Calibration Laboratory of

Schmid \& Partner

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

S Schweizerischer Kallibrierdienst C. Service suisse d'étalonnage Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

CALIBRATION CERTIFICATE

Object
Calibration procedure(s)

Calibration date:

D750V3 - SN: 1087

QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between $0.7-3 \mathrm{GHz}$

February 24, 2022

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$.
Calibration Equipment used (M\&TE critical for calibration)

Primary Standards	ID \#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	09-Apr-21 (No. 217-03291/03292)	Apr-22
Power sensor NRP-Z91	SN: 103244	09-Apr-21 (No. 217-03291)	Apr-22
Power sensor NRP-Z91	SN: 103245	09-Apr-21 (No. 217-03292)	Apr-22
Reference 20 dB Attenuator	SN: BH9394 (20k)	09-Apr-21 (No. 217-03343)	Apr-22
Type- N mismatch combination	SN: 310982 / 06327	09-Apr-21 (No. 217-03344)	Apr-22
Reference Probe EX3DV4	SN: 7349	31-Dec-21 (No. EX3-7349_Dec21)	Dec-22
DAE4	SN: 601	01-Nov-21 (No. DAE4-601_Nov21)	Nov-22
Secondary Standards	ID \#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: MY41093315	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
RF generator R\&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-20)	In house check: Oct-22
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-22
	Name	Function	Signature
Calibrated by:	Joanna Lleshaj	Laboratory Technician	
Approved by:	Niels Kuster	Quality Manager	
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.			

Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x, y, z
N/A

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz "

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	$\mathrm{dx}, \mathrm{dy}, \mathrm{dz}=5 \mathrm{~mm}$	
Frequency	$750 \mathrm{MHz} \pm 1 \mathrm{MHz}$	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	41.9	$0.89 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$42.4 \pm 6 \%$	$0.89 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	---	--

SAR result with Head TSL

SAR averaged over $1 \mathrm{~cm}^{3}(1 \mathrm{~g})$ of Head TSL	Condition	
SAR measured	250 mW input power	$2.14 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$8.58 \mathrm{~W} / \mathrm{kg} \pm 17.0 \%(\mathrm{k}=2)$

SAR averaged over $10 \mathrm{~cm}^{3}(10 \mathrm{~g})$ of Head TSL	condition	
SAR measured	250 mW input power	$1.41 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$5.65 \mathrm{~W} / \mathrm{kg} \pm 16.5 \%(\mathrm{k}=2)$

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$52.6 \Omega-2.5 \mathrm{j} \Omega$
Return Loss	-29.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.034 ns

After long term use with 100 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

DASY5 Validation Report for Head TSL

Date: 24.02.2022
Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 750 MHz ; Type: D750V3; Serial: D750V3-SN:1087
Communication System: UID 0 - CW; Frequency: 750 MHz
Medium parameters used: $\mathrm{f}=750 \mathrm{MHz} ; \sigma=0.89 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=42.4 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(10.11, 10.11, 10.11) @ 750 MHz ; Calibrated: 31.12.2021
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 01.11.2021
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, $\mathrm{d}=15 \mathrm{~mm} /$ Zoom Scan $(7 \times 7 \times 7$)/Cube 0:
Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=59.64 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.03 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=3.22 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=2.14 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=1.41 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=17 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=66.5 \%$
Maximum value of SAR (measured) $=2.83 \mathrm{~W} / \mathrm{kg}$

Impedance Measurement Plot for Head TSL

D750V3, Serial No. 1087 Extended Dipole Calibrations

Referring to KDB 865664 D01 v01r02, if dipoles are verified in return loss (<-20dB, within 20\% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

D750V3 - serial no. 1087						
750 Head						
Date of Measurement	Return-Loss (dB)	Delta (\%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2022.2.24	-29.078		52.625		-2.4779	
2023.2.23	-25.021	-13.95	49.974	2.651	-5.5764	3.0985

<Justification of the extended calibration>

The return loss is <-20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

Dipole Verification Data> D750V3, serial no. 1087
750 MHz - Head

CAICT

Client Sporton
Certificate No：
Z22－60301

CALIBRATION CERTIFICATE

Object

Calibration Procedure（s）

Calibration date：

D835V2－SN：4d091

FF－Z11－003－01
Calibration Procedures for dipole validation kits
August 19， 2022

This calibration Certificate documents the traceability to national standards，which realize the physical units of measurements（SI）．The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate．

All calibrations have been conducted in the closed laboratory facility：environment temperature $(22 \pm 3)^{\circ} \mathrm{C}$ and humidity＜70\％．

Calibration Equipment used（M\＆TE critical for calibration）

Primary Standards	ID $\#$	Cal Date（Calibrated by，Certificate No．）	Scheduled Calibration
Power Meter NRP2	106277	24－Sep－21（CTTL，No．J21X08326）	Sep－22
Power sensor NRP8S	104291	24－Sep－21（CTTL，No．J21X08326）	Sep－22
Reference Probe EX3DV4	SN 7464	26－Jan－22（SPEAG，No．EX3－7464＿Jan22）	Jan－23
DAE4	SN 1556	12－Jan－22（CTTL－SPEAG，No．Z22－60007）	Jan－23
Secondary Standards	ID \＃	Cal Date（Calibrated by，Certificate No．）	Scheduled Calibration
Signal Generator E4438C	MY49071430	13－Jan－22（CTTL，No．J22X00409）	Jan－23
Network Analyzer E5071C	MY46110673	14－Jan－22（CTTL，No．J22X00406）	Jan－23

	Name	Function
Calibrated by：	Zhao Jing	SAR Test Engineer
Reviewed by：	Lin Hao	SAR Test Engineer
Approved by：	Qi Dianyuan	SAR Project Leader

Issued：August 23， 2022
This calibration certificate shall not be reproduced except in full without written approval of the laboratory．

CALIBRATION LABORATORY

Glossary:

TSL
ConvF
N/A

> tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020
b) KDB 865664 , "SAR Measurement Requirements for 100 MHz to 6 GHz "

Additional Documentation:

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	$\mathrm{dx}, \mathrm{dy}, \mathrm{dz}=5 \mathrm{~mm}$	
Frequency	$835 \mathrm{MHz} \pm 1 \mathrm{MHz}$	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	41.5	$0.90 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$41.3 \pm 6 \%$	$0.92 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<1.0^{\circ} \mathrm{C}$	-	-

SAR result with Head TSL

SAR averaged over $1 \mathrm{~cm}^{3} \mathbf{(1 ~ g)}$ of Head TSL	Condition	
SAR measured	250 mW input power	$2.41 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{9 . 4 5} \mathbf{W} / \mathrm{kg} \pm \mathbf{1 8 . 8} \%(\boldsymbol{k}=\mathbf{2})$
SAR averaged over $10 \mathrm{~cm}^{3}(\mathbf{1 0} \mathrm{~g})$ of Head TSL	Condition	
SAR measured	250 mW input power	$1.58 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{6 . 2 2} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 8 . 7} \%(\boldsymbol{k = 2)}$

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$46.7 \Omega-8.91 \mathrm{j} \Omega$
Return Loss	-20.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.303 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Communication System: UID 0, CW; Frequency: 835 MHz ; Duty Cycle: 1:1
Medium parameters used: $\mathrm{f}=835 \mathrm{MHz} ; \sigma=0.922 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=41.25 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Right Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)
DASY5 Configuration:

- Probe: EX3DV4 - SN7464; ConvF(9.96, 9.96, 9.96) @ 835 MHz ; Calibrated: 2022-01-26
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2022-01-12
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}$, $\mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=56.54 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.01 \mathrm{~dB}$
Peak SAR (extrapolated) $=3.60 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{2 . 4 1} \mathrm{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=\mathbf{1 . 5 8} \mathrm{W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=18.6 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=67 \%$
Maximum value of SAR (measured) $=3.20 \mathrm{~W} / \mathrm{kg}$

$$
0 \mathrm{~dB}=3.20 \mathrm{~W} / \mathrm{kg}=5.05 \mathrm{dBW} / \mathrm{kg}
$$

Add: No. 52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn
http://www.caict.ac.cn

Impedance Measurement Plot for Head TSL

Calibration Laboratory of Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Client Sporton
Certificate No: D1750V2-1090_Feb22
CALIBRATION CERTIFICATE

Object	D1750V2 - SN:1090		
Calibration procedure(s)	QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between $0.7-3 \mathrm{GHz}$		
Calibration date:	February 24, 2022		
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.			
All calibrations have been conducted in the closed laboratory facility; environment temperature (22 $\pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$.			
Calibration Equipment used (M\&TE critical for calibration)			
Primary Standards	ID \#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	09-Apr-21 (No. 217-03291/03292)	Apr-22
Power sensor NRP-Z91	SN: 103244	09-Apr-21 (No. 217-03291)	Apr-22
Power sensor NRP-Z91	SN: 103245	09-Apr-21 (No. 217-03292)	Apr-22
Reference 20 dB Attenuator	SN: BH9394 (20k)	09-Apr-21 (No. 217-03343)	Apr-22
Type- N mismatch combination	SN: 310982 / 06327	09-Apr-21 (No. 217-03344)	Apr-22
Reference Probe EX3DV4	SN: 7349	31-Dec-21 (No. EX3-7349_Dec21)	Dec-22
DAE4	SN: 601	01-Nov-21 (No. DAE4-601_Nov21)	Nov-22
Secondary Standards	ID \#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: MY41093315	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
RF generator R\&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-20)	In house check: Oct-22
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-22
	Name	Function	Signature
Calibrated by:	Joanna Lleshaj	Laboratory Technician	Athes
Approved by:	Niels Kuster	Quality Manager	,
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.			

Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL
tissue simulating liquid
sensitivity in TSL / NORM x, y, z
not applicable or not measured

Calibration is Performed According to the Following Standards:
a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
b) KDB 865664 , "SAR Measurement Requirements for 100 MHz to 6 GHz "

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	$\mathrm{dx}, \mathrm{dy}, \mathrm{dz}=5 \mathrm{~mm}$	
Frequency	$1750 \mathrm{MHz} \pm 1 \mathrm{MHz}$	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	40.1	$1.37 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$40.4 \pm 6 \%$	$1.35 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	----	----

SAR result with Head TSL

SAR averaged over $1 \mathrm{~cm}^{3}(1 \mathrm{~g})$ of Head TSL	Condition	
SAR measured	250 mW input power	$9.14 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{3 7 . 0} \mathrm{~W} / \mathrm{kg} \pm \mathbf{1 7 . 0} \%(\mathrm{k}=2)$

SAR averaged over $10 \mathrm{~cm}^{3}(10 \mathrm{~g})$ of Head TSL	condition	
SAR measured	250 mW input power	$4.84 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$19.5 \mathrm{~W} / \mathrm{kg} \pm 16.5 \%(\mathrm{k}=2)$

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$49.9 \Omega-1.4 \mathrm{j} \Omega$
Return Loss	-37.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.221 ns

After long term use with 100 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

DASY5 Validation Report for Head TSL

Date: 24.02.2022
Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 1750 MHz ; Type: D1750V2; Serial: D1750V2 - SN:1090
Communication System: UID $0-\mathrm{CW}$; Frequency: 1750 MHz
Medium parameters used: $\mathrm{f}=1750 \mathrm{MHz} ; \sigma=1.35 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=40.4 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(8.67, 8.67, 8.67) @ 1750 MHz ; Calibrated: 31.12 .2021
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 01.11.2021
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:
Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=106.9 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.03 \mathrm{~dB}$
Peak SAR (extrapolated) $=16.7 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=9.14 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=4.84 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=10 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=55 \%$
Maximum value of SAR (measured) $=14.1 \mathrm{~W} / \mathrm{kg}$

Impedance Measurement Plot for Head TSL

D1750V2, Serial No. 1090 Extended Dipole Calibrations

Referring to KDB 865664 D01 v01r02, if dipoles are verified in return loss (<-20dB, within 20\% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

D1750V2 - serial no. 1090							
Date of							
Measurement	Return-Loss						
(dB)	Delta $(\%)$	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)		
2022.2 .24	-37.115		49.899		-1.3891		
2023.2 .23	-35.184	-5.2	49.092	0.807	-2.9814	1.5923	

<Justification of the extended calibration>

The return loss is $<-20 \mathrm{~dB}$, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

Dipole Verification Data> D1750V2, serial no. 1090
1750MHz - Head - 2023-2-23

Fax：＋86－10－62304633－2504 E－mail：cttl＠chinattl．com
Client
Sporton

Certificate No：Z21－60553

CALIBRATION CERTIFICATE

Object

Calibration Procedure（s）
D1900V2 - SN: 5d182

FF－Z11－003－01
Calibration Procedures for dipole validation kits
Calibration date：
December 20， 2021

This calibration Certificate documents the traceability to national standards，which realize the physical units of measurements（SI）．The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate．

All calibrations have been conducted in the closed laboratory facility：environment temperature $(22 \pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$ ．

Calibration Equipment used（M\＆TE critical for calibration）

Primary Standards		ID		Cal Date（Calibrated by，Certificate No．）
Power Meter NRP2	106277	24－Sep－21（CTTL，No．J21X08326）	Scheduled Calibration	
Power sensor NRP8S	104291	24－Sep－21（CTTL，No．J21X08326）	Sep－22	
Reference Probe EX3DV4	SN 7307	26－May－21（SPEAG，No．EX3－7307＿May21）	Sep－22	
DAE4	SN 1556	15－Jan－21（SPEAG，No．DAE4－1556＿Jan21）	Jan－22	
Secondary Standards	ID\＃	Cal Date（Calibrated by，Certificate No．）	Scheduled Calibration	
Signal Generator E4438C	MY49071430	01－Feb－21（CTTL，No．J21X00593）	Jan－22	
NetworkAnalyzer E5071C	MY46110673	14－Jan－21（CTTL，No．J21X00232）	Jan－22	

Calibrated by：	Name	Function	Signature
	Zhao Jing	SAR Test Engineer	
Reviewed by：	Lin Hao	SAR Test Engineer	
Approved by：	Qi Dianyuan	SAR Project Leader	
This calibration certificate shall Issued：December 27， 2021			

CALIBRATION LABORATORY
Add: No. 52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079
Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com
http://www.chinattl.cn

lossary

TSL
tissue simulating liquid
sensitivity in TSL / NORM x, y, z
not applicable or not measured

Calibration is Performed According to the Following Standards:
a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300 MHz to 6GHz)", July 2016
c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6GHz)", March 2010
d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

In Collaboration with
speag
CALIBRATION LABORATORY

Add: No. 52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctt1@chinattl.com
http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	$\mathrm{dx}, \mathrm{dy}, \mathrm{dz}=5 \mathrm{~mm}$	
Frequency	$1900 \mathrm{MHz} \pm 1 \mathrm{MHz}$	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	40.0	$1.40 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$39.4 \pm 6 \%$	$1.41 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<1.0^{\circ} \mathrm{C}$	----	----

SAR result with Head TSL

SAR averaged over $1 \mathrm{~cm}^{3}(1 \mathrm{~g})$ of Head TSL	Condition	
SAR measured	250 mW input power	10.0 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.6 W/kg ± 18.8 \% ($k=2$)
SAR averaged over $10 \mathrm{~cm}^{3}(10 \mathrm{~g})$ of Head TSL	Condition	
SAR measured	250 mW input power	5.07 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.2 W/kg ± 18.7 \% ($k=2$)

In Collaboration with
speag
CALIBRATION LABORATORY
Add: No. 52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com
http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point		$54.3 \Omega+6.57 \mathrm{j} \Omega$
Return Loss		-22.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction) $\quad 1.112 \mathrm{~ns}$

After long term use with 100 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by		SPEAG

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5 d 182

Communication System: UID 0, CW; Frequency: 1900 MHz ; Duty Cycle: 1:1
Medium parameters used: $\mathrm{f}=1900 \mathrm{MHz} ; \sigma=1.414 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=39.36 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Right Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)
DASY5 Configuration:

- Probe: EX3DV4-SN7307; ConvF(8.32, 8.32, 8.32) @ 1900 MHz ; Calibrated: 2021-05-26
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2021-01-15
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=101.3 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.01 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=19.6 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=10 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=5.07 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=10 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=51 \%$
Maximum value of SAR (measured) $=15.9 \mathrm{~W} / \mathrm{kg}$

In Collaboration with
speag a
CALIBRATION LABORATORY

Add: No. 52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079
E-mail: cttl@chinattl.com
Fax: +86-10-62304633-2504 http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

D1900V2, Serial No. 5d182 Extended Dipole Calibrations

Referring to KDB 865664 D01, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

D1900V2 - serial no. 5d182						
	1900 Head					
Date of Measurement	Return-Loss (dB)	Delta (\%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2021.12.20	-22.5		54.3		6.57	
2022.12.19	-22.5	0.0	53.7	0.6	6.9	-0.33

<Justification of the extended calibration>

The return loss is $<-20 \mathrm{~dB}$, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

Dipole Verification Data> D1900V2, serial no. 5d182
1900MHz - Head----2022.12.19

Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates
Client
Sporton
Certificate No: D2300V2-1055_Sep20
CALIBRATION CERTIFICATE

Object
Calibration procedure(s)

Calibration date:

D2300V2 - SN:1055

QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between $0.7-3 \mathrm{GHz}$ September 15, 2020

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$.
Calibration Equipment used (M\&TE critical for calibration)

Primary Standards	ID \#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	01-Apr-20 (No. 217-03100/03101)	Apr-21
Power sensor NRP-Z91	SN: 103244	01-Apr-20 (No. 217-03100)	Apr-21
Power sensor NRP-Z91	SN: 103245	01-Apr-20 (No. 217-03101)	Apr-21
Reference 20 dB Attenuator	SN: BH9394 (20k)	31-Mar-20 (No. 217-03106)	Apr-21
Type- N mismatch combination	SN: 310982 / 06327	31-Mar-20 (No. 217-03104)	Apr-21
Reference Probe EX3DV4	SN: 7405	29-Jun-20 (No. EX3-7405_Jun20)	Jun-21
DAE4	SN: 601	27-Dec-19 (No. DAE4-601_Dec19)	Dec-20
Secondary Standards	ID \#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Feb-19)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R\&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-19)	In house check: Oct-20
	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	
Approved by:	Katja Pokovic	Technical Manager	
This calibration certificate shall not be reproduced except in full without written approval of the laboratory,			

Calibration Laboratory of

Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL
tissue simulating liquid
ConvF
N/A
sensitivity in TSL / NORM x, y, z
not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak SpatialAveraged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz "

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.
The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	$\mathrm{dx}, \mathrm{dy}, \mathrm{dz}=5 \mathrm{~mm}$	
Frequency	$2300 \mathrm{MHz} \pm 1 \mathrm{MHz}$	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	39.5	$1.67 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$38.8 \pm 6 \%$	$1.68 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	---	---

SAR result with Head TSL

SAR averaged over $\mathbf{1} \mathrm{cm}^{\mathbf{3}}(\mathbf{1} \mathbf{~})$ of Head TSL	Condition	
SAR measured	250 mW input power	$12.0 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{4 7 . 7} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 7 . 0} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\left.\mathbf{1 0} \mathbf{~ c m}^{\mathbf{3}} \mathbf{(1 0 ~} \mathbf{g}\right)$ of Head TSL	condition	
SAR measured	250 mW input power	$5.75 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 2 . 9} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 6 . 5} \%(\mathbf{k}=\mathbf{2})$

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$48.2 \Omega-2.7 \mathrm{j} \Omega$
Return Loss	-29.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.168 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

DASY5 Validation Report for Head TSL

Date: 15.09.2020
Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 2300 MHHz ; Type: D2300V2; Serial: D2300V2 - SN:1055
Communication System: UID 0 - CW; Frequency: 2300 MHz
Medium parameters used: $\mathrm{f}=2300 \mathrm{MHz} ; \sigma=1.68 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=38.8 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN7405; ConvF(8.03, 8.03, 8.03) @, 2300 MHz ; Calibrated: 29.06.2020
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1003
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin=250 mW, $\mathrm{d}=10 \mathrm{~mm} /$ Zoom Scan ($7 \times 7 \times 7$)/Cube 0 :
Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=112.4 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.02 \mathrm{~dB}$
Peak SAR (extrapolated) $=23.2 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=12 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=5.75 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=9 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=51.8 \%$
Maximum value of SAR (measured) $=19.3 \mathrm{~W} / \mathrm{kg}$

Impedance Measurement Plot for Head TSL

D2300V2, Serial No. 1055 Extended Dipole Calibrations

Referring to KDB 865664 D01 v01r04, if dipoles are verified in return loss (<-20dB, within 20\% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

D2300V2 - serial no. 1055						
	2300 Head					
Date of Measurement	Return-Loss (dB)	Delta (\%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2020.9.15	-29.66		48.25		-2.72	
2021.9.14	-29.19	0.02	48.88	-0.63	-1.28	-1.44
2022.9.14	-28.02	-5.53	46.91	1.34	-2.95	0.23

<Justification of the extended calibration>

The return loss is $<-20 \mathrm{~dB}$, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

Dipole Verification Data> D2300V2, serial no. 1055
2300MHz - Head - 2021.9.14

2300MHz - Head - 2022.9.14

Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Object

Calibration procedure(s)

Calibration date:

D2450V2 - SN:1040

QA CAL-05.v11
Calibration Procedure for SAR Validation Sources between $0.7-3 \mathrm{GHz}$

May 06, 2020

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$.

Calibration Equipment used (M\&TE critical for calibration)

Primary Standards	ID \#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	01-Apr-20 (No. 217-03100/03101)	Apr-21
Power sensor NRP-Z91	SN: 103244	01-Apr-20 (No. 217-03100)	Apr-21
Power sensor NRP-Z91	SN: 103245	01-Apr-20 (No. 217-03101)	Apr-21
Reference 20 dB Attenuator	SN: BH9394 (20k)	31-Mar-20 (No. 217-03106)	Apr-21
Type- N mismatch combination	SN: 310982 / 06327	31-Mar-20 (No. 217-03104)	Apr-21
Reference Probe EX3DV4	SN: 7349	31-Dec-19 (No. EX3-7349_Dec19)	Dec-20
DAE4	SN: 601	27-Dec-19 (No. DAE4-601_Dec19)	Dec-20
Secondary Standards	ID \#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Feb-19)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R\&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-19)	In house check: Oct-20
	Name	Function	Signature
Calibrated by:	Jeffrey Katzman	Laboratory Technician	,
Approved by:	Katja Pokovic	Technical Manager	

Issued: May 6, 2020
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid \& Partner

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL
ConvF
N/A
tissue simulating liquid sensitivity in TSL / NORM x, y, z not applicable or not measured

Calibration is Performed According to the Following Standards:
a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak SpatialAveraged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz$)^{\prime \prime}$, March 2010
d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz "

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.
The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	$\mathrm{dx}, \mathrm{dy}, \mathrm{dz}=5 \mathrm{~mm}$	
Frequency	$2450 \mathrm{MHz} \pm 1 \mathrm{MHz}$	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	39.2	$1.80 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$38.6 \pm 6 \%$	$1.86 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	---	----

SAR result with Head TSL

SAR averaged over $\mathbf{1} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 \mathbf { g })}$ of Head TSL	Condition	
SAR measured	250 mW input power	$13.2 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{5 1 . 8} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 7 . 0} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\left.\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0 ~ g}\right)$ of Head TSL	condition	
SAR measured	250 mW input power	$6.07 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 4 . 0} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 6 . 5} \%(\mathbf{k}=\mathbf{2})$

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$52.3 \Omega+4.4 \mathrm{j} \Omega$
Return Loss	-26.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.154 ns

After long term use with 100 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 2450 MHz ; Type: D2450V2; Serial: D2450V2 - SN:1040
Communication System: UID 0 - CW; Frequency: 2450 MHz
Medium parameters used: $\mathrm{f}=2450 \mathrm{MHz} ; \sigma=1.86 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=38.6 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(7.98, 7.98, 7.98) @ 2450 MHz ; Calibrated: 31.12.2019
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin $=\mathbf{2 5 0} \mathrm{mW}, \mathrm{d}=10 \mathrm{~mm} /$ Zoom Scan ($7 \times 7 \times 7$)/Cube 0:
Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=116.0 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.05 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=26.2 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{1 3 . 2} \mathrm{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=6.07 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=9 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=50.3 \%$
Maximum value of SAR (measured) $=21.8 \mathrm{~W} / \mathrm{kg}$

Appendix: Transfer Calibration at Four Validation Locations on SAM Head ${ }^{1}$

Evaluation Condition

Phantom	SAM Head Phantom	For usage with cSAR3DV2-R/L

SAR result with SAM Head (Top $\cong C 0$)

SAR averaged over $1 \mathrm{~cm}^{3}(1 \mathrm{~g})$ of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1 W	$55.2 \mathrm{~W} / \mathrm{kg} \pm 17.5 \%(\mathrm{k}=2)$

SAR averaged over $\left.10 \mathrm{~cm}^{\mathbf{3}} \mathbf{(1 0 ~ g}\right)$ of Head TSL	condition	
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 6 . 2} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 6 . 9} \%(\mathbf{k}=\mathbf{2})$

SAR result with SAM Head (Mouth \cong F90)

SAR averaged over $1 \mathrm{~cm}^{3}(1 \mathrm{~g})$ of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1 W	$56.3 \mathrm{~W} / \mathrm{kg} \pm 17.5 \%(\mathrm{k}=2)$

SAR averaged over $10 \mathrm{~cm}^{3}(10 \mathrm{~g})$ of Head TSL	condition	
SAR for nominal Head TSL parameters	normalized to 1 W	$27.5 \mathrm{~W} / \mathrm{kg} \pm 16.9 \%(\mathrm{k}=2)$

SAR result with SAM Head (Neck $\cong \mathrm{HO}$)

SAR averaged over $1 \mathrm{~cm}^{3}(1 \mathrm{~g})$ of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1 W	$53.1 \mathrm{~W} / \mathrm{kg} \pm 17.5 \%(\mathrm{k}=2)$

SAR averaged over $10 \mathrm{~cm}^{3}(\mathbf{1 0} \mathrm{~g})$ of Head TSL	condition	
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 5 . 0} \mathrm{~W} / \mathrm{kg} \pm 16.9 \%(\mathrm{k}=2)$

SAR result with SAM Head (Ear \cong D90)

SAR averaged over $1 \mathrm{~cm}^{\mathbf{3}}(1 \mathrm{~g})$ of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{3 4 . 0} \mathrm{~W} / \mathrm{kg} \pm 17.5 \%(\mathrm{k}=2)$

SAR averaged over $10 \mathrm{~cm}^{3}(10 \mathrm{~g})$ of Head TSL	condition	
SAR for nominal Head TSL parameters	normalized to 1 W	$17.4 \mathrm{~W} / \mathrm{kg} \pm 16.9 \%(\mathrm{k}=2)$

[^0]
[^0]: ${ }^{1}$ Additional assessments outside the current scope of SCS 0108

