

MOBILE DEVICES BUSINESS

PRODUCT SAFETY AND COMPLIANCE EMC LABORATORY

EMC TEST REPORT

Test Report Number – 24229-1 BT

<u>Report Date</u> – December 1, 2010

The test results contained herein relate only to the model(s) identified. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical characteristics.

As the responsible EMC Engineer, I hereby declare that the equipment tested as specified in this report conforms to the requirements indicated.

Signature:

Name: Albert J. Patapack

Title: EMC Engineer

Date: December 1, 2010

This report must not be reproduced, except in full, without written approval from this laboratory.

THIS REPORT MUST NOT BE USED TO CLAIM PRODUCT ENDORSEMENT BY UKAS OR ANY AGENCY OF THE U.S. GOVERNMENT.

UKAS Certificate Number: 2404

Table of Contents

Test Report Details	3
Applicable Standards	3
Summary of Testing	4
General and Special Conditions	4
Equipment and Cable Configurations	
Measuring Equipment and Calibration Information	
Description of Bluetooth Transmitter	5
CARRIER FREQUENCY SEPARATION	6
Measurement Procedure	
Measurement Results	6
NUMBER OF HOPPING FREQUENCIES	8
Measurement Procedure	8
Measurement Results	
TIME OF OCCUPANCY (DWELL TIME)	
Measurement Procedure	. 10
Measurement Results	. 10
20 dB BANDWIDTH	. 12
Measurement Procedure	. 12
Measurement Results	. 12
PEAK OUTPUT POWER	. 14
Measurement Procedure	. 14
Measurement Results	
BAND-EDGE COMPLIANCE OF RF CONDUCTED EMISSIONS	. 18
Measurement Procedure	. 18
Measurement Results	
SPURIOUS RF CONDUCTED EMISSIONS	
Measurement Procedure	
Measurement Results	. 23
AC LINE CONDUCTED	. 30
Measurement Procedure	. 30
Measurement Results	. 30

Test Report Details

Tests Performed By:	ADR Testing Service Location Code: ADR LV Motorola Mobility Inc Product Safety and Compliance Group 600 North US Hwy 45 Libertyville, IL 60048 PH (847) 523-6167 Fax (847) 523-4538 FCC Registration Number: 316588 Industry Canada Number: 109O-1
Tests Requested By:	Motorola Mobility Inc. 600 North US Hwy 45 Libertyville, IL 60048
Product Type:	Cellular Phone
Signaling Capability:	WCDMA 850/1900, GSM 850/900/1800/1900, HSDP, EDGE, Bluetooth, 802.11a/b/g/n
FCC ID:	IHDP56LS1
Serial Numbers:	LOLAAD0021
Testing Complete Date:	December 1, 2010

Applicable Standards

All tests and measurements indicated in this document were performed in accordance with the Code of Federal Regulations Title 47 Part 2, Sub-part J as well as the following parts:

<u>X</u> Part 15 Subpart C – Intentional Radiators

Applicable Standards: ANSI 63.4 2003, RSS-210 Issue 7

DA 00-705, "Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems" published by the Federal Communications Commission was also used in the testing of this product.

Summary of Testing

Test	Test Name	Pass/Fail
1 2 3 4 5	Carrier Frequency Separation Number of Hopping Frequencies Time of Occupancy (Dwell Time) 20 dB Bandwidth Spurious RF Conducted Emissions	Pass Pass Pass Pass Pass
6	Max Power	N/A
7	Band Edges	Pass
8	AC Line Conducted Spurious Emissions	Pass
Test	Test Name	Results
1	Carrier Frequency Separation	See plots
2	Number of Hopping	See plots
3	Time of Occupancy (Dwell Time)	See plots
4	20 dB Bandwidth	See plots
5	Spurious RF Conducted Emissions	See plots
6	Max Power	See plots
7	Band Edges	See plots
8	AC Line Conducted Spurious Emissions	See plots

General and Special Conditions

All testing for this report was performed with a fully charged Model SNN5880A 1880mAH Battery.

All testing was done in an indoor controlled environment. The temperature and the relative humidity were maintained within the ANSI C63.4 2003 Standard requirements during the entire duration of testing.

Equipment and Cable Configurations

The EUT was tested in a stand-alone configuration that is representative of typical use.

Manufacturer	Equipment Type	Model No.	Serial Number	Calibration Due Date
Rohde & Schwarz	Receiver	ESI26	100001	9/23/2011
Agilent	Signal Analyzer	N9020A	US46470586	12/18/2010
Attenuator	Weinschel	AS-6	6675	NCR
Attenuator	Weinschel	AS-6	6677	NCR
ETS	LISN	3810/2	00062907	9/08/2011
ETS	LISN	3810/2	00062912	9/08/2011

Measuring Equipment and Calibration Information

All test equipment was within their calibration date during the time of testing. When equipment went out of calibration during testing it was replaced using a similar piece of calibrated equipment. All these equipments are listed in the equipment list. All equipment is on a one-year calibration cycle.

Description of Bluetooth Transmitter

The EUT offers Bluetooth as a feature. The Bluetooth spread-spectrum, frequency hopping transceiver is designed to operate between 2402 and 2480 MHz. The Bluetooth antenna is mounted inside of the EUT. The antenna installation is permanent. For a more thorough description of the functionality please refer to Exhibit 12 of this package.

As a Bluetooth transmitter, it is designed operate with other Bluetooth devices as defined by the industrial standard. In this application, the device is battery operated. The Bluetooth transmitter supports Bluetooth version 2.1+EDR.

De Facto EIRP Limit – Pursuant 47 CFR 15.247(b)(4); RSS-210 Section A8.4.

Criterion: The conducted output power limit of 1-watt is based on the use of antennas with directional gains that do not exceed 6 dB_i. If transmitting antennas of directional gain greater than 6 dB_i are used, the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dB_i.

The antenna employed by this transmitter is intended to be omni-directional, and thus will not exhibit directional gain in excess of 6 dB_i. The conducted power is less than the limits set forth (see elsewhere in this report for details).

Measurement Procedures and Data

CARRIER FREQUENCY SEPARATION

CFR 47 Part 15.247

Measurement Procedure

The RF output port of the Equipment Under Test is directly coupled to the input of the EMC analyzer through a specialized RF connector and a 10dB passive attenuator. A fully charged battery was used for the supply voltage.

The Bluetooth transmitter of the EUT had its hopping function enabled. The following spectrum analyzer settings were used:

- 1. Span = wide enough to capture the peaks of two adjacent channels
- 2. Resolution (or IF) Bandwidth (RBW) $\geq 1\%$ of the span
- 3. Video (or Average) Bandwidth (VBW) \geq RBW
- 4. Sweep = auto
- 5. Detector function = peak
- 6. Trace = max hold

The trace was allowed to stabilize. The marker-delta function was used to determine the separation between the peaks of the adjacent channels.

Measurement Results

See attached.

FCC ID: IHDP56LS1

Ref Offset 14.7 dB Avg Hold>20/20 Avg Hold>20/20 Avg Hold>20/20 0 dMkr1 1.000 -0.124 0 dMkr1 1.000 -0.124 0 d -0.124	XI XI	50 Ω	MOT:EMC 24229-1		SENSE:EXT	ALIG	IN AUTO		11:52:2	8 PMNov 11, 20:
100 BUdiv Ref 15.00 dBm -0.124 500 1/Δ2 -500 1/Δ2 -500 -0.124 <	Display Li	ine -11.50	dBm Input: RF	PNO: Fast IFGain:Low					T	RACE 1 2 3 4 5 TYPE MWWWM DET PINNNN
	10 dB/div								ΔMkr1 1.	.000 MH •0.124 di
					X				1∆2	
					/	12				- Andrew Market
35.0										
15.0 1	25.0									
	5.0									
	5.0									
5.0	5.0									
	5.0									
enter 2 444000 CHr Ener 2 000	5.0									
Res BW 300 kHz #VBW 300 kHz Sweep 1.00 ms (100'		41000 GHz 300 kHz		#VB	W 300 kHz			Swe	Span ep 1.00 <u>m</u> s	3.000 Mi s (1001 pt

Carrier Frequency Separation

NUMBER OF HOPPING FREQUENCIES

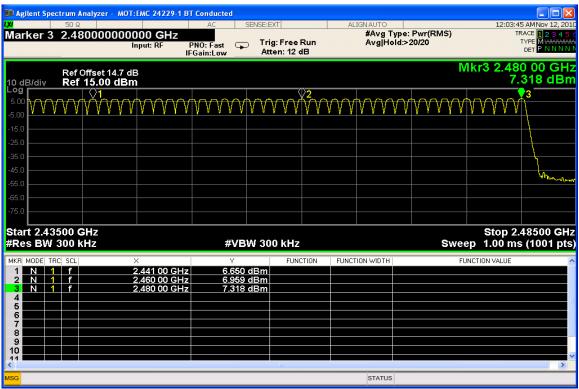
CFR 47 Part 15.247

Measurement Procedure

The RF output port of the Equipment Under Test is directly coupled to the input of the EMC analyzer through a specialized RF connector and a 10dB passive attenuator. A fully charged battery was used for the supply voltage.

The Bluetooth frequency hopping function of the EUT was enabled. The spectrum analyzer used the following settings:

- 1. Span = the frequency band of operation
- 2. RBW $\geq 1\%$ of the span
- 3. $VBW \ge RBW$
- 4. Sweep = auto
- 5. Detector function = peak
- 6. Trace = max hold


The trace was allowed to stabilize.

Measurement Results

See attached.

📕 Agilent Spectrum Analyzer - MOT:EMC 24229-1 E			
	AC SENSE:EXT PNO: Fast IFGain:Low Atten: 12 dB	ALIGNAUTO #Avg Type: Pwr(RMS) Avg Hold:>20/20	12:01:43 AMNov 12, 201 TRACE 1 2 3 4 5 TYPE M WWWW DET P N N N N
Ref Offset 14.7 dB 10 dB/div Ref 15.00 dBm		N	1kr3 2.441 000 GH 6.883 dBn
Log 5.00 -5.00 -5.00 -5.00 -25.0 -35.0 -45.0 -65.0 -75.0	<u>vvvvvvv</u> vv ² vv		
Start 2.39800 GHz #Res BW 300 kHz	#VBW 300 kHz	Sw	Stop 2.44700 GH eep 1.00 ms (1001 pts
MKR MODE TRC SCL X 1 N 1 f 2.402.000 GHz 2 N 1 f 2.402.000 GHz 3 N 1 f 2.421.000 GHz 3 N 1 f 2.421.000 GHz 5 5 5 5 5 6 6 6 6 6 9 9 9 9 10 10 11 11 11 11	6.440 dBm	FUNCTION WIDTH	FUNCTION VALUE
<		STATUS	>

Number of Hopping Frequencies (Channels 39 – 78)

TIME OF OCCUPANCY (DWELL TIME)

CFR47 Part 15.247

Measurement Procedure

The RF output port of the Equipment Under Test is directly coupled to the input of the EMC analyzer through a specialized RF connector and a 10dB passive attenuator. A fully charged battery was used for the supply voltage.

The Bluetooth hopping function of the EUT was enabled. The following spectrum analyzer settings were used:

- 1. Span = zero span, centered on a hopping channel
- 2. RBW = 1 MHz
- 3. VBW \geq RBW
- 4. Sweep = as necessary to capture the entire dwell time per hopping channel
- 5. Detector function = peak
- 6. Trace = max hold

The marker-delta function was used to determine the dwell time.

Measurement Results

See attached

Agilent Spectrum		EMC 24229-1 BT								
xu 50 Marker 1 Δ 2	2.88000 ms	nput: RF 🛛 🛛 🛛 🛛	AC PNO: Fast Gain:Low	SENSE:EXT Trig: Free I Atten: 12 c	Run	IGN AUTO #Avg Type:	Pwr(RMS)		т	1 AMNov 12, 201 RACE 1 2 3 4 5 TYPE WWWWW DET P N N N N
Ref 10 dB/div Re Log	Offset 14.7 dE f 15.00 dBm	3 1						Δ	Mkr1	2.880 ms 0.36 dB
5.00										
-5.00							. 1	Δ2		
-15.0	www.www.angararvar	<mark>huhvarderatede</mark>			ᡊᡟ᠆ᠰ᠊᠋ᠴ᠁ᡔᡨᡀ	<u>∼∼∼</u> ₽≈ <mark>⊢</mark> ∩∧₽№°₩	· · · · ·			
-25.0										
-35.0										
-45.0								la b derte	14.1.1 avla	
-65.0									. 1.11	
-75.0										
Center 2.4410										Span 0 H
Res BW 3.0 M	Hz		#VB	W 3.0 MHz		CTATUS	Sw	eep 4	.000 m	s (1001 pts
						STATUS				

Dwell Time

Packet type	Hop rate	Time slot	Dwell time	Limit	Conclusion
	(1/s)	Length (ms)	(ms)	(ms)	
DH5	320	2.880	369	400	Pass

Note: Hop rate = 1600/5 * 1/s for DH5 packets =320 Dwell time = time slot length * hop rate * 0.4s

20dB Bandwidth

CFR 47 Part 15.247

Measurement Procedure

The RF output port of the Equipment-Under-Test is directly coupled to the input of the EMC analyzer through a specialized RF connector and a 10dB passive attenuator. A fully charged battery was used for the supply voltage.

The Bluetooth frequency hopping function of the EUT was disabled. The spectrum analyzer used the following settings:

- 1. Span = 2MHz, centered on the center channel frequency
- 2. RBW \geq 1% of the 20dB span
- 3. $VBW \ge RBW$
- 4. Sweep = auto
- 5. Detector function = peak
- 6. Trace = max hold

The trace was allowed to stabilize. The EUT was transmitting at its maximum data rate. The marker-to-peak function was used to set the marker to the peak of the emission. The marker-delta function was used to measure 20dB down one side of the emission. The marker-delta function and marker was moved to the other side of the emission until it was even with the reference marker. The marker-delta reading at this point was the 20dB bandwidth of the emission.

Measurement Results

See attached

Channel	Frequency (Mhz)	20dB Bandwidth (Khz)
39	2441	1034
39 (EDR)	2441	1430

FCC ID: IHDP56LS1

20dB Bandwidth

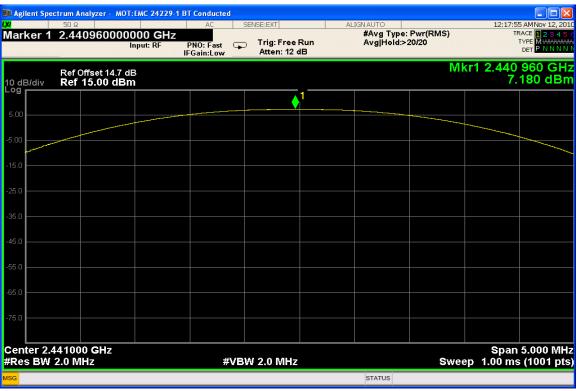
20dB Bandwidth EDR Mode

PEAK OUTPUT POWER

CFR 47 Part 15.247

Measurement Procedure

The RF output port of the Equipment-Under-Test is directly coupled to the input of the EMC analyzer through a specialized RF connector and a 10dB passive attenuator. A fully charged battery was used for the supply voltage. The peak output power was measured with the Hopping mode disabled.

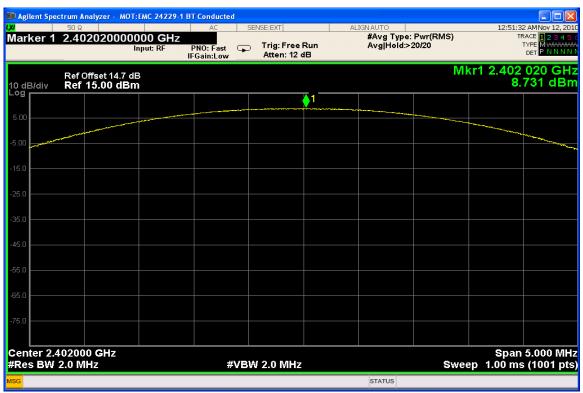

Measurement Results

See Attached

FCC ID: IHDP56LS1

ilent Spectrum Analyzer - MOT:EMC 24 50 Ω		SENSE:EXT	ALIGN AUTO	12:16:34 AMNov 12,
ker 1 2.401950000000 G	iHz	Trig: Free Run Atten: 12 dB	#Avg Type: Pwr(RMS) Avg Hold:>20/20	TRACE 1234 TYPE MWAA DET PNN
Ref Offset 14.7 dB B/div Ref 15.00 dBm			Ν	1kr1 2.401 950 G 6.000 dE
		1		
ter 2.402000 GHz s BW 2.0 MHz	#VB	W 2.0 MHz	Sw	Span 5.000 M eep 1.00 ms (1001

Peak Output Power – Low Channel

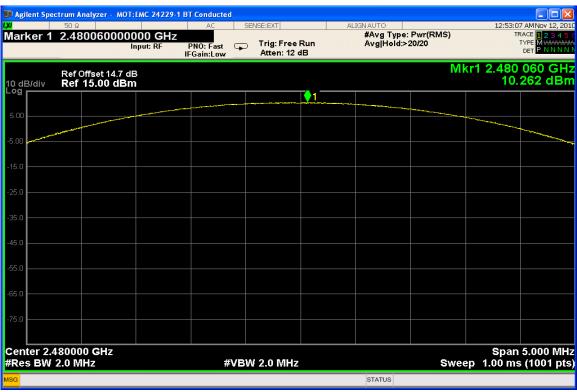


Peak Output Power – Mid Channel

FCC ID: IHDP56LS1

50 Ω	AC SENSE:	EXT	ALIGNAUTO	12:20:25 AM Nov
(er 1 2.48001000000 (Input: R	E PNO: East 😱 Tr	ig: Free Run tten: 12 dB	#Avg Type: Pwr(RM Avg Hold:>20/20	
Ref Offset 14.7 dB B/div Ref 15.00 dBm				Mkr1 2.480 010 7.726 c
		¹		
ter 2.480000 GHz s BW 2.0 MHz	#VBW 2	0 MHz		Span 5.000 Sweep 1.00 ms (100

Peak Output Power – High Channel



Peak Output Power EDR Mode – Low Channel

FCC ID: IHDP56LS1

	50 Ω		AC	SENSE:EXT		ALIGNAUTO		12:50:2	5 AMNov 12,
arker 1 2	2.44108000	00000 GH Input: RF	Z PNO: Fast IFGain:Low	D Trig: Free Atten: 12 o		#Avg Type: Avg Hold:>	20/20		ACE 123 TYPE MWW DET PNN
	Ref Offset 14.7 Ref 15.00 dl						Mk	r1 2.441 9.	080 G 864 dl
					\ 1				
nter 2 44	1000 GHz							Snan	5.000 F
nter 2.44 es BW 2.			#VE	3W 2.0 MHz			Swee	span p 1.00 ms	5.000 P

Peak Output Power EDR Mode – Mid Channel

Peak Output Power EDR Mode – High Channel

BAND-EDGE COMPLIANCE OF RF CONDUCTED EMISSIONS

CFR 47 Part 15.247

Measurement Procedure

The RF output port of the Equipment-Under-Test is directly coupled to the input of the EMC analyzer through a specialized RF connector and a 10dB passive attenuator. A fully charged battery was used for the supply voltage.

Measurement Results

See Attached:

FCC ID: IHDP56LS1

	50 Ω			-1 BT Conducted	SENSE:EXT	AL	IGNAUTO		12:31:5	
			Input: RF	PNO: Far G	Trig: Free Atten: 12 d		#Avg Type: Avg Hold:>			RACE 1234 TYPE MWWW DET PNNN
dB/div		Offset 14.7 15.00 dl							ΔMkr1 : 5	2.00 MH 9.722 d
.00								1Δ2		
.00								$\left[\begin{array}{c} \\ \end{array} \right]$		
										-14.48
.0										
.0							N		1	
.0										
						M			Uhn horas	. M
᠉᠂ᠬᡗᡳᠬ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	hand and have been	N2				ᢣᢞᠲ᠆ᠬᠺ᠇ᢕ
.0										
5.0										
enter 2. Res BW				#VE	SW 100 kHz			Swee	Span p 1.27 ms	10.00 M s (1001 p
3							STATUS			

Low Band Edge with Hopping Enabled


FCC ID: IHDP56LS1

💴 Agilent Spe		- MOT:EMC 24229-							
Marker 1	50 Ω Δ 2.0000	00000 MHz	AC	SENSE:EXT		IGNAUTO #Avg Type:		TF	4 AMNov 12, 2010 RACE <mark>1 2 3 4 5</mark> (
		Input: RF	PNO: Far G	Trig: Free F Atten: 12 d		Avg Hold:>:	20/20		
10 dB/div Log	Ref Offset 7 Ref 15.00							ΔMkr1 2 5	2.00 MHz 3.385 dE
5.00							1∆2		
						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	and the second s		
-5.00									-14.61 dBr
-15.0									
-25.0						<b>~</b> ~	`~		
-35.0								- And Market	n
-45.0			Amar	Cannon	( <u>x</u>			- WWW	w long
	᠁ᡣᡐᡎᢧᢇᠰ	wmmwYwWwA	Amaria						
-65.0									
-75.0									
Center 2.4 #Res BW	400000 GH 100 kHz	Z	#VE	W 100 kHz			Swee	Span sp 1.27 ms	10.00 MHz (1001 pts
MSG						STATUS			

# Low Band Edge with Hopping Disabled (EDR MODE)



Low Band Edge with Hopping Enabled (EDR MODE)



# High Band edge with Hopping Disabled



# High Band edge with Hopping Enabled

#### FCC ID: IHDP56LS1

#### APPLICANT: MOTOROLA MOBILITY, INC



### High Band Edge with Hopping Disabled (EDR MODE)



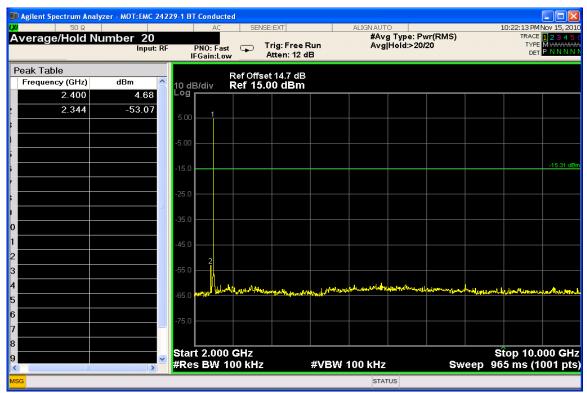
High Band Edge with Hopping Enabled (EDR MODE)

# SPURIOUS RF CONDUCTED EMISSIONS

CFR 47 Part 15.247

#### **Measurement Procedure**

The RF output port of the Equipment-Under-Test is directly coupled to the input of the EMC analyzer through a specialized RF connector and a 10dB passive attenuator. A fully charged battery was used for the supply voltage.

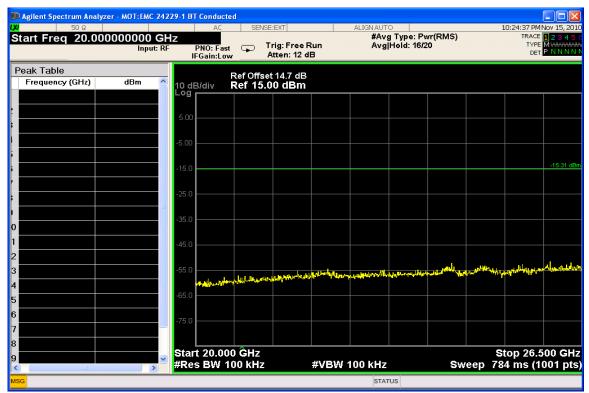

## **Measurement Results**

See attached:

#### FCC ID: IHDP56LS1

Agilent Spectrum Analyzer - MOT: EMC 242							
<b>μ</b> 50 Ω	AC SENSE:E	XT	ALIGNAUTO #Avg Type: Pv		10:19:25 PMNov 15, 2010		
Display Line -15.31 dBm Input: RF		g: Free Run :en: 12 dB	Avg Hold:>100	0/100	TRACE 12345 TYPE MWWWWWW DET PNNNN		
Peak Table	Def Offeret						
Frequency (GHz) dBm 🔦	Ref Offset 1 10 dB/div Ref 15.00	dBm					
1 2.403 4.69	Log						
2	5.00				1		
3	3.00						
4	-5.00						
5							
6	-15.0				-15.31 dBm		
7							
8	-25.0						
9	-35.0						
10	66.6						
11	-45.0						
12							
13	-55.0				A		
14	-65.0 July Asolum million	in the second and the	ويطويه طوياره أنيامهم ميداوا مقاميه المؤني	مرجعه المريد المجموع المريد المريد المريد المريد المريد الم	hounder and the second		
15	-0010						
16	-75.0						
17							
18	Start 30 MHz				Stop 3.000 GHz		
19	#Res BW 100 kHz	#VBW	100 kHz	Sweep 3	58 ms (1001 pts)		
MSG			STATUS				
			2				

# Conducted Spurious Emissions 30-3000MHz (Low Channel Enabled)




**Conducted Spurious Emissions 2-10GHz (Low Channel Enabled)** 

#### FCC ID: IHDP56LS1

💭 Agilent Spectrum Analyze	er - MOT:EMC 2422	9-1 BT Co			m m							
<b>Χ</b> Ι 50 Ω	Input: RF		AC O: Fast ain:Low		:EXT rig: Free R atten: 12 dl			о g Type: Ри  Hold: 12/2			TYPE	107 15, 201 1 2 3 4 5 M WWWWW P N N N N
Peak Table			R	ef Offset	:14.7 dB							
Frequency (GHz)	dBm 🛆	10 dB/d Log	liv R	ef 15.0	0 dBm							
		5.00										
		-5.00										
												-15.31 dB
		-15.0										-15151 GE
		-25.0										
	=====											
D		-35.0										
		-45.0										
2												
3		-55.0 —					and a state	and the relationships		handrate	which was the states	habbla
4		-65.0 <b>a.L</b>	Mary Junes,	paper and pression	enerson like	Lingenturio	and all states and a					
6		75.0										
7		-75.0										
8		Start 1	0.000	CH2							tôp 20.0	
9		#Res E				#VBW 1	100 kHz		S	weep_1	.21 s (10	00 GH
MSG							STAT	rus				

**Conducted Spurious Emissions 10-20GHz (Low Channel Enabled)** 




**Conducted Spurious Emissions 20-26.5GHz (Low Channel Enabled)** 

#### FCC ID: IHDP56LS1

Agilent Spectrum Analyzer - MOT: EMC 242						
μ 50 Ω	AC SENSE	EXT	ALIGNAUTO	Dum(DMC)	10:28:25 PMN	
Display Line -15.44 dBm Input: RF		rig: Free Run Atten: 12 dB	#Avg Type: Avg Hold:>2		TYPE	123456 M <del>wwww</del> PNNNNN
Peak Table	Ref Offset	14.7 dB				
Frequency (GHz) dBm 🛆	10 dB/div Ref 15.00	0 dBm				
2.442 4.56	Log					
	5.00				1	
	3,00					
	-5.00					
	-15.0					-15.44 dBm
	-25.0					
0	-35.0					
1	-45.0					
2	45.0					
3	-55.0					
4				مى مەرىپىلىرى ئىلىلىرى بىرىلىرى بىرىلىرى بىرىي	and Walkington	ale al and a second
5	-65.0 angenterminen angeneter allaher and	ana and the second second	┙ <u>╡</u> ┫╏╗┙╞╅╶┶╼┥╾╍┪┝┫╖╡╖╎┶╺┝┙╝┙			
6						
7	-75.0					
8						
	Start 30 MHz				Stop 3.0	00 GHz
	#Res BW 100 kHz	#VBW	100 kHz	Sweep	358 ms (10	001 pts)
MSG			STATUS			

Conducted Spurious Emissions 30-3000MHz (Mid Channel Enabled)

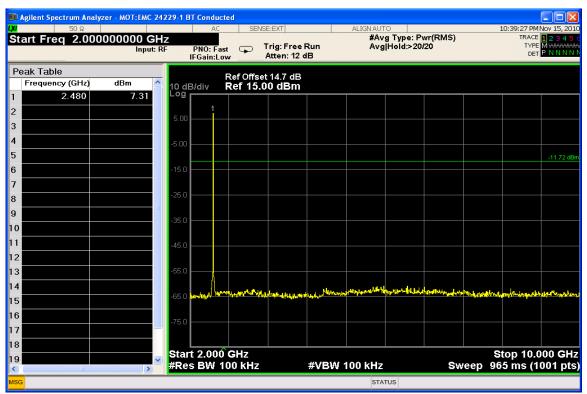


**Conducted Spurious Emissions 2-10GHz (Mid Channel Enabled)** 

#### FCC ID: IHDP56LS1

📁 Agilent Spectrum Analyzer - MOT:EMC 242							
μ 50 Ω		SE:EXT	ALIGN AUTO		10:33:05 PM Nov 15, 2010		
Start Freq 10.00000000 GH	IZ PNO: Fast IFGain:Low	Trig: Free Run Atten: 12 dB	#Avg Type: P Avg Hold: 20/		TRACE 123456 TYPE MWWWWM DET PNNNNN		
Peak Table	Ref Offse	+147 40					
Frequency (GHz) dBm 🔷	10 dB/div Ref 15.0						
1	Log						
2	5.00						
3							
5	-5.00						
6	-15.0				-15.44 dBm		
7	-15.5						
8	-25.0						
9							
10	-35.0						
11	-45.0						
12							
13	-55.0			uselling	ر د مالیر د .		
14	-65.0 Marthanna Marthanna	الملسج مهدوية وإماله المصغ العطاي	and the state of the second state of the	Andrew Whiteharist	ware and sealing and the deal		
15							
16	-75.0						
17							
10	Start 10.000 GHz				Stôp 20.000 GHz		
× × ×	#Res BW 100 kHz	#VBW	100 kHz	Sweep	1.21 s (1001 pts)		
MSG			STATUS				

Conducted Spurious Emissions 10-20GHz (Mid Channel Enabled)

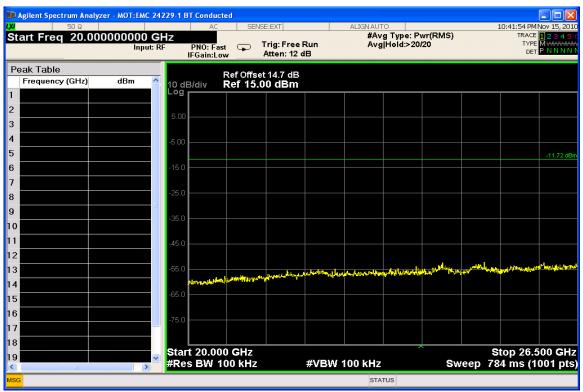



**Conducted Spurious Emissions 20-26.5GHz (Mid Chan Enabled)** 

#### FCC ID: IHDP56LS1

Agilent Spectrum Analyzer - MOT: EMC 242						
50 Ω	AC SENS	E:EXT	ALIGN AUTO	- ( <b>-</b> 140)	10:38:30 PM Not	
Display Line -11.72 dBm Input RF		Trig: Free Run Atten: 12 dB	#Avg Type: Avg Hold:>2		TRACE 1 TYPE M DET P	23456 WWWWWW NNNNN
Peak Table	D.(05)					
Frequency (GHz) dBm 🛆	Ref Offse 10 dB/div Ref 15.0					
1 2.480 8.28						
2	5.00					
3	3.00					
4	-5.00					
5						-11.72 dBm
6	-15.0					
7						
8	-25.0					
9	-35.0					
10	00.0					
11	-45.0					
12						
13	-55.0					
14	-65.0 manut	and the second states a	harder and a second second	and the barrent to a second	mural University	Alexander
15	-00.0 0 17					
16	-75.0					
17						
18	Start 30 MHz				Stop 2.00	
	#Res BW 100 kHz	#VBW	100 kHz	Sweep	Stop 3.00 358 ms (100	0 GH2 01 pt <u>s</u> )
MSG			STATUS			

# **Conducted Spurious Emissions 30-3000MHz (High Channel Enabled)**




**Conducted Spurious Emissions 2-10GHz (High Channel Enabled)** 

#### FCC ID: IHDP56LS1

Agilent Spectrum Analyzer - MOT: EMC 242	29-1 BT Conducte								
[Χ/] 50 Ω	AC	SENSE:EXT		ALIGN AUT		(=====)		10:40:31 PMI	
Start Freq 10.00000000 GH	IZ PNO: Fast IFGain:Low				g Type: Pi  Hold:>20			TYPE	123456 M <del>wwww</del> PNNNNN
Peak Table		tef Offset 14.7 d							
Frequency (GHz dBm 🔷	10 dB/div	tef 15.00 dBr							
1	Log								
2	5.00								
3									
4	-5.00								
5									-11.72 dBm
6	-15.0								
7	-25.0								
8	-23.0								
9	-35.0								
10									
11	-45.0								
12	-55.0								
13	-35.0		he later manager	<b>b</b>	outelles		"Laure laket a	And the state	Wal-hershlatenth
15	-65.0 <b>Manhara</b> da	Hannesellerineerie	the man in the second	And Alabert Part	te strange	and the second			
16									
17	-75.0								
18									
19	Start 10.000						S	top 20.0	00 GHz
<>	#Res BW 10	0 kHz	#VBW	100 kHz		S	weep 1	.21 s (1	001 pts)
MSG				STA	rus				

# **Conducted Spurious Emissions 10-20GHz (High Channel Enabled)**

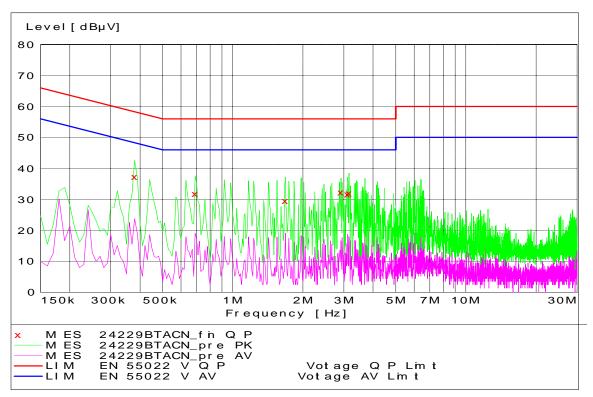


**Conducted Spurious Emissions 20-26.5GHz (High Chan Enabled)** 

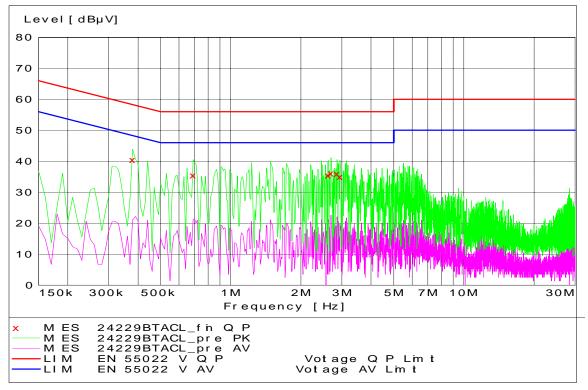
# AC LINE CONDUCTED

#### CFR 47 Part 15.207

#### **Measurement Procedure**


Measured levels of ac power line conducted emission shall be the radio-noise voltage from the line probe or across the 50  $\Omega$  LISN port, where permitted, terminated into a 50  $\Omega$  noise meter, or where permitted or required, the radio-noise current on the power line sensed by a current probe.

All radio-noise voltage and current measurements shall be made on each currentcarrying conductor at the plug end of the EUT power cord or calibrated extension cord by the use of mating plugs and receptacles on the EUT and LISN. Equipment shall be tested with power cords that are normally supplied using an LISN, the 50  $\Omega$  measuring port is terminated by a 50  $\Omega$  radio-noise meter or a 50  $\Omega$  resistive load. All other ports are terminated in 50  $\Omega$ .


Detectors – Quasi Peak and Average Detector.

## **Measurement Results**

See attached:







**Bluetooth – Hopping - Tx Mode - Line Coupling** 

**End of Test Report**