Appendix: Transfer Calibration at Four Validation Locations on SAM Head ${ }^{1}$

Evaluation Condition

Phantom	SAM Head Phantom	For usage with cSAR3DV2-R/L

SAR result with SAM Head (Top $\cong C 0$)

SAR averaged over $1 \mathrm{~cm}^{3}(1 \mathrm{~g})$ of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1 W	$55.2 \mathrm{~W} / \mathrm{kg} \pm 17.5 \%(\mathrm{k}=2)$

SAR averaged over $10 \mathrm{~cm}^{\mathbf{3}} \mathbf{(1 0 \mathrm { g }) \text { of Head TSL }}$	condition	
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 6 . 2} \mathrm{~W} / \mathrm{kg} \pm 16.9 \%(\mathbf{k}=\mathbf{2})$

SAR result with SAM Head (Mouth \cong F90)

SAR averaged over $1 \mathrm{~cm}^{3}(1 \mathrm{~g})$ of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1 W	$56.3 \mathrm{~W} / \mathrm{kg} \pm 17.5 \%(\mathrm{k}=\mathbf{2})$

SAR averaged over $10 \mathrm{~cm}^{3}(10 \mathrm{~g})$ of Head TSL	condition	
SAR for nominal Head TSL parameters	normalized to 1 W	$27.5 \mathrm{~W} / \mathrm{kg} \pm 16.9 \%(\mathbf{k}=2)$

SAR result with SAM Head (Neck $\cong \mathrm{HO}$)

SAR averaged over $1 \mathrm{~cm}^{3}(1 \mathrm{~g})$ of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1 W	$53.1 \mathrm{~W} / \mathrm{kg} \pm 17.5 \%(\mathbf{k}=2)$

SAR averaged over $10 \mathrm{~cm}^{\mathbf{3}}(\mathbf{1 0} \mathrm{g})$ of Head TSL	condition	
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 5 . 0} \mathrm{~W} / \mathrm{kg} \pm 16.9 \%(\mathbf{k}=\mathbf{2})$

SAR result with SAM Head (Ear \cong D90)

SAR averaged over $1 \mathrm{~cm}^{3} \mathbf{(1 g)}$ of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{3 4 . 0} \mathrm{~W} / \mathrm{kg} \pm 17.5 \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $10 \mathrm{~cm}^{3}(\mathbf{1 0} \mathrm{~g})$ of Head TSL	condition	
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{1 7 . 4} \mathrm{~W} / \mathrm{kg} \pm 16.9 \%(\mathrm{k}=2)$

[^0]
D2450V2, Serial No. 1040 Extended Dipole Calibrations

Referring to KDB 865664 D01, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

D2450V2 - serial no. 1040							
Date of Measurement		Return-Loss (dB)	Delta (\%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	
2020.5 .6	-26.303		52.346 (ohm)				
2021.5 .5	-26.875	2.17	50.180	2.17	1.8457	2.52	
2022.5 .5	-25.544	-2.89	49.537	2.81	2.1823	2.19	

<Justification of the extended calibration>

The return loss is $<-20 \mathrm{~dB}$, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

Dipole Verification Data> D2450V2, serial no. 1040
2450MHz - Head - 2021.5.5

2450MHz - Head - 2022.5.5

Calibration Laboratory of

Schmid \& Partner

S Schweizerischer Kalibrierdienst
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland
C Service suisse d'étalonnage
Cervizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates
Client
Sporton
Certificate No: D2600V2-1061_Nov20

CALIBRATION CERTIFICATE

Object	D2600V2-SN:1061
Catibsation procedure(s)	QA CAL-05.v11
	Calibration Procedure for SAR Validation Sources between $0.7-3 \mathrm{GHz}$

Calibration date: November 26, 2020

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature ($22 \pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$.
Calibration Equipment used (M\&TE critical for callibration)

Primary Standards	10.	Cal Date (Certiticate No.)	Scheduled Callibration
Power meter NRP	SN: 104778	01-Apr-20 (No. 217-03100/03101)	Apr-21
Power sensor NRP-Z91	SN: 103244	01-Apr-20 ($\mathrm{No} .217-03100$)	Apr-21
Power sensor NRP-Z91	SN: 103245	01-Apr-20 (No. 217-03101)	Apr-21
Reference 20 dB Attenuator	SN: BH9394 (20k)	$31-M a r-20$ (No. 217-03106)	Apr-21
Type- N mismatch combination	SN: 310962 / 06327	31-Mar-20 (No. 217-03104)	Apr-21
Reference Probe EX3DV4	SN: 7405	29,Jun-20 (No. Ex3-7405, Jun20)	Jun-21
DAE4	SN: 601	02-Nov-20 (No. DAE4-601_Nov20)	Nov-21
Secondary Standards	10 \#	Check Date (in house)	Scheduled Check
Power meter E44198	SN: GE39512475	30-Oot-14 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: US37292789	07-Oct-15 (in house check Oct-20)	In house check: Oot-22
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (iri house check Oct-20)	In house check: Oct-22
FiF generator R\&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-20)	In house check: Oct-22
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-21
	Name	Function	Signature
Calibrated by:	Claudio Leubler	Laboratory Technician	
Approved by:	Katja Pokovic	Technical Manager	

Issued: November 26, 2020
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalitrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108
Accredited by the Swiss Aocreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates
Glossary:
TSL
ConvF
N/A
tissue simulating liquid sensitivity in TSL / NORM x, y, z
not applicable or not measured
Calibration is Performed According to the Following Standards:
a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak SpatialAveraged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz$)^{n}$, July 2016
c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz$)^{\prime \prime}$, March 2010
d) KDB 865664 , "SAR Measurement Requirements for 100 MHz to 6 GHz "

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.
The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1 .

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	$\mathrm{dx}, \mathrm{dy}, \mathrm{dz}=5 \mathrm{~mm}$	
Frequency	$2600 \mathrm{MHz} \pm 1 \mathrm{MHz}$	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0{ }^{\circ} \mathrm{C}$	39.0	$1.96 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$37.6 \pm 6 \%$	$2.03 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	-	-

SAR result with Head TSL

SAR averaged over $1 \mathrm{~cm}^{3}(1 \mathrm{~g})$ of Head TSL	Condition	
SAR measured	250 mW input power	$14.5 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$56.6 \mathrm{~W} / \mathrm{kg} \pm 17.0 \%(\mathrm{k}=2)$

SAR averaged over $10 \mathrm{~cm}^{3}(10 \mathrm{~g})$ of Head TSL	condition	
SAR measured	250 mW input power	$6.37 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 5 . 1} \mathbf{W} / \mathrm{kg} \pm 16.5 \%(\mathbf{k}=2)$

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$55.6 \Omega-2.3 \mathrm{j} \Omega$
Return Loss	-24.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.149 ns

After long term use with 100 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 2600 MHz ; Type: D2600V2; Serial: D2600V2 - SN:1061
Communication System: UID 0-CW; Frequency: 2600 MHz
Medium parameters used: $\mathrm{f}=2600 \mathrm{MHz} ; \sigma=2.03 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=37.6 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN7405; ConvF(7.54, 7.54, 7.54) @ 2600 MHz ; Calibrated: 29.06.2020
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.11.2020
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:
Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=119.2 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.04 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=30.9 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=14.5 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=6.37 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=8.9 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=47 \%$
Maximum value of SAR (measured) $=25.0 \mathrm{~W} / \mathrm{kg}$

Impedance Measurement Plot for Head TSL

D2600V2, Serial No. 1061 Extended Dipole Calibrations

Referring to KDB 865664 D01, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

D2600V2 - serial no. 1061							
Date of Measurement		Return-Loss (dB)	Delta (\%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	
(ohm)	Delta 2020.11 .26	-24.79		55.63		-2.31	

<Justification of the extended calibration>

The return loss is $<-20 \mathrm{~dB}$, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

Dipole Verification Data> D2600V2, serial no. 1061

Calibration Laboratory of
 Schmid \& Partner
 Engineering AG
 Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client
Sporton
Certificate No: D5GHzV2-1341_Dec21
CALIBRATION CERTIFICATE

Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x, y, z
N/A not applicable or not measured
Calibration is Performed According to the Following Standards:
a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
b) KDB 865664 , "SAR Measurement Requirements for 100 MHz to 6 GHz "

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	$\mathrm{dx}, \mathrm{dy}=4.0 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$	Graded Ratio $=1.4$ (Z direction)
	$5250 \mathrm{MHz} \pm 1 \mathrm{MHz}$	
Frequency	$5600 \mathrm{MHz} \pm 1 \mathrm{MHz}$	

Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	35.9	$4.71 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$34.9 \pm 6 \%$	$4.56 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	----	---

SAR result with Head TSL at 5250 MHz

SAR averaged over $\mathbf{1} \mathrm{cm}^{3}(\mathbf{1 g})$ of Head TSL	Condition	
SAR measured	100 mW input power	$8.12 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$80.7 \mathrm{~W} / \mathrm{kg} \pm 19.9 \%(k=2)$

SAR averaged over $\left.\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0 ~ g}\right)$ of Head TSL	condition	
SAR measured	100 mW input power	$2.33 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 3 . 1} \mathrm{~W} / \mathrm{kg} \pm \mathbf{1 9 . 5} \%(\mathrm{k}=\mathbf{2})$

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	35.5	$5.07 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$34.4 \pm 6 \%$	$4.91 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	----	----

SAR result with Head TSL at 5600 MHz

SAR averaged over $\mathbf{1} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 g)}$ of Head TSL	Condition	
SAR measured	100 mW input power	$8.52 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$84.5 \mathrm{~W} / \mathrm{kg} \pm 19.9 \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\left.10 \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0 ~ g}\right)$ of Head TSL	condition	
SAR measured	100 mW input power	$2.42 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 4 . 0} \mathrm{~W} / \mathrm{kg} \pm \mathbf{1 9 . 5} \%(\mathbf{k}=\mathbf{2})$

Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	35.4	$5.22 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$34.2 \pm 6 \%$	$5.06 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	----	---

SAR result with Head TSL at 5750 MHz

SAR averaged over $1 \mathrm{~cm}^{3}(\mathbf{1 g})$ of Head TSL	Condition	
SAR measured	100 mW input power	$8.13 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$80.6 \mathrm{~W} / \mathrm{kg} \pm 19.9 \%(\mathrm{k}=2)$

SAR averaged over $\left.\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0 ~ g}\right)$ of Head TSL	condition	
SAR measured	100 mW input power	$2.29 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 2 . 7} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%(\mathbf{k}=\mathbf{2})$

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	$48.4 \Omega+0.1 \mathrm{j} \Omega$
Return Loss	-35.7 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	$53.8 \Omega+7.2 \mathrm{j} \Omega$
Return Loss	-22.2 dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	$51.4 \Omega+5.0 j \Omega$
Return Loss	-25.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.211 ns

After long term use with 100 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

DASY5 Validation Report for Head TSL

Date: 13.12.2021
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1341

Communication System: UID $0-$ CW; Frequency: 5250 MHz , Frequency: 5600 MHz , Frequency: 5750 MHz Medium parameters used: $\mathrm{f}=5250 \mathrm{MHz} ; \sigma=4.56 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=34.9 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$,
Medium parameters used: $\mathrm{f}=5600 \mathrm{MHz} ; \sigma=4.91 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=34.4 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$,
Medium parameters used: $\mathrm{f}=5750 \mathrm{MHz} ; \sigma=5.06 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=34.2 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN3503; ConvF(5.5, 5.5, 5.5) @ $5250 \mathrm{MHz}, \operatorname{ConvF}(5.1,5.1,5.1) @ 5600 \mathrm{MHz}$, ConvF(5.08, 5.08, 5.08) @ 5750 MHz ; Calibrated: 30.12.2020
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 01.11.2021
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, $f=5250 \mathrm{MHz} /$ Zoom Scan,
dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=77.28 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.04 \mathrm{~dB}$
Peak SAR (extrapolated) $=27.0 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=8.12 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=\mathbf{2 . 3 3} \mathbf{W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=7.4 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=71.5 \%$
Maximum value of SAR (measured) $=18.5 \mathrm{~W} / \mathrm{kg}$

```
Dipole Calibration for Head Tissue/Pin \(=100 \mathrm{~mW}\), dist \(=10 \mathrm{~mm}, \mathrm{f}=5600 \mathrm{MHz} / \mathrm{Zoom}\) Scan,
dist \(=1.4 \mathrm{~mm}(8 \times 8 \times 7) /\) Cube 0 : Measurement grid: \(\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}\)
Reference Value \(=77.67 \mathrm{~V} / \mathrm{m}\); Power Drift \(=-0.00 \mathrm{~dB}\)
Peak SAR (extrapolated) \(=30.9 \mathrm{~W} / \mathrm{kg}\)
\(\operatorname{SAR}(1 \mathrm{~g})=8.52 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.42 \mathrm{~W} / \mathrm{kg}\)
Smallest distance from peaks to all points 3 dB below \(=7.2 \mathrm{~mm}\)
Ratio of SAR at M2 to SAR at M1 \(=68.6 \%\)
Maximum value of SAR (measured) \(=20.2 \mathrm{~W} / \mathrm{kg}\)
```

Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5750 \mathrm{MHz} /$ Zoom Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=74.44 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.00 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=31.2 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=8.13 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.29 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=7.4 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=66.7 \%$
Maximum value of SAR (measured) $=19.8 \mathrm{~W} / \mathrm{kg}$

Impedance Measurement Plot for Head TSL

IMPORTANT NOTICE

USAGE OF THE DAE4

The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points:

Battery Exchange: The battery cover of the DAE4 unit is fixed using a screw, over tightening the screw may cause the threads inside the DAE to wear out.

Shipping of the DAE: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside.
E-Stop Failures: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements.

Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect.

DASY Configuration Files: Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file.

Important Note:

Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer.

> Important Note:
> Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the Estop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure.

Important Note:

To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE.

Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Sporton Certificate No: DAE4-1650_Aug22

CALIBRATION CERTIFICATE

Object	DAE4 - SD 000 D0	4 BO-SN: 1650	
Calibration procedure(s)	QA CAL-06.v30 Calibration proced	ure for the data acquisition	(DAE)
Calibration date:	August 05, 2022		
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.			
All calibrations have been conducted in the closed laboratory facility: environment temperature ($22 \pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$.			
Calibration Equipment used (M\&TE critical for calibration)			
Primary Standards	ID \#	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	31-Aug-21 (No:31368)	Aug-22
Secondary Standards	ID \#	Check Date (in house)	Scheduled Check
Auto DAE Calibration Unit Calibrator Box V2.1	SE UWS 053 AA 1001 SE UMS 006 AA 1002	24-Jan-22 (in house check) 24-Jan-22 (in house check)	In house check: Jan-23 In house check: Jan-23
	Name	Function	Signature
Calibrated by:	Dominique Steffen	Laboratory Technician	
Approved by:	Sven Kühn	Technical Manager	
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.			

Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

S Schweizerischer Kalibrierdienst
C. Service suisse d'étalonnage

S Servizio svizzero di taratura
Swiss Calibration Service

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE data acquisition electronics
Connector angle information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
- DC Voltage Measurement Linearity: Verification of the Linearity at $+10 \%$ and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
- Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
- Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
- AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
- Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
- Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
- Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
- Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
- Power consumption: Typical value for information. Supply currents in various operating modes.

A/D - Converter Resolution nominal
High Range: $1 \mathrm{LSB}=$
Low Range: $\quad 1 \mathrm{LSB}=$
$6.1 \mu \mathrm{~V}$, full range $=$ $-100 \ldots+300 \mathrm{mV}$
, full range $=-1 \ldots \ldots+3 \mathrm{mV}$

DASY measurement parameters: Auto Zero Time: 3 sec ; Measuring time: 3 sec

Calibration Factors	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
High Range	$403.915 \pm 0.02 \%(\mathrm{k}=2)$	$404.065 \pm 0.02 \%(\mathrm{k}=2)$	$404.330 \pm 0.02 \%(\mathrm{k}=2)$
Low Range	$3.99919 \pm 1.50 \%(\mathrm{k}=2)$	$4.00142 \pm 1.50 \%(\mathrm{k}=2)$	$3.99960 \pm 1.50 \%(\mathrm{k}=2)$

Connector Angle

Connector Angle to be used in DASY system	$188.0^{\circ} \pm 1^{\circ}$

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range		Reading ($\mu \mathrm{V}$)	Difference ($\mu \mathrm{V}$)	Error (\%)
Channel X	+ Input	199994.20	-1.16	-0.00
Channel X	+ Input	20003.06	0.84	0.00
Channel X	- Input	-19999.99	1.66	-0.01
Channel Y	+ Input	199996.79	1.29	0.00
Channel Y	+ Input	20001.52	-0.60	-0.00
Channel Y	- Input	-20002.28	-0.50	0.00
Channel Z	+ Input	199995.79	0.63	0.00
Channel Z	+ Input	20001.62	-0.44	-0.00
Channel Z	- Input	-20003.13	-1.35	0.01

Low Range	Reading $(\mu \mathrm{V})$	Difference $(\mu \mathrm{V})$	Error (\%)	
Channel X	+ Input	2001.56	0.20	0.01
Channel $X \quad$ + Input	201.63	0.01	0.01	
Channel X	- Input	-198.11	0.08	-0.04
Channel Y	+ Input	2000.91	-0.25	-0.01
Channel Y	+ Input	200.92	-0.60	-0.30
Channel Y	- Input	-198.38	-0.02	0.01
Channel Z	+ Input	2001.03	-0.15	-0.01
Channel Z	+ Input	200.33	-1.12	-0.55
Channel Z	- Input	-199.16	-0.76	0.38

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec ; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading ($\mu \mathrm{V})$	Low Range Average Reading $(\mu \mathrm{V})$
Channel X	200	-11.22	-12.84
	-200	13.47	12.68
Channell Y	200	-6.04	-6.43
	-200	4.95	5.26
Channel Z	200	-28.59	-28.64
	-200	26.99	27.11

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec ; Measuring time: 3 sec

	Input Voltage (mV)	Channel $\mathbf{X}(\mu \mathrm{V})$	Channel $\mathbf{Y}(\mu \mathrm{V})$	Channel $\mathbf{Z}(\mu \mathrm{V})$
Channel \mathbf{X}	200	-	0.03	-2.62
Channel \mathbf{Y}	200	4.74	-	0.86
Channel \mathbf{Z}	200	8.90	3.18	-

4. AD-Converter Values with inputs shorted

 DASY measurement parameters: Auto Zero Time: 3 sec ; Measuring time: 3 sec| | High Range (LSB) | Low Range (LSB) |
| :--- | :---: | :---: |
| Channel X | 16116 | 16307 |
| Channel Y | 16150 | 16605 |
| Channel Z | 16180 | 15950 |

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec
Input 10M Ω

	Average $(\mu \mathrm{V})$	\min. Offset $(\mu \mathrm{V})$	\max. Offset $(\mu \mathrm{V})$	Std. Deviation $(\mu \mathrm{V})$
Channel X	0.50	-0.67	2.34	0.53
Channel \mathbf{Y}	-0.12	-1.08	0.89	0.35
Channel \mathbb{Z}	-2.60	-3.51	-1.59	0.41

6. Input Offiset Current

Nominal Input circuitry offset current on all channels: <25fA
7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)		
Supply (+ Vcc)			
Supply (- Vcc)	+7.9		

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (-Vcc)	-0.01	-8	-9

Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
Swiss Calibration Service

CALIBRATION CERTIFICATE

Object
EX3DV4-SN:7729

Calibration procedure(s)
QA CAL-01.v9, QA CAL-14.v6, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes

Calibration date:
May 30, 2022

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$.

Calibration Equipment used (M\&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-22 (No. 217-03525/03524)	Apr-23
Power sensor NRP-Z91	SN: 103244	04-Apr-22 (No. 217-03524)	Apr-23
Power sensor NRP-Z91	SN: 103245	04-Apr-22 (No. 217-03525)	Apr-23
Reference 20 dB Attenuator	SN: CC2552 (20x)	04-Apr-22 (No. 217-03527)	Apr-23
DAE4	SN: 660	13-Oct-21 (No. DAE4-660_Oct21)	Oct-22
Reference Probe ES3DV2	SN: 3013	27-Dec-21 (No. ES3-3013_Dec21)	Dec-22
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-20)	In house check: Jun-22
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-22

Calibrated by:	Name	Function
Approved by:	Loanna Lleshaj	
	Sven Kühn	Technical Manager
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.		

Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates
Glossary:
TSL
NORM x, y, z
ConvF
DCP
CF
A, B, C, D
Polarization φ
tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z diode compression point crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters φ rotation around probe axis
Polarization $\vartheta \quad \vartheta$ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta=0$ is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz "

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization $\vartheta=0$ ($f \leq 900 \mathrm{MHz}$ in TEM-cell; $\mathrm{f}>1800 \mathrm{MHz}$: R22 waveguide). NORM x, y, z are only intermediate values, i.e., the uncertainties of NORM x, y, z does not affect the E^{2}-field uncertainty inside TSL (see below ConvF).
- $\quad \operatorname{NORM}(f) x, y, z=N O R M x, y, z *$ frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- $D C P_{x, y, z}$ DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- $A x, y, z ; B x, y, z ; C x, y, z ; D x, y, z ; V R x, y, z: A, B, C, D$ are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800 \mathrm{MHz}$) and inside waveguide using analytical field distributions based on power measurements for $\mathrm{f}>800 \mathrm{MHz}$. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from $\pm 50 \mathrm{MHz}$ to ± 100 MHz .
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMX (no uncertainty required).

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7729

Basic Calibration Parameters

	Sensor \mathbf{X}	Sensor \mathbf{Y}	Sensor \mathbf{Z}	Unc (k=2)
Norm $\left(\mu \mathrm{V} /(\mathrm{V} / \mathrm{m})^{2}\right)^{\mathrm{A}}$	0.45	0.43	0.37	$\pm 10.1 \%$
DCP $(\mathrm{mV})^{\mathrm{B}}$	103.3	103.6	104.9	

Calibration Results for Modulation Response

UID	Communication System Name		$\begin{gathered} \mathrm{A} \\ \mathrm{~dB} \end{gathered}$	$\begin{gathered} \mathrm{B} \\ \mathrm{~dB} \sqrt{ } \mathrm{~N} \mathrm{~V} \end{gathered}$	C	$\begin{gathered} \mathrm{D} \\ \mathrm{~dB} \end{gathered}$	$\begin{aligned} & \hline \text { VR } \\ & \mathrm{mV} \end{aligned}$	Max dev.	$\begin{aligned} & \text { Max } \\ & \text { Unc }^{E} \\ & (k=2) \end{aligned}$
0	CW	X	0.00	0.00	1.00	0.00	161.2	± 3.0 \%	± 4.7 \%
		Y	0.00	0.00	1.00		176.8		
		Z	0.00	0.00	1.00		168.5		
$\begin{aligned} & \text { 10352- } \\ & \text { AAA } \end{aligned}$	Pulse Waveform (200Hz, 10\%)	X	1.41	60.39	6.59	10.00	60.0	± 2.7 \%	± 9.6 \%
		Y	1.63	61.17	6.58		60.0		
		Z	1.37	60.07	7.01		60.0		
10353-AAA	Pulse Waveform (200Hz, 20\%)	X	0.78	60.00	5.15	6.99	80.0	± 1.8 \%	± 9.6 \%
		Y	0.78	60.00	4.82		80.0		
		Z	0.94	60.69	6.03		80.0		
$\begin{aligned} & \text { 10354- } \\ & \text { AAA } \end{aligned}$	Pulse Waveform (200Hz, 40\%)	X	4.02	111.64	1.61	3.98	95.0	± 2.4 \%	± 9.6 \%
		Y	0.24	149.61	1.17		95.0		
		Z	0.44	60.00	4.32		95.0		
$\begin{aligned} & \text { 10355- } \\ & \text { AAA } \end{aligned}$	Pulse Waveform (200Hz, 60\%)	X	12.26	159.51	6.46	2.22	120.0	± 1.7 \%	± 9.6 \%
		Y	6.55	73.26	1.23		120.0		
		Z	4.73	159.88	8.01		120.0		
10387- AAA	QPSK Waveform, 1 MHz	X	0.46	63.06	11.92	1.00	150.0	± 3.8 \%	± 9.6 \%
		Y	0.68	69.26	16.13		150.0		
		Z	0.41	63.94	12.77		150.0		
$\begin{aligned} & \text { 10388- } \\ & \text { AAA } \end{aligned}$	QPSK Waveform, 10 MHz	X	1.23	65.64	13.31	0.00	150.0	± 0.8 \%	± 9.6 \%
		Y	1.58	69.55	15.74		150.0		
		Z	1.23	66.91	13.89		150.0		
10396AAA	64-QAM Waveform, 100 kHz	X	1.62	63.74	15.48	3.01	150.0	± 1.0 \%	± 9.6 \%
		Y	1.69	64.94	16.39		150.0		
		Z	1.80	66.01	16.81		150.0		
$\begin{aligned} & \text { 10399- } \\ & \text { AAA } \end{aligned}$	64-QAM Waveform, 40 MHz	X	2.75	66.28	15.04	0.00	150.0	± 2.1 \%	± 9.6 \%
		Y	2.93	67.46	15.90		150.0		
		Z	2.78	67.12	15.53		150.0		
10414AAA	WLAN CCDF, 64-QAM, 40MHz	X	3.66	66.03	15.18	0.00	150.0	± 3.6 \%	± 9.6 \%
		Y	3.84	66.88	15.81		150.0		
		Z	3.82	67.40	15.86		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

[^1]
DASY/EASY - Parameters of Probe: EX3DV4 - SN:7729

Sensor Model Parameters

	$\mathbf{C 1}$ $\mathbf{f F}$	$\mathbf{C 2}$ $\mathbf{f F}$	$\boldsymbol{\alpha}$ $\mathbf{V}^{\mathbf{- 1}}$	$\mathbf{T 1}$ $\mathbf{m s .} \mathbf{V}^{\mathbf{- 2}}$	$\mathbf{T 2}$ $\mathbf{m s .} \mathbf{V}^{\mathbf{- 1}}$	T3 $\mathbf{m s}$	$\mathbf{T 4}$ $\mathbf{V}^{\mathbf{- 2}}$	$\mathbf{T 5}$ $\mathbf{V}^{\mathbf{- 1}}$	T6
X	8.0	59.46	34.72	2.26	0.00	4.95	0.55	0.00	1.00
Y	8.2	59.96	34.56	2.20	0.00	4.90	0.35	0.00	1.00
Z	7.4	54.35	34.51	3.48	0.17	4.98	0.80	0.00	1.00

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle ${ }^{\circ}$)	-155.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

[^0]: ${ }^{1}$ Additional assessments outside the current scope of SCS 0108

[^1]: A The uncertainties of Norm X, Y, Z do not affect the E^{2}-field uncertainty inside TSL (see Page 5).
 ${ }^{8}$ Numerical linearization parameter: uncertainty not required.
 ${ }^{E}$ Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

