FCC RF Test Report

APPLICANT	$:$ Motorola Mobility LLC
EQUIPMENT	$:$ Mobile Cellular Phone
BRAND NAME	: Motorola
MODEL NAME	$:$ XT2321-3, XT2321-5
FCC ID	$:$ IHDT56AJ3
STANDARD	$:$ 47 CFR Part 2, 22(H), 24(E), 27(L)
CLASSIFICATION	$:$ PCS Licensed Transmitter Held to Ear (PCE)
TEST DATE(S)	$:$ Mar. 29, 2023 ~ Mar. 30, 2023

We, Sporton International Inc. (Kunshan), would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.26-2015 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (Kunshan), the test report shall not be reproduced except in full.

Approved by: Jason Ja
Sporton International Inc. (Kunshan)
No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China

TABLE OF CONTENTS

REVISION HISTORY 3
SUMMARY OF TEST RESULT 4
1 GENERAL DESCRIPTION 5
1.1 Applicant 5
1.2 Manufacturer 5
1.3 Product Feature of Equipment Under Test 5
1.4 Product Specification of Equipment Under Test. 5
1.5 Specification of Accessory 6
1.6 Modification of EUT 6
1.7 Maximum EIRP Power and Emission Designator 6
1.8 Testing Location 7
1.9 Test Software 7
1.10 Applicable Standards 7
2 TEST CONFIGURATION OF EQUIPMENT UNDER TEST 8
2.1 Test Mode 8
2.2 Connection Diagram of Test System 9
2.3 Support Unit used in test configuration and system 9
2.4 Measurement Results Explanation Example9
2.5 Frequency List of Low/Middle/High Channels 10
3 CONDUCTED TEST ITEMS 11
3.1 Measuring Instruments 11
3.2 Test Setup 11
3.3 Test Result of Conducted Test 11
3.4 Conducted Output Power and EIRP 12
3.5 Peak-to-Average Ratio 13
3.6 Occupied Bandwidth 14
3.7 Conducted Band Edge 15
3.8 Conducted Spurious Emission 16
3.9 Frequency Stability 17
4 RADIATED TEST ITEMS 18
4.1 Measuring Instruments 18
4.2 Test Setup 18
4.3 Test Result of Radiated Test 19
4.4 Radiated Spurious Emission 20
5 LIST OF MEASURING EQUIPMENT 21
6 UNCERTAINTY OF EVALUATION 22
APPENDIX A. TEST RESULTS OF CONDUCTED TEST
APPENDIX B. TEST RESULTS OF RADIATED TEST
APPENDIX C. TEST SETUP PHOTOGRAPHS

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FG2D0913-05B	Rev. 01	Initial issue of report	Apr. 07, 2023

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.4	§2.1046	Conducted Output Power	-	Report Only	-
	§27.50(d)(4)	Equivalent Isotropic Radiated Power (Band 66)	EIRP < 1Watt	PASS	-
3.5	N/A	Peak-to-Average Ratio	$<13 \mathrm{~dB}$	PASS	-
3.6	§2.1049	Occupied Bandwidth	-	Report Only	-
3.7	$\begin{gathered} \S 2.1051 \\ \S 27.53(\mathrm{~h}) \end{gathered}$	Conducted Band Edge Measurement (Band 66)	< 43+10log10(P[Watts])	PASS	-
3.8	$\begin{gathered} \S 2.1051 \\ \S 27.53(\mathrm{~h}) \end{gathered}$	Conducted Spurious Emission (Band 66)	< 43+10log10(P[Watts])	PASS	-
3.9	$\begin{aligned} & \text { §2.1055 } \\ & \text { §27.54 } \end{aligned}$	Frequency Stability Temperature \& Voltage	Within Authorized Band	PASS	-
4.4	$\begin{aligned} & \S 2.1053 \\ & \S 27.53(\mathrm{~h}) \end{aligned}$	Radiated Spurious Emission (Band 66)	< 43+10log ${ }_{10}$ (P[Watts])	PASS	Under limit 40.98 dB at 5205.000 MHz

Remark: This is a variant report. For change note, please refer to XT2321-3, XT2321-5_Operational Description of Product Equality Declaration which is exhibit separately. According to the difference, only the test cases of the other PA for LTE B66 were tested on the basis of the original report FG2D0913B.

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

1 General Description

1.1 Applicant

Motorola Mobility LLC
222 W, Merchandise Mart Plaza, Chicago IL 60654 USA

1.2 Manufacturer

Motorola Mobility LLC
222 W, Merchandise Mart Plaza, Chicago IL 60654 USA

1.3 Product Feature of Equipment Under Test

Product Feature	
Equipment	Mobile Cellular Phone
Brand Name	Motorola
Model Name	XT2321-3, XT2321-5
FCC ID	IHDT56AJ3
IMEI Code	Conducted: $358041760025611 / 358041760025629$ Radiation: 358041760025694/358041760025702
HW Version	DVT2
SW Version	T1TZ33.3-44
EUT Stage	Identical Prototype

Remark:

1. The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.
2. The two model name XT2321-3, XT2321-5 are the same product except model name different for market segment.
3. The EUT has two working states, flip open state and flip close state, by verifying these two states, we choose the worst flip open state for all test.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification	
Tx Frequency	LTE Band $66: 1710 \mathrm{MHz} \sim 1780 \mathrm{MHz}$
Rx Frequency	LTE Band $66: 2110 \mathrm{MHz} \mathrm{\sim} 2200 \mathrm{MHz}$
Bandwidth	LTE Band $66: 5 \mathrm{MHz} / 10 \mathrm{MHz} / 15 \mathrm{MHz} / 20 \mathrm{MHz}$
Maximum Output Power to Antenna (dBm)	<Ant.0> LTE Band $66: 22.89 \mathrm{dBm}$ <Ant. 2> LTE Band $66: 23.78 \mathrm{dBm}$ Antenna Gain (dBi)<Ant.0> LTE Band $66:-2.20 \mathrm{dBi}$ <Ant. 2> LTE Band $66:-4.65 \mathrm{dBi}$
Type of Modulation	QPSK / $16 \mathrm{QAM} / 64 \mathrm{QAM} / 256 \mathrm{QAM}$

Note:

1. The maximum EIRP is calculated from max output power and max antenna gain, only the maximum EIRP of Ant. 0 is shown in the report.

1.5 Specification of Accessory

Specification of Accessory				
AC Adapter	Brand Name	Motorola (Salom)	Model Name	MC-301
Battery 1	Brand Name	Motorola(ATL)	Model Name	PM29
Battery 2	Brand Name	Motorola(ATL)	Model Name	PM08
USB Cable 1	Brand Name	Motorola(Cabletech)	Model Name	SC18D13216
USB Cable 2	Brand Name	Motorola(Luxshare)	Model Name	SC18D13217
USB Cable 3	Brand Name	Motorola(Saibao)	Model Name	SC18D86732

1.6 Modification of EUT

No modifications are made to the EUT during all test items.

1.7 Maximum EIRP Power and Emission Designator

LTE Band 66		QPSK		16QAM/64QAM/256QAM	
BW (MHz)	Frequency Range (MHz)	Maximum EIRP(W)	Emission Designator $(99 \% O B W)$	Maximum EIRP(W)	Emission Designator (99\%OBW)
$\mathbf{5}$	$1712.5 \sim 1777.5$	0.1148	4M49G7D	0.0838	4M52W7D
$\mathbf{1 0}$	$1715.0 \sim 1775.0$	0.1151	9M07G7D	0.0841	9M03W7D
$\mathbf{1 5}$	$1717.5 \sim 1772.5$	0.1159	13M5G7D	0.0830	13M5W7D
$\mathbf{2 0}$	$1720.0 \sim 1770.0$	0.1172	17M9G7D	0.0849	17M9W7D

Note:All modulations have been tested, and only the worst test results of PSK \& QAM are shown in the report.

1.8 Testing Location

Sporton International Inc. (Kunshan) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

Test Firm	Sporton International Inc. (Kunshan)		
Test Site Location	No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of ChinaTEL : +86-512-57900158FAX : +86-512-57900958		
Test Site No.	Sporton Site No.	FCC Designation No.	FCC Test Firm Registration No.
	$\begin{gathered} \text { TH01-KS } \\ 03 \mathrm{CH} 04-\mathrm{KS} \end{gathered}$	CN1257	314309

1.9 Test Software

Item	Site	Manufacture	Name	Version
1.	$03 \mathrm{CH} 04-\mathrm{KS}$	AUDIX	E3	$6.2009-8-24 \mathrm{al}$

1.10 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 2, 27(L)
- ANSI C63.26-2015
- FCC KDB 971168 D01 Power Meas License Digital Systems v03r01
- FCC KDB 412172 D01 Determining ERP and EIRP v01r01

Remark: All test items were verified and recorded according to the standards and without any deviation during the test.

2 Test Configuration of Equipment Under Test

2.1 Test Mode

Antenna port conducted and radiated test items listed below are performed according to KDB 971168 D01 Power Meas License Digital Systems v03r01 with maximum output power.

Radiated measurements are performed by rotating the EUT in three different orthogonal test planes to find the maximum emission.(Y Plane)

Test Items	Band	Bandwidth (MHz)						Modulation				RB \#			Test Channel		
		1.4	3	5	10	15	20	QPSK	$\begin{gathered} 16 \\ \text { QAM } \end{gathered}$	$\begin{array}{\|c\|} \hline 64 \\ \text { QAM } \end{array}$	$\begin{array}{\|l\|} \hline 256 \\ \text { QAM } \\ \hline \end{array}$	1	Half	Full	L	M	H
Max. Output Power	66			v	v	v	v	v	v	v	v	v		v	v	v	v
Peak-to-Average Ratio	66						v	v	v	v	v			v		v	
$\begin{aligned} & \hline \text { 26dB and 99\% } \\ & \text { Bandwidth } \end{aligned}$	66			v	v	v	v	v	v					v		v	
Conducted Band Edge	66			v	v	v	v	v	v	v	v	v		v	v		v
Conducted Spurious Emission	66			v	v	v	v	v				v			v	v	v
Frequency Stability	66				v			v				v				v	
E.I.R.P	66			v	v	v	v	v	v	v	v	v		v	v	v	v
Radiated Spurious Emission	66	Worst Case													v	v	v
Note	1. The mark " \mathbf{v} " means that this configuration is chosen for testing 2. The mark "-" means that this bandwidth is not supported. 3. The device is investigated from 30 MHz to 10 times of fundamental signal for radiated spurious emission test under different RB size/offset and modulations in exploratory test. Subsequently, only the worst case emissions are reported. 4. All test items are based on engineering evaluation.																

2.2 Connection Diagram of Test System

This example is connection diagram of EUT test configurations.
For detail, please refer to test mode configuration and setup photographs for each test item.

2.3 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model No.	FCC ID	Data Cable	Power Cord
1.	Power Supply	GWINSTEK	PSS-2002	N/A	N/A	Unshielded, 1.8 m
2.	LTE Base Station	Anritsu	MT8820C	N/A	N/A	Unshielded, 1.8 m

2.4 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.
Offset $=$ RF cable loss + attenuator factor .
Following shows an offset computation example with cable loss 6.0 dB .
Example :
Offset $(d B)=$ RF cable loss $(d B)$.

$$
=6.0(\mathrm{~dB})
$$

2.5 Frequency List of Low/Middle/High Channels

LTE Band 66 Channel and Frequency List				
BW [MHz]	Channel/Frequency(MHz)	Lowest	Middle	Highest
	Channel	132072	132322	132572
	Frequency	1720	1745	1770
15	Channel	132047	132322	132597
	Frequency	1717.5	1745	1772.5
0	Channel	132022	132322	132622
	Frequency	1715	1745	1775
	Channel	131997	132322	132647
	Frequency	1712.5	1745	1777.5

3 Conducted Test Items

3.1 Measuring Instruments

See list of measuring instruments of this test report.

3.2 Test Setup

3.2.1 Conducted Output Power

3.2.2 Peak-to-Average Ratio, Occupied Bandwidth, Conducted Band-Edge and Conducted Spurious Emission

3.2.3 Frequency Stability

Thermal Chamber

3.3 Test Result of Conducted Test

Please refer to Appendix A.

3.4 Conducted Output Power and EIRP

3.4.1 Description of the Conducted Output Power Measurement and EIRP Measurement

A system simulator was used to establish communication with the EUT. Its parameters were set to force the EUT transmitting at maximum output power. The measured power in the radio frequency on the transmitter output terminals shall be reported.
The EIRP of mobile transmitters must not exceed 1 Watts for LTE Band 66.
According to KDB 412172 D01 Power Approach,
$\operatorname{EIRP}=P_{T}+G_{T}-L_{C}, E R P=E I R P-2.15$, where
$\mathrm{P}_{\mathrm{T}}=$ transmitter output power in dBm
$\mathrm{G}_{\mathrm{T}}=$ gain of the transmitting antenna in dBi
$\mathrm{L}_{\mathrm{C}}=$ signal attenuation in the connecting cable between the transmitter and antenna in dB

3.4.2 Test Procedures

1. The testing follows ANSI C63.26 Section 5.2
2. The transmitter output port was connected to the system simulator.
3. Set EUT at maximum power through the system simulator.
4. Select lowest, middle, and highest channels for each band and different modulation.
5. Measure and record the power level from the system simulator.

3.5 Peak-to-Average Ratio

3.5.1 Description of the PAR Measurement

Power Complementary Cumulative Distribution Function (CCDF) curves provide a means for characterizing the power peaks of a digitally modulated signal on a statistical basis. A CCDF curve depicts the probability of the peak signal amplitude exceeding the average power level. Most contemporary measurement instrumentation include the capability to produce CCDF curves for an input signal provided that the instrument's resolution bandwidth can be set wide enough to accommodate the entire input signal bandwidth. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

3.5.2 Test Procedures

1. The testing follows ANSI C63.26 Section 5.2.3.4 (CCDF).
2. The EUT was connected to spectrum and system simulator via a power divider.
3. Set the CCDF (Complementary Cumulative Distribution Function) option in spectrum analyzer.
4. The highest RF powers were measured and recorded the maximum PAPR level associated with a probability of 0.1%.
5. Record the deviation as Peak to Average Ratio.

3.6 Occupied Bandwidth

3.6.1 Description of Occupied Bandwidth Measurement

The occupied bandwidth is the width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5% of the total mean transmitted power.

The 26 dB emission bandwidth is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated 26 dB below the maximum in-band spectral density of the modulated signal. Spectral density (power per unit bandwidth) is to be measured with a detector of resolution bandwidth equal to approximately 1.0% of the emission bandwidth.

3.6.2 Test Procedures

1. The testing follows ANSI C63.26 Section 5.4
2. The EUT was connected to spectrum analyzer and system simulator via a power divider.
3. The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the spectrum analyzer shall be between two and five times the anticipated OBW.
4. The nominal resolution bandwidth (RBW) shall be in the range of 1 to 5% of the anticipated OBW, and the VBW shall be at least 3 times the RBW.
5. Set the detection mode to peak, and the trace mode to max hold.
6. Determine the reference value: Set the EUT to transmit a modulated signal. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace. (this is the reference value)
7. Determine the "-26 dB down amplitude" as equal to (Reference Value -X).
8. Place two markers, one at the lowest and the other at the highest frequency of the envelope of the spectral display such that each marker is at or slightly below the " $-X \mathrm{~dB}$ down amplitude" determined in step 6. If a marker is below this "-X dB down amplitude" value it shall be placed as close as possible to this value. The OBW is the positive frequency difference between the two markers.
9. Use the 99% power bandwidth function of the spectrum analyzer and report the measured bandwidth.

Page Number	: 14 of 22
Report Issued Date	: Apr. 07, 2023
Report Version	: Rev. 01

3.7 Conducted Band Edge

3.7.1 Description of Conducted Band Edge Measurement

27.53 (h)

For operations in the $1710-1755 \mathrm{MHz}$ and $1710-1780$ band, the FCC limit is $43+10 \log _{10}(P[W a t t s])$ $d B$ below the transmitter power $P($ Watts $)$ in a 1 MHz bandwidth. However, in the 1 MHz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

3.7.2 Test Procedures

1. The testing follows ANSI C63.26 section 5.7
2. The EUT was connected to spectrum analyzer and system simulator via a power divider.
3. The band edges of low and high channels for the highest RF powers were measured.
4. Set RBW $>=1 \%$ EBW in the 1 MHz band immediately outside and adjacent to the band edge.
5. Beyond the 1 MHz band from the band edge, $\mathrm{RBW}=1 \mathrm{MHz}$ was used.
6. Set spectrum analyzer with RMS detector.
7. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
8. Checked that all the results comply with the emission limit line.

Example:

The limit line is derived from $43+10 \log (P) d B$ below the transmitter power $P(W a t t s)$
$=P(W)-[43+10 \log (P)](d B)$
$=[30+10 \log (P)](d B m)-[43+10 \log (P)](d B)=-13 d B m$.
9. When using the integration method, the starting frequency of the integration shall be centered at one-half of the RBW away from the band edge.

3.8 Conducted Spurious Emission

3.8.1 Description of Conducted Spurious Emission Measurement

The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least $43+10 \log (P) d B$.

It is measured by means of a calibrated spectrum analyzer and scanned from 30 MHz up to a frequency including its $10^{\text {th }}$ harmonic.

3.8.2 Test Procedures

1. The testing follows ANSI C63.26 section 5.7
2. The EUT was connected to spectrum analyzer and system simulator via a power divider.
3. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
4. The middle channel for the highest RF power within the transmitting frequency was measured.
5. The conducted spurious emission for the whole frequency range was taken.
6. Make the measurement with the spectrum analyzer's RBW $=1 \mathrm{MHz}, \mathrm{VBW}=3 \mathrm{MHz}$.
7. Set spectrum analyzer with RMS detector.
8. Taking the record of maximum spurious emission.
9. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
10. The limit line is derived from $43+10 \log (P) d B$ below the transmitter power $P(W a t t s)$

$$
\begin{aligned}
& =P(\mathrm{~W})-[43+10 \log (\mathrm{P})](\mathrm{dB}) \\
& =[30+10 \log (\mathrm{P})](\mathrm{dBm})-[43+10 \log (\mathrm{P})](\mathrm{dB}) \\
& =-13 \mathrm{dBm} .
\end{aligned}
$$

3.9 Frequency Stability

3.9.1 Description of Frequency Stability Measurement

The frequency stability shall be measured by variation of ambient temperature and variation of primary supply voltage to ensure that the fundamental emission stays within the authorized frequency block.

3.9.2 Test Procedures for Temperature Variation

1. The testing follows ANSI C63.26 section 5.6.4
2. The EUT was set up in the thermal chamber and connected with the system simulator.
3. With power OFF, the temperature was decreased to $-30^{\circ} \mathrm{C}$ and the EUT was stabilized before testing. Power was applied and the maximum change in frequency was recorded within one minute.
4. With power OFF, the temperature was raised in $10^{\circ} \mathrm{C}$ step up to $50^{\circ} \mathrm{C}$. The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute.

3.9.3 Test Procedures for Voltage Variation

1. The testing follows ANSI C63.26 section 5.6 .5
2. The EUT was placed in a temperature chamber at $20 \pm 5^{\circ} \mathrm{C}$ and connected with the system simulator.
3. The power supply voltage to the EUT was varied from 85% to 115% of the nominal value for other than hand carried battery equipment.
4. For hand carried, battery powered equipment, reduce the primary ac or dc supply voltage to the battery operating end point, which shall be specified by the manufacturer.
5. The variation in frequency was measured for the worst case.

4 Radiated Test Items

4.1 Measuring Instruments

See list of measuring instruments of this test report.

4.2 Test Setup

4.2.1 For radiated test below 30 MHz

4.2.2 For radiated test from 30 MHz to 1 GHz

4.2.3 For radiated test above 1 GHz

4.3 Test Result of Radiated Test

The low frequency, which started from 9 kHz to 30 MHz , was pre-scanned and the result which was 20 dB lower than the limit line was not reported.

Please refer to Appendix B.

4.4 Radiated Spurious Emission

4.4.1 Description of Radiated Spurious Emission

The radiated spurious emission was measured by substitution method according to ANSI C63.26. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitter power (P) by a factor of at least $43+10 \log (P) d B$.

The spectrum is scanned from 30 MHz up to a frequency including its 10th harmonic.

4.4.2 Test Procedures

1. The testing follows ANSI C63.26 Section 5.5
2. The EUT was placed on a turntable with 0.8 meter height for frequency below 1 GHz and 1.5 meter height for frequency above 1 GHz respectively above ground.
3. The EUT was set 3 meters from the receiving antenna mounted on the antenna tower.
4. The table was rotated 360 degrees to determine the position of the highest spurious emission.
5. The height of the receiving antenna is varied between 1 m to 4 m to search the maximum spurious emission for both horizontal and vertical polarizations.
6. During the measurement, the system simulator parameters were set to force the EUT transmitting at maximum output power.
7. Make the measurement with the spectrum analyzer's RBW $=1 \mathrm{MHz}$, VBW $=3 \mathrm{MHz}$, taking the record of maximum spurious emission.
8. A horn antenna was substituted in place of the EUT and was driven by a signal generator.
9. Tune the output power of signal generator to the same emission level with EUT maximum spurious emission.
10. $\operatorname{EIRP}(\mathrm{dBm})=$ S.G. Power - Tx Cable Loss + Tx Antenna Gain
11. $E R P(d B m)=E I R P-2.15$
12. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
The limit line is derived from $43+10 \log (P) d B$ below the transmitter power $P(W a t t s)$
$=P(W)-[43+10 \log (P)](d B)$
$=[30+10 \log (P)](\mathrm{dBm})-[43+10 \log (P)](\mathrm{dB})$
$=-13 \mathrm{dBm}$.

5 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R\&S	FSV40	101040	$10 \mathrm{~Hz} \sim 40 \mathrm{GHz}$	Oct. 12, 2022	Mar. 29, 2023	Oct. 11, 2023	Conducted (TH01-KS)
Power divider	STI	STI08-0055	-	$0.5 \sim 40 \mathrm{GHz}$	Aug. 26, 2022	Mar. 29, 2023	Aug. 25, 2023	Conducted (TH01-KS)
Temperature \& humidity chamber	Hongzhan	LP-150U	H2014011440	$\begin{gathered} -40 \sim+150^{\circ} \mathrm{C} \\ 20 \% \sim 95 \% \mathrm{RH} \end{gathered}$	Jul. 15, 2022	Mar. 29, 2023	Jul. 14, 2023	Conducted (TH01-KS)
EXA Spectrum Analyzer	Keysight	N9010B	MY57471079	$\begin{gathered} \hline \text { 10Hz-44G,MAX } \\ 30 \mathrm{~dB} \\ \hline \end{gathered}$	Oct. 12, 2022	Mar. 30, 2023	Oct. 11, 2023	Radiation (03CH04-KS)
Loop Antenna	R\&S	HFH2-Z2	100321	$9 \mathrm{kHz} \sim 30 \mathrm{MHz}$	Oct. 16, 2022	Mar. 30, 2023	Oct. 15, 2023	$\begin{gathered} \text { Radiation } \\ (03 \mathrm{CH} 04-\mathrm{KS}) \end{gathered}$
Bilog Antenna	TeseQ	CBL6111D	49922	$30 \mathrm{MHz}-1 \mathrm{GHz}$	May 24, 2022	Mar. 30, 2023	May 23, 2023	$\begin{gathered} \text { Radiation } \\ (03 \mathrm{CH} 04-\mathrm{KS}) \\ \hline \end{gathered}$
Horn Antenna	Schwarzbeck	BBHA9120D	1284	$1 \mathrm{GHz} \sim 18 \mathrm{GHz}$	Oct. 16, 2022	Mar. 30, 2023	Oct. 15, 2023	Radiation (03CH04-KS)
SHF-EHF Horn	Com-power	AH-840	101070	18GHz~40GHz	Jan. 08, 2023	Mar. 30, 2023	Jan. 07, 2024	$\begin{gathered} \text { Radiation } \\ (03 \mathrm{CH} 04-\mathrm{KS}) \\ \hline \end{gathered}$
Amplifier	SONOMA	310 N	187289	$9 \mathrm{KHz-1GHz}$	May 24, 2022	Mar. 30, 2023	May 23, 2023	Radiation (03CH04-KS)
Amplifier	MITEQ	$\begin{gathered} \text { EM18G40G } \\ \text { GA } \end{gathered}$	060728	18~40GHz	Jan. 05, 2023	Mar. 30, 2023	Jan. 04, 2024	$\begin{gathered} \text { Radiation } \\ (03 \mathrm{CH} 04-\mathrm{KS}) \\ \hline \end{gathered}$
high gain Amplifier	EM	$\begin{gathered} \text { EM01G18G } \\ A \end{gathered}$	060840	1Ghz-18Ghz	Oct. 12, 2022	Mar. 30, 2023	Oct. 11, 2023	Radiation $(03 \mathrm{CH} 04-\mathrm{KS})$
Amplifier	Agilent	8449B	3008A02370	1Ghz-18Ghz	Oct. 12, 2022	Mar. 30, 2023	Oct. 11, 2023	$\begin{gathered} \text { Radiation } \\ (03 \mathrm{CH} 04-\mathrm{KS}) \\ \hline \end{gathered}$
AC Power Source	Chroma	61601	F104090004	N/A	NCR	Mar. 30, 2023	NCR	Radiation $(03 \mathrm{CH} 04-\mathrm{KS})$
Turn Table	ChamPro	EM 1000-T	060762-T	0~360 degree	NCR	Mar. 30, 2023	NCR	Radiation (03CH04-KS)
Antenna Mast	ChamPro	EM 1000-A	060762-A	$1 \mathrm{~m} \sim 4 \mathrm{~m}$	NCR	Mar. 30, 2023	NCR	$\begin{gathered} \text { Radiation } \\ (03 \mathrm{CH} 04-\mathrm{KS}) \\ \hline \end{gathered}$

NCR: No Calibration Required

Page Number	$: 21$ of 22
Report Issued Date	: Apr. 07, 2023
Report Version	: Rev. 01

Report Version : Rev. 01

6 Uncertainty of Evaluation

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.26-2015. All the measurement uncertainty value were shown with a coverage $\mathrm{K}=2$ to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Uncertainty of Conducted Measurement

Test Item	Uncertainty
Conducted Power	$\pm 0.46 \mathrm{~dB}$
Conducted Emissions	$\pm 0.48 \mathrm{~dB}$
Occupied Channel Bandwidth	$\pm 0.1 \%$

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence of $95 \%(U=2 U c(y))$	3.3 dB

Uncertainty of Radiated Emission Measurement (1 GHz ~ 18 GHz)

Measuring Uncertainty for a Level of Confidence of $95 \%(U=2 U c(y))$	2.8 dB

Uncertainty of Radiated Emission Measurement (18 GHz ~ 40 GHz)

Measuring Uncertainty for a Level of Confidence of $95 \%(U=2 U c(y))$	2.8 dB

Appendix A. Test Results of Conducted Test

Conducted Output Power(Average power) and EIRP

LTE Band 66 <Ant. 0 >:

BW [MHz]	Modulation	RB Size	RB Offset	Power Low Ch. / Freq.	Power Middle Ch. / Freq.	Power High Ch. / Freq.	EIRP(W)		
Channel				132072	132322	132572			
Frequency (MHz)				1720	1745	1770	L	M	H
20	QPSK	1	0	22.78	22.89	22.72	0.1143	0.1172	0.1127
20	QPSK	1	99	22.62	22.67	22.55	0.1102	0.1114	0.1084
20	QPSK	100	0	21.48	21.55	21.45	0.0847	0.0861	0.0841
20	16QAM	1	0	21.44	21.49	21.45	0.0839	0.0849	0.0841
20	64QAM	1	0	20.98	21.09	21.05	0.0755	0.0774	0.0767
20	256QAM	1	0	18.58	18.70	18.63	0.0435	0.0447	0.0440
Channel				132047	132322	132597	EIRP(W)		
Frequency (MHz)				1717.5	1745	1772.5	L	M	H
15	QPSK	1	0	22.74	22.84	22.61	0.1132	0.1159	0.1099
15	16QAM	1	0	21.39	21.39	21.36	0.0830	0.0830	0.0824
Channel				132022	132322	132622	EIRP(W)		
Frequency (MHz)				1715	1745	1775	L	M	H
10	QPSK	1	0	22.68	22.81	22.64	0.1117	0.1151	0.1107
10	16QAM	1	0	21.39	21.45	21.37	0.0830	0.0841	0.0826
Channel				131997	132322	132647	EIRP(W)		
Frequency (MHz)				1712.5	1745	1777.5	L	M	H
5	QPSK	1	0	22.68	22.80	22.67	0.1117	0.1148	0.1114
5	16QAM	1	0	21.40	21.43	21.38	0.0832	0.0838	0.0828

LTE Band 66

Peak-to-Average Ratio

Mode	LTE Band 66 / 20MHz				
Mod.	QPSK	16QAM	64QAM	256QAM	Limit: 13dB
RB Size	Full RB	Full RB	Full RB	Full RB	Result
Middle CH	4.58	5.71	6.41	6.64	PASS

LTE Band 66 / 20 MHz								
Midale Channel/ Full RB/ QPSK								
\%manmen								
- \times -								
- - +								
- + -								
0								
Middle Channel / Full RB/ 16aAM								
\%emmen								
-								
-								
边								

26dB Bandwidth

Mode	LTE Band 66 : 26dB BW(MHz)	
BW	5MHz	
Mod.	QPSK	16QAM
Middle CH	5.01	5.12
BW	10MHz	
Mod.	QPSK	16QAM
Middle CH	10.17	9.95
BW	15MHz	
Mod.	QPSK	16QAM
Middle CH	14.15	14.63
BW	20MHz	
Mod.	QPSK	16QAM
Middle CH	19.10	19.30

Occupied Bandwidth

Mode	LTE Band 66 : 99\%OBW(MHz)	
BW	5 MHz	
Mod.	QPSK	16QAM
Middle CH	4.49	4.52
BW	10MHz	
Mod.	QPSK	16QAM
Middle CH	9.07	9.03
BW	15MHz	
Mod.	QPSK	16QAM
Middle CH	13.49	13.49
BW	20MHz	
Mod.	QPSK	16QAM
Middle CH	17.90	17.90

Conducted Band Edge

TEL : +86-512-57900158
FCC ID : IHDT56AJ3

TEL : +86-512-57900158
FCC ID : IHDT56AJ3

Conducted Spurious Emission

