71_WCDMA II_RMC 12.2Kbps_Bottom Side_0mm_Ch9538 Communication System: UID 0, WCDMA (0); Frequency: 1907.6 MHz; Duty Cycle: 1:1 Medium: HSL_1900 Medium parameters used: f = 1908 MHz; $\sigma = 1.464$ S/m; $\epsilon_r = 40.025$; $\rho = 1000$ kg/m³ Date: 2023/1/3 Ambient Temperature: 23.4 °C; Liquid Temperature: 22.7 °C #### DASY5 Configuration: - Probe: EX3DV4 SN7630; ConvF(8.51, 8.51, 8.51); Calibrated: 2022/3/4 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1305; Calibrated: 2022/4/27 - Phantom: Twin-SAM 1; Type: SAM Twin; Serial: 2024 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501) **Area Scan (41x81x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 8.16 W/kg **Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.11 V/m; Power Drift = 0.15 dB Peak SAR (extrapolated) = 11.7 W/kg SAR(1 g) = 5.63 W/kg; SAR(10 g) = 2.54 W/kg Maximum value of SAR (measured) = 7.85 W/kg 0 dB = 7.85 W/kg = 8.95 dBW/kg #### 72_LTE Band 25_20M_QPSK_1RB_0Offset_Bottom Side_0mm_Ch26340 Communication System: UID 0, LTE-FDD (0); Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: HSL_1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.447$ S/m; $\epsilon_r = 40.054$; $\rho = 1000$ kg/m³ Date: 2023/1/3 Ambient Temperature: 23.4 °C; Liquid Temperature: 22.7 °C #### DASY5 Configuration: - Probe: EX3DV4 SN7630; ConvF(8.51, 8.51, 8.51); Calibrated: 2022/3/4 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1305; Calibrated: 2022/4/27 - Phantom: Twin-SAM 1; Type: SAM Twin; Serial: 2024 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501) **Area Scan (41x81x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 6.81 W/kg **Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 69.71 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 9.98 W/kg SAR(1 g) = 4.75 W/kg; SAR(10 g) = 2.12 W/kg Maximum value of SAR (measured) = 6.68 W/kg 0 dB = 6.68 W/kg = 8.25 dBW/kg #### 73 LTE Band 30 10M QPSK 1RB 0Offset Back 0mm Ch27710 Communication System: UID 0, LTE-FDD (0); Frequency: 2310 MHz; Duty Cycle: 1:1 Medium: HSL_2300 Medium parameters used: f = 2310 MHz; $\sigma = 1.743$ S/m; $\epsilon_r = 39.289$; $\rho = 1000$ kg/m³ Date: 2023/1/4 Ambient Temperature: 23.2 °C; Liquid Temperature: 22.9 °C #### DASY5 Configuration: - Probe: EX3DV4 SN7630; ConvF(8.37, 8.37, 8.37); Calibrated: 2022/3/4 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1305; Calibrated: 2022/4/27 - Phantom: Twin-SAM 1; Type: SAM Twin; Serial: 2024 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501) **Area Scan (101x171x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 7.53 W/kg **Zoom Scan (7x8x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.706 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 11.8 W/kg SAR(1 g) = 5.13 W/kg; SAR(10 g) = 2.46 W/kg Maximum value of SAR (measured) = 6.62 W/kg 0 dB = 6.62 W/kg = 8.21 dBW/kg #### 74 LTE Band 7 20M QPSK 1RB 0Offset Back 0mm Ch20850 Communication System: UID 0, LTE-FDD (0); Frequency: 2510 MHz; Duty Cycle: 1:1 Medium: HSL_2600 Medium parameters used: f = 2510 MHz; $\sigma = 1.862$ S/m; $\epsilon_r = 38.537$; $\rho = 1000$ kg/m³ Date: 2023/1/6 Ambient Temperature: 23.4 °C; Liquid Temperature: 22.6 °C #### DASY5 Configuration: - Probe: EX3DV4 SN7630; ConvF(7.82, 7.82, 7.82); Calibrated: 2022/3/4 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1305; Calibrated: 2022/4/27 - Phantom: Twin-SAM 1; Type: SAM Twin; Serial: 2024 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501) **Area Scan (101x171x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 6.94 W/kg Zoom Scan (8x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 50.24 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 9.04 W/kg SAR(1 g) = 4.01 W/kg; SAR(10 g) = 1.86 W/kg Maximum value of SAR (measured) = 6.61 W/kg 0 dB = 6.61 W/kg = 8.20 dBW/kg #### 75_LTE Band 41 HPUE_20M_QPSK_1RB_0Offset_Back_0mm_Ch40620 Communication System: UID 0, LTE-HPUE (0); Frequency: 2593 MHz; Duty Cycle: 1:2.33 Medium: HSL_2600 Medium parameters used: f = 2593 MHz; $\sigma = 1.919$ S/m; $\epsilon_r = 38.332$; $\rho = 1000$ kg/m³ Date: 2023/1/6 Ambient Temperature: 23.4 °C; Liquid Temperature: 22.6 °C #### DASY5 Configuration: - Probe: EX3DV4 SN7630; ConvF(7.82, 7.82, 7.82); Calibrated: 2022/3/4 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1305; Calibrated: 2022/4/27 - Phantom: Twin-SAM 1; Type: SAM Twin; Serial: 2024 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501) **Area Scan (101x171x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 10.4 W/kg **Zoom Scan (7x8x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 67.81 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 16.2 W/kg SAR(1 g) = 6.59 W/kg; SAR(10 g) = 2.70 W/kg Maximum value of SAR (measured) = 10.8 W/kg 0 dB = 10.8 W/kg = 9.72 dBW/kg Communication System: UID 0, WLAN5GHz (0); Frequency: 5240 MHz; Duty Cycle: 1:1 Medium: HSL_5000 Medium parameters used: f = 5240 MHz; $\sigma = 4.662$ S/m; $\epsilon_r = 36.674$; $\rho = 1000$ kg/m³ Date: 2023/1/7 Ambient Temperature: 23.2 °C; Liquid Temperature: 22.9 °C #### DASY5 Configuration: - Probe: EX3DV4 SN7630; ConvF(5.7, 5.7, 5.7); Calibrated: 2022/3/4 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1305; Calibrated: 2022/4/27 - Phantom: Twin-SAM 1; Type: SAM Twin; Serial: 2024 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501) **Area Scan (61x201x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 13.57 W/kg Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 0 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 28.25 W/kg SAR(1 g) = 5.02 W/kg; SAR(10 g) = 1.12 W/kg Maximum value of SAR (measured) = 15.40 W/kg 0 dB = 15.40 W/kg = 11.88 dBW/kg Communication System: UID 0, WLAN5GHz (0); Frequency: 5300 MHz; Duty Cycle: 1:1 Medium: HSL_5000 Medium parameters used: f = 5300 MHz; $\sigma = 4.735$ S/m; $\epsilon_r = 36.545$; $\rho = 1000$ kg/m³ Date: 2023/1/7 Ambient Temperature: 23.2 °C; Liquid Temperature: 22.9 °C #### DASY5 Configuration: - Probe: EX3DV4 SN7630; ConvF(5.7, 5.7, 5.7); Calibrated: 2022/3/4 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1305; Calibrated: 2022/4/27 - Phantom: Twin-SAM 1; Type: SAM Twin; Serial: 2024 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501) Area Scan (61x201x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 15.74 W/kg Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 8.93 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 37.84 W/kg SAR(1 g) = 6.52 W/kg; SAR(10 g) = 1.44 W/kg Maximum value of SAR (measured) = 19.69 W/kg 0 dB = 19.69 W/kg = 12.94 dBW/kg Communication System: UID 0, WLAN5GHz (0); Frequency: 5720 MHz; Duty Cycle: 1:1 Medium: HSL_5000 Medium parameters used: f = 5720 MHz; $\sigma = 5.221$ S/m; $\epsilon_r = 35.807$; $\rho = 1000$ kg/m³ Date: 2023/1/9 Ambient Temperature: 23.1 °C; Liquid Temperature: 22.7 °C #### DASY5 Configuration: - Probe: EX3DV4 SN7630; ConvF(5.15, 5.15, 5.15); Calibrated: 2022/3/4 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1305; Calibrated: 2022/4/27 - Phantom: Twin-SAM 1; Type: SAM Twin; Serial: 2024 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501) Area Scan (61x201x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 20.37 W/kg Zoom Scan (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 7.71 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 59.56 W/kg SAR(1 g) = 8.16 W/kg; SAR(10 g) = 1.56 W/kg Maximum value of SAR (measured) = 27.24 W/kg 0 dB = 27.24 W/kg = 14.35 dBW/kg Communication System: UID 0, WLAN5GHz (0); Frequency: 5745 MHz; Duty Cycle: 1:1 Medium: HSL_5000 Medium parameters used: f = 5745 MHz; $\sigma = 5.245$ S/m; $\epsilon_r = 35.766$; $\rho = 1000$ kg/m³ Date: 2023/1/9 Ambient Temperature: 23.1 °C; Liquid Temperature: 22.7 °C #### DASY5 Configuration: - Probe: EX3DV4 SN7630; ConvF(5.15, 5.15, 5.15); Calibrated: 2022/3/4 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1305; Calibrated: 2022/4/27 - Phantom: Twin-SAM 1; Type: SAM Twin; Serial: 2024 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501) Area Scan (61x201x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 16.2 W/kg **Zoom Scan (9x9x7)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 10.00 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 32.4 W/kg **SAR(1 g) = 5.77 W/kg; SAR(10 g) = 1.38 W/kg**Maximum value of SAR (measured) = 18.1 W/kg 0 dB = 18.1 W/kg = 12.58 dBW/kg ## Appendix C. DASY Calibration Certificate Report No.: FA2N1003 The DASY calibration certificates are shown as follows. Sporton International Inc. (Kunshan) ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Certificate No: D750V3-1087 Feb22 ## CALIBRATION CERTIFICATE Object D750V3 - SN:1087 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: February 24, 2022 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | Power sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | Power sensor NRP-Z91 | SN: 103245 | 09-Apr-21 (No. 217-03292) | Apr-22 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 09-Apr-21 (No. 217-03343) | Apr-22 | | Type-N mismatch combination | SN: 310982 / 06327 | 09-Apr-21 (No. 217-03344) | Apr-22 | | Reference Probe EX3DV4 | SN: 7349 | 31-Dec-21 (No. EX3-7349_Dec21) | Dec-22 | | DAE4 | SN: 601 | 01-Nov-21 (No. DAE4-601_Nov21) | Nov-22 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-22 | | | Name | Function | Signature | | Calibrated by: | Joanna Lleshaj | Laboratory Technician | Apollety | | Construct the | | | XIII | | Approved by: | Niels Kuster | Quality Manager | 1/100 | Issued: March 2, 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S C Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x.v.z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D750V3-1087_Feb22 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 750 MHz ± 1 MHz | | ## Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.9 | 0.89 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 42.4 ± 6 % | 0.89 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | - | | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.14 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 8.58 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.41 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.65 W/kg ± 16.5 % (k=2) | Certificate No: D750V3-1087_Feb22 ## Appendix (Additional assessments outside the scope of SCS 0108) ## Antenna Parameters with Head TSL | Impedance, transformed to feed point | 52.6 Ω - 2.5 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 29.1 dB | | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.034 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| | | | Certificate No: D750V3-1087_Feb22 Page 4 of 6 ## DASY5 Validation Report for Head TSL Date: 24.02.2022 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1087 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.89$ S/m; $\epsilon_r = 42.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(10.11, 10.11, 10.11) @ 750 MHz; Calibrated: 31.12.2021 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 01.11.2021 Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 59.64 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 3.22 W/kg SAR(1 g) = 2.14 W/kg; SAR(10 g) = 1.41 W/kg Smallest distance from peaks to all points 3 dB below = 17 mm Ratio of SAR at M2 to SAR at M1 = 66.5% Maximum value of SAR (measured) = 2.83 W/kg ## Impedance Measurement Plot for Head TSL Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191 Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn Client Sporton **Certificate No:** Z22-60301 ## **CALIBRATION CERTIFICATE** Object D835V2 - SN: 4d091 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: August 19, 2022 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)℃ and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|-------------------------------------------|-----------------------| | Power Meter NRP2 | 106277 | 24-Sep-21 (CTTL, No.J21X08326) | Sep-22 | | Power sensor NRP8S | 104291 | 24-Sep-21 (CTTL, No.J21X08326) | Sep-22 | | Reference Probe EX3DV4 | SN 7464 | 26-Jan-22(SPEAG,No.EX3-7464_Jan22) | Jan-23 | | DAE4 | SN 1556 | 12-Jan-22(CTTL-SPEAG,No.Z22-60007) | Jan-23 | | Secondary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 13-Jan-22 (CTTL, No.J22X00409) | Jan-23 | | Network Analyzer E5071C | MY46110673 | 14-Jan-22 (CTTL, No.J22X00406) | Jan-23 | Name Function Signature Calibrated by: Zhao Jing SAR Test Engineer at N Reviewed by: Lin Hao SAR Test Engineer 林坞 Approved by: Qi Dianyuan SAR Project Leader Issued: August 23, 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z22-60301 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORMx,y,z not applicable or not measured ### Calibration is Performed According to the Following Standards: a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020 b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z22-60301 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn #### **Measurement Conditions** DASY system configuration, as far as not given on page 1 | DASY Version | DASY52 | V52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 835 MHz ±1 MHz | | ### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|---------------|--------------|--------------------| | Nominal Head TSL parameters | 22.0 ℃ | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ±0.2) ℃ | 41.3 ±6 % | 0.92 mho/m ±6 % | | Head TSL temperature change during test | <1.0 ℃ | | £ 11772 | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.41 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.45 W/kg ±18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | 9 | | SAR measured | 250 mW input power | 1.58 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.22 W/kg ± 18.7 % (k=2) | Certificate No: Z22-60301 Page 3 of 6 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn ## Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 46.7Ω- 8.91jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 20.2dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.303 ns | | |----------------------------------|----------|--| |----------------------------------|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|--------| | manadarou by | OI ENO | Certificate No: Z22-60301 Date: 2022-08-19 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn #### **DASY5 Validation Report for Head TSL** Test Laboratory: CTTL, Beijing, China DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d091 Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.922$ S/m; $\varepsilon_r = 41.25$; $\rho = 1000$ kg/m³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) **DASY5** Configuration: - Probe: EX3DV4 SN7464; ConvF(9.96, 9.96, 9.96) @ 835 MHz; Calibrated: 2022-01-26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 2022-01-12 - Phantom: MFP V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.54 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.60 W/kg SAR(1 g) = 2.41 W/kg; SAR(10 g) = 1.58 W/kg Smallest distance from peaks to all points 3 dB below = 18.6 mm Ratio of SAR at M2 to SAR at M1 = 67% Maximum value of SAR (measured) = 3.20 W/kg 0 dB = 3.20 W/kg = 5.05 dBW/kg Certificate No: Z22-60301 Page 5 of 6 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn ### Impedance Measurement Plot for Head TSL ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 Client Sporton Certificate No: D1750V2-1090 Feb22 ## CALIBRATION CERTIFICATE Object D1750V2 - SN:1090 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: February 24, 2022 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | Power sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | Power sensor NRP-Z91 | SN: 103245 | 09-Apr-21 (No. 217-03292) | Apr-22 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 09-Apr-21 (No. 217-03343) | Apr-22 | | Type-N mismatch combination | SN: 310982 / 06327 | 09-Apr-21 (No. 217-03344) | Apr-22 | | Reference Probe EX3DV4 | SN: 7349 | 31-Dec-21 (No. EX3-7349_Dec21) | Dec-22 | | DAE4 | SN: 601 | 01-Nov-21 (No. DAE4-601_Nov21) | Nov-22 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-22 | | | Name | Function | Signature | | Calibrated by: | Joanna Lleshaj | Laboratory Technician | Ablisha | | | | | 100/10 | | Approved by: | Niels Kuster | Quality Manager | 1/200 | Issued: March 3, 2022 Certificate No: D1750V2-1090_Feb22 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL N/A tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z not applicable or not measured Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### Additional Documentation: c) DASY System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ### **Measurement Conditions** DASY system configuration, as far as not given on page 1 | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1750 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.1 | 1.37 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.4 ± 6 % | 1.35 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | - | | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.14 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 37.0 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 4.84 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 19.5 W/kg ± 16.5 % (k=2) | Certificate No: D1750V2-1090_Feb22 ## Appendix (Additional assessments outside the scope of SCS 0108) ### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 49.9 Ω - 1.4 jΩ | |--------------------------------------|-----------------| | Return Loss | - 37.1 dB | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.221 ns | | |----------------------------------|----------|--| |----------------------------------|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | SPEAG | |-------| | SPEAG | | • | Certificate No: D1750V2-1090_Feb22 ## **DASY5 Validation Report for Head TSL** Date: 24.02.2022 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1090 Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.35$ S/m; $\epsilon_r = 40.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.67, 8.67, 8.67) @ 1750 MHz; Calibrated: 31.12.2021 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 01.11.2021 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 106.9 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 16.7 W/kg SAR(1 g) = 9.14 W/kg; SAR(10 g) = 4.84 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 55% Maximum value of SAR (measured) = 14.1 W/kg 0 dB = 14.1 W/kg = 11.50 dBW/kg ## Impedance Measurement Plot for Head TSL Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com # CALIBRATION LABORATORY Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, Chi Fax: +86-10-62304633-2504 http://www.chinattl.cn Client Sporton Certificate No: Z21-60553 ## **CALIBRATION CERTIFICATE** Object D1900V2 - SN: 5d182 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: December 20, 2021 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|-------------------------------------------|-----------------------| | Power Meter NRP2 | 106277 | 24-Sep-21 (CTTL, No.J21X08326) | Sep-22 | | Power sensor NRP8S | 104291 | 24-Sep-21 (CTTL, No.J21X08326) | Sep-22 | | Reference Probe EX3DV4 | SN 7307 | 26-May-21(SPEAG,No.EX3-7307_May21) | May-22 | | DAE4 | SN 1556 | 15-Jan-21(SPEAG,No.DAE4-1556_Jan21) | Jan-22 | | Secondary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 01-Feb-21 (CTTL, No.J21X00593) | Jan-22 | | NetworkAnalyzer E5071C | MY46110673 | 14-Jan-21 (CTTL, No.J21X00232) | Jan-22 | | | Name | Function | Signature | |----------------|-------------|--------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 是怎 | | Reviewed by: | Lin Hao | SAR Test Engineer | ALX. | | Approved by: | Qi Dianyuan | SAR Project Leader | 135 | Issued: December 27, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z21-60553 Page 1 of 6 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn lossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORMx,y,z not applicable or not measured Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz ### Additional Documentation: e) DASY4/5 System Handbook Methods Applied and Interpretation of Parameters: Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. SAR measured: SAR measured at the stated antenna input power. SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z21-60553 Page 2 of 6 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | - 1 mg (100) (10 mg | | Frequency | 1900 MHz ± 1 MHz | | **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.4 ± 6 % | 1.41 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | No. | 2000 | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 10.0 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 39.6 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm^3 (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 5.07 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.2 W/kg ± 18.7 % (k=2) | Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn ## Appendix (Additional assessments outside the scope of CNAS L0570) ## Antenna Parameters with Head TSL | Impedance, transformed to feed point | 54.3Ω+ 6.57jΩ | |--------------------------------------|---------------| | Return Loss | - 22.5dB | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.112 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### **Additional EUT Data** | Manufactured by | | |-----------------|-------| | Wandlactured by | SPEAG | | | | Certificate No: Z21-60553 Page 4 of 6 ## **DASY5 Validation Report for Head TSL** Test Laboratory: CTTL, Beijing, China DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d182 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.414 S/m; ϵ_r = 39.36; ρ = 1000 kg/m³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: Probe: EX3DV4 - SN7307; ConvF(8.32, 8.32, 8.32) @ 1900 MHz; Calibrated: 2021-05-26 Date: 2021-12-20 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 2021-01-15 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ## System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 101.3 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 19.6 W/kg SAR(1 g) = 10 W/kg; SAR(10 g) = 5.07 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 51% Maximum value of SAR (measured) = 15.9 W/kg 0 dB = 15.9 W/kg = 12.01 dBW/kg Certificate No: Z21-60553 Page 5 of 6 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn ## Impedance Measurement Plot for Head TSL ## D1900V2, Serial No. 5d182 Extended Dipole Calibrations Referring to KDB 865664 D01, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. | D1900V2 – serial no. 5d182 | | | | | | | |----------------------------|-------------|-------|----------------|-------|---------------------|-------| | | 1900 Head | | | | | | | Date of | Return-Loss | Delta | Real Impedance | Delta | Imaginary Impedance | Delta | | Measurement | (dB) | (%) | (ohm) | (ohm) | (ohm) | (ohm) | | 2021.12.20 | -22.5 | | 54.3 | | 6.57 | | | 2022.12.19 | -22.5 | 0.0 | 53.7 | 0.6 | 6.9 | -0.33 | #### <Justification of the extended calibration> The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.