

Supplemental Portable Cellular Phone SAR Test Report

Tests Requested By:	Motorola Mobility, Inc. 600 N. US Highway 45 Libertyville, IL 60048	
Test Report #: Date of Report: Date of Test: FCC ID #: Generic Name:	24228-1F Supplemental Rev D May 23, 2011 Nov-26-2010 and May 4, 2011 IHDP56LS1 MURQ5-3334411A11	
Test Laboratory:	Motorola Mobility, Inc Product Safety & 600 N. US Highway 45 Libertyville, IL 60048	Compliance Laboratory
Report Author:	Steven Hauswirth Distinguished Member of the Technical Sta	ſf
Accreditation:	This laboratory is accredited to ISO/IEC 17	
UKAS TESTING 2404	<u>Tests</u> : Electromagnetic Specific Absorption Rate	Procedures: IEC 62209-1 RSS-102 IEEE 1528 - 2003 FCC OET Bulletin 65 (<i>including Supplement C</i>) Australian Communications Authority Radio Communications (Electromagnetic Radiation – Human Exposure) Standard 2003 CENELEC EN 50360 ARIB Std. T-56 (2002)
2404	On the following products or types of products	
	Cellular, Licensed Non-Broadcast and PCS	les): Two Way Radios; Portable Phones (including); Low Frequency Readers; and Pagers
Statement of Compliance:	conformity with the appropriate General Population/ (FCC 47 CFR §2.1093) as well as with CENELEC e was tested in accordance with IEEE 1528 / CENELEC guidelines and recommended practices. Any deviation below: Motorola's ISO 17025 accreditation scope does not c performed in this band was performed outside of c	e portable cellular telephone model to which this declaration relates, is in Uncontrolled RF exposure standards, recommendations and guidelines n50360:2001 and ANSI / IEEE C95.1. It also declares that the product EN62209-1 (2006), as well as other appropriate measurement standards, is from these standards, guidelines and recommended practices are noted urrently include SAR testing in the 5 GHz band. Therefore, SAR testing pur ISO 17025 accreditation. The general procedures and guidelines 648474 D01, FCC KDB 865664 D01 and IEC 62209-2 were utilized for
©Motorola, Inc	testing. c. 2011	
This test repor	t shall not be reproduced except in full. without	written approval of the laboratory. The results and

This test report shall not be reproduced except in full, without written approval of the laboratory. The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only in connection with the statements or results from this report. Motorola encourages all feedback, both positive and negative, on this test report.

Table of Contents

1. Introduction	3
2. Description of the Device Under Test	3
3. Test Equipment Used	5
3.1 Dosimetric System	5
3.2 Additional Equipment	5
4. Electrical parameters of the tissue simulating liquid	6
5. System Accuracy Verification	7
6. Mobile Hotspot Test Results	8
References	10
Appendix 1: SAR distribution comparison for the system accuracy verification	
Appendix 2: SAR distribution plots for Mobile Hotspot Configuration	

- Appendix 3: Measurement Uncertainty Budget
- **Appendix 4: Probe Calibration Certificate**
- **Appendix 5: Dipole Characterization Certificate**

1. Introduction

The Motorola Mobility Product Safety & Compliance Laboratory has performed measurements of the maximum potential exposure to the user of the portable cellular phone covered by this test report. The Specific Absorption Rate (SAR) of this product was measured. The portable cellular phone was tested in accordance with [1], [4] and [5]. The SAR values measured for the portable cellular phone are below the maximum recommended levels of 1.6 W/kg in a 1 g average set in [3] and 2.0 W/kg in a 10 g average set in [2].

Per direction of the FCC, the following SAR test data is being provided to demonstrate the device's effective utilization of power reduction conditions specified in Exhibit 12 - Operational Description. <u>The values in the table in Section 6.0 are provided solely for purposes of confirming compliant power reduction operation and do not represent maximum SAR values of the product</u>. For maximum reported SAR compliance values, refer to the Exhibit 11 SAR test report.

2. Description of the Device Under Test

2.1 Device description¹

Serial Number(s) (Functional Use)	OLAAD0135 (GSM/WCDMA Mobile Hotspot SAR testing)					
Production Unit or Identical Prototype (47 CFR §2908)	Identical Prototype					
Device Category	Portable					
RF Exposure Limits	General Population / Uncontrolled					

Mode(s) of Operation	GSM 850	GSM 900	GSM 1800	GSM 1900	WCDMA 850	WCDMA 1900	WCDMA 2100	Wi-Fi 802.11b/g/n	Wi-Fi 802.11a/n	Bluetooth
Modulation Mode(s)	GMSK	GMSK	GMSK	GMSK	QPSK	QPSK	QPSK	BPSK	BPSK	GFSK
Maximum Output Power Setting	33.5 dBm	33.5 dBm	30.5 dBm	30.5 dBm	24.0 dBm	24.0 dBm	24.0 dBm	19.5 dBm	11.7 dBm	10 dBm
Duty Cycle	1:8	1:8	1:8	1:8	1:1	1:1	1:1	1:1	1:1	1:1
Transmitting Frequency Range(s)	824.2 - 848.8 MHz	880.2 - 914.8 MHz	1710.2 - 1784.8 MHz	1850.2 - 1909.8 MHz	826.4 - 846.6 MHz	1852.4 - 1907.6 MHz	1922.4 - 1977.6 MHz	2412.0 - 2462.5 MHz	5180 - 5240, 5745 - 5805, MHz	2402.0 - 2483.5 MHz

¹ **Bolded** entries indicate data mode configurations of highest time-average power output per band and data mode type, and thus were utilized for SAR testing in this report.

Mode(s) of Operation	GPRS 850			GPRS 900			GPRS 1800			GPRS 1900						
Modulation		GM	ISK		GMSK			GMSK			GMSK					
Maximum Output Power Setting (dBm)	33.5	31.5	29.5	27.5	33.5	31.5	29.5	27.5	30.5	30.0	28.0	26.0	30.5	30.0	28.0	26.0
Duty Cycle	1:8	2:8	3:8	4:8	1:8	2:8	3:8	4:8	1:8	2:8	3:8	4:8	1:8	2:8	3:8	4:8
Transmitting Frequency Range(s)	82	24.2 - 84	48.8 MI	łz	88	880.2 - 914.8 MHz		1710.2 - 1784.8 MHz			1850.2 - 1909.8 MHz					

Mode(s) of Operation		EDG	E 850		EDGE 900			EDGE 1800			EDGE 1900					
Modulation	8PSK			8PSK			8PSK			8PSK						
Maximum Output Power Setting (dBm)	28.1	26.0	24.0	22.0	28.1	26.0	24.0	22.0	27.3	26.0	24.0	22.0	27.3	26.0	24.0	22.0
Duty Cycle	1:8	2:8	3:8	4:8	1:8	2:8	3:8	4:8	1:8	2:8	3:8	4:8	1:8	2:8	3:8	4:8
Transmitting Frequency Range(s)	82	24.2 - 84	48.8 MI	Ηz	88	880.2 - 914.8 MHz		1710.2 - 1784.8 MHz			1850.2 - 1909.8 MHz					

The DUT utilizes a reduced limit for the maximum transmit power in WCDMA1900 mode when the mobile hotspot functionality is enabled. A table of the reduced limits used for testing is given below. A complete description of this functionality is provided in the "Operational Description" contained within Exhibit 12, and is discussed within PBA inquiry 384782. The implementation to trigger the reduction in power requires the device to be radiating, which prevents conducted power measurements of this functionality without modification to the unit. WCDMA 850 does not utilize a reduced limit for the maximum transmit power.

Mode(s) of Operation	WCDMA 1900						
Test Channel	9262	9400	9538				
Channel Ranges	9262-9367	9368-9455	9456-9538				
Reduced Maximum Output Power Setting (dBm)	20.3	19.3	20.7				

3. Test Equipment Used

3.1 Dosimetric System

The Motorola Mobile Devices Business Product Safety & Compliance Laboratory utilizes a Dosimetric Assessment System (Dasy4TM v4.7) manufactured by Schmid & Partner Engineering AG (SPEAGTM), of Zurich Switzerland. All the SAR measurements are taken within a shielded enclosure. The overall 10 g RSS uncertainty of the measurement system is $\pm 10.8\%$ (K=1) with an expanded uncertainty of $\pm 21.6\%$ (K=2). The overall 1 g RSS uncertainty of the measurement system is $\pm 11.1\%$ (K=1) with an expanded uncertainty of $\pm 22.2\%$ (K=2). The measurement uncertainty budget is given in Appendix 3. Per IEEE 1528, this uncertainty budget is applicable to the SAR range of 0.4 W/kg to 10 W/kg.

The list of calibrated equipment used for the measurements is shown in the following table.

Description	Serial Number	Cal Date	Cal Due Date
DASY4™ DAE V1	702	May-18-2010	May-18-2011
E-Field Probe ES3DV3	3183	Jul-14-2010	Jul-14-2011
Dipole Validation Kit, DV1800V2	263TR	Oct-13-2010	Oct-13-2012
Dipole Validation Kit, DV1800V2	271TR	Mar-08-2011	Mar-08-2013

3.2 Additional Equipment

Description	Serial Number	Cal Date	Cal Due Date
Signal Generator HP8648C	3847A04982	Nov-18-2009	Nov-18-2011
Power Meter E4419B	GB39511082	Apr-24-2009	Apr-24-2011
Power Sensor #1 - E9301A	US39210918	Oct-25-2010	Oct-25-2011
Power Sensor #2 - E9301A	US39210917	Oct-25-2010	Oct-25-2011
Signal Generator HP8648C	3847A04810	Oct-30-2009	Oct-30-2011
Power Meter E4419B	GB39511087	Dec-22-2009	Dec-22-2011
Power Sensor #1 - E9301A	US39211006	Oct-25-2010	Oct-25-2011
Power Sensor #2 - E9301A	US39210934	Oct-25-2010	Oct-25-2011
Signal Generator HP8648C	3429A00286	Nov-23-2009	Nov-23-2011
Power Meter E4419B	US39250622	Dec-22-2009	Dec-22-2011
Power Sensor #1 - E9301A	US39210931	Oct-25-2010	Oct-25-2011
Power Sensor #2 - E9301A	US39210932	Oct-25-2010	Oct-25-2011
Network Analyzer HP8753ES	US39172529	Jun-04-2010	Jun-04-2011
Dielectric Probe Kit HP85070C	US99360070		

Prior to conducting SAR measurements, the relative permittivity, ε_r , and the conductivity, σ , of the tissue simulating liquids were measured with a HP85070 Dielectric Probe Kit These values, along with the temperature of the simulated tissue are shown in the table below. The recommended limits for permittivity and conductivity are also shown. A mass density of $\rho = 1 \frac{g}{cm^3}$ was entered into the system in all the cases. It can be seen that the measured parameters are within tolerance of the recommended limits specified in [1] and [5].

E-field probes calibrated at 1810 MHz were used for "1900 MHz" band (1850 MHz - 1910 MHz) SAR measurements. FCC KDB pub. 450824 provides additional requirements on page 3 of 6 for SAR testing that is performed with probe calibration points that are more than 50 MHz removed from the measured bands. The KDB requires; "(2) When nominal tissue dielectric parameters are specified in the probe calibration data, the tissue dielectric parameters measurements should be less than the target Er and higher than the target Sigma values to minimize SAR underestimations". The 1900 MHz simulated tissues listed below meet these criteria.

f	Tissue		Dielectric Parameters				
(MHz)	type	Limits / Measured	€ _r	σ (S/m)	Temp (°C)		
	Measured, Nov-26-2010	52.7	1.53	19.5			
1880	Body	Measured, May-04-2011	51.2	1.59	18.6		
		Recommended Limits	53.3 ±5%	$1.52 \pm 5\%$	18-25		

The list of ingredients and the percent composition used for the simulated tissues are indicated in the table below.

Ingredient	835 MHz / 900 MHz Head	835 MHz / 900 MHz Body	1800 MHz / 1900 MHz Head	1800 MHz / 1900 MHz Body	2450 MHz Head	2450 MHz Body
Sugar	57	44.9				
DGBE			47	30.8		30
Diacetin					51	
Water	40.45	53.06	52.62	68.8	48.75	70
Salt	1.45	0.94	0.38	0.4	0.15	
HEC	1	1				
Bact.	0.1	0.1			0.1	

5. System Accuracy Verification

A system accuracy verification of the DASY4[™] was performed using the measurement equipment listed in Section 3.1. The daily system accuracy verification occurs within the flat section of the SAM phantom.

A SAR measurement was performed to verify the measured SAR was within $\pm 10\%$ from the target SAR indicated in Appendix 4. These frequencies are within $\pm 10\%$ of the compliance test mid-band frequency as required in [1] and [5]. The test was conducted on the same days as the measurement of the DUT. Recommended limits for permittivity and conductivity, specified in [5], are shown in the table below. The obtained results from the system accuracy verification are also displayed in the table below. SAR values are normalized to 1 W forward power delivered to the dipole. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values. The distributions of SAR compare well with those of the reference measurements (see Appendix 1). For frequencies below 3 GHz, the simulated tissue depth was verified to be 15.0 cm \pm 0.5 cm. For frequencies above 3 GHz, the simulated tissue depth was verified to be 10 cm \pm 0.5 cm. Z-axis scans showing the SAR penetration are also included in Appendix 1.

f		SAR (W/kg),	Dielectric F	Parameters	Ambient	Tissue
(MHz)	Description	1 gram	ε _r	σ (S/m)	Temp (°C)	Temp (°C)
	Measured, Nov-25-2010	37.90	39.0	1.35	19.8	19.3
1900	Recommended Limits	38.10	$40.0\pm5\%$	$1.40 \pm 5\%$	18-25	18-25
1800	Measured, May-04-2011	38.00	51.5	1.49	20.3	18.8
	Recommended Limits	37.90	53.3 ±5%	1.52 ±5%	18-25	18-25

The following probe conversion factors were used on the E-Field probe(s) used for the system accuracy verification measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #	
E-Field Probe	3183	1810	5.05	5 of 11	
ES3DV3	5165	1810	4.84	6 of 11	

6. Test Results

The test sample was operated using an actual transmission through a base station simulator. The base station simulator or test software was set up for the proper channels, transmitter power levels and transmit modes of operation.

The phone was tested in configurations specified by the FCC for this device in order to demonstrate the effective utilization of power reduction conditions specified in Exhibit 12. Testing was performed with a separation of 1 cm between the DUT and the "flat" phantom. The phone was positioned into these configurations using the device holder supplied with the DASY4TM SAR measurement system. The default settings for the "coarse" and "cube" scans were chosen and used for measurements. The grid spacing of the coarse scan was set to 15 mm or less as shown in the SAR plots included in Appendix 2. Please refer to the DASY4TM manual for additional information on SAR scanning procedures and algorithms used.

The SAR results shown in the table below are maximum SAR values averaged over 1 gram of phantom tissue. Also shown is the extrapolated SAR to account for drift. The exact method of extrapolation is Extrapolated SAR = Measured SAR * $10^{(-drift/10)}$. The SAR reported at the end of the measurement process by the DASY4TM measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test.

The DUT utilizes a reduced limit for the maximum transmit power for the WCDMA 1900 mode when the mobile hotspot functionality is enabled. A description of this functionality is provided in the "Operational Description" contained within Exhibit 12. This description was also discussed within FCC KDB inquiry 631391.

The Cellular Phone model covered by this report has the following battery options: Model SNN5880A - 1880 mAH Battery

The battery SNN5880A was used to do all of the SAR testing. The phone was placed in the SAR measurement system with a fully charged battery.

A "flat" phantom was for the body-worn tests. This "flat" phantom is made out of 1" thick natural High Density Polyethylene with a thickness at the bottom equal to 2.0 mm. It measures 52.7 cm(long) x 26.7 cm(wide) x 21.2 cm(tall). The simulated tissue depth was verified to be 15.0 cm \pm 0.5 cm for frequencies below 3 GHz.

The following probe conversion factors were used on the E-Field probe(s) used for the body-worn mobile hotspot measurements:

Description	Serial	f	Conversion	Cal Cert
	Number	(MHz)	Factor	pg #
E-Field Probe ES3DV3	3183	1810	4.84	6 of 11

Per direction of the FCC, the following SAR test data is being provided to demonstrate the device's effective utilization of power reduction conditions specified in Exhibit 12 - Operational Description. <u>The values in the table</u> are provided solely for purposes of confirming compliant power reduction operation and do not represent maximum <u>SAR values of the product</u>. For maximum reported SAR compliance values, refer to the Exhibit 11 SAR test report.

	Mobile Hotspot, Bottom Edge of Phone 10 mm from Phantom								
				1 g SAR value w/o Pwr Reduction			AR value Reduction	Pwr	Measured
f (MHz)	Mode	Test Configuration			Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)	Reduction Specification (dB)	Pwr Reduction (dB)
	WCD144 1000	Bottom of Device 10 mm	9262	3.00	3.00	1.20	1.25	3.7	3.8
1880	WCDMA 1900, 12.2 kbps PMC	Bottom of Device 10 mm	9400	3.29	3.29	1.07	1.12	4.7	4.7
	RMC	Back of Device 10 mm	9538	2.39	2.53	1.18	1.23	3.3	3.1

References

- [1] CENELEC, en62209-1:2006 "Human Exposure to Radio Frequency Fields From Hand Held and Body -Mounted Wireless Communication Devices – Human Models, Instrumentation, and Procedures"
- [2] CENELEC, en50360:2001 "Product standard to demonstrate the compliance of mobile phones with the basic restrictions related to human exposure to electromagnetic fields (300 MHz 3 GHz)".
- [3] ANSI / IEEE, C95.1 1992 Edition "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz"
- [4] FCC OET Bulletin 65 Supplement C 01-01
- [5] IEEE 1528 2003 Edition "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques"
- [6] ICNIRP Guidelines "Guidelines for Limiting Exposure to Time-Varying Electric, Magnetic, and Electromagnetic Fields (up to 300 GHz)"

Appendix 1

SAR distribution comparison for the system accuracy verification

Test Laboratory: Motorola - Nov-25-2010 1800 MHz

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN: 263TR; FCC ID: IHDP56LS1 Procedure Notes: 1800 MHz System Performance Check; Dipole Sn# 263TR; Input Power = 200 mW Sim.Temp@meas = 19.3 C; Sim.Temp@SPC = 19.4 C; Room Temp@SPC = 19.8 C Communication System: CW - Dipole; Frequency: 1800 MHz; Duty Cycle: 1:1

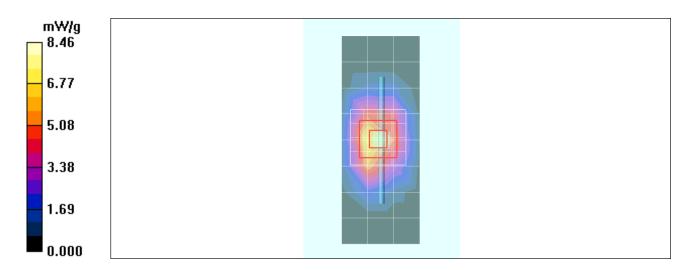
Medium: VALIDATION Only

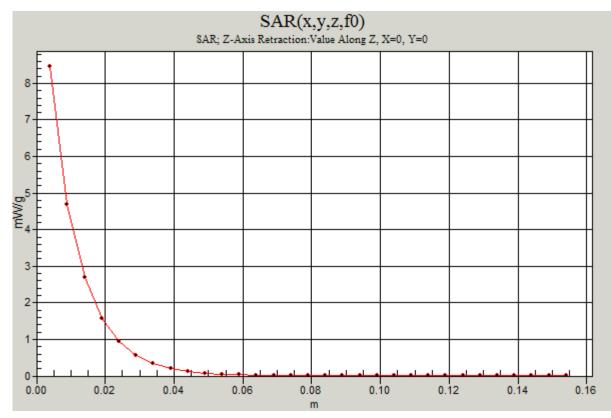
Medium parameters used: f = 1800 MHz; $\sigma = 1.35 \text{ mho/m}$; $\varepsilon_r = 39$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ES3DV3 SN3183; ConvF(5.05, 5.05, 5.05); Calibrated: 7/14/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn702; Calibrated: 5/18/2010
- Phantom: R1_ Section 2, Amy Twin, Rev3 (3-Feb-10); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Daily SPC Check/Dipole Area Scan (9x4x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 7.05 mW/g


Daily SPC Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 79.1 V/m; Power Drift = -0.039 dB; Peak SAR (extrapolated) = 14.0 W/kg SAR(1 g) = 7.58 mW/g; SAR(10 g) = 3.98 mW/g; Maximum value of SAR (measured) = 8.51 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 8.46 mW/g

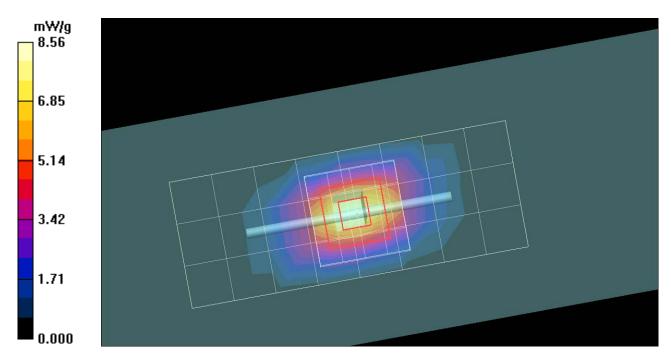
Test Laboratory: Motorola 1800 MHz System Performance Check

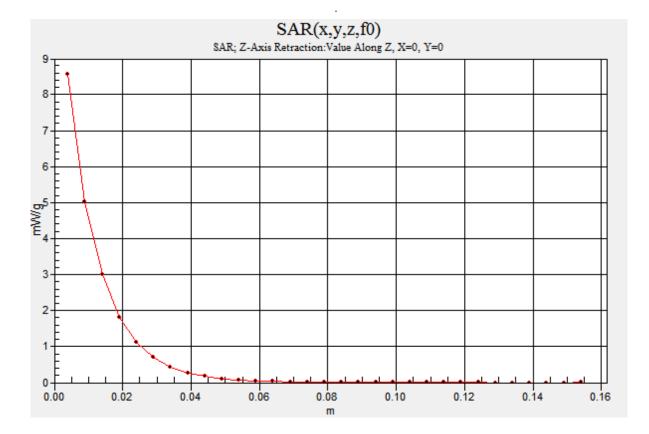
DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:271tr;

Procedure Notes: PM1 Power = 200 mW Refl.Pwr PM3 = -21.25 dB <u>Sim.Temp@SPC</u> =18.8 Room Temp @ SPC = 20.3

Communication System: CW - Dipole; Frequency: 1800 MHz; Communication System Channel Number: 8; Duty Cycle: 1:1

Medium: Validation *BODY Tissue* ; Medium parameters used: f = 1800 MHz; $\sigma = 1.49 \text{ mho/m}$; $\varepsilon_r = 51.5$; $\rho = 1000 \text{ kg/m}^3$


DASY4 Configuration:


- Probe: ES3DV3 SN3183; ConvF(4.84, 4.84, 4.84); Calibrated: 7/14/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn702; Calibrated: 4/14/2011
- Phantom: R1 Section 2, Amy Twin, Rev3 (3-Feb-10); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Daily SPC Check/Dipole Area Scan (9x4x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 6.10 mW/g

Daily SPC Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 77.2 V/m; Power Drift = -0.039 dB Peak SAR (extrapolated) = 13.3 W/kg SAR(1 g) = 7.6 mW/g; SAR(10 g) = 4.06 mW/g Maximum value of SAR (measured) = 8.54 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31): Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 8.56 mW/g

Appendix 2

SAR distribution plots for Mobile Hotspot Configuration

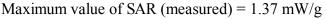
Test Laboratory: Motorola WCDMA 1900 - Low Channel

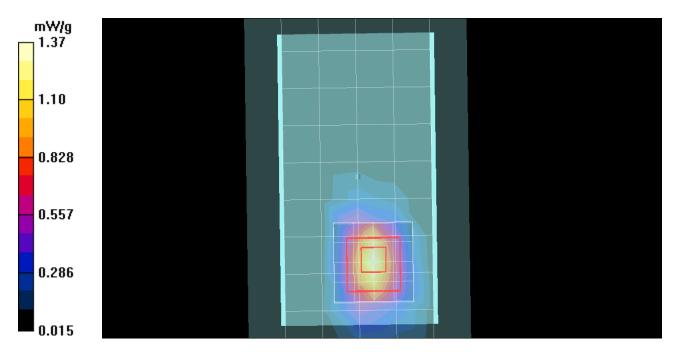
DUT: Serial: LOLAAD0135; FCC ID: IHDP56LS1

Procedure Notes: Pwr Step: ALL UP BITS Test Position = Bottom Edge of Phone 10mm from Phantom Communication System: 3G/WCDMA 1900; Frequency: 1852.5 MHz; Communication System Channel Number: 9262; Duty Cycle: 1:1

Medium: Regular Glycol Body 1750/1880; Medium parameters used: f = 1880 MHz; $\sigma = 1.57$ mho/m; $\epsilon_r = 50.7$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:


- Probe: ES3DV3 SN3183; ConvF(4.84, 4.84, 4.84); Calibrated: 7/14/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn702; Calibrated: 5/18/2010
- Phantom: R1_ Section 2, Amy Twin, Rev3 (3-Feb-10); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


Amy Twin Phone Template/Area Scan - Normal Body (15mm) (13x7x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.00 mW/g

Amy Twin Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm Reference Value = 21.3 V/m; Power Drift = -0.181 dB Peak SAR (extrapolated) = 2.10 W/kg SAR(1 g) = 1.2 mW/g; SAR(10 g) = 0.606 mW/g

Test Laboratory: Motorola WCDMA 1900 - Low Channel

DDUT: Serial: LOLAAD0135; FCC ID: IHDP56LS1 - Unit operating at non-reduced power for verification of utilization of reduction conditions

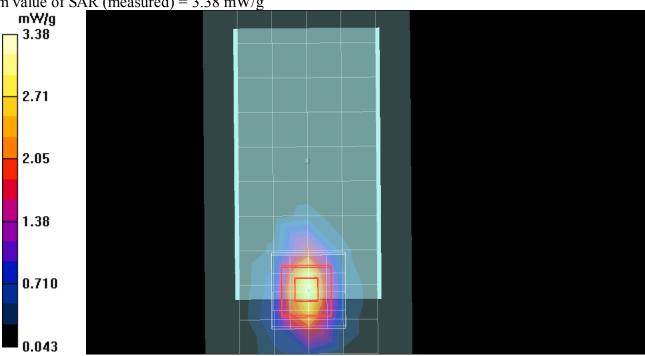
Procedure Notes: Pwr Step: always up Test Position = Bottom Edge of Device 10mm from Phantom

Communication System: 3G/WCDMA 1900; Frequency: 1852.5 MHz; Communication System Channel Number: 9262; Duty Cycle: 1:1

Medium: Regular Glycol Body 1750/1880; Medium parameters used: f = 1880 MHz; $\sigma = 1.59$ mho/m; $\varepsilon_r = 51.2$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ES3DV3 SN3183; ConvF(4.84, 4.84, 4.84); Calibrated: 7/14/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn702; Calibrated: 4/14/2011
- Phantom: R1_Section 2, Amy Twin, Rev3 (3-Feb-10); Type: Amy Twin Flat; Serial: n/a; Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


Amy Twin Phone Template/Area Scan - Normal Extended Body (15mm) (16x7x1): Measurement grid:

dx=15mm, dy=15mm Maximum value of SAR (measured) = 3.28 mW/g

Amy Twin Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm Reference Value = 44.7 V/m; Power Drift = 0.074 dBPeak SAR (extrapolated) = 5.23 W/kgSAR(1 g) = 3 mW/g; SAR(10 g) = 1.53 mW/g

Maximum value of SAR (measured) = 3.38 mW/g

Test Laboratory: Motorola WCDMA 1900 - Mid Channel

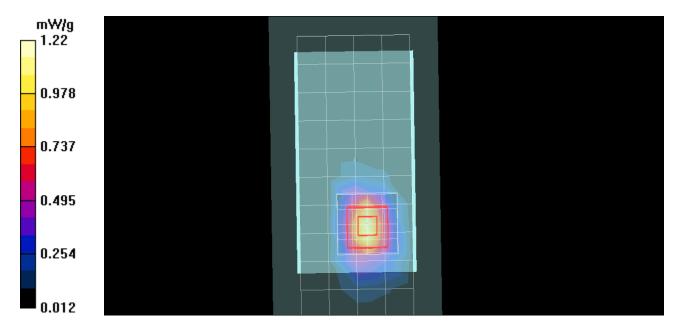
DUT: Serial: LOLAAD0135; FCC ID: IHDP56LS1

Procedure Notes: Pwr Step: ALL UP BITS Tese Position = Bottom Edge of Phone 10mm from Phantom Communication System: 3G/WCDMA 1900; Frequency: 1880 MHz; Communication System Channel Number: 9400; Duty Cycle: 1:1

Medium: Regular Glycol Body 1750/1880; Medium parameters used: f = 1880 MHz; $\sigma = 1.57$ mho/m; $\epsilon_r = 50.7$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ES3DV3 SN3183; ConvF(4.84, 4.84, 4.84); Calibrated: 7/14/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn702; Calibrated: 5/18/2010
- Phantom: R1_ Section 2, Amy Twin, Rev3 (3-Feb-10); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


Amy Twin Phone Template/Area Scan - Normal Body (15mm) (13x7x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.917 mW/g

Amy Twin Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm Reference Value = 20.9 V/m; Power Drift = -0.202 dB Peak SAR (extrapolated) = 1.87 W/kg SAR(1 g) = 1.07 mW/g; SAR(10 g) = 0.545 mW/g

Maximum value of SAR (measured) = 1.22 mW/g

Test Laboratory: Motorola WCDMA 1900 - Mid Channel

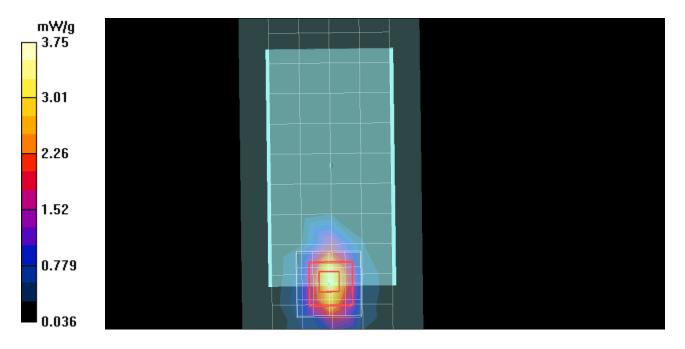
DUT: Serial: LOLAAD0135; FCC ID: IHDP56LS1 - Unit operating at non-reduced power for verification of utilization of reduction conditions

Procedure Notes: Pwr Step: always up Test Position = Bottom Edge of Phone 10mm from Phantom

Communication System: 3G/WCDMA 1900; Frequency: 1880 MHz; Communication System Channel Number: 9400; Duty Cycle: 1:1

Medium: Regular Glycol Body 1750/1880; Medium parameters used: f = 1880 MHz; σ = 1.59 mho/m; ϵ_r = 51.2; ρ = 1000 kg/m³

DASY4 Configuration:


- Probe: ES3DV3 SN3183; ConvF(4.84, 4.84, 4.84); Calibrated: 7/14/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn702; Calibrated: 4/14/2011
- Phantom: R1_ Section 2, Amy Twin, Rev3 (3-Feb-10); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Amy Twin Phone Template/Area Scan - Normal Extended Body (15mm) (16x7x1): Measurement grid:

dx=15mm, dy=15mm Maximum value of SAR (measured) = 3.60 mW/g

Amy Twin Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm Reference Value = 46.2 V/m; Power Drift = 0.047 dB Peak SAR (extrapolated) = 5.81 W/kgSAR(1 g) = 3.29 mW/g; SAR(10 g) = 1.65 mW/gMaximum value of SAR (measured) = 3.75 mW/g

Test Laboratory: Motorola WCDMA 1900 - High Channel

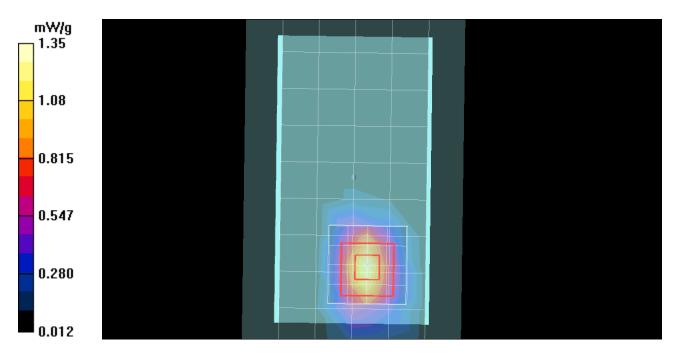
DUT: Serial: LOLAAD0135; FCC ID: IHDP56LS1

Procedure Notes: Pwr Step: ALL UP BITS Test Position = Bottom Edge of Phone 10mm from Phantom Communication System: 3G/WCDMA 1900; Frequency: 1907.5 MHz; Communication System Channel Number: 9538; Duty Cycle: 1:1

Medium: Regular Glycol Body 1750/1880; Medium parameters used: f = 1880 MHz; $\sigma = 1.57$ mho/m; $\epsilon_r = 50.7$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ES3DV3 SN3183; ConvF(4.84, 4.84, 4.84); Calibrated: 7/14/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn702; Calibrated: 5/18/2010
- Phantom: R1_ Section 2, Amy Twin, Rev3 (3-Feb-10); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


Amy Twin Phone Template/Area Scan - Normal Body (15mm) (13x7x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.03 mW/g

Amy Twin Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm Reference Value = 22.4 V/m; Power Drift = -0.165 dB Peak SAR (extrapolated) = 2.11 W/kg SAR(1 g) = 1.18 mW/g; SAR(10 g) = 0.588 mW/g

Maximum value of SAR (measured) = 1.35 mW/g

Test Laboratory: Motorola WCDMA 1900 - High Channel

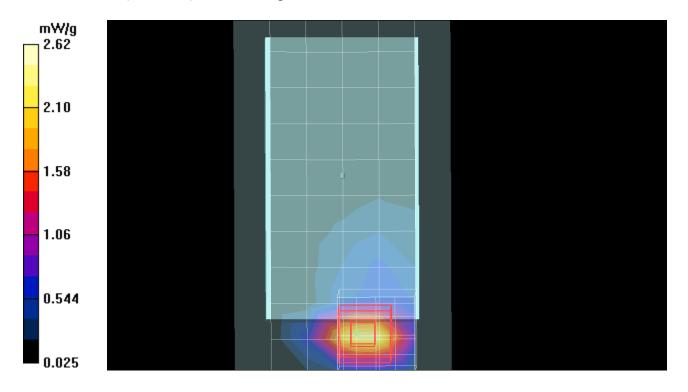
DUT: Serial: LOLAAD0135; FCC ID: IHDP56LS1- Unit operating at non-reduced power for verification of utilization of reduction conditions

Procedure Notes: Pwr Step: always up Test Position = Bottom Edge of Phone 10mm from Phantom

Communication System: 3G/WCDMA 1900; Frequency: 1907.5 MHz; Communication System Channel Number: 9538; Duty Cycle: 1:1

Medium: Regular Glycol Body 1750/1880; Medium parameters used: f = 1880 MHz; σ = 1.59 mho/m; ϵ_r = 51.2; ρ = 1000 kg/m³

DASY4 Configuration:


- Probe: ES3DV3 SN3183; ConvF(4.84, 4.84, 4.84); Calibrated: 7/14/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn702; Calibrated: 4/14/2011
- Phantom: R1_ Section 2, Amy Twin, Rev3 (3-Feb-10); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Amy Twin Phone Template/Area Scan - Normal Extended Body (15mm) (16x7x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 2.33 mW/g

Amy Twin Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm Reference Value = 21.4 V/m; Power Drift = -0.250 dB Peak SAR (extrapolated) = 4.33 W/kg SAR(1 g) = 2.39 mW/g; SAR(10 g) = 1.18 mW/g Maximum value of SAR (measured) = 2.62 mW/g

Appendix 3

Measurement Uncertainty Budget

				e =			h = c x f	i= cxg	
а	b	С	d	f(d,k)	f	g	/e	/e	k
	IEEE	Tol.	Prob		Ci	Ci	1 g	10 g	
	1528	(± %)	Dist		(1 g)	(10 g)	u _i	u _i	
Uncertainty Component	section	、 /		Div.	(5/	(5)	(±%)	(±%)	Vi
Measurement System									
Probe Calibration	E.2.1	5.9	N	1.00	1	1	5.9	5.9	×
Axial Isotropy	E.2.2	4.7	R	1.73	0.707	0.707	1.9	1.9	×
Hemispherical Isotropy	E.2.2	9.6	R	1.73	0.707	0.707	3.9	3.9	×
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	×
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	∞
Readout Electronics	E.2.6	0.3	N	1.00	1	1	0.3	0.3	×
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	∞
Integration Time	E.2.8	1.1	R	1.73	1	1	0.6	0.6	×
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	×
RF Ambient Conditions -		0.0			-				-
Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	∞
Probe Positioner Mech.									
Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	∞
Probe Positioning w.r.t			_						
Phantom	E.6.3	1.4	R	1.73	1	1	0.8	0.8	∞
Max. SAR Evaluation (ext.,	E.5	3.4	R	1.73	1	1	2.0	2.0	
int., avg.) Test sample Related	E.3	3.4	ĸ	1.73	1	1	2.0	2.0	8
Test Sample Positioning	E.4.2	3.2	N	1.00	1	1	3.2	3.2	29
			N		1	1			29 8
Device Holder Uncertainty	E.4.1	4.0		1.00			4.0	4.0	
SAR drift Phantom and Tissue	6.6.2	5.0	R	1.73	1	1	2.9	2.9	8
Parameters									
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	<u>∞</u>
Liquid Conductivity (target)	E.3.2	<u>4.0</u> 5.0	R	1.73	0.64	0.43	1.8	1.2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Liquid Conductivity (target)	2.0.2	0.0		1.70	0.04	0.70	1.0	1.2	~
(measurement)	E.3.3	3.3	Ν	1.00	0.64	0.43	2.1	1.4	00
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	∞
Liquid Permittivity									
(measurement)	E.3.3	1.9	Ν	1.00	0.6	0.49	1.1	0.9	∞
Combined Standard									
Uncertainty			RSS				11.1	10.8	411
Expanded Uncertainty									
(95% CONFIDENCE LEVEL)			<i>k</i> =2				22.2	21.6	

Appendix 4

Probe Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- Servizio svizzero di taratura
- Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

С

S

Certificate No: ES3-3183_Jul10 Motorola MDb Client **CALIBRATION CERTIFICATE** ES3DV3 - SN:3183 Object Calibration procedure(s) QA CAL-01.v6, QA CAL-23.v3 and QA CAL-25.v2 Calibration procedure for dosimetric E-field probes July 14, 2010 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Scheduled Calibration Cal Date (Certificate No.) GB41293874 Power meter E4419B 1-Apr-10 (No. 217-01136) Apr-11 Power sensor E4412A MY41495277 1-Apr-10 (No. 217-01136) Apr-11 Apr-11 Power sensor E4412A MY41498087 1-Apr-10 (No. 217-01136) Reference 3 dB Attenuator SN: S5054 (3c) 30-Mar-10 (No. 217-01159) Mar-11 Reference 20 dB Attenuator SN: S5086 (20b) 30-Mar-10 (No. 217-01161) Mar-11 Reference 30 dB Attenuator SN: S5129 (30b) 30-Mar-10 (No. 217-01160) Mar-11 Reference Probe ES3DV2 SN: 3013 30-Dec-09 (No. ES3-3013_Dec09) Dec-10 DAE4 SN: 660 20-Apr-10 (No. DAE4-660_Apr10) Apr-11 ID # Secondary Standards Check Date (in house) Scheduled Check RF generator HP 8648C US3642U01700 4-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-09) In house check: Oct10 Name Function Signature Jeton Kastrati Calibrated by: Laboratory Technician Approved by: Katja Pokovic **Technical Manager** Issued: July 15, 2010 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x, y, z = NORMx, y, z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- *DCPx,y,z*: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe ES3DV3

SN:3183

Manufactured: Last calibrated: Recalibrated: March 25, 2008 August 17, 2009 July 14, 2010

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: ES3DV3 SN:3183

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	1.21	1.15	1.07	± 10.1%
DCP (mV) ⁸	88.6	86.9	89.5	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	С	VR mV	Unc ^e (k=2)
10000	cw	0.00	х	0.00	0.00	1.00	300.0	± 1.5%
			Y	0.00	0.00	1.00	300.0	
			Z	0.00	0.00	1.00	300.0	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX, Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

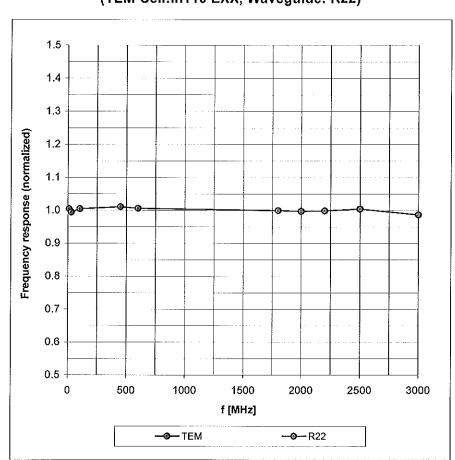
^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: ES3DV3 SN:3183

f [MHz]	Validity [MHz] ^c	Permittivity	Conductivity	ConvF X Cor	NVFY Co	onvF Z	Alpha	Depth Unc (k=2)
835	± 50 / ± 100	41.5 ± 5%	0.90 ± 5%	6.11	6.11	6.11	0.99	1.04 ±11.0%
1810	± 50 / ± 100	40.0 ± 5%	1.40 ± 5%	5.05	5.05	5.05	0.58	1.33 ±11.0%
1950	± 50 / ± 100	40.0 ± 5%	1.40 ± 5%	4.82	4.82	4.82	0.54	1.37 ±11.0%
2450	± 50 / ± 100	39.2 ± 5%	1.80 ± 5%	4.49	4.49	4.49	0.44	1.70 ±11.0%

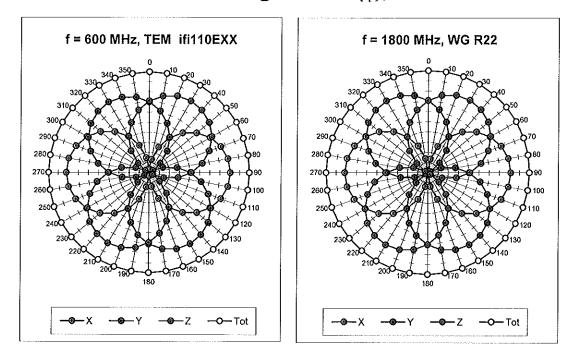
Calibration Parameter Determined in Head Tissue Simulating Media

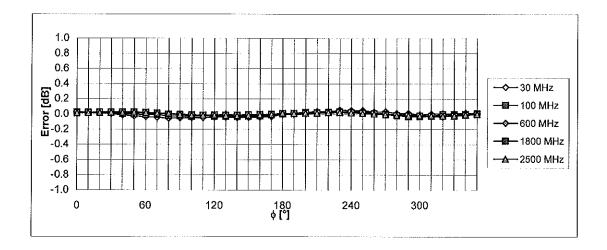

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

DASY/EASY - Parameters of Probe: ES3DV3 SN:3183

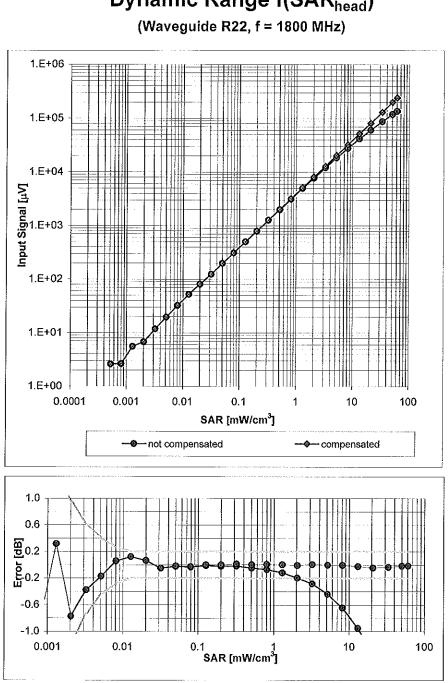
f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Cor	IVFY Co	nvF Z	Alpha	Depth Unc (k=2)
835	± 50 / ± 100	55.2 ± 5%	0.97 ± 5%	6.15	6.15	6.15	0.95	1.10 ± 11.0%
1810	± 50 / ± 100	53.3 ± 5%	1.52 ± 5%	4.84	4.84	4.84	0.39	1.87 ±11.0%
1950	± 50 / ± 100	53.3 ± 5%	1.52 ± 5%	4.86	4.86	4.86	0.28	2.80 ±11.0%
2450	± 50 / ± 100	52.7 ± 5%	1.95 ± 5%	4.36	4.36	4.36	0.69	1.31 ±11.0%

Calibration Parameter Determined in Body Tissue Simulating Media

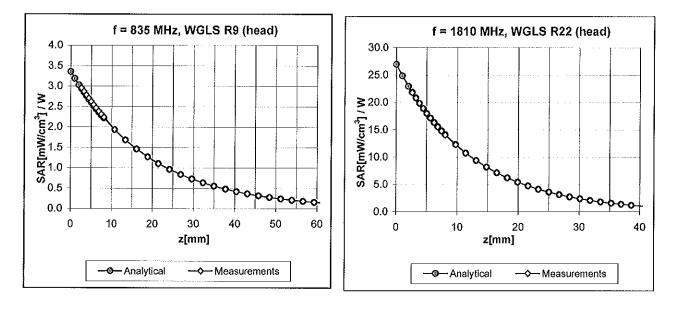

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.


Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

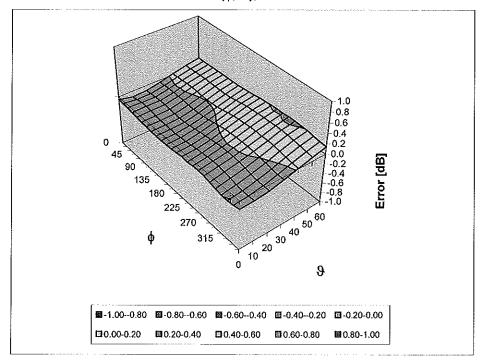

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head})


Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in HSL

Error (φ, ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4.0 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Appendix 5

Dipole Characterization Certificate

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage С

Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 108

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client **Motorola MDb** Certificate No: D1800V2-271_Mar11

CALIBRATION CERTIFICATE

	아님, 동안 수 없는 것은 사람이 가지만 했다.		
Object	D1800V2 - SN: 2	71	
Calibration procedure(s)	QA CAL-05.v8 Calibration proce	dure for dipole validation kits	
Calibration date:	March 08, 2011		
		onal standards, which realize the physical ur obability are given on the following pages ar	
All calibrations have been conduct	ed in the closed laborator	y facility: environment temperature (22 \pm 3)°	C and humidity < 70%.
Calibration Equipment used (M&TE	E critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-10 (No. 217-01266)	Oct-11
Power sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01266)	Oct-11
Reference 20 dB Attenuator	SN: 5086 (20g)	30-Mar-10 (No. 217-01158)	Mar-11
Type-N mismatch combination	SN: 5047.2 / 06327	30-Mar-10 (No. 217-01162)	Mar-11
Reference Probe ES3DV3	SN: 3205	30-Apr-10 (No. ES3-3205_Apr10)	Apr-11
DAE4	SN: 601	10-Jun-10 (No. DAE4-601_Jun10)	Jun-11
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-10)	In house check: Oct-11
	Name	Function	Signature
Calibrated by:	Dimce Iliev	Laboratory Technician	D. Riev
Approved by:	Katja Pokovic	Technical Manager	John
This calibration certificate shall not	be reproduced except in	full without written approval of the laboratory	Issued: March 9, 2011

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

- S Schweizerischer Kalibrierdienst
- Service suisse d'étalonnage
- C Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Accreditation No.: SCS 108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1800 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.4 ± 6 %	1.35 mho/m ± 6 %
Head TSL temperature during test	(21.0 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.41 mW / g
SAR normalized	normalized to 1W	37.6 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	38.5 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.96 mW / g
SAR normalized	normalized to 1W	19.8 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	20.0 mW /g ± 16.5 % (k=2)

Body TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.2 ± 6 %	1.45 mho/m ± 6 %
Body TSL temperature during test	(21.0 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.25 mW / g
SAR normalized	normalized to 1W	37.0 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	37.9 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	4.94 mW / g
SAR normalized	normalized to 1W	19.8 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	20.0 mW / g ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.7 Ω + 4.2 jΩ
Return Loss	- 27.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.2 Ω + 3.9 jΩ
Return Loss	- 26.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.198 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Design Modification by End User

The dipole has been modified with Teflon Rings (TR) placed within identified markings close to the end of each dipole arm. Calibration has been performed with TR attached to the dipole.

Additional EUT Data

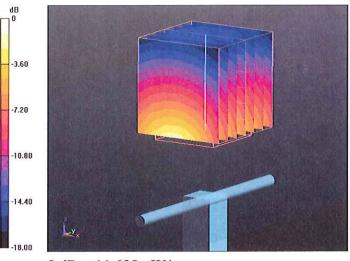
Manufactured by	SPEAG
Manufactured on	August 21, 2000

DASY5 Validation Report for Head TSL

Date/Time: 07.03.2011 12:42:07

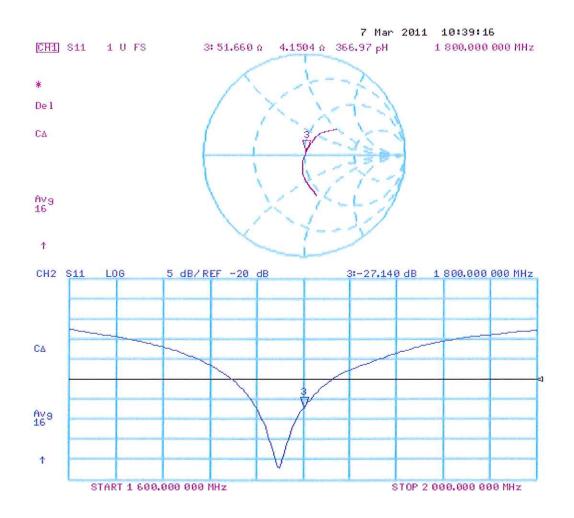
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:271


Communication System: CW; Frequency: 1800 MHz; Duty Cycle: 1:1 Medium: HSL U12 BB Medium parameters used: f = 1800 MHz; σ = 1.34 mho/m; ϵ_r = 39.5; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.05, 5.05, 5.05); Calibrated: 30.04.2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY52, V52.6.2 Build (424)
- Postprocessing SW: SEMCAD X, V14.4.4 Build (2829)


Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.375 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 17.081 W/kg SAR(1 g) = 9.41 mW/g; SAR(10 g) = 4.96 mW/g

Maximum value of SAR (measured) = 11.630 mW/g

 $0 \, dB = 11.630 \, mW/g$

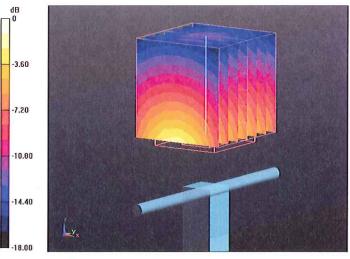
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

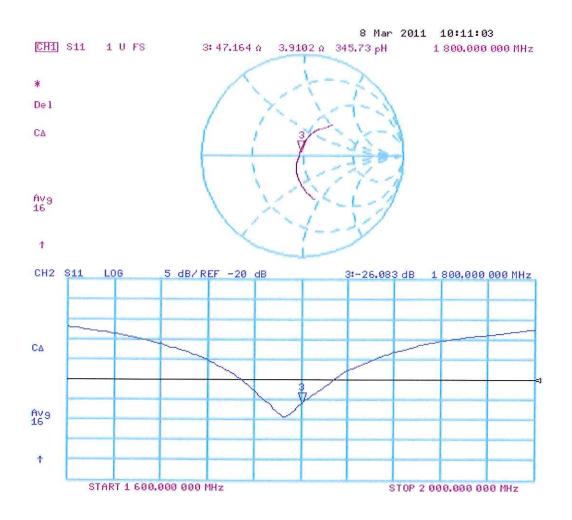
Date/Time: 08.03.2011 12:23:29

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:271


Communication System: CW; Frequency: 1800 MHz; Duty Cycle: 1:1 Medium: MSL U12 BB Medium parameters used: f = 1800 MHz; σ = 1.45 mho/m; ϵ_r = 52.4; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:


- Probe: ES3DV3 SN3205; ConvF(4.74, 4.74, 4.74); Calibrated: 30.04.2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- Measurement SW: DASY52, V52.6.2 Build (424)
- Postprocessing SW: SEMCAD X, V14.4.4 Build (2829)

Pin=250 mW/d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.157 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 15.852 W/kg SAR(1 g) = 9.25 mW/g; SAR(10 g) = 4.94 mW/gMaximum value of SAR (measured) = 11.632 mW/g

 $0 \, dB = 11.630 \, mW/g$

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Motorola MDb

Client

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage С
- Servizio svizzero di taratura S
 - **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D1800V2-263_Oct10

Accreditation No.: SCS 108

CALIBBATION CERTIFICATE

Object	D1800V2 - SN: 2	63	
Calibration procedure(s)	QA CAL-05.v7 Calibration proce	dure for dipole validation kits	
Calibration date:	October 13, 2010)	
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.			
Calibration Equipment used (M&T	e ontoer for calibrationy		
Primary Standards	1D #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-10 (No. 217-01266)	Oct-11
Power sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01266)	Oct-11
Reference 20 dB Attenuator	SN: 5086 (20g)	30-Mar-10 (No. 217-01158)	Mar-11
Type-N mismatch combination	SN: 5047.2 / 06327	30-Mar-10 (No. 217-01162)	Mar-11
Reference Probe ES3DV3	SN: 3205	30-Apr-10 (No. ES3-3205_Apr10)	Apr-11
DAE4	SN: 601	10-Jun-10 (No. DAE4-601_Jun10)	Jun-11
	1		
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-10)	In house check: Oct-11
	Name	Function	Signature
Calibrated by:	Dimce Illev	Laboratory Technician	N. Dile
Approved by:	Kalja Pokovic	Technical Manager	<u>ICI</u>
This calibration certificate shall no	t be reproduced except in	full without written approval of the laboratory.	lssued: October 14, 2010

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- C Servizio svizzero di taratura
- Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

Accreditation No.: SCS 108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	-
Frequency	1800 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.9 ± 6 %	1.35 mho/m ± 6 %
Head TSL temperature during test	(21.9 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.38 mW / g
SAR normalized	normalized to 1W	37.5 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	38.1 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.95 mW / g
SAR normalized	normalized to 1W	19.8 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	19.9 mW /g ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.2 Ω + 7.0 jΩ
Return Loss	- 23.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.206 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

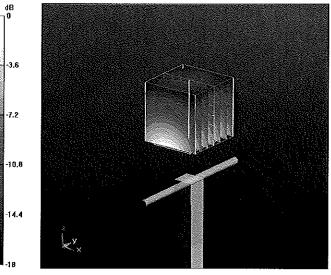
Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 05, 2000

DASY5 Validation Report for Head TSL

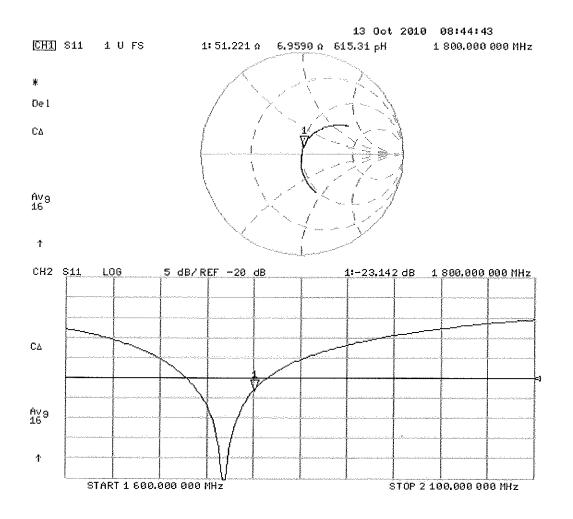
Date/Time: 13.10.2010 11:30:21

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:263


Communication System: CW; Frequency: 1800 MHz; Duty Cycle: 1:1 Medium: HSL U12 BB Medium parameters used: f = 1800 MHz; $\sigma = 1.35$ mho/m; $\varepsilon_r = 38.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.05, 5.05, 5.05); Calibrated: 30.04.2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY52, V52.2 Build 0, Version 52.2.0 (163)
- Postprocessing SW: SEMCAD X, V14.2 Build 2, Version 14.2.2 (1685)


Pin=250 mW/d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.5 V/m; Power Drift = 0.064 dB Peak SAR (extrapolated) = 17 W/kg SAR(1 g) = 9.38 mW/g; SAR(10 g) = 4.95 mW/g Maximum value of SAR (measured) = 11.5 mW/g

 $0 \, dB = 11.5 \, mW/g$

Impedance Measurement Plot for Head TSL

END OF REPORT