIBRATION LABORATORY

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2079E-mail: cttl@chinattl.comFax: +86-10-62304633-2504http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	102.10.1
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2600 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

Temperature	Permittivity	Conductivity
22.0 °C	39.0	1.96 mho/m
(22.0 ± 0.2) °C	40.1 ± 6 %	1.97 mho/m ± 6 %
<1.0 °C		
	22.0 °C (22.0 ± 0.2) °C	22.0 °C 39.0 (22.0 ± 0.2) °C 40.1 ± 6 %

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.0 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	56.2 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.14 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.6 W/kg ± 18.7 % (k=2)
		24.6 W/kg ± 18.7 % (A

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

e

CALIBRATION LABORATORY

a

a

Appendix (Additional assessments outside the scope of CNAS L0570)

In Collaboration with D

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.5Ω- 6.60jΩ	
Return Loss	- 23.6dB	

General Antenna Parameters and Design

1.058 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by				
	1		SPEAG	
ate No: Z21-60554		D		

Certificate No: Z21-60554

Page 4 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

e

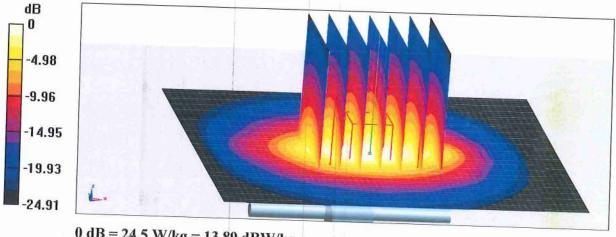
CALIBRATION LABORATORY

In Collaboration with

p

DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1070

Date: 2021-12-20

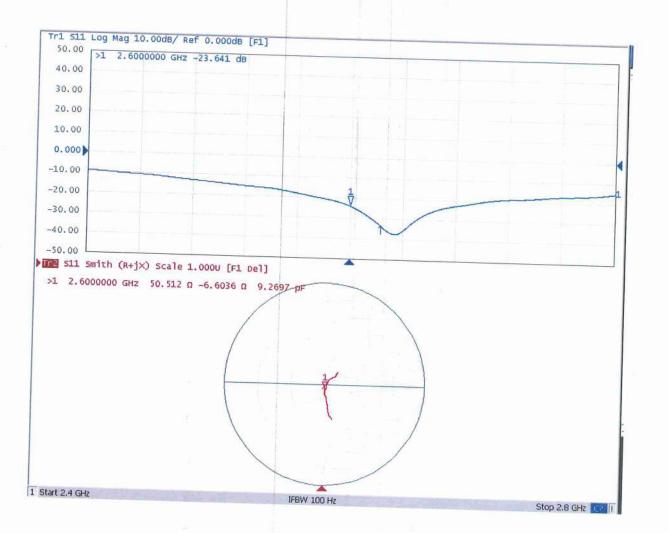

Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; σ = 1.97 S/m; ϵ_r = 40.05; ρ = 1000 kg/m³ Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) **DASY5** Configuration:

- Probe: EX3DV4 SN7307; ConvF(7.5, 7.5, 7.5) @ 2600 MHz; Calibrated: . 2021-05-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2021-01-15
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 106.3 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 30.8 W/kg SAR(1 g) = 14 W/kg; SAR(10 g) = 6.14 W/kg Smallest distance from peaks to all points 3 dB below = 9 mmRatio of SAR at M2 to SAR at M1 = 44.7%Maximum value of SAR (measured) = 24.5 W/kg


0 dB = 24.5 W/kg = 13.89 dBW/kg

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

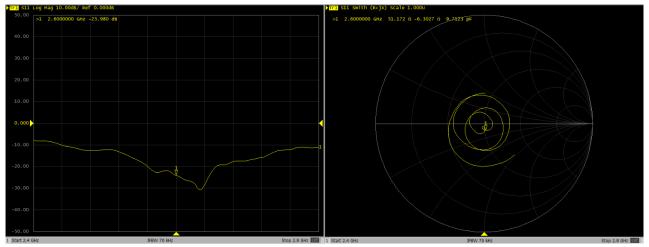
Impedance Measurement Plot for Head TSL

Certificate No: Z21-60554

D2600V2, Serial No. 1070 Extended Dipole Calibrations

Referring to KDB 865664 D01, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

			D2600V2 – serial no. 10	70		
			2600	Head		
Date of	Return-Loss	Delta	Real Impedance	Delta	Imaginary Impedance	Delta
Measurement	(dB)	(%)	(ohm)	(ohm)	(ohm)	(ohm)
2021.12.20	-23.6		50.5		-6.6	
2022.12.19	-24.0	1.6%	51.2	-0.7	-6.3	-0.3


<Justification of the extended calibration>

The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

Dipole Verification Data> D2600V2, serial no. 1070

2600MHz - Head----2022.12.19

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Sporton

Certificate No: D5GHzV2-1341_Dec21

CALIBRATION CERTIFICATE

Object	D5GHzV2 - SN:1	341	
Calibration procedure(s)	QA CAL-22.v6		
		edure for SAR Validation Sources	botwoon 2 10 CHz
	Cambradon 1 1000	source for OAN valuation Sources	s between 3-10 GHz
Calibration date:	December 13, 20	121	
	December 10, 20		and the second
This calibration certificate docume	nts the traceability to nat	ional standards, which realize the physical ur	ite of measurements (OI)
The measurements and the uncert	tainties with confidence p	robability are given on the following pages ar	and are part of the contificate
	contraction p		are part of the certificate.
All calibrations have been conduct	ed in the closed laborato	ry facility: environment temperature (22 \pm 3)°	0
		$(22 \pm 3)^{\circ}$	c and numidity < 70%.
Calibration Equipment used (M&TE	E critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	09-Apr-21 (No. 217-03291/03292)	Apr-22
Power sensor NRP-Z91	SN: 103244	09-Apr-21 (No. 217-03291)	Apr-22
Power sensor NRP-Z91	SN: 103245	09-Apr-21 (No. 217-03292)	Apr-22
Reference 20 dB Attenuator	SN: BH9394 (20k)	09-Apr-21 (No. 217-03343)	Apr-22
Type-N mismatch combination	SN: 310982 / 06327	09-Apr-21 (No. 217-03344)	Apr-22
Reference Probe EX3DV4	SN: 3503	30-Dec-20 (No. EX3-3503_Dec20)	Dec-21
DAE4	SN: 601	01-Nov-21 (No. DAE4-601_Nov21)	Nov-22
		, , , , , , , , , , , , , , , , , , , ,	
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-20)	In house check: Oct-22
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-22
	Name	Function	Signature
Calibrated by:	Jeffrey Katzman	Laboratory Technician	Na LA
			CI Rom
		X	
Approved by:	Niels Kuster	Quality Manager	1 Kds
			Issued: December 14, 2021
This calibration certificate shall not	be reproduced except in	full without written approval of the laboratory	

Calibration Laboratory of Schmid & Partner **Enaineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage С
- Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the 0 center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	· · · · · · · · · · · · · · · · · · ·
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.9 ± 6 %	4.56 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	n ai n a i nai
SAR measured	100 mW input power	8.12 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.1 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.4 ± 6 %	4.91 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.52 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	84.5 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.42 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.0 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.2 ± 6 %	5.06 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		""

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.13 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.6 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	2.29 W/kg

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	48.4 Ω + 0.1 jΩ
Return Loss	- 35.7 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	53.8 Ω + 7.2 jΩ
Return Loss	- 22.2 dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	51.4 Ω + 5.0 jΩ
Return Loss	- 25.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.211 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
	Joread J

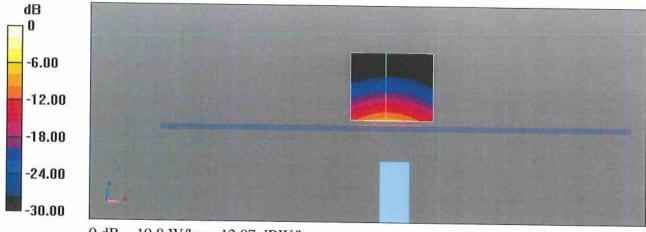
Date: 13.12.2021

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1341

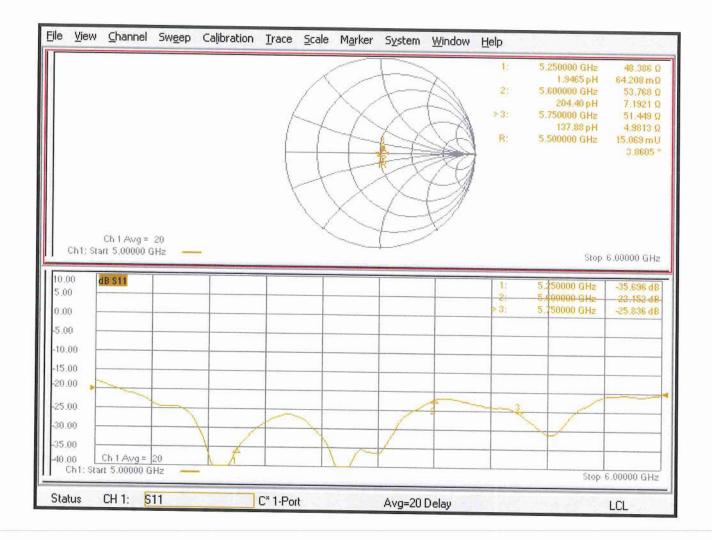
Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; σ = 4.56 S/m; ϵ_r = 34.9; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 4.91 S/m; ϵ_r = 34.4; ρ = 1000 kg/m³, Medium parameters used: f = 5750 MHz; σ = 5.06 S/m; ϵ_r = 34.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN3503; ConvF(5.5, 5.5, 5.5) @ 5250 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.08, 5.08, 5.08) @ 5750 MHz; Calibrated: 30.12.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 01.11.2021
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 77.28 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 27.0 W/kg SAR(1 g) = 8.12 W/kg; SAR(10 g) = 2.33 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 71.5% Maximum value of SAR (measured) = 18.5 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 77.67 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 30.9 W/kg SAR(1 g) = 8.52 W/kg; SAR(10 g) = 2.42 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 68.6% Maximum value of SAR (measured) = 20.2 W/kg


Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 74.44 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 31.2 W/kg SAR(1 g) = 8.13 W/kg; SAR(10 g) = 2.29 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 66.7% Maximum value of SAR (measured) = 19.8 W/kg

0 dB = 19.8 W/kg = 12.97 dBW/kg

Impedance Measurement Plot for Head TSL

D5GHzV2, Serial No. 1341 Extended Dipole Calibrations

Referring to KDB 865664 D01, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

D5GV2 – serial no. 1341							
	5250 Head						
Date of	Return-Loss	Return-Loss Delta Real Impedance Delta Imaginary Impedance Delta					
Measurement	(dB)	(dB) (%) (ohm) (ohm) (ohm) (ohm)					
2021.12.13	-35.7 48.4 0.1						
2022.12.12	-35.7	0.0	50.1	-1.7	-1.6	1.7	

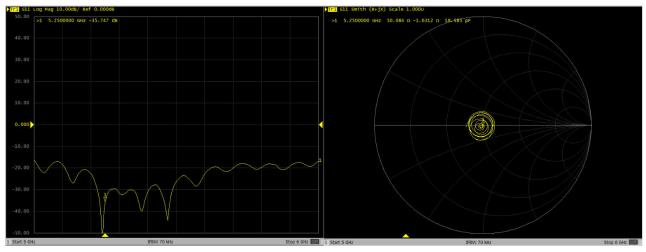
5250MHz

5600MHz

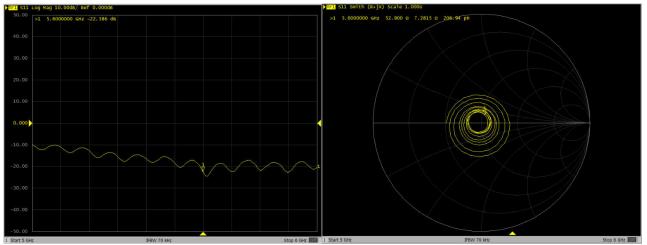
D5GV2 – serial no. 1341						
		5600 Head				
Date of	Return-Loss	Return-Loss Delta Real Impedance Delta Imaginary Impedance Delta				
Measurement	(dB) (%) (ohm) (ohm) (ohm) (ohm)					(ohm)
2021.12.13	-22.2 53.8 7.2					
2022.12.12	-22.4	0.9	52.9	0.9	7.3	-0.1

5750MHz

D5GV2 – serial no. 1341						
		5750 Head				
Date of	Return-Loss	Return-Loss Delta Real Impedance Delta Imaginary Impedance Delta				
Measurement	(dB)	(dB) (%) (ohm) (ohm) (ohm) (ohm)				
2021.12.13	-25.8 51.4 5					
2022.12.12	-26.1	1.2	50.1	1.3	5	0

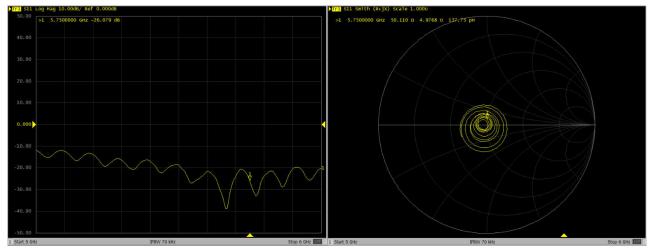

<Justification of the extended calibration>

The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.



Dipole Verification Data> D5GHzV2, serial no. 1341

5250MHz - Head----2022.12.12



5600MHz - Head----2022.12.12

5750MHz - Head----2022.12.12

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 www.speag.swiss, info@speag.swiss

s p e a g

IMPORTANT NOTICE

USAGE OF THE DAE4

The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points:

Battery Exchange: The battery cover of the DAE4 unit is fixed using a screw, over tightening the screw may cause the threads inside the DAE to wear out.

Shipping of the DAE: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside.

E-Stop Failures: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements.

Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect.

DASY Configuration Files: Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file.

Important Note:

Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer.

Important Note:

Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the Estop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure.

Important Note:

To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE.

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Sporton

Shenzhen City

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage

C Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 0108

Certificate No: DAE4-1664 Jun23

CALIBRATION CERTIFICATE Object DAE4 - SD 000 D04 BO - SN: 1664 Calibration procedure(s) QA CAL-06.v30 Calibration procedure for the data acquisition electronics (DAE) June 06, 2023 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) **Primary Standards** ID # Cal Date (Certificate No.) Scheduled Calibration Keithley Multimeter Type 2001 SN: 0810278 29-Aug-22 (No:34389) Aug-23 Secondary Standards ID # Check Date (in house) Scheduled Check Auto DAE Calibration Unit SE UWS 053 AA 1001 27-Jan-23 (in house check) In house check: Jan-24 Calibrator Box V2.1 SE UMS 006 AA 1002 27-Jan-23 (in house check) In house check: Jan-24 Name Function Signature Calibrated by: Adrian Gehring Laboratory Technician Approved by: Sven Kühn

Issued: June 6, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Technical Manager

Calibration date:

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

Service suisse d'étalonnage

C Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary DAE Connector angle

data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically . by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a . result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset . current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery . alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement A/D - Converter Resolution nominal

High Range: Low Range:	1LSB = 1LSB =	6.1μV, 61nV,	-	-100+300 mV
DASY measurement p			sec; Measuring	-1+3mV time: 3 sec

Calibration Factors	x	Y	Z
High Range	404.897 ± 0.02% (k=2)	404.795 ± 0.02% (k=2)	405.064 ± 0.02% (k=2)
Low Range	4.01050 ± 1.50% (k=2)	4.00216 ± 1.50% (k=2)	4.00196 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	103.5 ° ± 1 °

Appendix (Additional assessments outside the scope of SCS0108)

High Range		Reading (μV)	Difference (µV)	Error (%)	
Channel X	+ Input 199996.49		1.23	0.00	
Channel X	+ Input	20003.73	1.27	0.01	
Channel X	- Input	-20000.04	1.60	-0.01	
Channel Y	+ Input	199995.81	0.34	0.00	
Channel Y	+ Input	20002.06	-0.36	-0.00	
Channel Y	- Input	-20002.46	-0.66	0.00	
Channel Z	+ Input	199995.02	-0.07	-0.00	
Channel Z	+ Input	20001.24	-1.05	-0.01	
Channel Z	- Input	-20002.15	-0.27	0.00	

1. DC Voltage Linearity

Low Range		Reading (μV)	Difference (µV)	Error (%)
Channel X	+ Input	2001.54	0.04	0.00
Channel X	+ Input	201.62	-0.05	-0.02
Channel X	- Input	-198.09	0.08	-0.04
Channel Y	+ Input	2001.73	0.37	0.02
Channel Y	+ Input	200.69	-0.93	-0.46
Channel Y	- Input	-199.64	-1.44	0.73
Channel Z	+ Input	2001.50	0.19	0.01
Channel Z	+ Input	201.01	-0.48	-0.24
Channel Z	- Input	-198.99	-0.67	0.34

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (µV)	
Channel X	200	-3.60	-5.77	
	- 200	7.18	5.56	
Channel Y	200	6.87	6.45	
	- 200	-8.88	-9.42	
Channel Z	200	10.81	10.07	
	- 200	-12.23	-12.25	

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (µV)	Channel Z (μV)
Channel X	200	-	2.19	-2.29
Channel Y	200	7.21	_	4.40
Channel Z	200	8.40	3.86	-

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15994	15578
Channel Y	16016	16505
Channel Z	16025	13608

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MΩ

- <u></u>	Average (µV)	min. Offset (µV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.83	-1.42	2.59	0.60
Channel Y	-0.68	-2.31	0.41	0.40
Channel Z	-0.14	-0.90	0.93	0.36

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

e a los a	In Co	ollabora	tion wit	h		
	S	p	е	а	g	
	CAL	IBRATIC	ON LAP	ORAT	ORY	

Client :

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn <u>http://www.caict.ac.cn</u>

Auden

Certificate No: Z22-60556

CALIBRATION	CERTIFICA	TE		
Object	DAE3	- SN: 360		
Cali		FF-Z11-002-01 Calibration Procedure for the Data Acquisition Electronics (DAEx)		
Calibration date:	Decen	nber 28, 2022		
	measurements and	traceability to national standards, which the uncertainties with confidence proba	and the second sec	
All calibrations have be humidity<70%.	een conducted in	the closed laboratory facility: environ	ment temperature(22±3)°C and	
Calibration Equipment us	sed (M&TE critical	for calibration)		
Primary Standards	ID # Ca	al Date(Calibrated by, Certificate No.)	Scheduled Calibration	
Process Calibrator 753	1971018	14-Jun-22 (CTTL, No.J22X04180)	Jun-23	
	Name	Function	Signature	
Calibrated by:	Yu Zongying	SAR Test Engineer	Ant	
Reviewed by:	Lin Hao	SAR Test Engineer	林治	
Approved by:	Qi Dianyuan	SAR Project Leader	-200	
			ssued: January 01, 2023	
This calibration certificat	e shall not be repro	oduced except in full without written app	roval of the laboratory.	

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn <u>http://www.caict.ac.cn</u>

Glossary: DAE Connector angle

data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DC Voltage Measurement A/D - Converter Resolution nominal

High Range: 6.1μV , 61nV , -100...+300 mV 1LSB = full range = full range = -1.....+3mV 1LSB = Low Range: DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	х	Y	Z
High Range	$404.188 \pm 0.15\%$ (k=2)	404.027 ± 0.15% (k=2)	$404.044 \pm 0.15\%$ (k=2)
Low Range	$3.93497 \pm 0.7\%$ (k=2)	$3.93659 \pm 0.7\%$ (k=2)	$3.97162 \pm 0.7\%$ (k=2)

Connector Angle

Connector Angle to be used in DASY system	37°±1°
---	--------

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 www.speag.swiss, info@speag.swiss

IMPORTANT NOTICE

USAGE OF THE DAE4

The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points:

Battery Exchange: The battery cover of the DAE4 unit is fixed using a screw, over tightening the screw may cause the threads inside the DAE to wear out.

Shipping of the DAE: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside.

E-Stop Failures: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements.

Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect.

DASY Configuration Files: Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file.

Important Note:

Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer.

Important Note:

Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the Estop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure.

Important Note:

To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE.

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Accreditation No.: SCS 0108

Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- Servizio svizzero di taratura S

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Sporton Client

Certificate No: DAE4-715_Jan23

CALIBRATION CERTIFICATE

Object	DAE4 - SD 000 D	04 BM - SN: 715	
Calibration procedure(s)	QA CAL-06.v30		
	Calibration proced	lure for the data acquisition electror	nics (DAE)
			1 1 1 1. July 1
Calibration date:	January 23, 2023		New York of the Arts
	, , , , , , , , , , , , , , , , , , , ,		
This collibration contificate desumen	to the tree shills to notice		1. (01)
		nal standards, which realize the physical units of bability are given on the following pages and are	
All collibrations have been conducted	d in the closed loberatory	facility: environment temperature (22 \pm 3)°C and	Lhum hillen 700/
All calibrations have been conducte	a in the closed laboratory	facility: environment temperature (22 \pm 3)°C and	i numiaity < 70%.
Calibration Equipment used (M&TE	critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	29-Aug-22 (No:34389)	Aug-23
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Auto DAE Calibration Unit	SE UWS 053 AA 1001	24-Jan-22 (in house check)	In house check: Jan-23
Calibrator Box V2.1	SE UMS 006 AA 1002	24-Jan-22 (in house check)	In house check: Jan-23
			×
	Name	Function	Signature
Calibrated by:	Dominique Steffen	Laboratory Technician	lto
			NO MANNE
Approved by:	Sven Kühn	Technical Manager	N. S. Cumr
			Issued: January 23, 2023
This calibration certificate shall not	be reproduced except in f	ull without written approval of the laboratory.	

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

- S Schweizerischer Kalibrierdienst
 - Service suisse d'étalonnage
- C Service suisse d'étalonnage Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108

Glossary	
DAE	data acquisition electronics
Connector angle	information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- *DC Voltage Measurement:* Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle*: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - *Common mode sensitivity:* Influence of a positive or negative common mode voltage on the differential measurement.
 - *Channel separation:* Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - *Power consumption:* Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement A/D - Converter Resolution nominal

High Range:	1LSB =	6.1µV ,	full range =	-100+300 mV
Low Range:	1LSB =	61nV ,	full range =	-1+3mV
DASY measurement	parameters: Aut	o Zero Time: 3	sec; Measuring	time: 3 sec

Calibration Factors	X	Y	Z
High Range	405.111 ± 0.02% (k=2)	404.667 ± 0.02% (k=2)	404.478±0.02% (k=2)
Low Range	3.98834 ± 1.50% (k=2)	3.97607 ± 1.50% (k=2)	3.96884 ± 1.50% (k=2)

Connector Angle

c	Connector Angle to be used in DASY system	330.5 ° ± 1 °
		000.0 ± 1

Appendix (Additional assessments outside the scope of SCS0108)

High Range		Reading (µV)	Difference (µV)	Error (%)
Channel X	+ Input	199990.13	-0.63	-0.00
Channel X	+ Input	20004.17	2.27	0.01
Channel X	- Input	-19997.53	4.10	-0.02
Channel Y	+ Input	199990.17	-0.83	-0.00
Channel Y	+ Input	20001.83	-0.05	-0.00
Channel Y	- Input	-20000.93	0.69	-0.00
Channel Z	+ Input	199987.98	-2.81	-0.00
Channel Z	+ Input	19999.62	-2.07	-0.01
Channel Z	- Input	-20003.79	-2.04	0.01

1. DC Voltage Linearity

Low Range		Reading (µV)	Difference (µV)	Error (%)
Channel X	+ Input	2000.88	-0.14	-0.01
Channel X	+ Input	202.02	0.59	0.29
Channel X	- Input	-198.04	0.44	-0.22
Channel Y	+ Input	2001.50	0.48	0.02
Channel Y	+ Input	201.37	0.04	0.02
Channel Y	- Input	-198.68	-0.09	0.05
Channel Z	+ Input	2000.70	-0.20	-0.01
Channel Z	+ Input	200.96	-0.32	-0.16
Channel Z	- Input	-199.56	-1.00	0.50

2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	4.77	2.44
	- 200	0.69	-2,30
Channel Y	200	-5.20	-4.93
	- 200	3.98	4.39
Channel Z	200	6.25	5.74
	- 200	-7.53	-7.72

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Υ (μV)	Channel Z (µV)
Channel X	200	-	-1.10	-2.95
Channel Y	200	8.69	-	0.20
Channel Z	200	5.59	5.62	-

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15780	15760
Channel Y	15991	15596
Channel Z	16461	15807

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10M\Omega$

	Average (µV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	1.33	0.17	2.08	0.38
Channel Y	0.45	-0.53	1.63	0.45
Channel Z	0.09	-0.73	0.93	0.35

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

Service suisse d'étalonnage С Servizio svizzero di taratura

S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

Sporton Shenzhen City, China Certificate No.

EX-7641_Apr23

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:7641
Calibration procedure(s)	QA CAL-01.v10, QA CAL-12.v10, QA CAL-14.v7, QA CAL-23.v6, QA CAL-25.v8
	Calibration procedure for dosimetric E-field probes
Calibration date	April 24, 2023
	cuments the traceability to national standards, which realize the physical units of measurements (SI). uncertainties with confidence probability are given on the following pages and are part of the certificate.
	nducted in the closed laboratory facility: environment temperature (22 ± 3) °C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Chi 10/770		
SN: 104778	30-Mar-23 (No. 217-03804/03805)	Mar-24
SN: 103244	30-Mar-23 (No. 217-03804)	Mar-24
SN: 1249	20-Oct-22 (OCP-DAK3.5-1249_Oct22)	Oct-23
SN: 1016	20-Oct-22 (OCP-DAK12-1016_Oct22)	Oct-23
SN: CC2552 (20x)	30-Mar-23 (No. 217-03809)	Mar-24
SN: 660	16-Mar-23 (No. DAE4-660_Mar23)	Mar-24
SN: 3013	06-Jan-23 (No. ES3-3013_Jan23)	Jan-24
	SN: 103244 SN: 1249 SN: 1016 SN: CC2552 (20x) SN: 660	SN: 103244 30-Mar-23 (No. 217-03804) SN: 1249 20-Oct-22 (OCP-DAK3.5-1249_Oct22) SN: 1016 20-Oct-22 (OCP-DAK12-1016_Oct22) SN: CC2552 (20x) 30-Mar-23 (No. 217-03809) SN: 660 16-Mar-23 (No. DAE4-660_Mar23)

Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-22)	In house check: Jun-24
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24

	Name	Function	Signature
Calibrated by	Joanna Lleshaj	Laboratory Technician	Attalling
Approved by	Sven Kühn	Technical Manager	SL
This calibration certificate	e shall not be reproduced except in	full without written approval of the lab	Issued: May 03, 2023 oratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization ϑ	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices – Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum
 calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ±50 MHz to ±100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).