FCC WiFi 6E RF Exposure

Applicant : Motorola Mobility LLC
Equipment : Mobile Cellular Phone

Brand Name : Motorola

Model Name : XT2175-1

FCC ID : IHDT56AC1

Standard : FCC 47 CFR Part 2 (2.1093)

We, Sporton International (Kunshan) Inc., would like to declare that the tested sample has been evaluated in accordance with the test procedures given in 47 CFR Part 2.1093 and FCC KDB and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International (Kunshan) Inc., the test report shall not be reproduced except in full.

Reviewed by: Nick Hu / Supervisor

Nick Hu

Approved by: Kat Yin / Manager

Lat, Kin

Sporton International (Kunshan) Inc.

No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China

Sporton International (Kunshan) Inc.

TEL: 86-512-57900158 / FAX: 86-512-57900958

FCC ID: IHDT56AC1

Report Template No. : 200414

Page 1 of 17

Issued Date : Nov. 01, 2021

Report No.: FA172703B

SPORTON LAB. FCC WiFi 6E RF Exposure

Table of Contents

1. Statement of Compliance	4
2. Administration Data	5
3. Guidance Applied	
4. Equipment Under Test (EUT) Information	7
4.1 General Information	7
5. RF Exposure Limits	9
5.1 Uncontrolled Environment	
5.2 Controlled Environment	
5.3 RF Exposure limit for below 6GHz	9
5.4 RF Exposure limit for above 6GHz1	0
6. System Description and Setup1	
7. Test Equipment List1	2
8. PD System Verification Results1	3
9. PD Test Result1	4
10. Uncertainty Assessment1	5
11. References1	7
Appendix A. Plots of System Performance Check	
Appendix B. Plots of High SAR Measurement	
Appendix C. DASY Calibration Certificate	
Appendix D. Test Setup Photos	

FCC ID: IHDT56AC1

Page 2 of 17

Report No.: FA172703B

Report Template No.: 200414

History of this test report

Report No.: FA172703B

Report No.	Version	Description	Issued Date
FA172703B	01	Initial issue of report.	Oct. 20, 2021
FA172703B	02	Updated the test Equipment List in section 7.	Nov. 01, 2021

1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for **Motorola Mobility LLC, Mobile Cellular Phone, XT2175-1**, are as follows.

Report No.: FA172703B

	T. F		Reported SAR			APD		Scaled PD
Band	Tx Frequency (MHz)	Head (1g SAR W/kg)	Body Worn (1g SAR W/kg)	Phablet (10g SAR W/kg)	Head (W/m^2)	Body Worn (W/m^2)	Phablet (W/m^2)	PsPD (W/m^2)
WIFI6E	5925-7125	0.067	0.228	0.195	0.396	1.21	3.25	8.55
Date	of Testing:	2021/9/27 ~ 2021/9/30						

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg for Partial-Body 1g SAR, 4.0 W/kg for Product Specific 10g SAR) and Power density exposure limits (1 mW/cm^2) specified in FCC 47 CFR part 2 (2.1093), ANSI/IEEE C95.1-1992 and FCC 47 CFR Part1.1310, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 and FCC KDB publications.

 Sporton International (Kunshan) Inc.
 Page
 4 of 17

 TEL: 86-512-57900158 / FAX: 86-512-57900958
 Issued Date: Nov. 01, 2021

 FCC ID: IHDT56AC1
 Report Template No.: 200414

2. Administration Data

Sporton International (Kunshan) Inc. is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

Report No.: FA172703B

Testing Laboratory						
Test Firm	Sporton International (Kui	Sporton International (Kunshan) Inc.				
Test Site Location		oad, Kunshan Economic Deve People's Republic of China	lopment Zone			
Toot Site No	Sporton Site No.	FCC Designation No.	FCC Test Firm Registration No.			
Test Site No.	SAR06-KS	CN1257	314309			

Applicant				
Company Name Motorola Mobility LLC				
Address 222 W,Merchandise Mart Plaza, Chicago IL 60654 USA				

Manufacturer				
Company Name Motorola Mobility LLC				
Address	222 W,Merchandise Mart Plaza, Chicago IL 60654 USA			

 Sporton International (Kunshan) Inc.
 Page
 5 of 17

 TEL: 86-512-57900158 / FAX: 86-512-57900958
 Issued Date: Nov. 01, 2021

 FCC ID: IHDT56AC1
 Report Template No.: 200414

3. Guidance Applied

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards.

Report No.: FA172703B

- FCC 47 CFR Part 2 (2.1093)
- · ANSI/IEEE C95.1-1992
- · IEEE 1528-2013
- SPEAG DASY6 System Handbook
- SPEAG DASY6 Application Note (Interim Procedure for Device Operation at 6GHz-10GHz)
- · IEC TE63170:2018
- · IEC 62479:2010
- FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- FCC KDB 865664 D02 SAR Reporting v01r02
- FCC KDB 447498 D01 General RF Exposure Guidance v06
- FCC KDB 648474 D04 SAR Evaluation Considerations for Wireless Handsets v01r03
- FCC KDB 248227 D01 802.11 Wi-Fi SAR v02r02

 Sporton International (Kunshan) Inc.
 Page 1 of 17

 TEL: 86-512-57900158 / FAX: 86-512-57900958
 Issued Date : Nov. 01, 2021

 FCC ID: IHDT56AC1
 Report Template No. : 200414

4. Equipment Under Test (EUT) Information

4.1 General Information

	Product Feature & Specification
Equipment Name	Mobile Cellular Phone
Brand Name	Motorola
Model Name	XT2175-1
FCC ID	IHDT56AC1
IMELO. 4.	SIM1: 3505056880018264
IMEI Code	SIM2: 3505056880018272
Wireless Technology and Frequency Range	GSM850: 824 MHz ~ 849 MHz GSM1900: 1850 MHz ~ 1910 MHz WCDMA Band II: 1850 MHz ~ 1910 MHz WCDMA Band II: 1850 MHz ~ 1910 MHz WCDMA Band IV: 1710 MHz ~ 1755 MHz WCDMA Band V: 824 MHz ~ 849 MHz LTE Band 2: 1850 MHz ~ 1755 MHz LTE Band 4: 1710 MHz ~ 1755 MHz LTE Band 5: 824 MHz ~ 849 MHz LTE Band 5: 824 MHz ~ 849 MHz LTE Band 7: 2500 MHz ~ 2570 MHz LTE Band 12: 699 MHz ~ 716 MHz LTE Band 13: 777 MHz ~ 787 MHz LTE Band 17: 704 MHz ~ 716 MHz LTE Band 38: 2570 MHz ~ 2620 MHz LTE Band 38: 2570 MHz ~ 2690 MHz LTE Band 40: 3450 MHz ~ 3550 MHz LTE Band 40: 3450 MHz ~ 3550 MHz LTE Band 66: 1710 MHz ~ 1780 MHz SG NR n5: 824 MHz ~ 2620 MHz SG NR n5: 824 MHz ~ 2620 MHz SG NR n66: 1710 MHz ~ 2780 MHz SG NR n77: 3450 MHz ~ 2500 MHz SG NR n78: 3450 MHz ~ 3550 MHz, 3700 MHz ~ 3980 MHz SG NR n77: 3450 MHz ~ 3550 MHz, 3700 MHz ~ 3800 MHz WLAN 2.4GHz Band: 5180 MHz ~ 5240 MHz WLAN 5.3GHz Band: 5500 MHz ~ 5300 MHz WLAN 5.5GHz Band: 5500 MHz ~ 5300 MHz WLAN 5.5GHz Band: 5500 MHz ~ 5500 MHz WLAN 5.5GHz Band: 5500 MHz ~ 5500 MHz WLAN 5.5GHz Band: 5745 MHz ~ 5825 MHz WLAN 6E U-NIII-5: 5925 MHz ~ 6425 MHz WLAN 6E U-NIII-6: 6425 MHz ~ 6425 MHz WLAN 6E U-NIII-6: 6875 MHz ~ 6875 MHz WLAN 6E U-NIII-7: 6525 MHz ~ 6875 MHz WLAN 6E U-NIII-8: 6875 MHz ~ 2480 MHz GSM/GPRS/EGPRS
Mode	RMC/AMR 12.2Kbps HSDPA HSUPA DC-HSDPA HSPA+(16QAM uplink is not supported) LTE: QPSK, 16QAM, 64QAM, 256QAM 5G NR: CP-OFDM / DFT-s-OFDM, PI/2 BPSK, QPSK, 16QAM, 64QAM, 256QAM WLAN 2.4GHz 802.11b/g/n HT20/HT40 WLAN 2.4GHz 802.11ax HE20/HE40 WLAN 5GHz 802.11a/n HT20/HT40 WLAN 5GHz 802.11a/ax VHT20/VHT40/VHT80/VHT160/HE20/HE40/HE80/HE160 WLAN 6GHz 802.11a WLAN 6GHz 802.11ax HE20/HE40/HE80/HE160 Bluetooth BR/EDR/LE
LIW Versien	NFC:ASK
HW Version	DVT2

Sporton International (Kunshan) Inc.

TEL: 86-512-57900158 / FAX: 86-512-57900958

FCC ID: IHDT56AC1

Page 7 of 17
Issued Date: Nov. 01, 2021
Report Template No.: 200414

Report No.: FA172703B

SPORTON LAB. FCC WiFi 6E RF Exposure

SW Version	RRX31.Q3-38
GSM / (E)GPRS Transfer Class B – EUT cannot support Packet Switched and Circuit Switched Network	
mode	simultaneously but can automatically switch between Packet and Circuit Switched Network.
EUT Stage	Identical Prototype

Report No.: FA172703B

Remark:

- 1. Based on Part1 SAR report No.FA172703 to evaluate WIFI 6E PD RF Exposure, for the WIFI 6E SAR, APD, and output power also refer to Part1 SAR report.
- There are two different types of EUT. They are single SIM card mobile and dual SIM card mobile. The others are the same including circuit design, PCB board, structure and all components. It is special to declare. After pre-scan two types of EUT, we found test result of the sample that dual SIM was the worst, so we chose dual SIM card mobile to perform all tests.

 Sporton International (Kunshan) Inc.
 Page
 8 of 17

 TEL: 86-512-57900158 / FAX: 86-512-57900958
 Issued Date: Nov. 01, 2021

 FCC ID: IHDT56AC1
 Report Template No.: 200414

5. RF Exposure Limits

5.1 Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Report No.: FA172703B

5.2 Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

5.3 RF Exposure limit for below 6GHz

Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

1. Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

 Sporton International (Kunshan) Inc.
 Page
 9 of 17

 TEL: 86-512-57900158 / FAX: 86-512-57900958
 Issued Date: Nov. 01, 2021

 FCC ID: IHDT56AC1
 Report Template No.: 200414

5.4 RF Exposure limit for above 6GHz

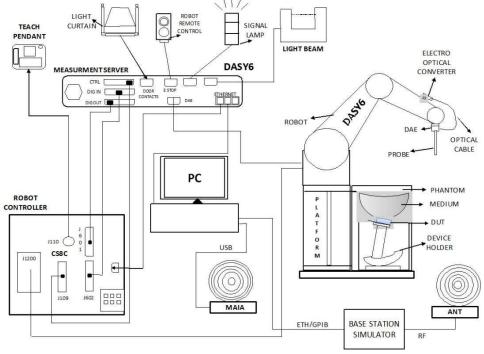
According to ANSI/IEEE C95.1-1992, the criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio frequency (RF) radiation as specified in §1.1310. Power density evaluations in units of W/m² or mW/cm².

Report No.: FA172703B

Peak Spatially Averaged Power Density was evaluated over a circular area of 4cm² per interim FCC Guidance for near-field power density evaluations per October 2018 TCB Workshop notes

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)
700 — 200 s	(A) Limits for O	ccupational/Controlled Expos	sures	10 % 10 %
0.3-3.0	614	1.63	*(100)	6
3.0-30	1842/	f 4.89/1	*(900/ f 2)	6
30-300	61.4	0.163	1.0	6
300-1500			f/300	6
1500-100,000			5	6
	(B) Limits for Gene	ral Population/Uncontrolled I	Exposure	
0.3-1.34	614	1.63	*(100)	30
1.34-30	824/	f 2.19/1	*(180/f2)	30
30-300	27.5	0.073	0.2	30
300-1500			f/1500	30
1500-100,000		5-	1.0	30

Note: 1.0 mW/cm² is 10 W/m²


 Sporton International (Kunshan) Inc.
 Page
 10 of 17

 TEL: 86-512-57900158 / FAX: 86-512-57900958
 Issued Date: Nov. 01, 2021

 FCC ID: IHDT56AC1
 Report Template No.: 200414

6. System Description and Setup

The DASY system used for performing compliance tests consists of the following items:

Report No.: FA172703B

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running Windows 10 and the DASY6 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

 Sporton International (Kunshan) Inc.
 Page
 11 of 17

 TEL: 86-512-57900158 / FAX: 86-512-57900958
 Issued Date: Nov. 01, 2021

 FCC ID: IHDT56AC1
 Report Template No.: 200414

7. Test Equipment List

Manufacture	nufacturer Name of Equipment Type/Model Serial N	Tarra /Mandal	Carriel Number	Calibration	
Manutacturer		Serial Number	Last Cal.	Due Date	
SPEAG	5G Verification Source	10GHz	1020	2021/1/18	2022/1/17
SPEAG	EUmmWV Probe Tip Protection	EUmmWV4	9553	2021/4/1	2022/3/31
SPEAG	Data Acquisition Electronics	DAE4	1650	2021/6/9	2022/6/8
SPEAG	mmWave Phantom	mmWave	1065	NCR	NCR
Rohde & Schwarz	Signal Generator	SMB100A	178155	2021/4/13	2022/4/12
Keysight	Preamplifier	83017A	MY57280111	2021/7/12	2022/7/11
EXA	Spectrum Analyzer	FSV7	101632	2021/1/7	2022/1/6
Testo	Thermo-Hygrometer	608-H1	1241332102	2021/1/7	2022/1/6
Rohde & Schwarz	Power Meter	NRVD	102081	2021/8/12	2022/8/11
Rohde & Schwarz	Power Sensor	NRP50S	101385	2021/3/15	2022/3/14
Rohde & Schwarz	Power Sensor	NRV-Z5	100538	2021/8/12	2022/8/11
Rohde & Schwarz	Power Sensor	NRV-Z5	100539	2021/8/12	2022/8/11
Agilent	Dual Directional Coupler	11691D	MY48151020	No	te 1
ARRA	Power Divider	A3200-2	N/A	Note 1	
MCL	Attenuation1	BW-S10W5+	N/A	Note 1	
MCL	Attenuation2	BW-S10W5+	N/A	Note 1	
MCL	Attenuation3	BW-S10W5+	N/A	Note 1	

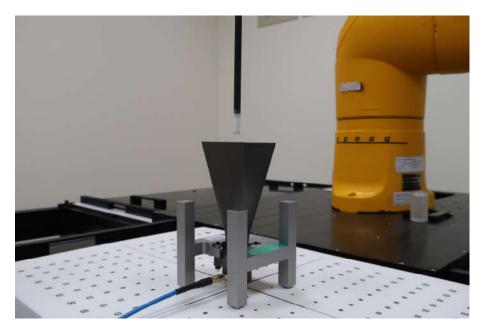
Report No.: FA172703B

General Note:

- 1. Prior to system verification and validation, the path loss from the signal generator to the system check source and the power meter, which includes the amplifier, cable, attenuator and directional coupler, was measured by the network analyzer. The reading of the power meter was offset by the path loss difference between the path to the power meter and the path to the system check source to monitor the actual power level fed to the system check source.
- 2. The dipole calibration interval can be extended to 3 years with justification according to KDB 865664 D01. The dipoles are also not physically damaged, or repaired during the interval. The justification data in appendix C can be found which the return loss is < -20dB, within 20% of prior calibration, the impedance is within 5 ohm of prior calibration for each dipole.

 Sporton International (Kunshan) Inc.
 Page
 12 of 17

 TEL: 86-512-57900158 / FAX: 86-512-57900958
 Issued Date: Nov. 01, 2021


FCC ID : IHDT56AC1 Report Template No. : 200414

8. PD System Verification Results

The system was verified to be within ±0.66 dB of the power density targets on the calibration certificate according to the test system specification in the user's manual and calibration facility recommendation. The 0.66 dB deviation threshold represents the expanded uncertainty for system performance checks using SPEAG's mmWave verification sources. The same spatial resolution and measurement region used in the source calibration was applied during the system check. The measured power density distribution of verification source was also confirmed through visual inspection to have no noticeable differences, both spatially (shape) and numerically (level) from the distribution provided by the manufacturer, per November 2017 TCBC Workshop Notes.

Report No.: FA172703B

Frequency (GHz)	5G Verification Source	Probe S/N	DAE S/N	Distance (mm)	Input Power (mW)	Measured 4 cm^2 (W/m^2)	Targeted 4 cm ² (W/m ²)	Deviation (dB)	Date
10	10GHz_1020	9553	1650	10	74	44	42.2	0.18	2021/9/30

System Verification Setup Photo

 Sporton International (Kunshan) Inc.
 Page
 13 of 17

 TEL: 86-512-57900158 / FAX: 86-512-57900958
 Issued Date: Nov. 01, 2021

 FCC ID: IHDT56AC1
 Report Template No.: 200414

9. PD Test Result

Power Density General Notes:

1. The manufacturer has confirmed that the devices tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.

Report No.: FA172703B

- 2. Batteries are fully charged at the beginning of the measurements.
- 3. Absorbed power density (APD) using a 4cm² averaging area is reported based on SAR measurements.
- 4. Power density was calculated by repeated E-field measurements on two measurement planes separated by λ/4.
- 5. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools.
- 6. Per FCC guidance and equipment manufacturer guidance, power density results were scaled according to IEC 62479:2010 for the portion of the measurement uncertainty > 30%. Total expanded uncertainty of 2.68 dB (85.4%) was used to determine the psPD measurement scaling factor.
- 7. Since this device is considered a phablet and there is no different PD limit on different exposure conditions, therefore select highest phablet SAR at 0 mm test distance and configurations evaluate power density. Since there is no different PD limit on different exposure conditions, therefore the PD test was performed of a 2mm separation between sensor and EUT surface to cover all exposure conditions of phablet.
- 8. The measurement procedure consists of measuring the PDinc at two different distances: 2 mm (compliance distance) and λ/5. The grid extents should be large enough to fully capture the transmitted energy. The grid step should be fine enough to demonstrate that the integrated Power Density iPDn fulfill the criterion described below. Since iPD ratio between the two distances is≥ -1dB, the grid step (0.0625) was sufficient for determining compliance at d=2mm.

$$10 \cdot log_{10} \frac{iPD_n(2mm)}{iPD_n(\lambda/5)} \ge -1$$

<WLAN PD>

Band	Mode	Test Position	Gap (mm)	Antenna	Ch.	Freq. (MHz)	Average Power (dBm)	Grip Step (λ)	iPDn	iPD ratio (≥ -1)	Normal psPD (W/m^2)	Total psPD (W/m^2)
WLAN6GHz	802.11ax-HE160 MCS0	Back	2mm	Ant 6+7	15	6025	16.75	0.0625	2.26	0.02	3.05	3.68
WLAN6GHz	802.11ax-HE160 MCS0	Back	10mm	Ant 6+7	15	6025	16.75	0.15	2.25	0.02	1.4	1.48
WLAN6GHz	802.11ax-HE160 MCS0	Back	2mm	Ant 6+7	207	6985	15.40	0.0625	0.908	4.29	0.325	0.427
WLAN6GHz	802.11ax-HE160 MCS0	Back	8.59mm	Ant 6+7	207	6985	15.40	0.15	0.338	4.29	0.237	0.344

Plot No.	Band	Mode	Test Position	Gap (mm)	Antonna	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Cycle	Duty Cycle Scaling Factor	Grip Step (λ)	Scaling Factor for measurement uncertainty	Drift	Normal psPD (W/m^2)	nePD	Total psPD (W/m^2)	Scaled Total psPD (W/m^2)
01	WLAN6GHz	802.11ax-HE160 MCS0	Back	2mm	Ant 6+7	15	6025	16.75	18.50	1.496	100.00	1.000	0.0625	1.5535	0.01	3.05	7.09	3.68	8.55
	WLAN6GHz	802.11ax-HE160 MCS0	Back	2mm	Ant 6+7	47	6185	16.09	18.00	1.552	100.00	1.000	0.0625	1.5535	0.14	1.79	4.32	2.25	5.43
	WLAN6GHz	802.11ax-HE160 MCS0	Back	2mm	Ant 6+7	111	6505	16.86	18.50	1.459	100.00	1.000	0.0625	1.5535	0.07	1.29	2.92	1.75	3.97
	WLAN6GHz	802.11ax-HE160 MCS0	Back	2mm	Ant 6+7	175	6825	15.61	17.50	1.545	100.00	1.000	0.0625	1.5535	0.01	0.363	0.87	0.424	1.02
	WLAN6GHz	802.11ax-HE160 MCS0	Back	2mm	Ant 6+7	207	6985	15.40	17.00	1.445	100.00	1.000	0.0625	1.5535	0.02	0.325	0.73	0.427	0.96

Test Engineer: Nick Hu, Seven Xu, Bruce Li

 Sporton International (Kunshan) Inc.
 Page
 14 of 17

 TEL: 86-512-57900158 / FAX: 86-512-57900958
 Issued Date: Nov. 01, 2021

 FCC ID: IHDT56AC1
 Report Template No.: 200414

10. <u>Uncertainty Assessment</u>

Declaration of Conformity:

The test results with all measurement uncertainty excluded is presented in accordance with the regulation limits or requirements declared by manufacturers.

Report No.: FA172703B

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type An evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience, and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in table below.

Uncertainty Distributions	Normal	Rectangular	Triangular	U-Shape
Multi-plying Factor ^(a)	1/k ^(b)	1/√3	1/√6	1/√2

- (a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity
- (b) κ is the coverage factor

Standard Uncertainty for Assumed Distribution

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is shown in the following tables.

The judgment of conformity in the report is based on the measurement results excluding the measurement uncertainty.

 Sporton International (Kunshan) Inc.
 Page
 15 of 17

 TEL: 86-512-57900158 / FAX: 86-512-57900958
 Issued Date: Nov. 01, 2021

FCC ID : IHDT56AC1 Report Template No. : 200414

cDASY6 Module mmWave Uncertainty Budget Evaluation Distances to the Antennas > $\lambda/2\pi$ In Compliance with IEC/IEEE 63170

Report No.: FA172703B

·									
Error Description	Uncertainty Value (±dB)	Probability	Divisor	(Ci)	Standard Uncertainty (±dB)				
Uncertainty terms dep endent on the measurement system									
Probe Calibration	0.49	N	1	1	0.49				
Probe correction	0.00	R	1.732	1	0.00				
Frequency response (BW ≤ 1 GHz)	0.20	R	1.732	1	0.12				
Sensor cross coupling	0.00	R	1.732	1	0.00				
Isotropy	0.50	R	1.732	1	0.29				
Linearity	0.20	R	1.732	1	0.12				
Probe scattering	0.00	R	1.732	1	0.00				
Probe positioning offset	0.30	R	1.732	1	0.17				
Probe positioning repeatability	0.04	R	1.732	1	0.02				
Sensor mechanical offset	0.00	R	1.732	1	0.00				
Probe spatial resolution	0.00	R	1.732	1	0.00				
Field impedance dependance	0.00	R	1.732	1	0.00				
Amplitude and phase drift	0.00	R	1.732	1	0.00				
Amplitude and phase noise	0.04	R	1.732	1	0.02				
Measurement area truncation	0.00	R	1.732	1	0.00				
Data acquisition	0.03	N	1	1	0.03				
Sampling	0.00	R	1.732	1	0.00				
Field reconstruction	2.00	R	1.732	1	1.15				
Forward transformation	0.00	R	1.732	1	0.00				
Power density scaling	0.00	R	1.732	1	0.00				
Spatial averaging	0.10	R	1.732	1	0.06				
System detection limit	0.04	R	1.732	1	0.02				
Uncertainty terms dep endent on the DUT an	d environmental i	factors							
Probe coupling with DUT	0.00	R	1.732	1	0.0				
Modulation response	0.40	R	1.732	1	0.2				
Integration time	0.00	R	1.732	1	0.0				
Response time	0.00	R	1.732	1	0.0				
Device holder influence	0.10	R	1.732	1	0.1				
DUT alignment	0.00	R	1.732	1	0.0				
RF ambient conditions	0.04	R	1.732	1	0.0				
Ambient reflections	0.04	R	1.732	1	0.0				
Immunity / secondary reception	0.00	R	1.732	1	0.0				
Drift of the DUT		R	1.732	1					
	Std. Uncertainty				1.34				
Expanded ST	D Uncertainty (95	5%)			2.68				

PD Uncertainty Budget

 Sporton International (Kunshan) Inc.
 Page
 16 of 17

 TEL: 86-512-57900158 / FAX: 86-512-57900958
 Issued Date: Nov. 01, 2021

 FCC ID: IHDT56AC1
 Report Template No.: 200414

11. References

[1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"

Report No.: FA172703B

- [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992
- [3] IEEE Std. 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", Sep 2013
- [4] SPEAG DASY System Handbook
- [5] FCC KDB 248227 D01 v02r02, "SAR Guidance for IEEE 802.11 (WiFi) Transmitters", Oct 2015.
- [6] FCC KDB 447498 D01 v06, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Oct 2015
- [7] FCC KDB 648474 D04 v01r03, "SAR Evaluation Considerations for Wireless Handsets", Oct 2015.
- [8] FCC KDB 865664 D01 v01r04, "SAR Measurement Requirements for 100 MHz to 6 GHz", Aug 2015.
- [9] FCC KDB 865664 D02 v01r02, "RF Exposure Compliance Reporting and Documentation Considerations" Oct 2015.
- [10] IEC 62479:2010 Assessment of the compliance of low power electronic and electrical equipment with the basic restrictions related to human exposure to electromagnetic fields (10 MHz to 300 GHz)
- [11] IEC TR 63170: 2018 Measurement procedure for the evaluation of power density related to human exposure to radio frequency fields from wireless communication devices operating between 6 GHz and 100 GHz

 Sporton International (Kunshan) Inc.
 Page
 17 of 17

 TEL: 86-512-57900158 / FAX: 86-512-57900958
 Issued Date: Nov. 01, 2021

 FCC ID: IHDT56AC1
 Report Template No.: 200414

Appendix A. Plots of System Performance Check

Report No.: FA172703B

The plots are shown as follows.

 Sporton International (Kunshan) Inc.
 Page: A1 of A1

 TEL: 86-512-57900158 / FAX: 86-512-57900958
 Issued Date: Nov. 01, 2021

 FCC ID: IHDT56AC1
 Report Template No.: 200414

Sporton International Inc.

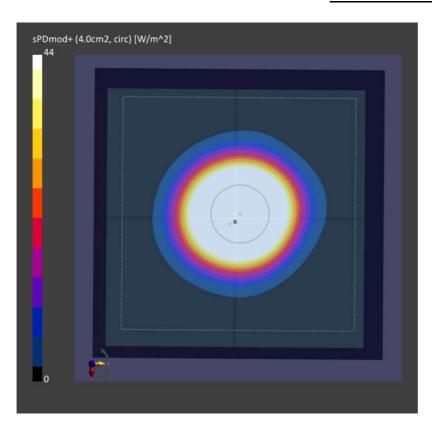
Measurement Report for Device Device Under Test Properties

Model, Manufacturer	Dimensions [mm]	IMEI	DUT Type
Device,	70.0 x 50.0 x 8.0		Phone

Exposure Conditions

Phantom Section	Position, Test Distance [mm]	Frequency [MHz]	Conversion Factor
5G	FRONT, 10.00	10000.0	1.0

Hardware Setup


Phantom	Medium	Probe, Calibration Date	DAE, Calibration Date
mmWave - 1065	Air -	EUmmWV4 - SN9553_F1-55GHz, 2021-04-01	DAE4 Sn1650, 2021-06-09

Scans Setup

Scan Type	5G Scan
Grid Extents [mm]	120.0 x 120.0
Grid Steps [lambda]	0.25 x 0.25
Sensor Surface [mm]	10.0

Measurement Results

Date	2021-09-30
Avg. Area [cm ²]	4.00
psPDn+ [W/m ²]	43.9
psPDtot+ [W/m ²]	44.0
H _{max} [A/m]	0.360
E _{max} [V/m]	138
max(Stot) [W/m ²]	49.0
Power Drift [dB]	0.05

Appendix B. Plots of SAR Measurement

Report No.: FA172703B

The plots are shown as follows.

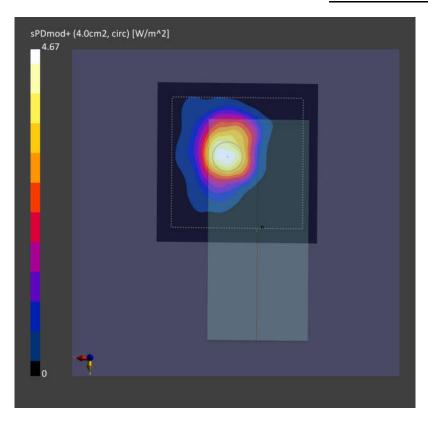
 Sporton International (Kunshan) Inc.
 Page: B1 of B1

 TEL: 86-512-57900158 / FAX: 86-512-57900958
 Issued Date: Nov. 01, 2021

 FCC ID: IHDT56AC1
 Report Template No.: 200414

Measurement Report for Device, BACK, U-NII-5, IEEE 802.11ax (160MHz, MCS0, 99pc duty cycle), Channel 15 (6025.0 MHz)

Device Under Test Properties


Model, Manufactur	rer	Dimensio	ns [mm]	IMEI DU	DUT Type	
Device,		168.0 x 7	76.0 x 12.0	Phone		
Exposure Condi	itions					
Phantom Section	Position, Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	
5G	BACK, 2.00	U-NII-5	WLAN, 10755-AAC	6025.0, 15	1.0	

Hardware Setup

Phantom	Medium	Probe, Calibration Date	DAE, Calibration Date
mmWave - 1065	Air –	EUmmWV4 - SN9553_F1-55GHz, 2021-04-01	DAE4 Sn1650, 2021-06-09

Scans Setup	
Scan Type	5G Scan
Grid Extents [mm]	120.0 x 120.0
Grid Steps [lambda]	0.0625 x 0.0625
Sensor Surface [mm]	2.0
MAIA	N/A

Measurement Results	
Scan Type	5G Scan
Date	2021-9-30, 16:09
Avg. Area [cm²]	4.00
psPDn+ [W/m²]	3.05
psPDtot+ [W/m²]	3.68
psPDmod+ [W/m²]	4.67
E _{max} [V/m]	47.8
Power Drift [dB]	-0.01

Appendix C. DASY Calibration Certificate

Report No.: FA172703B

The DASY calibration certificates are shown as follows.

 Sporton International (Kunshan) Inc.
 Page: C1 of C1

 TEL: 86-512-57900158 / FAX: 86-512-57900958
 Issued Date: Nov. 01, 2021

 FCC ID: IHDT56AC1
 Report Template No.: 200414

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

Sporton

Certificate No: 5G-Veri10-1020_Jan21

CALIBRATION CERTIFICATE

Object

5G Verification Source 10 GHz - SN: 1020

Calibration procedure(s)

QA CAL-45.v3

Calibration procedure for sources in air above 6 GHz

Calibration date:

January 18, 2021

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Reference Probe EummWV3	SN: 9374	30-Dec-20 (No. EUmmWV3-9374_Dec20)	Dec-21
DAE4ip	SN: 1602	11-Aug-20 (No. DAE4ip-1602_Aug20)	Aug-21
Secondary Standards	L1D.#	Charle Data (in house)	Sahadulad Chael
Secondary Standards	ID#	Check Date (in house)	Scheduled Check

Name

Function

Signatur

Calibrated by:

Michael Weber

Laboratory Technician

///...1

Approved by:

Katja Pokovic

Technical Manager

Issued: January 25, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: 5G-Veri10-1020 Jan21

Page 1 of 7

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary

CW

Continuous wave

Calibration is Performed According to the Following Standards

- Internal procedure QA CAL-45-5Gsources
- IEC TR 63170 ED1, "Measurement procedure for the evaluation of power density related to human exposure to radio frequency fields from wireless communication devices operating between 6 GHz and 100 GHz", January 2018

Methods Applied and Interpretation of Parameters

- Coordinate System: z-axis in the waveguide horn boresight, x-axis is in the direction of the E-field, y-axis normal to the others in the field scanning plane parallel to the horn flare and horn flange.
- Measurement Conditions: (1) 10 GHz: The forward power to the horn antenna is measured prior and after the measurement with a power sensor. During the measurements, the horn is directly connected to the cable and the antenna ohmic and mismatch losses are determined by far-field measurements. (2) 30, 45, 60 and 90 GHz: The verification sources are switched on for at least 30 minutes. Absorbers are used around the probe cub and at the ceiling to minimize reflections.
- Horn Positioning: The waveguide horn is mounted vertically on the flange of the waveguide source to allow vertical positioning of the EUmmW probe during the scan. The plane is parallel to the phantom surface. Probe distance is verified using mechanical gauges positioned on the flare of the horn.
- E- field distribution: E field is measured in two x-y-plane (10mm, 10mm + λ/4) with a
 vectorial E-field probe. The E-field value stated as calibration value represents the E-fieldmaxima and the averaged (1cm² and 4cm²) power density values at 10mm in front of the
 horn.
- Field polarization: Above the open horn, linear polarization of the field is expected. This is verified graphically in the field representation.

Calibrated Quantity

 Local peak E-field (V/m) and average of peak spatial components of the poynting vector (W/m²) averaged over the surface area of 1 cm² and 4cm² at the nominal operational frequency of the verification source. Both square and circular averaging results are listed.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: 5G-Veri10-1020_Jan21 Page 2 of 7

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	cDASY6 Module mmWave	V2.2
Phantom	5G Phantom	
Distance Horn Aperture - plane	10 mm	
XY Scan Resolution	dx, dy = 7.5 mm	
Number of measured planes	2 (10mm, 10mm + λ/4)	
Frequency	10 GHz ± 10 MHz	

Calibration Parameters, 10 GHz

Circular Averaging

Distance Horn Aperture	Prad¹	Max E-field	Uncertainty	ncertainty Avg Power Density		Uncertainty
to Measured Plane	(mW)	(V/m)	(k = 2)	Avg (psPDn+, psPDtot+, psPDmod+)		(k = 2)
			·	(W/m²)		
				1 cm ²	4 cm ²	
10 mm	74.0	134	1.27 dB	45.1	42.2	1.28 dB

Square Averaging

Distance Horn Aperture	Prad ¹	Max E-field	Uncertainty	Avg Power Density		Uncertainty
to Measured Plane	(mW)	(V/m)	(k = 2)	Avg (psPDn+, psPDtot+, psPDmod+)		(k = 2)
				(W/m²)		
				1 cm ²	4 cm ²	
10 mm	74.0	134	1.27 dB	45.1	42.1	1.28 dB

Certificate No: 5G-Veri10-1020_Jan21

¹ Assessed ohmic and mismatch loss: 0.45 dB

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

Device under Test Properties

Name, Manufacturer 5G Verification Source 10 GHz Dimensions [mm] 100.0 x 100.0 x 172.0 IMEI SN: 1020 **DUT Type**

Exposure Conditions

Phantom Section

Position, Test Distance

Band

Group,

Frequency [MHz], Channel Number

,

5G - 10

[mm] 10.0 mm

Validation band

CW

5G Scan

10.0

120.0 x 120.0

MAIA not used

0.25 x 0.25

10000.0, 10000

1.0

Conversion Factor

Hardware Setup

Phantom

mmWave Phantom - 1002

Medium

Air

Probe, Calibration Date

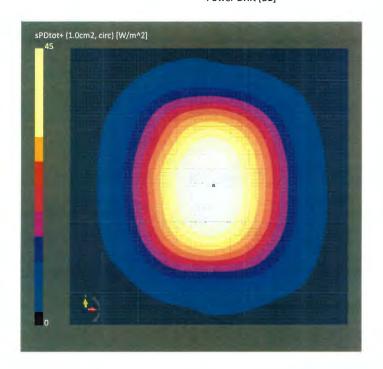
EUmmWV3 - SN9374_F1-78GHz,

2020-12-30

DAE, Calibration Date DAE4ip Sn1602,

2020-08-11

Scan Setup


Grid Extents [mm] Grid Steps [lambda] Sensor Surface [mm]

MAIA

Measurement Results

Date
Avg. Area [cm ²]
psPDn+ [W/m ²]
psPDtot+ [W/m ²]
psPDmod+ [W/m ²]
E _{max} [V/m]
Power Drift [dB]

5G Scan2021-01-18, 14:59
1.00
44.9
45.0
45.3
134
0.06

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

Device under Test Properties

Name, Manufacturer 5G Verification Source 10 GHz Dimensions [mm] 100.0 x 100.0 x 172.0 IMEI SN: 1020 **DUT Type**

Exposure Conditions

Phantom Section

Position, Test Distance

and

Group,

Frequency [MHz], Channel Number

[mm]

5G -

10.0 mm

Validation band

CW

5G Scan

10.0

120.0 x 120.0

MAIA not used

0.25 x 0.25

10000.0, 10000 1.0

Conversion Factor

Hardware Setup

Phantom

mmWave Phantom - 1002

Medium

Air

Probe, Calibration Date

EUmmWV3 - SN9374_F1-78GHz,

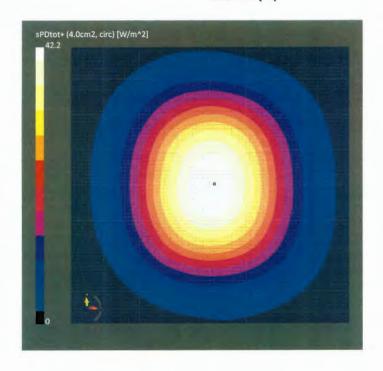
2020-12-30

DAE, Calibration Date DAE4ip Sn1602,

2020-08-11

Scan Setup

Grid Extents [mm] Grid Steps [lambda] Sensor Surface [mm]


MAIA

Measurement Results

Data
Date
Avg. Area [cm ²]
psPDn+ [W/m²]
psPDtot+ [W/m²]
psPDmod+ [W/m ²]
E _{max} [V/m]
Power Drift [dB]

2021-01-18, 14:59 4.00 42.0 42.2 42.3 . 134 0.06

5G Scan

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

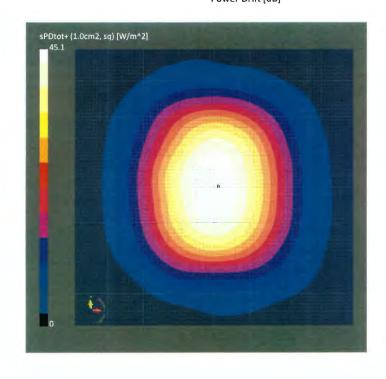
Device under Test Properties

Name, Manufacturer Dimensions [mm] IMEI **DUT Type** 5G Verification Source 10 GHz 100.0 x 100.0 x 172.0 SN: 1020

Exposure Conditions

Phantom Section Position, Test Distance Group, Frequency [MHz], **Conversion Factor** [mm] **Channel Number** 1.0

10000.0, 5G -10.0 mm Validation band 10000


Hardware Setup

Phantom Medium **Probe, Calibration Date DAE, Calibration Date** EUmmWV3 - SN9374_F1-78GHz, mmWave Phantom - 1002 DAE4ip Sn1602, Air 2020-12-30 2020-08-11

Scan Setup

5G Scan 5G Scan 2021-01-18, 14:59 120.0 x 120.0 Grid Extents [mm] Date **Grid Steps [lambda]** 0.25 x 0.25 Avg. Area [cm²] 1.00 Sensor Surface [mm] 10.0 psPDn+ [W/m²] 45.0 MAIA MAIA not used psPDtot+ [W/m2] 45.1 psPDmod+ [W/m²] 45.3 E_{max} [V/m] 134 Power Drift [dB] 0.06

Measurement Results

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

Device under Test Properties

Name, Manufacturer 5G Verification Source 10 GHz Dimensions [mm] 100.0 x 100.0 x 172.0 IMEI SN: 1020 **DUT Type**

Exposure Conditions

Phantom Section

Position, Test Distance

Band

Group,

Frequency [MHz], **Channel Number**

Conversion Factor

5G Scan 2021-01-18, 14:59

4.00

42.0

42.1

[mm] 5G -

10.0 mm

Validation band

10000.0, 10000

1.0

Hardware Setup

Phantom

mmWave Phantom - 1002

Medium

Probe, Calibration Date

EUmmWV3 - SN9374_F1-78GHz,

2020-12-30

DAE, Calibration Date

DAE4ip Sn1602, 2020-08-11

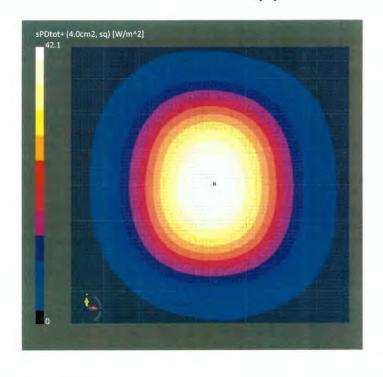
Scan Setup

Grid Extents [mm] Grid Steps [lambda] Sensor Surface [mm]

MAIA

5G Scan

120.0 x 120.0 0.25 x 0.25 10.0


MAIA not used

Measurement Results

Date Avg. Area [cm²] psPDn+ [W/m²] psPDtot+ [W/m²]

psPDmod+ [W/m²] E_{max} [V/m] Power Drift [dB]

42.3 134 0.06

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sporton

Certificate No: EUmmWV4-9553_Apr21

CALIBRATION CERTIFICATE

Object

EUmmWV4 - SN:9553

Calibration procedure(s)

QA CAL-02.v9, QA CAL-25.v7, QA CAL-42.v2

Calibration procedure for E-field probes optimized for close near field

evaluations in air

Calibration date:

April 1, 2021

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration	
Power meter NRP	SN: 104778	01-Apr-20 (No. 217-03100/03101)	Apr-21	
Power sensor NRP-Z91	SN: 103244	01-Apr-20 (No. 217-03100)	Apr-21	
Power sensor NRP-Z91	SN: 103245	01-Apr-20 (No. 217-03101)	Apr-21	
Reference 20 dB Attenuator	SN: CC2552 (20x)	31-Mar-20 (No. 217-03106)	Apr-21	
Reference Probe ER3DV6	SN: 2328	05-Oct-20 (No. ER3-2328_Oct20)	Oct-21	
DAE4	SN: 789	23-Dec-20 (No. DAE4-789_Dec20)	Dec-21	
Secondary Standards	ID	Check Date (in house)	Scheduled Check	
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-20)	In house check: Jun-22	
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-20)	In house check: Jun-22	
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-20)	In house check: Jun-22	
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-20)	In house check: Jun-22	
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-21	

Calibrated by:

Leif Klysner

Laboratory Technician

Signature

Laboratory Technician

Sef Talkara

Approved by:

Katja Pokovic

Technical Manager

Issued: April 8, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EUmmWV4-9553 Apr21

Page 1 of 19

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

NORMx,y,z

sensitivity in free space

DCP CF diode compression point crest factor (1/duty_cycle) of the RF signal

A, B, C, D

modulation dependent linearization parameters

Polarization _Φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle

information used in DASY system to align probe sensor X to the robot coordinate system sensor deviation from the probe axis, used to calculate the field orientation and polarization

Sensor Angles

is the wave propagation direction

Calibration is Performed According to the Following Standards:

a) IEEE Std 1309-2005, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", December 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 for XY sensors and θ = 90 for Z sensor (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). For frequencies > 6 GHz, the far field in front of waveguide horn antennas is measured for a set of frequencies in various waveguide bands up to 110 GHz.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- The frequency sensor model parameters are determined prior to calibration based on a frequency sweep (sensor model involving resistors R, R_p, inductance L and capacitors C, C_p).
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- Sensor Offset: The sensor offset corresponds to the mechanical from the probe tip (on probe axis). No
 tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).
- Equivalent Sensor Angle: The two probe sensors are mounted in the same plane at different angles. The
 angles are assessed using the information gained by determining the NORMx (no uncertainty required).
- Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide / horn setup.

EUmmWV4 - SN: 9553 April 1, 2021

DASY - Parameters of Probe: EUmmWV4 - SN:9553

Basic Calibration Parameters

	Sensor X	Sensor Y	Unc (k=2)
Norm $(\mu V/(V/m)^2)$	0.01702	0.01798	± 10.1 %
DCP (mV) ^B	105.0	105.0	
Equivalent Sensor Angle	-61.9	37.5	

Frequency GHz	Target E-Field V/m	Deviation Sensor X dB	Deviation Sensor Y dB	Unc (k=2) dB
0.75	77.2	-0.20	-0.33	± 0.43 dB
1.8	140.4	0.05	0.04	± 0.43 dB
2	133.0	0.05	0.06	± 0.43 dB
2.2	124.8	0.06	0.07	± 0.43 dB
2.5	123.0	0.01	0.03	± 0.43 dB
3.5	256.2	0.29	0.22	± 0.43 dB
3.7	249.8	0.32	0.22	± 0.43 dB
6.6	41.8	0.78	0.77	± 0.98 dB
8	48.4	0.57	0.22	± 0.98 dB
10	54.4	0.28	0.15	± 0.98 dB
15	71.5	-0.06	-0.42	± 0.98 dB
18	85.3	-0.31	0.01	± 0.98 dB
26.6	96.9	-0.32	-0.24	± 0.98 dB
30	92.6	-0.06	0.00	± 0.98 dB
35	93.7	-0.15	-0.03	± 0.98 dB
40	91.5	-0.15	-0.17	± 0.98 dB
50	19.6	0.68	0.23	± 0.98 dB
55	22.4	0.41	0.51	± 0.98 dB
60	23.0	0.16	0.04	± 0.98 dB
65	27.4	-0.44	-0.20	± 0.98 dB
70	23.9	-0.34	-0.38	± 0.98 dB
75	20.0	-0.17	-0.02	± 0.98 dB
75	14.8	-0.10	0.03	± 0.98 dB
80	22.5	-0.18	0.06	± 0.98 dB
85	22.8	-0.06	-0.11	± 0.98 dB
90	23.8	-0.01	0.00	± 0.98 dB
92	23.9	-0.26	-0.26	± 0.98 dB
95	20.5	-0.36	-0.21	± 0.98 dB
97	24.4	-0.25	-0.19	± 0.98 dB
100	22.6	-0.04	-0.09	± 0.98 dB
105	22.7	-0.04	0.06	± 0.98 dB
110	19.7	0.27	0.18	± 0.98 dB

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^B Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

EUmmWV4 - SN: 9553 April 1, 2021

DASY - Parameters of Probe: EUmmWV4 - SN:9553

Calibration Results for Modulation Response

UID	Communication System Name		Α	В	С	D	VR	Max	Max
			dB	dBõV		dB	mV	dev.	UncE
									(k=2)
0	CW	X	0.00	0.00	1.00	0.00	110.7	± 3.3 %	± 4.7 %
		Y	0.00	0.00	1.00		92.8		
10352-	Pulse Waveform (200Hz, 10%)	X	3.01	60.00	15.17	10.00	6.0	± 1.2 %	± 9.6 %
AAA		Y	2.45	60.00	15.54		6.0		
10353-	Pulse Waveform (200Hz, 20%)	X	2.10	60.00	14.02	6.99	12.0	± 1.1 %	± 9.6 %
AAA		Υ	1.69	60.00	14.48		12.0		
10354-	Pulse Waveform (200Hz, 40%)	X	1.26	60.00	12.73	3.98	23.0	± 1.6 %	± 9.6 %
AAA		Y	1.02	60.00	13.29		23.0		
10355-	Pulse Waveform (200Hz, 60%)	X	0.75	60.00	12.01	2.22	27.0	± 1.0 %	± 9.6 %
AAA		Υ	0.62	60.00	12.58		27.0		
10387-	QPSK Waveform, 1 MHz	X	1.27	60.00	12.34	1.00	22.0	± 1.3 %	± 9.6 %
AAA		Y	1.19	60.00	12.46		22.0		
10388-	QPSK Waveform, 10 MHz	X	1.29	60.00	11.98	0.00	22.0	± 0.7 %	± 9.6 %
AAA		Y	1.26	60.00	12.24		22.0	1	
10396-	64-QAM Waveform, 100 kHz	X	3.67	66.28	16.33	3.01	17.0	± 0.7 %	± 9.6 %
AAA	×	Υ	2.93	63.57	15.21		17.0		
10399-	64-QAM Waveform, 40 MHz	X	2.09	60.00	12.47	0.00	19.0	± 0.8 %	± 9.6 %
AAA		Y	2.03	60.00	12.68		19.0		
10414-	WLAN CCDF, 64-QAM, 40MHz	X	3.24	60.00	12.89	0.00	12.0	± 1.0 %	± 9.6 %
AAA		Y	3.11	60.00	13.09		12.0	1	

Note: For details on all calibrated UID parameters see Appendix

Calibration Results for Linearity Response

Frequency GHz	Target E-Field V/m	Deviation Sensor X dB	Deviation Sensor Y dB	Unc (k=2) dB
0.9	50.0	-0.13	0.14	± 0.2 dB
0.9	100.0	-0.13	0.13	± 0.2 dB
0.9	500.0	-0.01	-0.02	± 0.2 dB
0.9	1000.0	0.01	0.01	± 0.2 dB
0.9	1500.0	0.01	-0.01	± 0.2 dB
0.9	2000.0	-0.02	-0.02	± 0.2 dB

Sensor Frequency Model Parameters (750 MHz – 55 GHz)

	Sensor X	Sensor Y
R (Ω)	88.64	79.92
$R_{p}(\Omega)$	82.87	90.61
L (nH)	0.10075	0.10010
C (pF)	0.3606	0.3340
$C_p(pF)$	0.1012	0.0850

Sensor Frequency Model Parameters (55 GHz – 110 GHz)

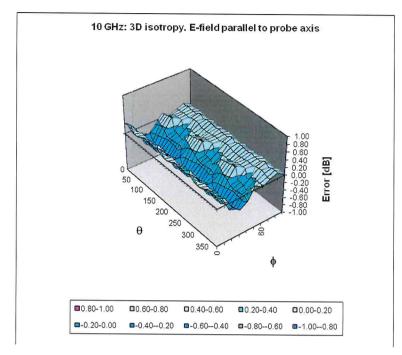
	Sensor X	Sensor Y
R (Ω)	27.86	32.26
$R_{p}(\Omega)$	97.91	96.00
L (nH)	0.04157	0.03609
C (pF)	0.1309	0.1842
C _p (pF)	0.1179	0.1242

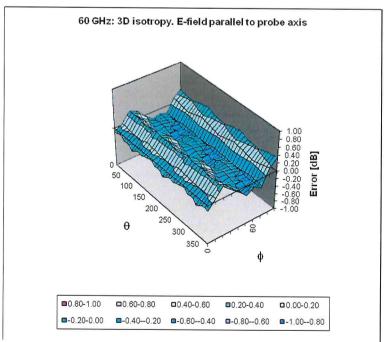
Certificate No: EUmmWV4-9553_Apr21 Page 4 of 19

EUmmWV4 - SN: 9553 April 1, 2021

DASY - Parameters of Probe: EUmmWV4 - SN:9553

Sensor Model Parameters


	C1 fF	C2 fF	α V ⁻¹	T1 ms.V ⁻²	T2 ms.V ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	T6
X	62.6	452.08	33.44	0.92	8.43	5.01	0.00	1.94	1.01
Υ	54.2	390.72	33.45	0.92	6.80	5.02	0.00	1.89	1.01


Other Probe Parameters

Sensor Arrangement	Rectangular
Connector Angle (°)	337.8
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	320 mm
Probe Body Diameter	8 mm
Tip Length	23 mm
Tip Diameter	8.0 mm
Probe Tip to Sensor X Calibration Point	1.5 mm
Probe Tip to Sensor Y Calibration Point	1.5 mm

Certificate No: EUmmWV4-9553_Apr21 Page 5 of 19

Deviation from Isotropy in Air f = 10, 60 GHz

Probe isotropy for E_{tot}: probe rotated ϕ = 0° to 360°, tilted from field propagation direction \overline{k} Parallel to the field propagation (ψ =0° - 90°) at 10 GHz: deviation within ± 0.38 dB Parallel to the field propagation (ψ =0° - 90°) at 60 GHz: deviation within ± 0.31 dB

EUmmWV4 - SN: 9553 April 1, 2021

Appendix: Modulation Calibration Parameters

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E (k=2)
0		CW	CW	0.00	± 4.7 %
10010	CAA	SAR Validation (Square, 100ms, 10ms)	Test	10.00	± 9.6 %
10011	CAB	UMTS-FDD (WCDMA)	WCDMA	2.91	± 9.6 %
10012	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	WLAN	1.87	± 9.6 %
10013	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps)	WLAN	9.46	± 9.6 %
10021	DAC	GSM-FDD (TDMA, GMSK)	GSM	9.39	± 9.6 %
10023	DAC	GPRS-FDD (TDMA, GMSK, TN 0)	GSM	9.57	± 9.6 %
10024	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	GSM	6.56	± 9.6 %
10025	DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	GSM	12.62	± 9.6 %
10026	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	GSM	9.55	± 9.6 %
10027	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	GSM	4.80	± 9.6 %
10028	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	GSM	3.55	± 9.6 %
10029	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	GSM	7.78	± 9.6 %
10030	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Bluetooth	5.30	± 9.6 %
10031	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	Bluetooth	1.87	± 9.6 %
10032	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	Bluetooth	1.16	± 9.6 %
10033	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	Bluetooth	7.74	± 9.6 %
10034	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	Bluetooth	4.53	± 9.6 %
10035	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	Bluetooth	3.83	± 9.6 %
10036	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	Bluetooth	8.01	± 9.6 %
10037	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	Bluetooth	4.77	± 9.6 %
10038	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	Bluetooth	10.100000	± 9.6 %
10039	_	CDMA2000 (1xRTT, RC1)	CDMA2000	4.10	
10033	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate)		4.57	± 9.6 %
10042	CAB	IS-91/EIA/TIA-553 FDD (FDMA, FM)	AMPS	7.78	± 9.6 %
10044	CAA		AMPS	0.00	± 9.6 %
10048	CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	DECT	13.80	± 9.6 %
	CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	DECT	10.79	± 9.6 %
10056	CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	TD-SCDMA	11.01	± 9.6 %
10058	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	GSM	6.52	± 9.6 %
10059	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	WLAN	2.12	± 9.6 %
10060	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	WLAN	2.83	± 9.6 %
10061	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	WLAN	3.60	± 9.6 %
10062	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	WLAN	8.68	± 9.6 %
10063	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	WLAN	8.63	± 9.6 %
10064	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	WLAN	9.09	± 9.6 %
10065	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	WLAN	9.00	± 9.6 %
10066	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	WLAN	9.38	± 9.6 %
10067	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	WLAN	10.12	± 9.6 %
10068	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	WLAN	10.24	± 9.6 %
10069	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	WLAN	10.56	± 9.6 %
10071	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	WLAN	9.83	± 9.6 %
10072	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	WLAN	9.62	± 9.6 %
10073	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	WLAN	9.94	± 9.6 %
10074	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	WLAN	10.30	± 9.6 %
10075	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	WLAN	10.77	± 9.6 %
10076	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	WLAN	10.94	± 9.6 %
10077	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	WLAN	11.00	± 9.6 %
10081	CAB	CDMA2000 (1xRTT, RC3)	CDMA2000	3.97	± 9.6 %
10082	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate)	AMPS	4.77	± 9.6 %
10090	DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	GSM	6.56	± 9.6 %
10097	CAC	UMTS-FDD (HSDPA)	WCDMA	3.98	± 9.6 %
10098	DAC	UMTS-FDD (HSUPA, Subtest 2)	WCDMA	3.98	± 9.6 %

Certificate No: EUmmWV4-9553_Apr21 Page 7 of 19

EUmmWV4 - SN: 9553 April 1, 2021

40000	1 - 2 - 2 - 2	EDOS EDD /EDIA ODOM EN A			
10099	CAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	GSM	9.55	± 9.6 %
10100	CAC	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-FDD	5.67	± 9.6 %
10101	CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	± 9.6 %
10102	CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	± 9.6 %
10103	DAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-TDD	9.29	± 9.6 %
10104	CAE	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-TDD	9.97	± 9.6 %
10105	CAE	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-TDD	10.01	± 9.6 %
10108	CAE	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-FDD	5.80	± 9.6 %
10109	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	± 9.6 %
10110	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-FDD	5.75	± 9.6 %
10111	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-FDD	6.44	± 9.6 %
10112	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-FDD	6.59	± 9.6 %
10113	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-FDD	6.62	± 9.6 %
10114	CAG	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	WLAN	8.10	± 9.6 %
10115	CAG	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	WLAN	8.46	± 9.6 %
10116	CAG	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	WLAN	8.15	± 9.6 %
10117	CAG	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	WLAN	8.07	± 9.6 %
10118	CAD	IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM)	WLAN	8.59	± 9.6 %
10119	CAD	IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM)	WLAN	8.13	± 9.6 %
10140	CAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-FDD	6.49	± 9.6 %
10141	CAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-FDD	6.53	± 9.6 %
10142	CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10143	CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-FDD	6.35	± 9.6 %
10144	CAC	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-FDD	6.65	± 9.6 %
10145	CAC	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-FDD	5.76	
10146	CAC	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-FDD		± 9.6 %
10147	CAC	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.41	± 9.6 %
10149	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)		6.72	± 9.6 %
10150	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-FDD	6.42	± 9.6 %
10151	CAE	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)		6.60	± 9.6 %
10152	CAE	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-TDD	9.28	± 9.6 %
10153		LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-TDD	9.92	± 9.6 %
10154	CAE	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-TDD	10.05	± 9.6 %
10155	CAF	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QFSK)	LTE-FDD	5.75	± 9.6 %
10156	CAF	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-FDD	6.43	± 9.6 %
10157	CAF	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK) LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-FDD	5.79	± 9.6 %
10157	CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM) LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-FDD	6.49	± 9.6 %
10159	CAE		LTE-FDD	6.62	± 9.6 %
10160		LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-FDD	6.56	± 9.6 %
	CAG	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-FDD	5.82	± 9.6 %
10161	CAG	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-FDD	6.43	± 9.6 %
10162	CAG	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-FDD	6.58	± 9.6 %
10166	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-FDD	5.46	± 9.6 %
10167	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.21	± 9.6 %
10168	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.79	± 9.6 %
10169	CAG	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10170	CAG	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10171	CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-FDD	6.49	± 9.6 %
10172	CAE	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-TDD	9.21	± 9.6 %
10173	CAE	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 %
10174	CAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
10175	CAF	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-FDD	5.72	± 9.6 %
10176	CAF	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10177	CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10178	CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10179	AAE	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10180	CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
			•		