

MOBILE DEVICES BUSINESS

PRODUCT SAFETY AND COMPLIANCE EMC LABORATORY

EMC TEST REPORT

Test Report Number – 24229-1 WLAN

<u>Report Date</u> – December 1, 2010

The test results contained herein relate only to the model(s) identified. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical characteristics.

As the responsible EMC Engineer, I hereby declare that the equipment tested as specified in this report conforms to the requirements indicated.

Signature:

Name: Albert J. Patapack

Title: EMC Engineer

Date: December 1, 2010

This report must not be reproduced, except in full, without written approval from this laboratory.

THIS REPORT MUST NOT BE USED TO CLAIM PRODUCT ENDORSEMENT BY UKAS OR ANY AGENCY OF THE U.S. GOVERNMENT.

UKAS Certificate Number: 2404

Table of Contents

Test Report Details	3
Applicable Standards	3
Summary of Testing	4
General and Special Conditions	4
Equipment and Cable Configurations	5
Measuring Equipment and Calibration Information	5
Description of WLAN Transmitter	5
Measurement Procedures and Data	6
Spectrum Bandwidth	6
Measurement Procedure	6
Measurement Results	6
Peak Output Power	19
Measurement Procedure	19
Measurement Results	19
Power Spectral Density	27
Measurement Procedure	27
Measurement Results	27
Spurious RF Conducted Emissions	28
Measurement Procedure	28
Measurement Results	28
AC Line Conducted Emissions	45
Measurement Procedure	45
Measurement Results	45

Test Report Details

Tests Performed By:	ADR Testing Service Location Code: ADR LV Motorola Mobility Inc Product Safety and Compliance Group 600 North US Hwy 45 Libertyville, IL 60048 PH (847) 523-6167 Fax (847) 523-4538 FCC Registration Number: 316588 Industry Canada Number: 109O-1
Tests Requested By:	Motorola Mobility Inc. 600 North US Hwy 45 Libertyville, IL 60048
Product Type:	Cellular Phone
Signaling Capability:	WCDMA 850/1900, GSM 850/900/1800/1900, HSDP, EDGE, Bluetooth, 802.11a/b/g/n
FCC ID:	IHDP56LS1
Serial Numbers:	LOLAAD0021
Testing Complete Date:	December 1, 2010

Applicable Standards

All tests and measurements indicated in this document were performed in accordance with the Code of Federal Regulations Title 47 Part 2, Sub-part J as well as the following parts:

<u>X</u> Part 15 Subpart C – Intentional Radiators

Applicable Standards: ANSI 63.4 2003, RSS-210 Issue 7

Summary of Testing

Test	Test Name	Pass/Fail
1	Spectrum Bandwidth	Pass
2	Peak Power	Pass
3	Power Spectral Density	Pass
4	Spurious RF Conducted Emissions	Pass
5	AC Line Conducted Emissions	Pass
Test	Test Name	Results
1	Spectrum Bandwidth	See plots
2	Peak Power	See plots
3	Power Spectral Density	See tables
4	Spurious RF Conducted Emissions	See plots
5	AC Line Conducted Emissions	See Plots

General and Special Conditions

All testing for this report was performed with a fully charged Model SNN5880A 1880mAH Battery.

All testing was done in an indoor controlled environment. The temperature and the relative humidity were maintained within the ANSI C63.4 2003 Standard requirements during the entire duration of testing.

Equipment and Cable Configurations

The EUT was tested in a stand-alone configuration that is representative of typical use.

Measuring Equipment and Calibration Information

Manufacturer	Equipment Type	Model No.	Serial Number	Calibration Due Date
Rohde Schwarz	Receiver	ESI26	100001	9/23/2011
Agilent	Signal Analyzer	N9020A	US46470586	12/18/2010
Attenuator	Weinschel	AS-6	6675	NCR
Attenuator	Weinschel	AS-6	6677	NCR
ETS	LISN	3810/2	00062907	9/08/2011
ETS	LISN	3810/2	00062912	9/08/2011

All test equipment was within their calibration date during the time of testing. When equipment went out of calibration during testing it was replaced using a similar piece of calibrated equipment. All these equipments are listed in the equipment list. All equipment is on a one-year calibration cycle.

Description of WLAN Transmitter

The EUT offers WLAN, operating in the 2.4GHz and 5GHz bands, as a feature. This report covers operation in the 2.4GHz band only. The WLAN antenna is mounted inside of the EUT. The antenna installation is permanent. For a more thorough description of the functionality please refer to Exhibit 12 of this package.

As a WLAN transmitter, it is designed operate with other WLAN devices as defined by the industrial standard. In this application, the device is battery operated.

De Facto EIRP Limit – Pursuant 47 CFR 15.247(b)(4); RSS-210 Section A8.4.

Criterion: The conducted output power limit of 1-watt is based on the use of antennas with directional gains that do not exceed 6 dB_i. If transmitting antennas of directional gain greater than 6 dB_i are used, the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dB_i.

The antenna employed by this transmitter is intended to be omni-directional, and thus will not exhibit directional gain in excess of 6 dB_i . The conducted power is less than the limits set forth (see elsewhere in this report for details).

Measurement Procedures and Data

Spectrum Bandwidth

CFR 47 Part 15.247

Measurement Procedure

The RF output port of the Equipment-Under-Test is directly coupled to the input of the EMC analyzer through a specialized RF connector and a 10dB passive attenuator. A fully charged battery was used for the supply voltage.

The Bluetooth frequency hopping function of the EUT was enabled. The spectrum analyzer used the following settings:

- 1. $RBW \ge 100 \text{ kHz}$
- 2. $VBW \ge RBW$
- 3. Sweep = auto
- 4. Detector function = peak
- 5. Trace = max hold

The trace was allowed to stabilize. The EUT was transmitting at its maximum data rate. The marker-to-peak function was used to set the marker to the peak of the emission. The marker-delta function was used to measure 6 dB down one side of the emission. The marker-delta function and marker was moved to the other side of the emission until it was even with the reference marker. The marker-delta reading at this point was the 6 dB bandwidth of the emission. The same procedure was repeated for 20 dB bandwidth.

Measurement Results

See attached

802.11b Mode

6 dB Bandwidth Channel 1 @ 1Mbps

6 dB Bandwidth Channel 6 @ 1Mbps

FCC ID: IHDP56LS1

6 dB Bandwidth Channel 11 @ 1Mbps

20 dB Bandwidth Channel 1 @ 5.5Mbps

20 dB Bandwidth Channel 11 @ 5.5Mbps

802.11g Mode

6 dB Bandwidth Channel 1 @ 6Mbps

6 dB Bandwidth Channel 6 @ 6Mbps

20 dB Bandwidth Channel 1 @ 9Mbps

20 dB Bandwidth Channel 11 @ 9Mbps

802.11n 400ns GI Mode

6dB Bandwidth Channel 1 @ 7.2Mbps

6dB Bandwidth Channel 6 @ 7.2Mbps

20dB Bandwidth Channel 1 @ 14.4Mbps

20dB Bandwidth Channel 11 @ 14.4Mbps

802.11n 800ns GI Mode

6 dB Bandwidth Channel 1 @ 6.5Mbps

6 dB Bandwidth Channel 6 @ 6.5Mbps

20 dB Bandwidth Channel 1 @ 6.5Mbps

20 dB Bandwidth Channel 11 @ 6.5Mbps

PEAK OUTPUT POWER

CFR 47 Part 15.247

Measurement Procedure

The RF output port of the Equipment-Under-Test is directly coupled to the input of the Spectrum analyzer through a specialized RF connector and a 10dB passive attenuator. A fully charged battery was used for the supply voltage. Initially, an average detector is used to measure power in the low, middle and high channels for all data rates. The average measurements are used to determine which data rate is to be fully tested for each supported mode. Using a peak detector, the power is then measured for the applicable data rates.

Measurement Results

See Attached

Initial average power measurments in the 2.4GHz band

	Α	Average power (dBm) for <u>802.11b</u> Data Rates							
Channel	1 Mbps	2 Mbps	5.5 Mbps	11 Mbps					
1	18.62	19.34	19.31	19.42					
6	17.64	18.43	18.77	18.26					
11	16.79	17.43	17.83	17.39					

Average power (dBm) for 802.11g **Data Rates** 18 Mbps 24 Mbps Channel 6 Mbps 9 Mbps 12 Mbps 36 Mbps 48 Mbps 54 Mbps 12.21 12.12 12.07 11.87 11.82 11.9 11.87 11.85 1 17.09 16.83 16.9 16.45 13.87 15.43 14.35 14.37 6 14.81 16.25 16.17 16.03 15.69 13.05 13.56 11 14.48

		<u>n</u> Data Rat	es							
		20 MHz BW, 400 ns GI								
Channel	7.2 Mbps	14.4 Mbps	21.7 Mbps	28.9 Mbps	43.3 Mbns	57.8 Mbps	65 Mbps	72.2 Mbps		
1	10.8	10.68	10.47	10.48	10.5	10.49	10.46	10.46		
6	15.21	15.42	14.97	13.66	13.75	13.87	13.69	11.64		
11	14.76	14.63	14.2	13.03	12.99	13.28	12.96	11.25		

		A۱	verage pow	ver (dBm)	for <u>802.11</u>	<u>n</u> Data Rat	es		
		20 MHz BW, 800 ns GI							
Channel	6.5 Mbps	13 Mbps	19.5 Mbps	26 Mbps	39 Mbps	52 Mbps	58.5 Mbps	65 Mbps	
1	10.82	10.73	10.50	10.48	10.60	10.46	10.39	10.47	
6	15.65	15.49	15.01	13.95	13.65	13.93	13.51	11.82	
11	14.83	14.61	14.53	13.31	13.09	13.24	13.25	11.26	

Based on these initial measurements, it was determined that testing will be performed in the 5.5Mbps data rate for the 802.11b mode, the 9Mbps data rate for the 802.11g mode, the 14.4Mbps data rate for the 802.11n 400ns GI mode and 6.5Mbps data rate for 802.11n 800ns GI mode. Plots showing the peak power measurements for the applicable data rates follow.

802.11b Mode

Max. Power Channel 1 @ 5.5Mbps

Max. Power Channel 6 @ 5.5Mbps

FCC ID: IHDP56LS1

Max. Power Channel 11 @ 5.5Mbps

802.11g Mode

Max. Power Channel 1 @ 9Mbps

Max. Power Channel 11 @ 9Mbps

802.11n 400ns GI Mode

Max. Power Channel 1 @ 14.4Mbps

Max. Power Channel 6 @ 14.4Mbps

FCC ID: IHDP56LS1

Max. Power Channel 11 @ 14.4Mbps

802.11n 800ns GI Mode

Max. Power Channel 1 @ 6.5Mbps

Max. Power Channel 11 @ 6.5Mbps

Power Spectral Density

CFR 47 Part 15.247

Measurement Procedure

The RF output port of the Equipment-Under-Test is directly coupled to the input of the EMC analyzer through a specialized RF connector and a 10dB passive attenuator. A fully charged battery was used for the supply voltage.

The WLAN DSSS function of the EUT was enabled. The spectrum analyzer used the following settings:

- 1. Span = 300 kHz
- 2. VBW = 30 kHz
- 3. RBW=3 kHz
- 4. Sweep = 50 ms
- 5. Detector function = peak
- 6. Trace = max hold

The trace was allowed to stabilize. The EUT was transmitting at its maximum data rate.

Measurement Results

2412 MHz	2437MHz	2462MHz					
-5.723dBm	-5.622dBm	-7.636dBm					

802.11 b @ 5.5Mbps

2412 MHz	2437MHz	2462MHz					
-18.161dBm	-14.833 dBm	-14.554dBm					
902 11 a @ 0Mbma							

<u>802.11 g @ 9Mbps</u>

2412 MHz	2437MHz	2462MHz						
-19.533dBm	-15.301 dBm	-16.108 dBm						
802.11n 400ns GI @ 14.4Mbns								

2412 MHz 2437MHz 2462MHz -20.587dBm -16.676dBm -17.011dBm 802 11n 800ng CL @ 6 5Mbpg 6 5Mbpg

802.11n 800ns GI @ 6.5Mbps

SPURIOUS RF CONDUCTED EMISSIONS

CFR 47 Part 15.247

Measurement Procedure

The RF output port of the Equipment-Under-Test is directly coupled to the input of the EMC analyzer through a specialized RF connector and a 10dB passive attenuator. A fully charged battery was used for the supply voltage.

Measurement Results

See attached:

802.11b Mode @ 5.5Mbps

Conducted Spurious Emissions 30-3000 MHz (Low Channel)

Conducted Spurious Emissions 2-10 GHz (Low Channel)

D Agi	lent Spectrum Analyzer -	MOT: EMC 24229	-1 WLAN Co	nducted							
	50 Ω		AC	SENSE:EXT	Al	ALIGNAUTO			03:48:46 PMNov 18, 2010		
SIG		Input: RF	PNO: Fa IFGain:L	ust 🕞 Trig: Free Ru ow Atten: 20 dB	un I	Avg H	lold:>20/2	0		TYPE DET	
Peal	< Table			Bof Offeet 10.9 dl							
	Frequency (GHz)	dBm	10 dB/di	 Ref 20.00 dBn 	1						
1											
2			10.0								
3			10.0								
4			0.00								
5			0.00								
6			-10.0								-10.48 dBm
7											
8			-20.0								
9											
10			-30.0								
11											
12			-40.0								
13											
14			-50.0					.	4.		
15				المراد ومعرفه والإيلان والتراري	an Barry States	Jung man and the sent	arther states	white the state	and the second	William and	www.www.white
16			-60.0 🚜	and a first of the second s							
17			70.0								
18			-70.0								
19											
20			Start 1	0.000 GHz					St	op 20.0	00 GHz
			#Res B	W 100 kHz	#VBW 1	00 kHz		Sv	veep 1.	21 s (10	001 pts)
💾 si	Start 🔤 🖉 🙆 😰 🗣 🚱 🗊 Diglent Spectrum Ana 😵 3:48 PM										

Conducted Spurious Emissions 10-20 GHz (Low Channel)

Conducted Spurious Emissions 20-26.5 GHz (Low Channel)

D Ag	ilent Spectrum Analyzer - I	MOT: EMC 24229	-1 WLAN Condu	icted						(
IXI Stat	50 Ω rt Ereg 30 00000		AC	SENSE:EXT		ALIGNAUTO #Avg Type: Pwr(RMS)			03	52:52 PMN TRACE	Jov 18, 2010
enter		Input: RF	PNO: Fast IFGain:Low	Trig: F Atten	ree Run : 20 dB	AvgjH	lold:>20/20	,		TYPE DET	M WWWW PNNNN
Pea	k Table			Ref Offset	10 8 dB						
	Frequency (GHz)	dBm	10 dB/div	Ref 20.00	dBm						
1	2.439	10.05									
2			10.0							1	
3											
4			0.00								
5											
6			-10.0								-10.57 dBm
/											
°			-20.0								
9			20.0								
11			-30.0								
12			-40.0								
13									ļ		
14			-50.0							\	
15									ملكم والعربان والمعاد	" Mindrage	U. Huhaykia La
16			-60.0	and the state of the second	and the second	pour contraction	₩ ∽ _₽ ₩₽₩₩₩₩₽₩₽₽₩₽₩₽₩₽₩₽₩₽₩₽₩₽₩₽₽₩₽₽₩₽₽₩₽₽₩₽	division from t			
17											
18			-70.0								
19											
20			Start 30	ИНz				_	S	top 3.0	00 GHz
	#Res BW 100 kHz #VBW 100 kHz Sweep 358 ms (1001 pts)										
💾 s	😽 start 💿 🌮 🚱 👔 🕞 👔 I Agilent Spectrum Ana 🔍 📢 3:52 PM										

Conducted Spurious Emissions 30-3000 MHz (Mid Channel)

Conducted Spurious Emissions 2-10 GHz (Mid Channel)

😰 Agilent Spectrum Analyzer - MOT: EMC 24229-1 WLAN Conducted												
50 Ω 50 Ω			AC	AC SENSE:EXT			ALIGNAUTO			03:55:10 PMNov 18, 2010		
Start Free T0.00000000 GHZ Input: RF		PNO: Fast IFGain:Low	Trig: Free Ru Atten: 20 dB	in	Avg Hold>20/20							
Pea	ak Table			Bof Offeet 10.9 dl	,							
	Frequency (GHz)	dBm	10 dB/div	Ref 20.00 dBm) 							
1												
2			10.0									
3												
4												
5			0.00									
6			-10.0								-10.57 dBm	
7												
8			-20.0									
9												
10			-30.0									
11												
12			-40.0									
13												
14			-50.0					an di				
15				العربي والمعرف والمراد ويرب	all	- hally man	بالاساك الغويانه ورا	alge for the second second	المهيمة المراجعة	for all and a state	W Marthanes	
16			-60.0									
17			70.0									
18			-70.0									
19												
20	20 Start 10.000 GHz Stop 20.000 GH									00 GHz		
			#Res BW	100 KHZ	#VBW 1	OU KHZ		SV	veep 1.	21 S (10	JUT pts)	
-	🕂 start 💿 🌮 🙆 💽 Aglent Spectrum Ana											

Conducted Spurious Emissions 10-20 GHz (Mid Channel)

Conducted Spurious Emissions 20-26.5 GHz (Mid Channel)

Conducted Spurious Emissions 30-3000 MHz (High Channel)

Conducted Spurious Emissions 2-10 GHz (High Channel)

FCC ID: IHDP56LS1

D Ag	😰 Agilent Spectrum Analyzer - MOT: EMC 24229-1 WLAN Conducted									
50 Ω 50 Ω			AC SENSE:EXT		ALIGN AUTO #Ava	Type: Pwr(RMS)	04:08:18 PM Nov 18, 2010			
Input: RF		PNO: Fast IFGain:Low	Trig: Free Run Atten: 20 dB	n Avg ⊦	lold:>20/20					
Pea	ak Table			Pef Offeet 10.9 dB						
	Frequency (GHz)	dBm	10 dB/div	Ref 20.00 dBm						
1										
2			10.0							
3			10.0							
4										
5			0.00							
6			-10.0					-11.80 dBm		
7										
8			-20.0							
9										
10			-30.0							
11										
12			-40.0							
13										
14			-50.0							
15				an an an abat diban data at tala ta	and marked the port of the sal	and any and the states of the second s	helper production	and and a stand and and a stand and a s		
16			-60.0	And a second state of the						
17			70.0							
18			-70.0							
19										
20	20 Start 10.000 GHz Stop 20.000 GH									
			#Res BW	100 kHz #	VBW 100 kHz	S	weep 1.2	1 s (1001 pts)		
# 4	🕂 Start 🔤 🖉 🕼 💽 🚺 Aglent Spectrum Ana									

Conducted Spurious Emissions 10-20 GHz (High Channel)

Conducted Spurious Emissions 20-26.5 GHz (High Channel)

802.11g @ 9Mbps

Conducted Spurious Emissions 30-3000MHz (Low Channel)

Conducted Spurious Emissions 2-10GHz (Low Channel)

Conducted Spurious Emissions 10-20GHz (Low Channel)

Conducted Spurious Emissions 20-26.5GHz (Low Channel)

Conducted Spurious Emissions 30-3000MHz (Mid Channel)

Conducted Spurious Emissions 2-10GHz (Mid Channel)

Conducted Spurious Emissions 10-20GHz (Mid Channel)

Conducted Spurious Emissions 20-26.5GHz (Mid Channel)

Conducted Spurious Emissions 30-3000MHz (High Channel)

Conducted Spurious Emissions 2-10GHz (High Channel)

FCC ID: IHDP56LS1

😰 Agilent Spectrum Analyzer - MOT:EMC 24229-1 WLAN Conducted												
			AC	AC SENSE:EXT			ALIGNAUTO			01:52:59 AMNov 19, 2010		
Start Free T0.00000000 GHZ Input: RF		PNO: Fa IFGain:L	ow Trig	, Trig: Free Run Atten: 20 dB		Avg Hold:>20/20			TYPE MWWWWW DET PNNNN			
Pea	ak Table			Def Offee								
	Frequency (GHz)	dBm	10 dB/di	v Ref 20.0	00 dBm							
1												
2			10.0									
3			10.0									
4			0.00									
5			0.00									
6			-10.0									
7			-10.0								-13.52 dBm	
8			-20.0									
9												
10			-30.0									
11												
12			-40.0									
13												
14			-50.0									
15						مى مەربىي المارىيى مەربىيى مەرب	فيهدد الألاج الاللو	- April April and the	a Like was a state of the second	- Mayor Maria	alleteralised	
16			-60.0	where we have the state of the								
17												
18			-70.0									
10												
20			Start 1	Start 10.000 GHz			Stop 20.000 GHz					
20			#Res B	W 100 kHz	#V	'BW 100 kHz		Sv	veep 1.	21 s (10)01 pts)	
# 4 s	🕂 Start 🛛 🕫 🖉 😰 🗭 🔲 Anlen's Sectrum Ana											

Conducted Spurious Emissions 10-20GHz (High Channel)

Conducted Spurious Emissions 20-26.5GHz (High Channel)

802.11b @ 5.5Mbps Band Edge

Channel 1 – Lower Band Edge

Channel 11 – Upper Band Edge

802.11g @ 9Mbps Band Edge

Channel 1 – Lower Band Edge

Channel 11 – Upper Band Edge

802.11n 400ns GI @ 14.4Mbps Band Edge

Channel 1 – Lower Band Edge

Channel 11 @ 9Mbps – Upper Band Edge

802.11n 800ns GI @ 6.5Mbps Band Edge

Channel 1 – Lower Band Edge

Channel 11 @ 6.5Mbps – Upper Band Edge

AC LINE CONDUCTED EMISSIONS

CFR 47 Part 15.207

Measurement Procedure

Measured levels of ac power line conducted emission shall be the radio-noise voltage from the line probe or across the 50 Ω LISN port, where permitted, terminated into a 50 Ω noise meter, or where permitted or required, the radio-noise current on the power line sensed by a current probe.

All radio-noise voltage and current measurements shall be made on each currentcarrying conductor at the plug end of the EUT power cord or calibrated extension cord by the use of mating plugs and receptacles on the EUT and LISN. Equipment shall be tested with power cords that are normally supplied using an LISN, the 50 Ω measuring port is terminated by a 50 Ω radio-noise meter or a 50 Ω resistive load. All other ports are terminated in 50 Ω .

Detectors – Quasi Peak and Average Detector.

Measurement Results

See attached:

802.11b @ 5.5Mbps

WLAN Channel 1 - Tx Mode - Line Coupling

WLAN Channel 1 - Tx Mode – Neutral Coupling

WLAN Channel 6 - Tx Mode - Line Coupling

WLAN Channel 6 - Tx Mode - Neutral Coupling

WLAN Channel 11 - Tx Mode - Neutral Coupling

802.11g @ 9Mbps

WLAN Channel 1 - Tx Mode - Line Coupling

WLAN Channel 6 - Tx Mode - Line Coupling

WLAN Channel 6 - Tx Mode - Neutral Coupling

WLAN Channel 11 - Tx Mode - Neutral Coupling

End of Test Report