FCC RF Test Report

APPLICANT : Motorola Mobility LLC EQUIPMENT : Mobile Cellular Phone

BRAND NAME : Motorola

MODEL NAME : XT2215-1

FCC ID : IHDT56AA5

STANDARD : FCC Part 15 Subpart C §15.247

CLASSIFICATION : (DTS) Digital Transmission System

TEST DATE(S) : Dec. 13, 2021 ~ Jan. 09, 2022

We, Sporton International Inc. (Shenzhen), would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (Shenzhen), the test report shall not be reproduced except in full.

Reviewed by: Derreck Chen / Supervisor

Fire Shih

Dogula Cher

Approved by: Eric Shih / Manager

Sporton International Inc. (ShenZhen)

1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055
People's Republic of China

Sporton International Inc. (ShenZhen)

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: IHDT56AA5 Page Number : 1 of 44
Report Issued Date : Feb. 18, 2022
Report Version : Rev. 01

Report No.: FR1N0903-01B

TABLE OF CONTENTS

RE\	/ISIOI	N HISTORY	3
SU	MMAR	Y OF TEST RESULT	4
1	GENI	ERAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Manufacturer	5
	1.3	Product Feature of Equipment Under Test	5
	1.4	Product Specification of Equipment Under Test	5
	1.5	Modification of EUT	5
	1.6	Testing Location	6
	1.7	Test Software	6
	1.8	Applicable Standards	6
	1.9	Specification of Accessory	
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	8
	2.1	Carrier Frequency Channel	8
	2.2	Test Mode	9
	2.3	Connection Diagram of Test System	10
	2.4	Support Unit used in test configuration and system	11
	2.5	EUT Operation Test Setup	11
	2.6	Measurement Results Explanation Example	11
3	TEST	RESULT	12
	3.1	6dB and 99% Bandwidth Measurement	
	3.2	Output Power Measurement	19
	3.3	Power Spectral Density Measurement	20
	3.4	Conducted Band Edges and Spurious Emission Measurement	27
	3.5	Radiated Band Edges and Spurious Emission Measurement	36
	3.6	AC Conducted Emission Measurement	
	3.7	Antenna Requirements	42
4	LIST	OF MEASURING EQUIPMENT	43
5	UNC	ERTAINTY OF EVALUATION	44
APF	PEND	IX A. CONDUCTED TEST RESULTS	
APF	PEND	IX B. AC CONDUCTED EMISSION TEST RESULT	
APF	PEND	IX C. RADIATED SPURIOUS EMISSION	
APF	PEND	IX D. DUTY CYCLE PLOTS	
APF	PEND	IX E. SETUP PHOTOGRAPHS	

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: IHDT56AA5 Page Number : 2 of 44
Report Issued Date : Feb. 18, 2022
Report Version : Rev. 01

Report No.: FR1N0903-01B

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR1N0903-01B	Rev. 01	Initial issue of report	Feb. 18, 2022

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: IHDT56AA5 Page Number : 3 of 44
Report Issued Date : Feb. 18, 2022
Report Version : Rev. 01

Report No.: FR1N0903-01B

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(2)	6dB Bandwidth	≥ 0.5MHz	Pass	-
3.1	-	99% Bandwidth	-	Report only	-
3.2	15.247(b)(3)	Peak Output Power	≤ 30dBm	Pass	-
3.3	15.247(e)	Power Spectral Density	≤ 8dBm/3kHz	Pass	-
3.4	15.247(d)	Conducted Band Edges and Spurious Emission	≤ 20dBc	Pass	-
3.5	15.247(d)	Radiated Band Edges and Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 3.66 dB at 2483.520 MHz
3.6	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 15.02 dB at 0.560 MHz
3.7	15.203 & 15.247(b)	Antenna Requirement	15.203 & 15.247(b)	Pass	-

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Sporton International Inc. (ShenZhen)

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: IHDT56AA5 Page Number : 4 of 44

Report Issued Date : Feb. 18, 2022

Report Version : Rev. 01

Report Template No.: BU5-FR15CBLE Version 2.0

Report No.: FR1N0903-01B

1 General Description

1.1 Applicant

Motorola Mobility LLC

222 W, Merchandise Mart Plaza, Chicago IL 60654 USA

1.2 Manufacturer

Motorola Mobility LLC

222 W, Merchandise Mart Plaza, Chicago IL 60654 USA

1.3 Product Feature of Equipment Under Test

Product Feature				
Equipment	Mobile Cellular Phone			
Brand Name	Motorola			
Model Name	XT2215-1			
	Conducted: 351626420008754			
IMEI Code	Conduction: 351626420010552			
	Radiation: 351626420009141			
FCC ID	IHDT56AA5			
HW Version	DVT2			
SW Version	S1SD32.29			
EUT Stage	Identical Prototype			

Report No.: FR1N0903-01B

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification				
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz			
Number of Channels	40			
Carrier Frequency of Each Channel	40 Channel(37 hopping + 3 advertising channel)			
Maximum Output Power to Antenna	Bluetooth LE 1Mbps:11.40 dBm (0.0138 W)			
Maximum Output Power to Antenna	Bluetooth LE 2Mbps: 11.44 dBm (0.0139 W)			
99% Occupied Bandwidth	Bluetooth LE 1Mbps:1.025MHz			
99 % Occupied Bandwidth	Bluetooth LE 2Mbps: 2.038MHz			
Antenna Type / Gain	Loop Antenna type with gain -5.00 dBi			
Type of Modulation	Bluetooth LE : GFSK			

Note: For BLE 1Mbps & 2Mbps mode, the whole testing has assessed only BLE 2Mbps mode by referring to their higher conducted power for RSE testing.

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

 Sporton International Inc. (ShenZhen)
 Page Number
 : 5 of 44

 TEL: + 86-755-8637-9589
 Report Issued Date
 : Feb. 18, 2022

 FAX: +86-755-8637-9595
 Report Version
 : Rev. 01

FCC ID: IHDT56AA5 Report Template No.: BU5-FR15CBLE Version 2.0

1.6 Testing Location

Sporton International Inc. (Shenzhen) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.01.

Test Firm	Sporton International Inc. (Shenzhen)					
Test Site Location	1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055 People's Republic of China TEL: +86-755-86379589 FAX: +86-755-86379595					
	Sporton Site No.	FCC Designation No.	FCC Test Firm			
Test Site No.	oporton one No.	1 00 Designation No.	Registration No.			
	CO01-SZ TH01-SZ	CN1256	421272			

Test Firm	Sporton International Inc. (Shenzhen)			
Test Site Location	101, 1st Floor, Block B, Building 1, No. 2, Tengfeng 4th Road, Fenghuang Community, Fuyong Street, Baoan District, Shenzhen City Guangdong Province China 518103 TEL: +86-755-33202398			
Test Site No.	Sporton Site No.	FCC Designation No.	FCC Test Firm Registration No.	
	03CH03-SZ	CN1256	421272	

1.7 Test Software

Item	Site	Manufacturer	Name	Version
1.	03CH03-SZ	AUDIX	E3	6.2009-8-24
2.	CO01-SZ	AUDIX	E3	6.120613b

1.8 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart C §15.247
- FCC KDB 558074 D01 15.247 Meas Guidance v05r02
- ANSI C63.10-2013

Remark:

- All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

Sporton International Inc. (ShenZhen)

TEL: + 86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: IHDT56AA5 Page Number : 6 of 44

Report Issued Date : Feb. 18, 2022

Report Version : Rev. 01

Report No.: FR1N0903-01B

1.9 Specification of Accessory

Specification of Accessory						
AC Adapter 1	Brand Name	Motorola(Chenyang)	Model Name	MC-101		
AC Adapter 2	Brand Name	Motorola(Salcomp)	Model Name	MC-101		
AC Adapter 3	Brand Name	Motorola(AOHAI)	Model Name	MC-101		
Battery	Brand Name	Motorola(ATL)	Model Name	MD50		
USB Cable 1	Brand Name	Motorola(Saibao)	Model Name	SC18D22297		
USB Cable 2	Brand Name	Motorola(Cabletech)	Model Name	SC18D22298		
USB Cable 3	Brand Name	Motorola(Luxshare)	Model Name	SC18D22299		

Sporton International Inc. (ShenZhen)

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: IHDT56AA5 Page Number : 7 of 44
Report Issued Date : Feb. 18, 2022
Report Version : Rev. 01

Report Template No.: BU5-FR15CBLE Version 2.0

Report No.: FR1N0903-01B

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	21	2444
	1	2404	22	2446
	2	2406	23	2448
	3	2408	24	2450
	4	2410	25	2452
	5	2412	26	2454
	6	2414	27	2456
	7 8 9	2416	28	2458
		2418	29	2460
		2420	30	2462
2400-2483.5 MHz	10	2422	31	2464
	11	2424	32	2466
	12	2426	33	2468
	13	2428	34	2470
	14	2430	35	2472
	15	2432	36	2474
	16	2434	37	2476
	17	2436	38	2478
	18	2438	39	2480
	19	2440	-	-
	20	2442	-	-

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: IHDT56AA5 Page Number : 8 of 44
Report Issued Date : Feb. 18, 2022
Report Version : Rev. 01

Report No.: FR1N0903-01B

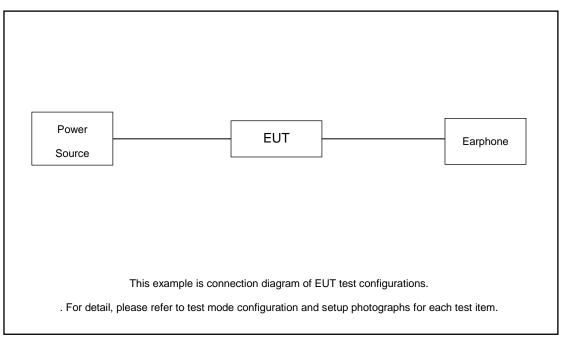
2.2 Test Mode

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Z plane) were recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

The following summary table is showing all test modes to demonstrate in compliance with the standard.

	Summary table of Test Cases				
Test Item	Data Rate / Modulation				
rest item	Bluetooth LE / GFSK				
Conducted	Mode 1: Bluetooth Tx CH00_2402 MHz				
TCs	Mode 2: Bluetooth Tx CH19_2440 MHz				
ics	Mode 3: Bluetooth Tx CH39_2480 MHz				
Radiated	Mode 1: Bluetooth Tx CH00_2402 MHz				
TCs	Mode 2: Bluetooth Tx CH19_2440 MHz				
ics	Mode 3: Bluetooth Tx CH39_2480 MHz				
AC Conducted Emission	Mode 1 : GSM 850 Idle + Bluetooth Link + WLAN Link (2.4G) + USB Cable 1(Charging from Adapter1) + Earphone + Battery				
Co-location	Mode 1 BLE CH 39 Link + LTE Band 48 Link				

Remark:


 For Radiated Test Cases, The tests were performed with Adapter 1, Battery, Earphone and USB Cable 1.

TEL: + 86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: IHDT56AA5 Page Number : 9 of 44
Report Issued Date : Feb. 18, 2022
Report Version : Rev. 01


Report No.: FR1N0903-01B

2.3 Connection Diagram of Test System

< Radiated Emission >

< AC Conducted Emission >

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: IHDT56AA5 Page Number : 10 of 44
Report Issued Date : Feb. 18, 2022
Report Version : Rev. 01

Report No.: FR1N0903-01B

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Base Station	Anritsu	MT8820C	N/A	N/A	Unshielded,1.8m
2.	WLAN AP	D-Link	DIR-820L	KA2IR820LA1	N/A	Unshielded,1.8m
3.	Notebook	Lenovo	E540	FCC DoC	N/A	AC I/P: Unshielded, 1.2m DC O/P: Shielded, 1.8m
4.	Bluetooth Earphone	Samsung	EO-MG900	N/A	N/A	N/A
5.	Earphone	мото	N/A	N/A	Unshielded,1.2m	N/A

2.5 EUT Operation Test Setup

For BLE function, the engineering test program was provided and enabled to make EUT continuous transmit.

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 3.0 dB and 20dB attenuator.

 $Offset(dB) = RF \ cable \ loss(dB) + attenuator \ factor(dB).$

= 3.0 + 20 = 23.0(dB)

Page Number : 11 of 44 Report Issued Date: Feb. 18, 2022

Report No.: FR1N0903-01B

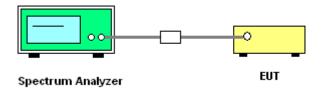
Report Version : Rev. 01

3 Test Result

3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.


3.1.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.1.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 11.8
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- 5. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1% to 5% of the 99% OBW and the VBW is set to 3 times of the RBW.
- 6. Measure and record the results in the test report.

3.1.4 Test Setup

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: IHDT56AA5 Page Number : 12 of 44

Report Issued Date : Feb. 18, 2022

Report Version : Rev. 01

Report No.: FR1N0903-01B

3.1.5 Test Result of 6dB Bandwidth

Please refer to Appendix A.

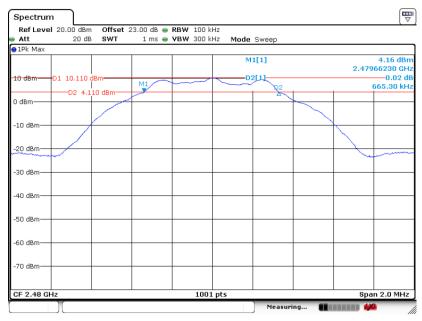
Bluetooth LE 1Mbps

6 dB Bandwidth Plot on Channel 00

Date: 28.DEC.2021 23:09:04

6 dB Bandwidth Plot on Channel 19

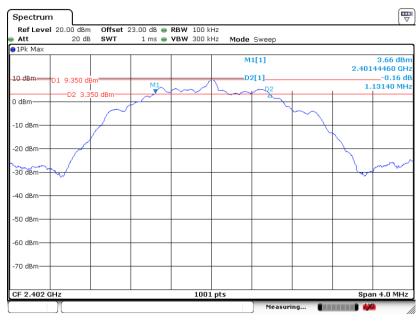
Date: 28.DEC.2021 23:13:57


Sporton International Inc. (ShenZhen)

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: IHDT56AA5 Page Number : 13 of 44
Report Issued Date : Feb. 18, 2022
Report Version : Rev. 01

Report No.: FR1N0903-01B

FCC RF Test Report


6 dB Bandwidth Plot on Channel 39

Date: 28.DEC.2021 23:17:35

Bluetooth LE 2Mbps

6 dB Bandwidth Plot on Channel 00

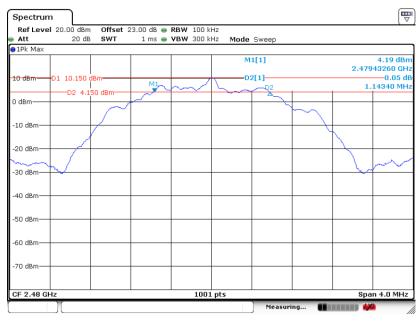
Date: 28.DEC.2021 23:21:32

Sporton International Inc. (ShenZhen)


TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: IHDT56AA5

Page Number : 14 of 44 Report Issued Date: Feb. 18, 2022

Report No.: FR1N0903-01B


Report Version : Rev. 01

6 dB Bandwidth Plot on Channel 19

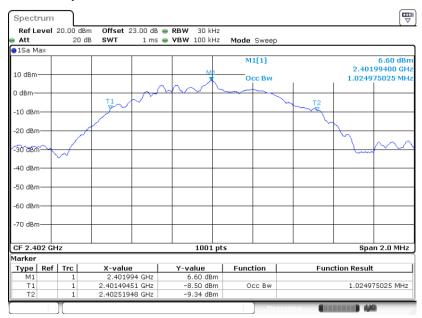
Date: 28.DEC.2021 23:56:06

6 dB Bandwidth Plot on Channel 39

Date: 29.DEC.2021 00:01:25

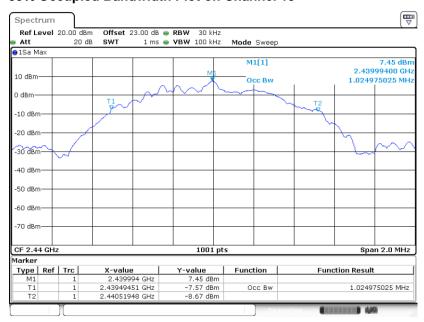
TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: IHDT56AA5

Page Number : 15 of 44 Report Issued Date: Feb. 18, 2022 Report Version : Rev. 01


Report No.: FR1N0903-01B

3.1.6 Test Result of 99% Occupied Bandwidth

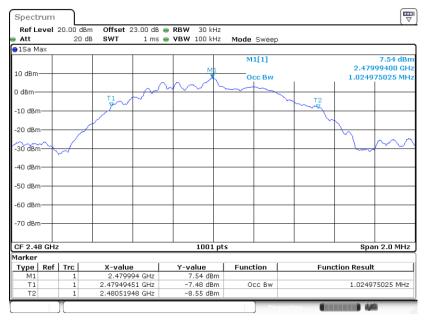
Please refer to Appendix A.


Bluetooth LE 1Mbps:

99% Occupied Bandwidth Plot on Channel 00

Date: 28.DEC.2021 23:12:40

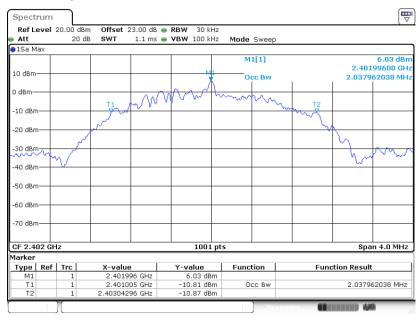
99% Occupied Bandwidth Plot on Channel 19


Date: 28.DEC.2021 23:16:16

Sporton International Inc. (ShenZhen)

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: IHDT56AA5 Page Number : 16 of 44
Report Issued Date : Feb. 18, 2022
Report Version : Rev. 01

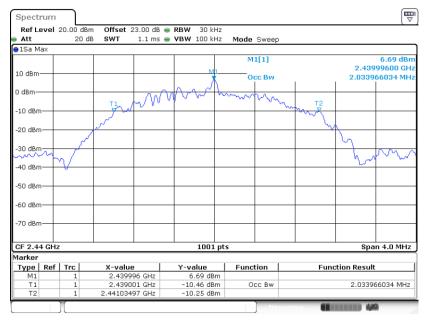
Report No.: FR1N0903-01B


99% Occupied Bandwidth Plot on Channel 39

Date: 28.DEC.2021 23:20:04

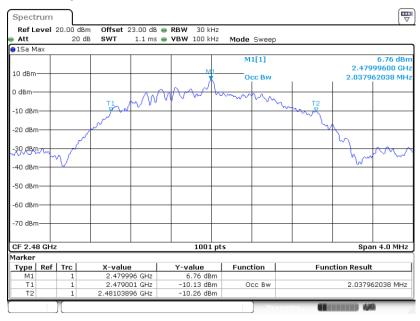
Bluetooth LE 2Mbps:

99% Occupied Bandwidth Plot on Channel 00


Date: 28.DEC.2021 23:54:45

Sporton International Inc. (ShenZhen)

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: IHDT56AA5 Page Number : 17 of 44
Report Issued Date : Feb. 18, 2022
Report Version : Rev. 01


Report No.: FR1N0903-01B

99% Occupied Bandwidth Plot on Channel 19

Date: 28.DEC.2021 23:59:56

99% Occupied Bandwidth Plot on Channel 39

Date: 29.DEC.2021 00:04:56

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

Sporton International Inc. (ShenZhen)

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: IHDT56AA5

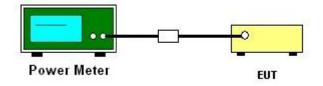
Page Number : 18 of 44 Report Issued Date: Feb. 18, 2022 Report Version : Rev. 01

Report No.: FR1N0903-01B

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.


3.2.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.2.3 Test Procedures

- The testing follows the Measurement Procedure of ANSI C63.10-2013 clause 11.9.1.3 PKPM1
 Peak power meter or ANSI C63.10-2013 clause 11.9.2.3.2 Method AVGPM-G method.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

3.2.5 Test Result of Peak Output Power

Please refer to Appendix A.

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: IHDT56AA5 Page Number : 19 of 44

Report Issued Date : Feb. 18, 2022

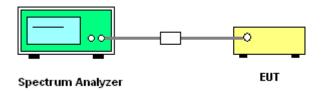
Report Version : Rev. 01

Report No.: FR1N0903-01B

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.


3.3.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.3.3 Test Procedures

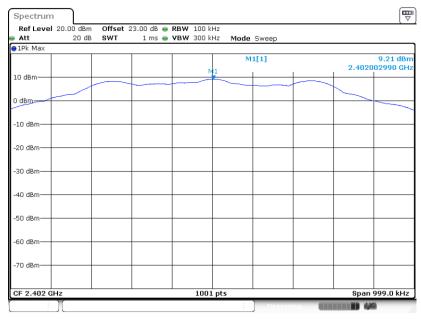
- The testing follows Measurement Procedure of ANSI C63.10-2013 clause 11.10.2 Method PKPSD.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz. Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- 7. The Measured power density (dBm)/ 100kHz is a reference level and used as 20dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

3.3.4 Test Setup

3.3.5 Test Result of Power Spectral Density

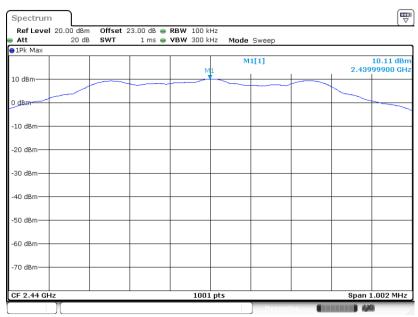
Please refer to Appendix A.

Sporton International Inc. (ShenZhen)


TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: IHDT56AA5 Page Number : 20 of 44
Report Issued Date : Feb. 18, 2022
Report Version : Rev. 01

Report No.: FR1N0903-01B

3.3.6 Test Result of Power Spectral Density Plots (100kHz)

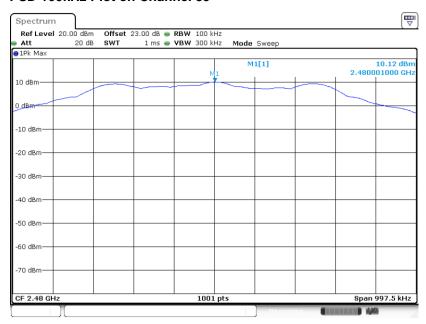

Bluetooth LE 1Mbps:

PSD 100kHz Plot on Channel 00

Date: 28.DEC.2021 23:10:52

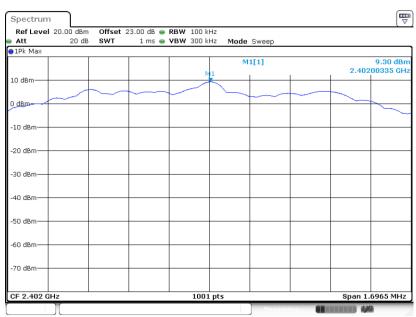
PSD 100kHz Plot on Channel 19

Date: 28.DEC.2021 23:14:59


Sporton International Inc. (ShenZhen)

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: IHDT56AA5 Page Number : 21 of 44
Report Issued Date : Feb. 18, 2022
Report Version : Rev. 01

Report No.: FR1N0903-01B

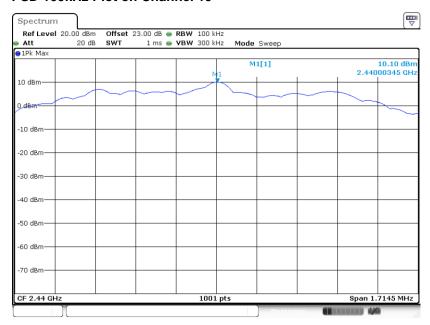

PSD 100kHz Plot on Channel 39

Date: 28.DEC.2021 23:18:14

Bluetooth LE 2Mbps:

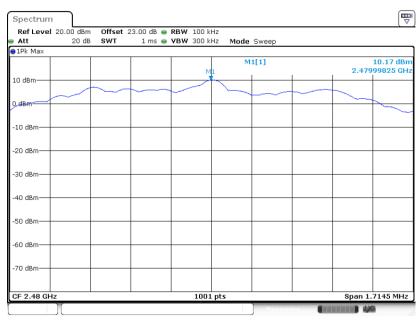
PSD 100kHz Plot on Channel 00

Date: 28.DEC.2021 23:23:12


Sporton International Inc. (ShenZhen)

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: IHDT56AA5 Page Number : 22 of 44
Report Issued Date : Feb. 18, 2022
Report Version : Rev. 01

Report No.: FR1N0903-01B



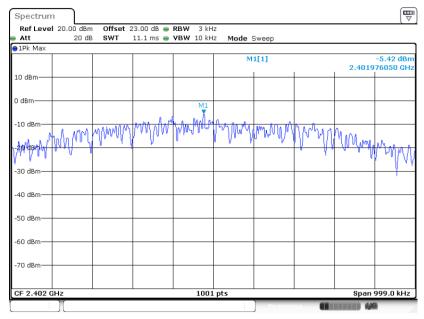
PSD 100kHz Plot on Channel 19

Date: 28.DEC.2021 23:57:23

PSD 100kHz Plot on Channel 39

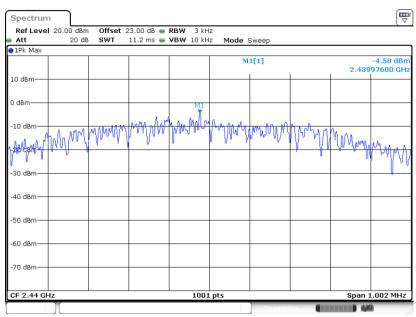
Date: 29.DEC.2021 00:02:39

Sporton International Inc. (ShenZhen)


TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: IHDT56AA5 Page Number : 23 of 44
Report Issued Date : Feb. 18, 2022
Report Version : Rev. 01

Report No.: FR1N0903-01B

3.3.7 Test Result of Power Spectral Density Plots (3kHz)

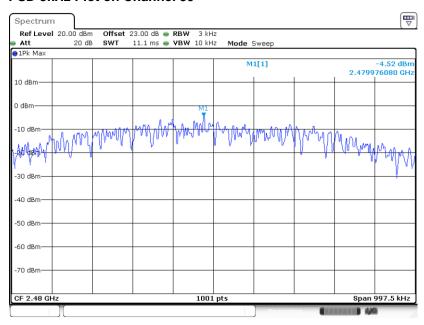

Bluetooth LE 1Mbps:

PSD 3kHz Plot on Channel 00

Date: 28.DEC.2021 23:09:41

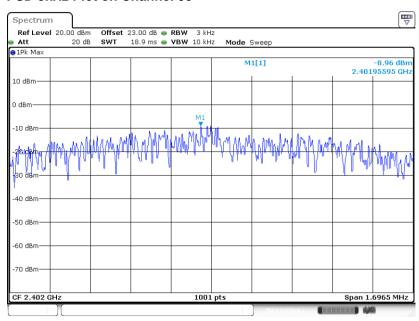
PSD 3kHz Plot on Channel 19

Date: 28.DEC.2021 23:14:29


Sporton International Inc. (ShenZhen)

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: IHDT56AA5 Page Number : 24 of 44
Report Issued Date : Feb. 18, 2022
Report Version : Rev. 01

Report No.: FR1N0903-01B

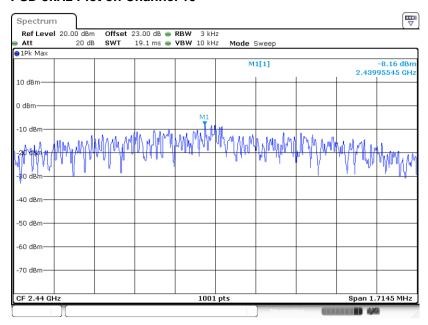

PSD 3kHz Plot on Channel 39

Date: 28.DEC.2021 23:17:53

Bluetooth LE 2Mbps:

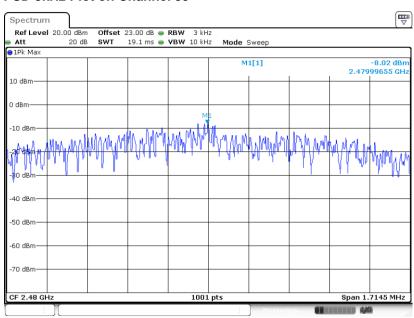
PSD 3kHz Plot on Channel 00

Date: 28.DEC.2021 23:22:28


Sporton International Inc. (ShenZhen)

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: IHDT56AA5 Page Number : 25 of 44
Report Issued Date : Feb. 18, 2022
Report Version : Rev. 01

Report No.: FR1N0903-01B



PSD 3kHz Plot on Channel 19

Date: 28.DEC.2021 23:56:39

PSD 3kHz Plot on Channel 39

Date: 29.DEC.2021 00:02:08

Sporton International Inc. (ShenZhen)

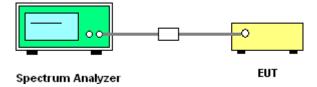
TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: IHDT56AA5 Page Number : 26 of 44
Report Issued Date : Feb. 18, 2022
Report Version : Rev. 01

Report No.: FR1N0903-01B

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission

All harmonics/spurious must be at least 20 dB down from the highest emission level within the authorized band.


3.4.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.4.3 Test Procedure

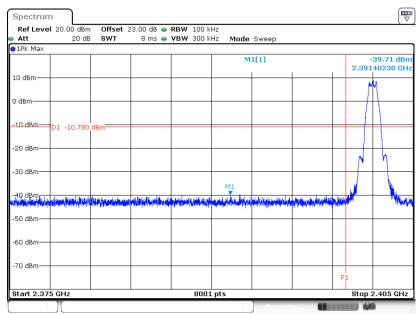
- 1. The testing follows ANSI C63.10-2013 clause 11.13
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.4.4 Test Setup

Sporton International Inc. (ShenZhen)

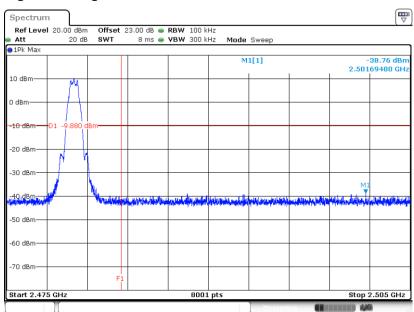
TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: IHDT56AA5 Page Number : 27 of 44

Report Issued Date : Feb. 18, 2022


Report Version : Rev. 01

Report No.: FR1N0903-01B

3.4.5 Test Result of Conducted Band Edges Plots

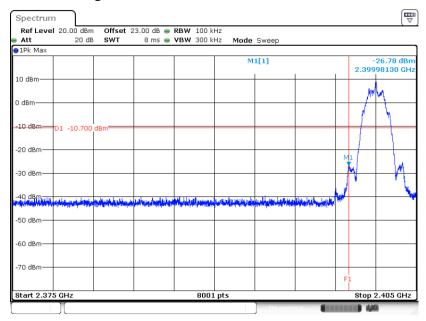

Bluetooth LE 1Mbps:

Low Band Edge Plot on Channel 00

Date: 28.DEC.2021 23:11:38

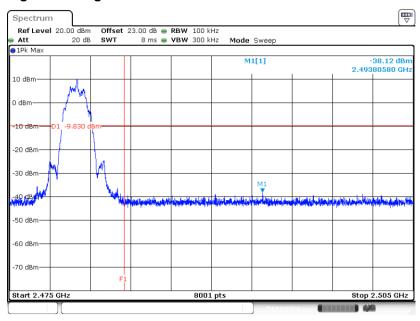
High Band Edge Plot on Channel 39

Date: 28.DEC.2021 23:18:50


Sporton International Inc. (ShenZhen)

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: IHDT56AA5 Page Number : 28 of 44
Report Issued Date : Feb. 18, 2022
Report Version : Rev. 01

Report No.: FR1N0903-01B

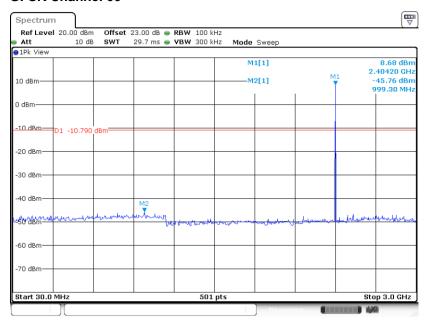

Bluetooth LE 2Mbps:

Low Band Edge Plot on Channel 00

Date: 28.DEC.2021 23:23:31

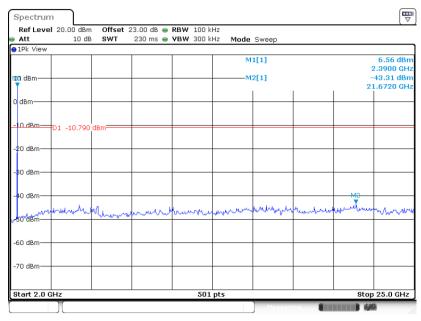
High Band Edge Plot on Channel 39

Date: 29.DEC.2021 00:03:06


TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: IHDT56AA5 Page Number : 29 of 44
Report Issued Date : Feb. 18, 2022
Report Version : Rev. 01

Report No.: FR1N0903-01B

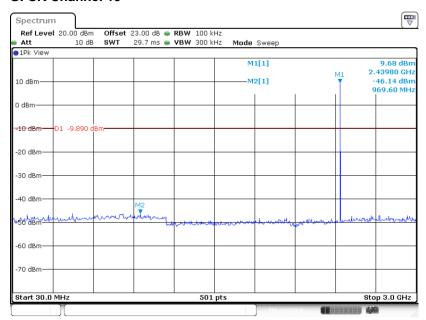
3.4.6 Test Result of Conducted Spurious Emission Plots


Bluetooth LE 1Mbps:

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 00

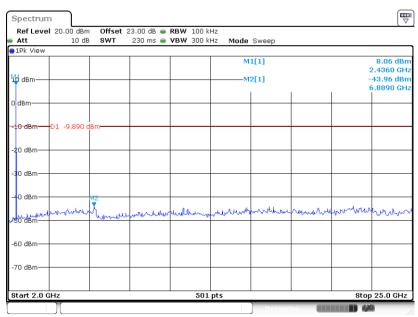
Date: 28.DEC.2021 23:12:00

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 00


Date: 28.DEC.2021 23:12:16

Sporton International Inc. (ShenZhen)

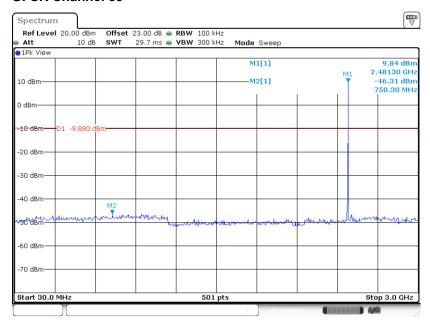
TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: IHDT56AA5 Page Number : 30 of 44
Report Issued Date : Feb. 18, 2022
Report Version : Rev. 01


Report No.: FR1N0903-01B

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19

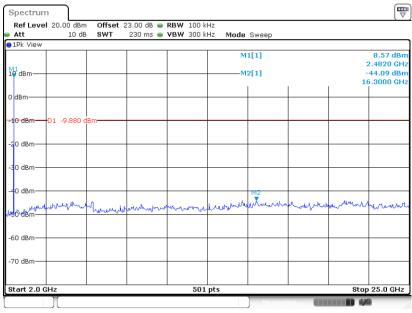
Date: 28.DEC.2021 23:15:41

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19


Date: 28.DEC.2021 23:15:53

Sporton International Inc. (ShenZhen)

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: IHDT56AA5 Page Number : 31 of 44
Report Issued Date : Feb. 18, 2022
Report Version : Rev. 01

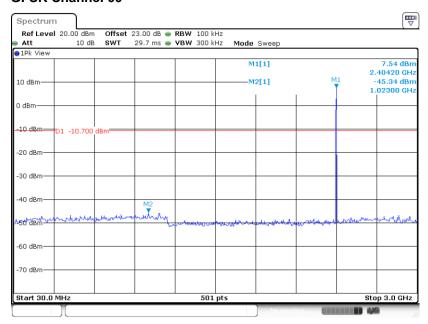

Report No.: FR1N0903-01B

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 39

Date: 28.DEC.2021 23:19:36

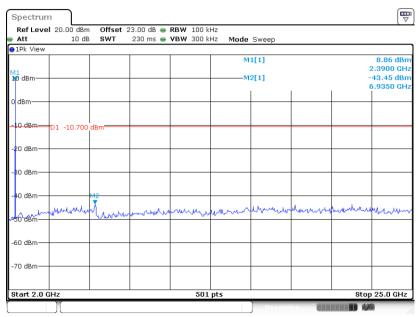
Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 39

Date: 28.DEC.2021 23:19:47


Sporton International Inc. (ShenZhen)

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: IHDT56AA5 Page Number : 32 of 44
Report Issued Date : Feb. 18, 2022
Report Version : Rev. 01

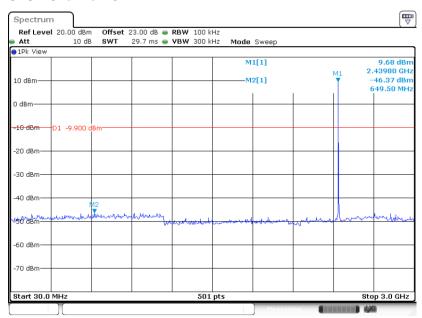
Report No.: FR1N0903-01B


Bluetooth LE 2Mbps:

Conducted Spurious Emission Plot on Bluetooth LE 2Mbps GFSK Channel 00

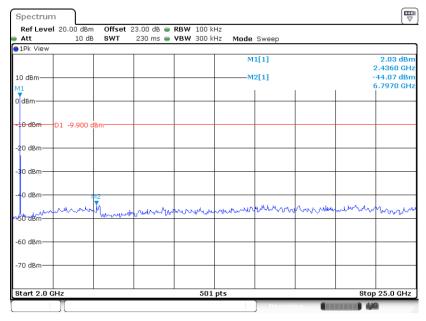
Date: 28.DEC.2021 23:23:51

Conducted Spurious Emission Plot on Bluetooth LE 2Mbps GFSK Channel 00


Date: 28.DEC.2021 23:24:02

Sporton International Inc. (ShenZhen)

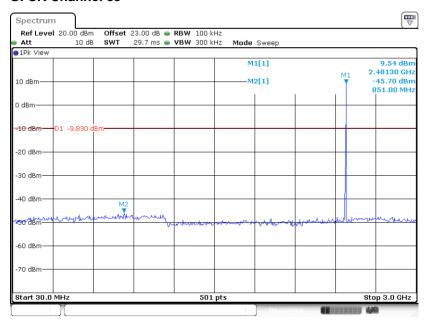
TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: IHDT56AA5 Page Number : 33 of 44
Report Issued Date : Feb. 18, 2022
Report Version : Rev. 01


Report No.: FR1N0903-01B

Conducted Spurious Emission Plot on Bluetooth LE 2Mbps GFSK Channel 19

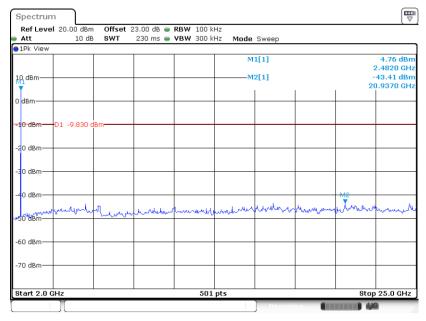
Date: 28.DEC.2021 23:59:21

Conducted Spurious Emission Plot on Bluetooth LE 2Mbps GFSK Channel 19


Date: 28.DEC.2021 23:59:36

Sporton International Inc. (ShenZhen)

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: IHDT56AA5 Page Number : 34 of 44
Report Issued Date : Feb. 18, 2022
Report Version : Rev. 01


Report No.: FR1N0903-01B

Conducted Spurious Emission Plot on Bluetooth LE 2Mbps GFSK Channel 39

Date: 29.DEC.2021 00:03:48

Conducted Spurious Emission Plot on Bluetooth LE 2Mbps GFSK Channel 39

Date: 29.DEC.2021 00:04:00

Sporton International Inc. (ShenZhen)

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: IHDT56AA5 Page Number : 35 of 44
Report Issued Date : Feb. 18, 2022
Report Version : Rev. 01

Report No.: FR1N0903-01B

3.5 Radiated Band Edges and Spurious Emission Measurement

3.5.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 – 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

Sporton International Inc. (ShenZhen)

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: IHDT56AA5 Page Number : 36 of 44

Report Issued Date : Feb. 18, 2022

Report Version : Rev. 01

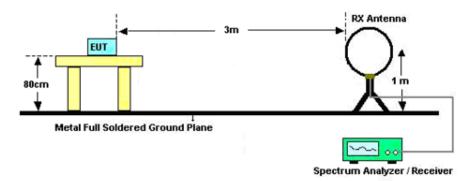
Report Template No.: BU5-FR15CBLE Version 2.0

Report No.: FR1N0903-01B

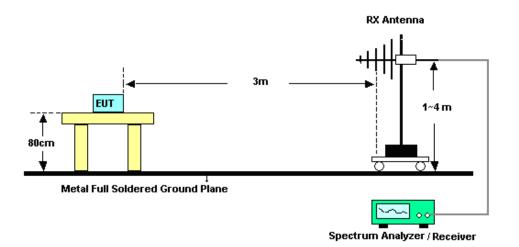
3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 11.11 & 11.12
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than peak limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 8. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for $f \ge 1$ GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

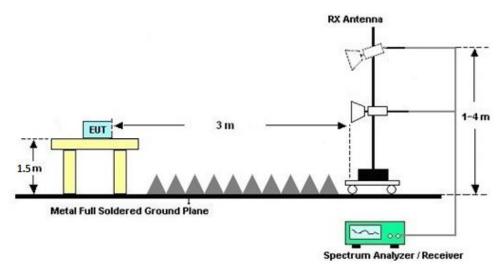
TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: IHDT56AA5 Page Number : 37 of 44


Report Issued Date : Feb. 18, 2022

Report Version : Rev. 01


Report No.: FR1N0903-01B

3.5.4 Test Setup


For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz

Sporton International Inc. (ShenZhen)

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: IHDT56AA5 Page Number : 38 of 44
Report Issued Date : Feb. 18, 2022
Report Version : Rev. 01

Report No.: FR1N0903-01B

3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

Report No.: FR1N0903-01B

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C.

3.5.7 Duty Cycle

Please refer to Appendix D.

3.5.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic or 40GHz, whichever is lower)

Please refer to Appendix C.

Sporton International Inc. (ShenZhen)

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: IHDT56AA5 Page Number : 39 of 44
Report Issued Date : Feb. 18, 2022
Report Version : Rev. 01

3.6 AC Conducted Emission Measurement

3.6.1 Limit of AC Conducted Emission

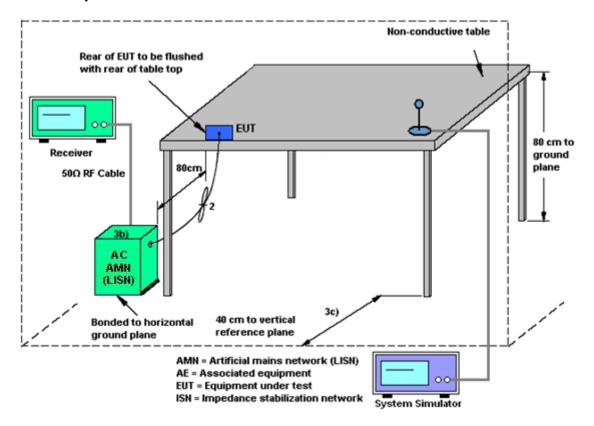
For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Eroquency of emission (MUz)	Conducted limit (dBμV)				
Frequency of emission (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

^{*}Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.


3.6.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: IHDT56AA5 Page Number : 40 of 44
Report Issued Date : Feb. 18, 2022
Report Version : Rev. 01

Report No.: FR1N0903-01B

3.6.4 Test Setup

3.6.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

Sporton International Inc. (ShenZhen)

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: IHDT56AA5 Page Number : 41 of 44
Report Issued Date : Feb. 18, 2022
Report Version : Rev. 01

Report No.: FR1N0903-01B

3.7 Antenna Requirements

3.7.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

Sporton International Inc. (ShenZhen)

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: IHDT56AA5 Page Number : 42 of 44
Report Issued Date : Feb. 18, 2022
Report Version : Rev. 01

Report Template No.: BU5-FR15CBLE Version 2.0

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101078	10Hz~40GHz	Apr. 08, 2021	Dec. 13, 2021 ~ Dec. 29, 2021	Apr. 07, 2022	Conducted (TH01-SZ)
Pulse Power Senor	Anritsu	MA2411B	1207253	30MHz~40GHz	Dec. 25, 2020	Dec. 13, 2021	Dec. 24, 2021	Conducted (TH01-SZ)
Pulse Power Senor	Anritsu	MA2411B	1207253	30MHz~40GHz	Dec. 24, 2021	Dec. 28, 2021 ~ Dec. 29, 2021	Dec. 23, 2022	Conducted (TH01-SZ)
Power Meter	Anritsu	ML2495A	1218010	50MHz Bandwidth	Dec. 25, 2020	Dec. 13, 2021	Dec. 24, 2021	Conducted (TH01-SZ)
Power Meter	Anritsu	ML2495A	1218010	50MHz Bandwidth	Dec. 24, 2021	Dec. 28, 2021 ~ Dec. 29, 2021	Dec. 23, 2022	Conducted (TH01-SZ)
EMI Test Receiver&SA	KEYSIGHT	N9038A	MY54450083	20Hz~8.4GHz	Apr. 07, 2021	Jan. 04, 2022 ~Jan. 09, 2022	Apr. 06, 2022	Radiation (03CH03-SZ)
EXA Spectrum Anaiyzer	KEYSIGHT	N9010A	MY55150246	10Hz~44GHz;	Apr. 07, 2021	Jan. 04, 2022 ~Jan. 09, 2022	Apr. 06, 2022	Radiation (03CH03-SZ)
Loop Antenna	R&S	HFH2-Z2	100354	9kHz~30MHz	Jun. 22, 2021	Jan. 04, 2022 ~Jan. 09, 2022	Jun. 21, 2022	Radiation (03CH03-SZ)
Bilog Antenna	TeseQ	CBL6112D	35408	30MHz-2GHz	Jun. 22, 2021	Jan. 04, 2022 ~Jan. 09, 2022	Jun. 21, 2022	Radiation (03CH03-SZ)
Double Ridge Horn Antenna	SCHWARZBE CK	BBHA9120 D	9120D-1355	1GHz~18GHz	Apr. 25, 2021	Jan. 04, 2022 ~Jan. 09, 2022	Apr. 24, 2022	Radiation (03CH03-SZ)
HF Amplifier	MITEQ	TTA1840-3 5-HG	1871923	18GHz~40GHz	Oct. 22, 2021	Jan. 04, 2022 ~Jan. 09, 2022	Oct. 21, 2022	Radiation (03CH03-SZ)
SHF-EHF Horn	com-power	AH-840	101071	18Ghz-40GHz	Apr. 11, 2021	Jan. 04, 2022 ~Jan. 09, 2022	Apr. 10, 2022	Radiation (03CH03-SZ)
Amplifier	Burgeon	BPA-530	102211	0.01Hz ~3000MHz	Oct. 22, 2021	Jan. 04, 2022 ~Jan. 09, 2022	Oct. 21, 2022	Radiation (03CH03-SZ)
HF Amplifier	MITEQ	AMF-7D-0 0101800-3 0-10P-R	1943528	1GHz~18GHz	Oct. 22, 2021	Jan. 04, 2022 ~Jan. 09, 2022	Oct. 21, 2022	Radiation (03CH03-SZ)
Amplifier	Agilent Technologies	83017A	MY39501302	500MHz~26.5GH z	Dec. 30, 2021	Jan. 04, 2022 ~Jan. 09, 2022	Dec. 29, 2022	Radiation (03CH03-SZ)
AC Power Source	Chroma	61601	616010001985	N/A	NCR	Jan. 04, 2022 ~Jan. 09, 2022	NCR	Radiation (03CH03-SZ)
Turn Table	EM	EM1000	N/A	0~360 degree	NCR	Jan. 04, 2022 ~Jan. 09, 2022	NCR	Radiation (03CH03-SZ)
Antenna Mast	EM	EM1000	N/A	1 m~4 m	NCR	Jan. 04, 2022 ~Jan. 09, 2022	NCR	Radiation (03CH03-SZ)
EMI Receiver	R&S	ESR7	101630	9kHz~7GHz;	Mar. 08, 2021	Dec. 27, 2021	Mar. 07, 2022	Conduction (CO01-SZ)
AC LISN	R&S	ENV216	100063	9kHz~30MHz	Sep. 01, 2021	Dec. 27, 2021	Aug. 31, 2022	Conduction (CO01-SZ)
AC LISN (for auxiliary equipment)	EMCO	3816/2SH	00103892	9kHz~30MHz	Oct. 15, 2021	Dec. 27, 2021	Oct. 14, 2022	Conduction (CO01-SZ)
AC Power Source	Chroma	61602	616020000891	100Vac~250Vac	Jul. 14, 2021	Dec. 27, 2021	Jul. 13, 2022	Conduction (CO01-SZ)

NCR: No Calibration Required

Sporton International Inc. (ShenZhen)

TEL: + 86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: IHDT56AA5 Page Number : 43 of 44
Report Issued Date : Feb. 18, 2022
Report Version : Rev. 01

Report No.: FR1N0903-01B

5 Uncertainty of Evaluation

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

<u>Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)</u>

Measuring Uncertainty for a Level of Confidence	1.34dB
of 95% (U = 2Uc(y))	1.3406

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	15
of 95% (U = 2Uc(y))	5.0dB

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

ı		
	Measuring Uncertainty for a Level of Confidence	
		4.9dB
	of 95% (U = 2Uc(y))	7.000
	01 30 70 (0 - 200 (y))	

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	3.00B

----- THE END -----

Sporton International Inc. (ShenZhen)

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: IHDT56AA5 Page Number : 44 of 44
Report Issued Date : Feb. 18, 2022
Report Version : Rev. 01

Report No.: FR1N0903-01B

Appendix A. Conducted Test Results

Sporton International Inc. (ShenZhen)

TEL: + 86-755-8637-9589 FAX: + 86-755-8637-9595 FCC ID: IHDT56AA5 Page Number : A1 of A1
Report Issued Date : Feb. 18, 2022
Report Version : Rev. 01

Report Number : FR1N0903-01B

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Tang ZhaoYang	Temperature:	24~26	°C
Test Date:	2021/12/13~2021/12/29	Relative Humidity:	50~53	%

TEST RESULTS DATA 6dB and 99% Occupied Bandwidth

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail
BLE	1Mbps	1	0	2402	1.025	0.666	0.50	Pass
BLE	1Mbps	1	19	2440	1.025	0.668	0.50	Pass
BLE	1Mbps	1	39	2480	1.025	0.665	0.50	Pass

TEST RESULTS DATA Peak Power Table

Mod.	Data Rate	N TX	CH.	Freq. (MHz)	Peak Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	1Mbps	1	0	2402	10.62	30.00	-5.00	5.62	36.00	Pass
BLE	1Mbps	1	19	2440	11.31	30.00	-5.00	6.31	36.00	Pass
BLE	1Mbps	1	39	2480	11.40	30.00	-5.00	6.40	36.00	Pass

TEST RESULTS DATA Peak Power Density

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail
BLE	1Mbps	1	0	2402	9.21	-5.42	-5.00	8.00	Pass
BLE	1Mbps	1	19	2440	10.11	-4.58	-5.00	8.00	Pass
BLE	1Mbps	1	39	2480	10.12	-4.52	-5.00	8.00	Pass

Note: PSD (dBm/ 100kHz) is a reference level used for Conducted Band Edges and Conducted Spurious Emission 20dBc limit.

Report Number : FR1N0903-01B

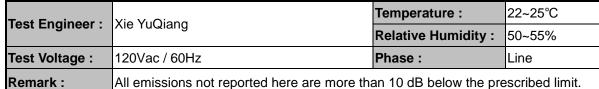
Appendix A. Test Result of Conducted Test Items

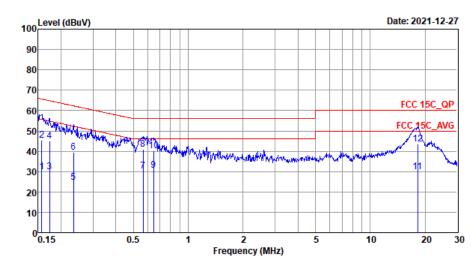
Test Engineer:	Tang ZhaoYang	Temperature:	24~26	°C
Test Date:	2021/12/13~2021/12/29	Relative Humidity:	50~53	%

TEST RESULTS DATA 6dB and 99% Occupied Bandwidth

Mod.	Data Rate	N TX	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail
BLE	2Mbps	1	0	2402	2.038	1.131	0.50	Pass
BLE	2Mbps	1	19	2440	2.034	1.143	0.50	Pass
BLE	2Mbps	1	39	2480	2.038	1.143	0.50	Pass

TEST RESULTS DATA Peak Power Table


Mod.	Data Rate	N TX	CH.	Freq. (MHz)	Peak Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	2Mbps	1	0	2402	10.72	30.00	-5.00	5.72	36.00	Pass
BLE	2Mbps	1	19	2440	11.36	30.00	-5.00	6.36	36.00	Pass
BLE	2Mbps	1	39	2480	11.44	30.00	-5.00	6.44	36.00	Pass


TEST RESULTS DATA Peak Power Density

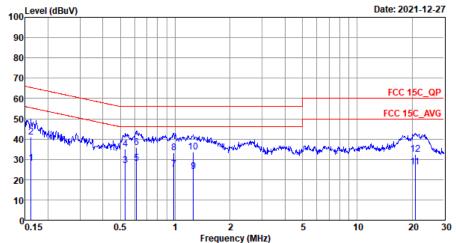
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail
BLE	2Mbps	1	0	2402	9.30	-8.96	-5.00	8.00	Pass
BLE	2Mbps	1	19	2440	10.10	-8.16	-5.00	8.00	Pass
BLE	2Mbps	1	39	2480	10.17	-8.02	-5.00	8.00	Pass

Note: PSD (dBm/ 100kHz) is a reference level used for Conducted Band Edges and Conducted Spurious Emission 20dBc limit.

Appendix B. AC Conducted Emission Test Results

: CO01-SZ

Condition: FCC 15C_QP LISN_20210901_L LINE


	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	dB	
1	0.16	29.95	-25.70	55.65	9.00	10.20	10.75	Average
2	0.16	45.35	-20.30	65.65	24.40	10.20	10.75	QP
3	0.17	29.81	-25.00	54.81	9.10	10.20	10.51	Average
4	0.17	45.01	-19.80	64.81	24.30	10.20	10.51	QP
5	0.23	24.74	-27.56	52.30	4.10	10.19	10.45	Average
6	0.23	39.64	-22.66	62.30	19.00	10.19	10.45	QP
7	0.56	30.38	-15.62	46.00	8.69	10.11	11.58	Average
8 *	0.56	40.98	-15.02	56.00	19.29	10.11	11.58	QP
9	0.64	30.70	-15.30	46.00	9.30	10.13	11.27	Average
10	0.64	40.40	-15.60	56.00	19.00	10.13	11.27	QP
11	18.23	29.72	-20.28	50.00	9.50	9.87	10.35	Average
12	18.23	43.42	-16.58	60.00	23.20	9.87	10.35	QP

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: IHDT56AA5

Page Number : B1 of B2 Report Issued Date: Feb. 18, 2022 Report Version : Rev. 01

Test Engineer :	Vio ViiQiana	Temperature :	22~25°C
rest Engineer.	Ale rugiang	Relative Humidity :	50~55%
Test Voltage :	120Vac / 60Hz	Phase :	Neutral
Remark :	All emissions not reported here are more that	an 10 dB below the pre	escribed limit.
	aval (dDu\/)	Date: 2021	12 27

Site : CO01-SZ Condition: FCC 15C QP LISM 20210901 N NEUTRAL

				Over	Limit	Read	LISN	Cable	
		Freq	Level	Limit	Line	Level	Factor	Loss	Remark
	_	MHz	dBuV	dB	dBuV	dBuV	dB	dB	
		MIZ	abav	uв	abav	abav	uв	uБ	
1		0.16	27.97	-27.41	55.38	7.00	10.30	10.67	Average
2		0.16	40.97	-24.41	65.38	20.00	10.30	10.67	QP
3		0.53	26.92	-19.08	46.00	5.00	10.21	11.71	Average
4		0.53	34.92	-21.08	56.00	13.00	10.21	11.71	QP
5	*	0.61	28.00	-18.00	46.00	6.39	10.24	11.37	Average
6		0.61	35.80	-20.20	56.00	14.19	10.24	11.37	QP
7		0.98	25.09	-20.91	46.00	4.60	10.22	10.27	Average
8		0.98	33.39	-22.61	56.00	12.90	10.22	10.27	QP
9		1.26	23.88	-22.12	46.00	3.40	10.25	10.23	Average
10		1.26	33.48	-22.52	56.00	13.00	10.25	10.23	QP
11		20.81	26.08	-23.92	50.00	5.90	9.83	10.35	Average
12		20.81	32.58	-27.42	60.00	12.40	9.83	10.35	QP

Note:

- 1. Level(dB μ V) = Read Level(dB μ V) + LISN Factor(dB) + Cable Loss(dB)
- 2. Over Limit(dB) = Level(dB μ V) Limit Line(dB μ V)

Sporton International Inc. (ShenZhen)

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: IHDT56AA5 Page Number : B2 of B2
Report Issued Date : Feb. 18, 2022
Report Version : Rev. 01

Appendix C. Radiated Spurious Emission

2.4GHz 2400~2483.5MHz

BLE (Band Edge @ 3m)

BLE	Note	Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Peak Avg.	Pol.
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)		(P/A)	(H/V)
		2355.675	48.04	-25.96	74	49.09	27.8	4.84	33.69	244	186	Р	Н
		2386.44	39.71	-14.29	54	40.66	27.8	4.91	33.66	244	186	Α	Н
	*	2402	98.51	-	-	99.47	27.79	4.91	33.66	244	186	Р	Н
BLE	*	2402	97.27	-	-	98.23	27.79	4.91	33.66	244	186	Α	Н
CH 00 2402MHz		2389.17	49.02	-24.98	74	49.97	27.8	4.91	33.66	100	30	Р	V
		2388.54	42.44	-11.56	54	43.39	27.8	4.91	33.66	100	30	Α	V
	*	2402	105.75	-	-	106.7	27.8	4.91	33.66	100	30	Р	V
	*	2402	104.29	-	-	105.24	27.8	4.91	33.66	100	30	Α	V
		2389.38	48.5	-25.5	74	49.45	27.8	4.91	33.66	250	224	Р	Н
		2389.1	41.83	-12.17	54	42.78	27.8	4.91	33.66	250	224	Α	Н
	*	2440	101.7	-	-	102.73	27.64	4.96	33.63	250	224	Р	Н
	*	2440	100.43	-	-	101.46	27.64	4.96	33.63	250	224	Α	Н
BLE		2496.5	48.64	-25.36	74	49.72	27.51	5.01	33.6	250	224	Р	Н
		2493.63	39.97	-14.03	54	41.05	27.51	5.01	33.6	250	224	Α	Н
CH 19 2440MHz		2389.66	49.06	-24.94	74	50.01	27.8	4.91	33.66	147	41	Р	V
		2388.96	40.86	-13.14	54	41.81	27.8	4.91	33.66	147	41	Α	V
	*	2440	104.38	-	-	105.45	27.6	4.96	33.63	147	41	Р	V
	*	2440	103.18	-	-	104.25	27.6	4.96	33.63	147	41	Α	V
		2498.18	48.07	-25.93	74	49.16	27.5	5.01	33.6	147	41	Р	V
		2484.74	39.78	-14.22	54	40.88	27.53	4.99	33.62	147	41	Α	V
		2480	102.36	-	-	93.14	32.17	9.75	32.7	100	360	Р	Н
		2480	100.39	-	-	91.17	32.17	9.75	32.7	100	360	Α	Н
		2483.52	56.83	-17.17	74	47.61	32.17	9.75	32.7	100	360	Р	Н
BLE		2492.32	48.8	-5.2	54	39.64	32.1	9.76	32.7	100	360	Α	Н
CH 39 2480MHz		2480	106.69	-	-	97.47	32.17	9.75	32.7	140	326	Р	V
_		2480	104.84	-	-	95.62	32.17	9.75	32.7	140	326	Α	V
		2483.52	59.48	-14.52	74	50.26	32.17	9.75	32.7	140	326	Р	V
		2483.52	50.34	-3.66	54	41.12	32.17	9.75	32.7	140	326	Α	V

All results are PASS against Peak and Average limit line.

Sporton International Inc.(ShenZhen)

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: HDT56AA5

Page Number : C1 of C7 Report Issued Date : Feb. 18, 2022

Report No.: FR1N0903-01B

: Rev. 01 Report Version

2.4GHz 2400~2483.5MHz

BLE (Harmonic @ 3m)

Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
	(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)			
	4804	48.76	-25.24	74	62.09	31.4	7.09	51.82	-	-	Р	Н
	4804	47.42	-26.58	74	60.75	31.4	7.09	51.82	-	-	Р	V
	4880	47.69	-26.31	74	60.96	31.46	7.19	51.92	-	-	Р	Н
	7320	49.93	-24.07	74	56.35	36.5	8.8	51.72	-	-	Р	Н
	4880	48.37	-25.63	74	61.63	31.47	7.19	51.92	-	-	Р	٧
	7320	48.7	-25.3	74	55.12	36.5	8.8	51.72	-	-	Р	٧
	4960	46.78	-27.22	74	59.99	31.6	7.22	52.03	-	-	Р	Н
	7440	49.62	-24.38	74	55.88	36.44	8.95	51.65	-	-	Р	Н
	4960	46.07	-27.93	74	59.28	31.6	7.22	52.03	-	-	Р	V
	7440	50.86	-23.14	74	57.06	36.5	8.95	51.65	-	-	Р	٧
	Note	(MHz) 4804 4804 4880 7320 4880 7320 4960 7440 4960	(MHz) (dBμV/m) 4804 48.76 4804 47.42 4880 47.69 7320 49.93 4880 48.37 7320 48.7 4960 46.78 7440 49.62 4960 46.07	(MHz) (dBμV/m) Limit (dB) 4804 48.76 -25.24 4804 47.42 -26.58 4880 47.69 -26.31 7320 49.93 -24.07 4880 48.37 -25.63 7320 48.7 -25.3 4960 46.78 -27.22 7440 49.62 -24.38 4960 46.07 -27.93	(MHz) (dBμV/m) Limit (dB) Line (dBμV/m) 4804 48.76 -25.24 74 4804 47.42 -26.58 74 4880 47.69 -26.31 74 7320 49.93 -24.07 74 4880 48.37 -25.63 74 7320 48.7 -25.3 74 4960 46.78 -27.22 74 7440 49.62 -24.38 74 4960 46.07 -27.93 74	(MHz) Limit (dBμV/m) Line (dBμV/m) Level (dBμV/m) 4804 48.76 -25.24 74 62.09 4804 47.42 -26.58 74 60.75 4880 47.69 -26.31 74 60.96 7320 49.93 -24.07 74 56.35 4880 48.37 -25.63 74 61.63 7320 48.7 -25.3 74 55.12 4960 46.78 -27.22 74 59.99 7440 49.62 -24.38 74 55.88 4960 46.07 -27.93 74 59.28	(MHz) Limit (dBμV/m) Line (dBμV/m) Level (dBμV) Factor (dB/m) 4804 48.76 -25.24 74 62.09 31.4 4804 47.42 -26.58 74 60.75 31.4 4880 47.69 -26.31 74 60.96 31.46 7320 49.93 -24.07 74 56.35 36.5 4880 48.37 -25.63 74 61.63 31.47 7320 48.7 -25.3 74 55.12 36.5 4960 46.78 -27.22 74 59.99 31.6 7440 49.62 -24.38 74 55.88 36.44 4960 46.07 -27.93 74 59.28 31.6	(MHz) Limit (dBμV/m) Line (dBμV/m) Level (dBμV) Factor (dB/m) Loss (dB) 4804 48.76 -25.24 74 62.09 31.4 7.09 4804 47.42 -26.58 74 60.75 31.4 7.09 4880 47.69 -26.31 74 60.96 31.46 7.19 7320 49.93 -24.07 74 56.35 36.5 8.8 4880 48.37 -25.63 74 61.63 31.47 7.19 7320 48.7 -25.3 74 55.12 36.5 8.8 4960 46.78 -27.22 74 59.99 31.6 7.22 7440 49.62 -24.38 74 55.88 36.44 8.95 4960 46.07 -27.93 74 59.28 31.6 7.22	(MHz) Limit (dBμV/m) Limit (dB) Line (dBμV/m) Level (dBμV) Factor (dB/m) Loss (dB) Factor (dB) 4804 48.76 -25.24 74 62.09 31.4 7.09 51.82 4804 47.42 -26.58 74 60.75 31.4 7.09 51.82 4880 47.69 -26.31 74 60.96 31.46 7.19 51.92 7320 49.93 -24.07 74 56.35 36.5 8.8 51.72 4880 48.37 -25.63 74 61.63 31.47 7.19 51.92 7320 48.7 -25.3 74 55.12 36.5 8.8 51.72 4960 46.78 -27.22 74 59.99 31.6 7.22 52.03 7440 49.62 -24.38 74 55.88 36.44 8.95 51.65 4960 46.07 -27.93 74 59.28 31.6 7.22 52.03	(MHz) Limit (dBμV/m) Line (dBμV/m) Level (dBμV) Factor (dB/m) Loss (dB) Factor (dB) Pos (cm) 4804 48.76 -25.24 74 62.09 31.4 7.09 51.82 - 4804 47.42 -26.58 74 60.75 31.4 7.09 51.82 - 4880 47.69 -26.31 74 60.96 31.46 7.19 51.92 - 7320 49.93 -24.07 74 56.35 36.5 8.8 51.72 - 4880 48.37 -25.63 74 61.63 31.47 7.19 51.92 - 7320 48.7 -25.3 74 55.12 36.5 8.8 51.72 - 4960 46.78 -27.22 74 59.99 31.6 7.22 52.03 - 7440 49.62 -24.38 74 55.88 36.44 8.95 51.65 - 4960 46.07	(MHz) Limit (dB) Limit (dB) Level (dBμV/m) Factor (dB/m) Loss (dB) Factor (dB) Pos (deg) 4804 48.76 -25.24 74 62.09 31.4 7.09 51.82 - - 4804 47.42 -26.58 74 60.75 31.4 7.09 51.82 - - 4880 47.69 -26.31 74 60.96 31.46 7.19 51.92 - - 7320 49.93 -24.07 74 56.35 36.5 8.8 51.72 - - 4880 48.37 -25.63 74 61.63 31.47 7.19 51.92 - - 7320 48.7 -25.3 74 55.12 36.5 8.8 51.72 - - 4960 46.78 -27.22 74 59.99 31.6 7.22 52.03 - 7440 49.62 -24.38 74 55.88 36.44 8.95	(MHz) Limit (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB)

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: HDT56AA5 Page Number : C2 of C7
Report Issued Date : Feb. 18, 2022
Report Version : Rev. 01

Emission below 1GHz

2.4GHz BLE (LF)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		104.69	21.99	-21.51	43.5	35.52	17.68	0.9	32.11	-	-	Р	Н
		180.35	27.6	-15.9	43.5	42.72	15.4	1.1	31.62	-	-	Р	Н
		272.5	20.1	-25.9	46	32.11	18.75	1.29	32.05	-	-	Р	Н
		401.51	21.51	-24.49	46	29.71	22.05	1.65	31.9	-	-	Р	Н
0.4011-		533.43	23.62	-22.38	46	28.92	24.13	2.04	31.47	-	-	Р	Н
2.4GHz BLE		690.57	27.96	-18.04	46	32.17	25.15	2.24	31.6	-	-	Р	Н
LF		48.43	28.81	-11.19	40	45.45	15.4	0.61	32.65	-	-	Р	V
_,		182.29	32.63	-10.87	43.5	47.85	15.29	1.11	31.62	-	-	Р	V
		277.35	21.9	-24.1	46	33.75	18.88	1.32	32.05	-	-	Р	V
		443.22	22.27	-23.73	46	29.35	22.6	1.87	31.55	-	-	Р	V
		535.37	23.86	-22.14	46	28.98	24.31	2.04	31.47	-	-	Р	V
		598.42	25.66	-20.34	46	30.22	24.95	2.08	31.59	-	-	Р	V
Remark		o other spurious											

2. All results are PASS against limit line.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: HDT56AA5 Page Number : C3 of C7
Report Issued Date : Feb. 18, 2022
Report Version : Rev. 01

Co-location

BLE CH 39 Link + LTE Band 48 Link (Band Edge @ 3m)

	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
	*	2480	101.71	-	-	102.8	27.54	4.99	33.62	278	131	Р	Н
BLE	*	2480	100.47	-	-	101.56	27.54	4.99	33.62	278	131	Α	Н
CH 39		2483.52	56.59	-17.41	74	57.69	27.53	4.99	33.62	278	131	Р	Н
2480MHz		2483.52	48.68	-5.32	54	49.78	27.53	4.99	33.62	278	131	Α	Н
&	*	2480	104.51	-	-	105.61	27.53	4.99	33.62	172	360	Р	V
LTE B48	*	2480	103.16	-	-	104.26	27.53	4.99	33.62	172	360	Α	V
Link		2483.6	58.71	-15.29	74	59.81	27.53	4.99	33.62	172	360	Р	V
		2483.52	50.31	-3.69	54	51.41	27.53	4.99	33.62	172	360	Α	V
				•									

Remark

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: HDT56AA5 Page Number : C4 of C7
Report Issued Date : Feb. 18, 2022
Report Version : Rev. 01

[.] No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

BLE CH 39 Link + LTE Band 48 Link (Harmonic @ 3m)

	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
BLE		4960	44.96	-29.04	74	58.17	31.6	7.22	52.03	-	-	Р	Н
CH 39		7440	46.17	-27.83	74	52.43	36.44	8.95	51.65	-	-	Р	Н
2480MHz		10848	50.17	-23.83	74	32.3	40.25	11.06	33.44	-	-	Р	Н
&		4960	43.92	-30.08	74	57.13	31.6	7.22	52.03	-	-	Р	٧
LTE B48		7440	46.55	-27.45	74	52.75	36.5	8.95	51.65	-	-	Р	٧
Link		10848	51	-23	74	33.13	40.25	11.06	33.44	-	-	Р	٧

Remark

. No other spurious found.

2. All results are PASS against Peak and Average limit line.

Sporton International Inc.(ShenZhen)

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: HDT56AA5 Page Number : C5 of C7
Report Issued Date : Feb. 18, 2022
Report Version : Rev. 01

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions
	shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

Sporton International Inc.(ShenZhen)

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: HDT56AA5 Page Number : C6 of C7
Report Issued Date : Feb. 18, 2022
Report Version : Rev. 01

A calculation example for radiated spurious emission is shown as below:

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

1. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

2. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

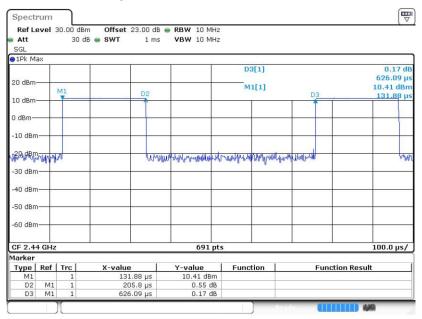
For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- $= 43.54 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

Sporton International Inc.(ShenZhen)

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: HDT56AA5 Page Number : C7 of C7
Report Issued Date : Feb. 18, 2022


Report No.: FR1N0903-01B

Report Version : Rev. 01

Appendix D. Duty Cycle Plots

Band	Duty Cycle(%)	T(ms)	1/T(kHz)	VBW Setting
Bluetooth LE 2Mbps	32.87	0.206	4.859	10kHz

Bluetooth LE 2Mbps

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: IHDT56AA5 Page Number : D-1 of D1
Report Issued Date : Feb. 18, 2021
Report Version : Rev. 01