MODEL : LYNX 3D DATE : sep.29.1998 FILE NAME : LY3DSPEC.MAT

**** SPECIFICATION OF TRANSMITTER ****

1. FREQUENCY : 75MHz BAND

2. NO.CHANNELS : 3CH

4. OUTPUT IMPEDANCE : TELESCOPE WHIP ANTENNA

5. SPURIOUS : -50dB

6. RF OUTPUT POWER (AT 9.6V) : 400 +/-50 mW

7. CURRENT DRAIN (AT 9.6V) : 170 +/-20 mA

B. MODULATION + FM MODE 2.8KHz

9. PULSE SPACING AT CONTROL NEUTRAL : 1500 usec

10.FRAME TIME : 21 +/-2 msec

11.RF BAND WIDTH : +/-10KHz AT -50dB

12.OPERATING VOLTAGE : 9.6V

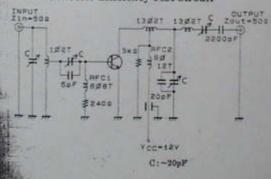
13.OPERATING TEMPRETURE : -20°C ---- 50°C

14. CONTROL RANGE SPEC. SHEET

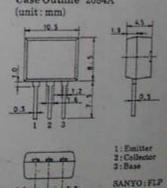
UNIT : u/sec THROTTLE FUNCTION STEERING +110-- +127 UPPER +110-- +127 +1-5 NORMAL STICK +/-5 -50 -- -65 -110-- -127 LOWER HI - LOW I 30 \$ TRIM 30 %

Features

· On-chip emitter ballast resistors.


Absolute Maximum Ratings at Ta = 25°C

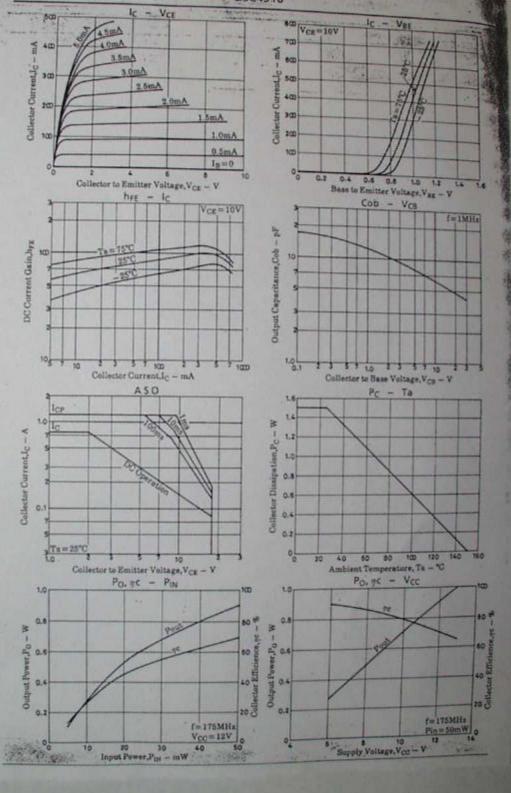
Collector to Base Voltage	V _{CBO}		unit
Collector to Emitter Voltage		38	V
Emitter to Base Voltage	VCEO	18	v
Collector Current	VEBO	3	V
	Ic	0.75	A
Collector Current (Pulse) Base Current	ICP	1.2	A
	IB	150	mA
Collector Dissipation	PG	1.5	W
Junction Temperature	Tj	150	°C.
Storage Temperature	Tstg	-55 to +150	*0


Electrical Characteristics at Ta

Collector Cutoff Current Emitter Cutoff Current	I _{CBO}	V _{CB} =30V,I _E =0 V _{EB} =2V,I _C =0	min	typ	max 50 50	unit µA
DC Current Gain	hgg	V _{CE} =10V,I _C =200mA	20		200	μA
C-B Breakdown Voltage	V _{(BR)CBO}	$I_C = 100 \mu A, I_E = 0$	38			V
C-E Breakdown Voltage	V(BR)CEO		18			V
E-B Breakdown Voltage	V(BR)EBO	$I_E = 100 \mu A, I_C = 0$	3			V
Output Capacitance	Cob	V _{CB} =10V, f=1MHz		6	10	pF
Output Power Collector Efficiency	Po	V _{CC} =12V, f=175MHz,P _{IN} =50mW	0.7	0.9		W
Conector Enticiency	ηc	See specified Test Circuit.	55	70		%

Collector Efficiency Test Circuit

Case Outline 2084A

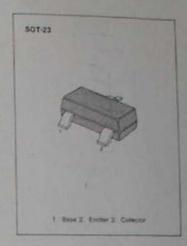


offications and information herein are subject to change without notice.

SANYO Electric Co., Ltd. Semiconductor Business Headquarters

HIROTO) AX-8548 No. 4411-1/3

YOURS TROUBLES

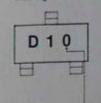


LOW FREQUENCY AMPLIFIER

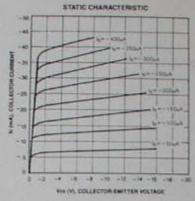
- Complement to KSC1623
- Collector-Base Voltage V_{CBO} = −60V

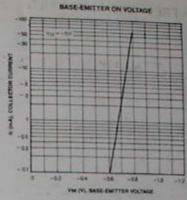
ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

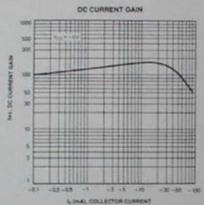
Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	Vosc	-60	v
Collector-Emitter Voltage	Veso -	-50	V
Emitter-Base Voltage	Visc	-5	V
Collector Current	le le	-100	mA
Collector Dissipation	Pc	150	mW
Junction Temperature	17	150	*C
Storage Temperature	Tsto	-55-150	*C

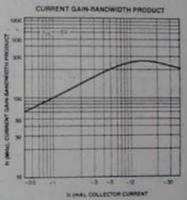

ELECTRICAL CHARACTERISTICS (Ta = 25°C)

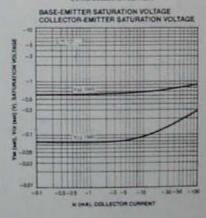
Characterístic	Symbol	Test Condition	Min	Тур	Max	Unit
Collector Cutoff Current Emitter Cutoff Current	loso Teso	V _{ch} =-60V, t _t =0 V _{ch} =-5V, t _c =0			-01 -01	14
DC Current Gain	but	V ₀₈ = -6V, I ₀ = -1mA	:00	200	-0.3	V
Collector-Emitter Saturation Voltage Base-Emitter On Voltage	V _{ck} (sat) V _{sk} (on)	L=-100mA, L=-10mA L=-1mA, Vca=-6V	-0.55	-0.62	-0.65	V MHz
Current Gain-Bandwidth Product Output Capacitance	Cob	l _c =-10mA, V _{cs} =-6V V _{cs} =-10V, l _c =0 f=1MHz		4.5		pF

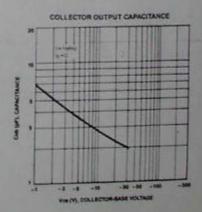

he CLASSIFICATION

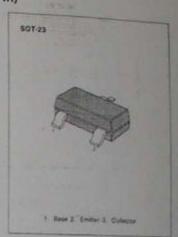

				_
Classification	0	CY	G	L
. brg	90-180	135-270	200-400	300-600






he grade

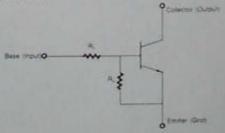


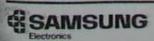


SWITCHING APPLICATION (Bias Resistor Built In)

- · Switching Circuit, Inverter, Interface circuit Driver circuit
- Built in bias Resistor (R,=10K Ω , R,=10K Ω)
- Complement to KSR2102

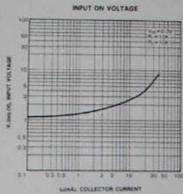
ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

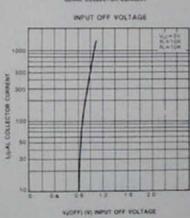

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	Vosc	50	V
Collector-Emitter Voltage	Voso	50	V
Emitter-Base Voltage	V _{tao}	10	V
Collector Current	le l	100	mA
Collector Dissipation	Po	200	mW
Junction Temperature	T)	150	*C
Storage Temperature	Tstg	-55-150	40

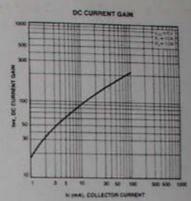

ELECTRICAL CHARACTERISTICS (Ta = 25°C)

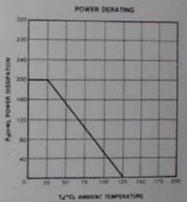
Characteristic	Symbol	Test Condition	Min	Тур	Max	Unit
Collector-Base Breakdown Voltage	BVcso	I _C =1 OμΑ, I _E =0	50			v
Collector-Emitter Breakdown Voltage	BVcsc	Ic=100µA, Ia=0	50	100		V
Collector Cutoff Current	Icao	Vcs=40V, le=0			0.1	uA.
DC Current Gain	they	Vcs=5V, tc=5mA	30			
Collector-Emitter Saturation Voltage	Ves(sat)	lc=10mA, lu=0.5mA			0.3	V
Current Gain-Bandwidth Product	10	Vos=5mA, Io=10V		250		MHz
Output Capacitance	Cob	V _{CB} =10V, I _S =0 f=1.0MHz		3.7		pF
Input Off Voltage	Vi(ott)	Vc=5V, lc=100µA	0.5			V.
Input On Voltage	Vi(on)	Vet=0.3V, Ic=10mA	-3300		3	V.
Input Resistor	R.		7	10	13	KII
Resistor Ratio	R./R ₂		0.9	1	1.1	

Equivalent Circuit








DIATE 12 1/1 0 9 32

NPN EPITAXIAL SILICON TRANSISTOR

GD4051B

8-CHANNEL ANALOG MULTIPLEXER/DEMULTIPLEXER

DESCRIPTION — The 4051B is an 8-Channel Analog Multiplexer/Demultiplexer with three Address Inputs (A_0-A_2) , an active LOW Enable Input (E), eight Independent Inputs/Outputs (Y_0-Y_2) and a Common Input/Output (Z).

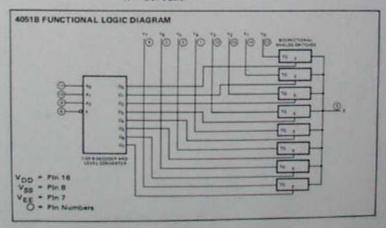
The 4051B contains eight bildirectional analog switches, each with one side connected to an independent input/Output (Y_0-Y_2) and the other side connected to a Common input/Output (Z). With the Enable Input (E) LOW, one of the eight switches is selected flow Impedance, ON statel by the three Address Inputs (A_0-A_2) . With the Enable Input (E) HIGH, all switches are in the high impedance OFF state, Independent of the Address Inputs.

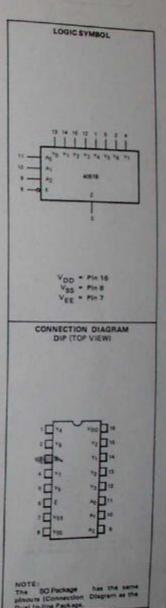
 V_{DD} and V_{SS} are the two supply voltage connections for the digital control inputs (A_0-A_2, E) . Their voltage limits are the same as for all other digital CMOS. The analog inputs/outputs (Y_0-Y_2, Z) can awing between V_{DD} as a positive limit and V_{EE} as a negative limit. $V_{DD}-V_{EE}$ may not exceed 15 V. For operation as a digital multiplexer/demultiplexer, V_{EE} is connected to V_{SS} (typically ground).

- ANALOG OR DIGITAL MULTIPLEXER/DEMULTIPLEXER
 COMMON ENABLE INPUT (ACTIVE LOW)

PIN NAMES

Independent Inputs/Outputs


Address Inputs


Enable Input (Active LOW) Common Input/Output

TRUTH TABLE

_		_			1110	THE PARE									
	IN	PUTS			CHANNELS										
Ē	A2	A ₁	A ₀	Yo-Z	Y1-Z	Y2-Z	Y3-2	Y4-Z	Y5-Z	Ye-Z	Y7-Z				
L	L	L	L.	(ON)	OFF	OFF	OFF	OFF	OFF	OFF	OFF				
T	1	D	(8)	OFF	ON	OFF	OFF	OFF	OFF	OFF	OFF				
L	L	H	L	OFF	OFF	ON	OFF	OFF	OFF	OFF	OFF				
L	L	н	H	OFF	OFF	OFF	ON	OFF	OFF	OFF	OFF				
L	H	L	L	OFF	OFF	OFF	OFF	ON	OFF	OFF	OFF				
L	H	L	н	OFF	OFF	OFF	OFF	OFF	ON	OFF	OFF				
L	H	H	L	OFF	OFF	OFF	OFF	OFF	OFF	ON	OFF				
L	H	н	H	OFF	OFF	OFF	OFF	OFF	OFF	OFF	ON				
H	X	×	×	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF				

L = LOW Level H = HIGH Level X = Don't Care

	202000			1		- 3	LIMIT	5					-				
SYMBOL	PARAMET	TER	MIN TYP MAX			VDD = 10 V			V	DD - 1	5 V	UNITS	TEMP				
_				TYP	MAX	MIN	TYP	MAX	MIN		MAX	101113	THE NAME OF	TEST CONDITION!			
	ON	хс		95 100 125	900 1000 1100		55 65 100	380 500 600		35 40 65	210 280 340	п	MIN 25°C MAX	V V			
RON	Resistance	хм		90 100 150	850 1000 1150	1000	000	0	50 65 110	65 50	340 500 660		30 40 70	40 280	n	MIN 25°C MAX	Vis - VDD to VEE Note 2
ΔRON	"A" ON Residence Between Two Channels	Any		25			10			5		n	25°C	Note 2			
	OFF State Laskage	xc						800					-	E-Voo			
z	Current, Alt Channels OFF	хм						80				nA :	25°C	V _{SS} = V _{DD} or V _{EE}			
	Any	xc	Marie Street					100		100				V _{D1} * V _{EE} or V _{DD} /2			
	OFF .	XM						10						Vis - VDD or VEE Vos - VEE or VDD			
	Supply XM 5		300			80 600	μА	MIN, 25°C	VSS - VEE								
DD		хм			150			10			20 600	μА	MIN, 25°C	VDD OF VEE			

Notes on following page.

	The second secon	T-UP REQUIREMENTS: V _{DD} as shown, V _{EE} + 0 V, T _A = 25°C (Se											
SYMBOL	PARAMETER	VDD=5V			VDD - 10 V			V00 - 15 V			UNITS		
		MIN	TYP	MAX	MIN	TYP	MAX		TYP	MAX	UNITS	TEST CONDITIONS	
TPLH TPHL	Propagation Delay, Input to Output		25 10			10			6 4		ne	CL = 50 pF, Rt = 200 km	
TPLH TPHL	Propagation Delay, Address to Output		170 210			95 125			80		m	An or Vis - VDD or Ves	
tPZL tPZH	Output Enable Time		185 205			95 105		100	75 85		ns	CL = 50 pF, Rt = 1 kD	
tPLZ tPHZ	Output Disable Time		1250 1240			1130 1120			1080		ns	E or An = VSS = VEE Via = VDD or VEE Note 5	
	Distortion, Sine Wave Response		0.2			0.2			0.2		×	HL = 10 kD VSS = VDD/2, E = VEE, Vis = VDD/2 (sine wave) p.p. I _H = 1 kHz	
	Crosstalk Between Any Two Channels					1					MHz	H _L = 1 KΩ E = VEE V _B = VDD/2 (sine wave) p.p. at -40 dB V _{SS} = VDD/2, 20 Log10 (V _{OB} /V _B) = -40 dB	
	OFF State Feedthrough					1					MHz	R _L = 1 kΩ, V _{SS} = V _{DD} /2 E = V _{DD} V _{Is} = V _{DD} /2 (sine wave) p-p 20 Log ₁₀ (V _{OS} /V _{Is}) = -40 di	
MAX	ON State Frequency Response		13			40			70		MHz	H _L = 1 kΩ, E = V _{SS} V _{is} = V _{OD} /2 (sine wave) p.p.	

- NOTES:

 1. Additional DC Characteristics are listed in this section under 40008 Series CMOS Family Characteristics.

 2. E = V_{SS} R_L = 10 kΩ, any channel selected and V_{SS} = V_E_E or V_{DD/2}.

 2. Propagation Delays and output Transition Times are graphically described in this section under 40008 Series CMOS Family Characteristics.

 4. V_{IS} V_{OS} is the voltage signal at an Input/Output terminal (Y_D/2_D).

 5. V_{IN} = V_{DD} (Square Wave), Input transition times < 20 m, R_L = 10 kΩ.

 6. In certain applications, the current through the external load resistor (R_L) may include both V_{DD} and signal line components. To avoid the current indicates the number of the voltage drop across the bidirectional switch drawing V_{DD} current when switch current flows into terminals 1, 2, 4, 5, 12, 12, 14, or 15 the voltage drop across the bidirectional smith must not exceed 0.5 V at T_A < 25°C, or 0.3 V at T_A > 25°C. No V_{DD} current will flow through R_L if the switch current flows into terminal 3.

MSM65512/65P512

OKI ORIGINAL HIGH PERFORMANCE CMOS 8 BIT SINGLE CHIP

GENERAL DESCRIPTION

MSM65512 is a high-performance 8-bit single-chip controller that employs Oki's original nX-8/50 CPU core. With a minimum instruction execution time of 400 ns (10MHz clock), the MSM65512 is capable of high-speed processing, and includes 8 Kbytes of program memory, 256 bytes of data memory, timers and serial ports on chip. Also available is the MSM65P512, which replaces the onchip program memory with one-time PROM.

OPERATING RANGE

 Operating Frequency : DC ~ 10 MHz Operating Voltage : 4.5~5.5 V Operating Temperature : -40 ~ 85°C

FEATURES

Memory Space: 64 Kbytes

On-Chip Program Memory : 8 Kbytes On-Chip Data Memory : 256 bytes

- Minimum Instruction Execution Cycle: 400n5 @ 10 MHz
- Powerful instruction set:

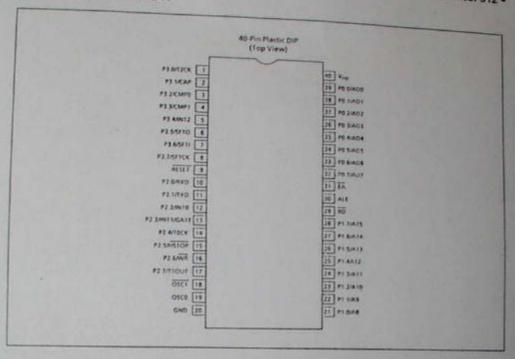
83 basic instructions 8/16-bit operation instructions Bit manipulation instructions Compound function instructions

- Abundant addressing modes
- Multiplication/division operation functions

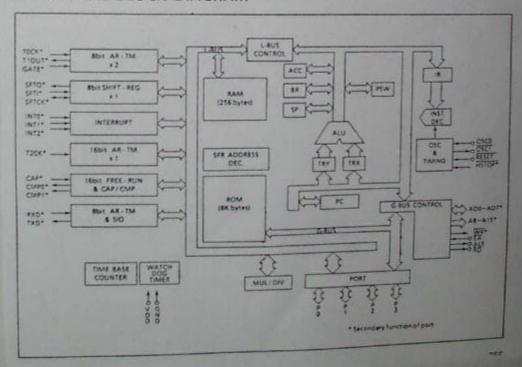
16 ← 8×8 16 ← 16/8, 8 ← 16 mod 8

- I/O ports: 8-bit x 4
- Timers

8-bit auto-reload timer x 2 16-bit auto-reload timer x 1 Watchdog timer x 1


- Counters Time base counter x 1 16-bit free-running counter x 1
- Capture input: 1 channel
- Compare output: 2 channels
- Serial ports

Shift register x 1


Serial port with baud rate generator (UART/synchronous) x 1

- External interrupts: 3
- Interrupt factors: 15
- Package:

40 pin plastic DIP (DIP40-P-600) 44 pin plastic QFP (T.B.D) 44 pin PLCC (QFJ44-P-S650) 64 pin plastic QFP (T.B.D)

FUNCTIONAL BLOCK DIAGRAM

9

Features

;e

7

2)

3)

7

. Low Voltage and Standard Voltage Operation

5.0 V (Vcc = 4.5 V to 5.5 V)

3.0 V (Vcc = 2.7 V to 5.5 V) 2.5 V (Vcc = 2.5 V to 5.5 V) 2.0 V (Vcc = 1.8 V to 5.5 V)

· User Selectable Internal Organization

1K: 128 x 8 or 64 x 16 2K: 256 x 8 or 128 x 16 4K: 512 x 8 or 256 x 16

Three-Wire Serial Interface

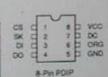
· Self-Timed Write Cycle (10 ms Max)

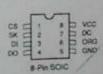
· High Reliability

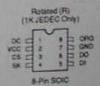
Endurance: 100,000 Cycles Data Retention: 100 Years

· Eight-Pin PDIP, JEDEC SOIC, and EIAJ SOIC Packages

Description


The AT93C46/56/57/66 provides 1024/2048/4096 bits of serial E²PROM (Electrically Erasable Programmable Read Only Memory) organized as 64/128/256 words of 16 bits each, when the ORG Pin is connected to Vcc and 128/256/512 words of eight bits each when it is need to ground. The device is optimized for use in many industrial and commercial applications where low power and low voltage operation are essential. The AT93C46/56/57/66 is available in space saving eight-pin PDIP and eight-pin JEDEC and EIAJ SOIC packages.


The AT93C46/56/57/66 is enabled through the Chip Select pin (CS), and accessed via a threewire serial interface consisting of Data Input (DI), Data Output (DO), and Shift Clock (SK). Upon receiving a READ instruction at DI, the address is decoded and the data is clocked outserially on the data output pin DO. The WRITE cycle is completely self-timed and no separate ERASE cycle is required before WRITE. The WRITE cycle is only enabled when the part is in the ERASE/WRITE ENABLE state. When CS is brought "high" following the initiation of a WRITE cycle, the DO pin outputs the READY/BUSY status of the part.


Atmel's E²PROMs are designed and tested for applications requiring extended endurance. Devices in this family are guaranteed for 100,000 ERASE/WRITE cycles and 100-year data retention. The AT93C46/56/57/66 is available in $5.0 \text{ V} \pm 10\%$, 2.7 V to 5.5 V, 2.5 V to 5.5 V, and 1.8 V to 5.5 V versions.

Pin Configurations

Pin Name	Function
CS	Chip Select
SK	Serial Data Clock
DI	Serial Data Input
DO	Serial Data Output
GND	Ground
Voc	Power Supply
ORG	Internal Organization
DC	Don't Connect

3-Wire Serial CMOS E²PROMs

1K (128 x 8 or 64 x 16)

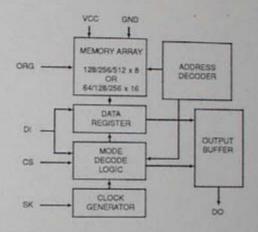
2K (256 x 8 or 128 x 16)

4K (512 x 8 or 256 x 16)

Absolute Maximum Ratings*

Operating Temperature	-55°C to +125°C
Storage Temperature	
Voltage on Any Pin with Respect to Ground	-1.0 V to +7.0 V
Maximum Operating Voltage	6.25 V
DC Output Current	5.0 mA

*NOTICE: Stresses beyond those listed urser "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device as these or any other conditions beyond those indicated the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


D.C. Cha Applicable of Tac = 0°C t Symbol Voca (1) Voca Voca

isa: ⁽¹⁾

1583 1584

VE1 (2) VH1 (2)

Block Diagram (1)

Note:

When the ORG pin is connected to V_{CC}, the x 16 organization is selected. When it is connected to ground, the x 8 organization is selected. If the ORG pin is left unconnected, then an internal pullup device will select the x 16 organization.

Pin Capacitance (1)

Applicable over recommended operating range from TA = 25°C, f = 1.0 MHz, Voc = +5.0 V (unless otherwise noted)

	Test Conditions	Max	Units	Conditions		
Cour	Output Capacitance (DO)	5	pF	Vout = 0 V		
Cm	Input Capacitance (CS, SK, Di)	5	pF	VIN = 0 V		

Note: 1. This parameter is characterized and is not 100% tested.

D.C. Characteristics

applicable over recommended operating range from: $T_{Al} = -40^{\circ}\text{C}$ to +85°C, $V_{CC} = +1.8 \text{ V}$ to +5.5 V, $T_{AC} = 0^{\circ}\text{C}$ to + 70°C, $V_{CC} = +1.8 \text{ V}$ to +5.5 V (unless otherwise noted)

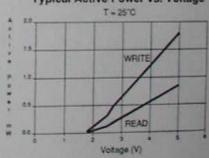
Symbol	Parameter	Test Condition	on				
Voc1 (1)	Supply Voltage			Min	Тур	Max	Units
Voca	Supply Voltage			1.8	5.0	5.5	٧
Voca	Supply Voltage			2.5	5.0	5.5	V
VCC4	Supply Voltage			2.7	5.0	5.5	V
1004	coppy rouge		mman di santa	4.5	5,0	5.5	v
loc	Supply Current	Vcc = 5.0 V	READ at 1.0 MHz		0.2	0.5	mA
ISB1 (1)	Charles Co.		WRITE at 1.0 MHz		0.4	1.0	mA
	Standby Current	Vcc = 1.8 V	CS = 0 V		0.0	0.1	μА
Isaa	Standby Current	Vcc = 2.5 V	CS = 0 V		5.0	7.0	μА
ISB3	Standby Current	Vcc = 2.7 V	CS=0V		6.0	10.0	10000
I\$84	Standby Current	Vcc = 5.0 V	CS = 0 V		21.0	30.0	μА
lit.	Input Leakage	Vin = 0 V to V	cc		0.1		μA
lac	Output Leakage	VIN = 0 V to V	cc		0.1	1.0	μA
V _{IL1} (2) V _{IH1} (2)	Input Low Voltage Input High Voltage	4.5 V ≤ Vcc s	5.5 V	-0.1	0.1	0.8	μA
VIL2 (2) VIH2 (2)	Input Low Voltage Input High Voltage	1.8 V ≤ Vcc ≤	5.5 V	0.0		Vcc+1 0,4 Vcc+1	v
VOL1 VOH1	Output Low Voltage Output High Voltage	4.5 V ≤ Vcc ≤	5.5 V	2.4		0.4	v
/OLZ /OHZ	Output Low Voltage Output High Voltage	1.8 V ≤ Vcc ≤	5.5 V	Vcc-0.2		0.2	v

is se-

exi-

ed in ad

ited) ons OV


Typical Standby Power vs. Voltage (3)

Notes: 1. This parameter is preliminary and Almel may change the specifications upon further characterization.

2. Vij. min and Viji max are reference only and are not

Typical Active Power vs. Voltage (1)

3. These graphs are for reference only and are not guarenteed by test.

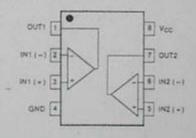
DUAL OPERATIONAL AMPLIFIERS

The LM258 series consists of four independent, high gain, internally frequency compensated operational amplifiers which were designed specifically to operate from a single power supply over a wide range of voltage.

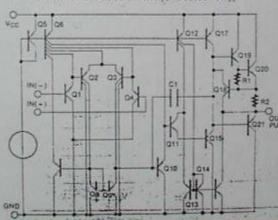
Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply

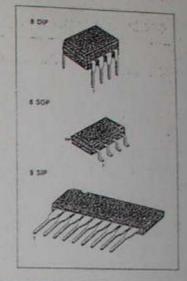
Application areas include transducer amplifier, DC gain blocks and all the conventional OP amp circuits which now can be easily implemented - in single power supply systems.

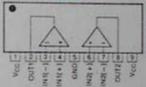
FEATURES


- . Internally frequency compensated for unity gain
- · Large DC voltage gain: 100dB
- Wide power supply range: LM258/A, LM358/A; 3V 32V

(or ± 1.5V - ± 16V)


LM2904: 3V - 26V (or ± 1.5V - ± 13V)


- Input common-mode voltage range includes ground
 Large output voltage swing: DV DC to V_{cc} = 1.5V DC
- · Power drain suitable for battery operation.

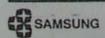

BLOCK DIAGRAM

SCHEMATIC DIAGRAM (One section only)

ORDERING INFORMATION

Device	Package	Operation Temperature
LM358N LM358AN	S DIP	
LM358S LM358AS	9 SIP	0 -+ 70°C
LM358D LM358AD	8 SOP	
LM258N LM258AN	8 DIP	
LM258S LM258AS	9 SIP	-25 -+85°C
LM258D LM258AD	в вор	
LM2904N	8 DIP	
LM2904S.	9 SIP	-40 -+85°C
LM2904D	8 DIP	

· · Under development


ABSOLUTE MAXIMUM RATINGS

Characterístic	Symbol	LM258/LM258A	LM358/LM358A	LM2904	Unit
Power Supply Voltage Differential Input Voltage Input Voltage Output Short Circuit to GND Vcc≤15V Ta = 25°C (One Amp)	Vs Vio Vi	± 16 or 32 = 32 - 0.3 to + 32 Continuous	± 16 or 32 ± 32 - 0.3 to + 32 Continuous	± 13 or 26 ± 26 - 0.3 to + 26 Continuous	V V V
Operating Temperature Range Storage Temperature Range	Teor Tale	- 25 ~ + 85 - 65 ~ + 150	0 ~ + 70 -65 ~ + 160	-40 -+ 85 -65 -+ 150	.00

ELECTRICAL CHARACTERISTICS

(V_{cc}=5.0V, V_{EE}=GND, Ta=25°C, unless otherwise specified)

Characteristic	Symbol	Test Conditions		LM258			1	M35	8	LM2904			
Characteristic	Symbol			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage	V _{IQ}	$V_{CM} = 0V$ to $V_{CC} - 1.5V$ $V_{e} = 1.4V$, $R_{b} = 0\Omega$			2.9	5.0		2.9	7.0		2.9	7.0	mV
Input Offset Current	lo.				3	30		5	50		5	50	nA
Input Bias Current	l _{ia}				45	150		45	250		45	250	ΠA
Input Common-Mode Voltage Range	Vice	V _{CC} = 30V (LM2904, V _{CC} = 261	V)	0		V _{cc} -1.5	0		Vec -1.5	0		Voc -1.5	V
Supply Current	lee	R _c = ∞, V _{cc} = 30V (LM2902, V _{cc} = 26V)			0.8	2.0		0.8	2.0		0.8	2.0	mA
		R _L = 00 , over full temp	perature range		0.5	1.2		0.5	1.2		0.5	1,2	mA
Large Signal Voltage Gain	Av	V _{DC} = 15V, R _C ≥2KΩ V _D = 1V to 11V		50	100		25	100		25	100		V/m
Output Voltage Swing	Voir Vol.	V _{cc} = 30V	R ₄ = 2KΩ	26			26			22			V
		Vcc = 26V for 2904	R _L = 10KΩ	27	28		27	28		23	24		V
		V ₀₀ = 5V R _{c≥} 10KΩ		1/6	5	20		5	20		5	100	mV
Common-Mode Rejection Ratio	CMRR			70	85		65	80		50	80		dB
Power Supply Rejection Ratio	PSRR			65	100		65	100		50	100		dB
Channel Separation	CS	f = 1KHz to 20KHz		100	120			120			120		dB
Short Circuit to GND	los			1	40	60		40	60		40	60	mA
	Tenes	V _{in+} = 1V, V _{in-} = 0V V _{cc} = 15V, V _s = 2V	1	10	30		10	30		10	30		mA
Output Current		V _{in} = 0V, V _{in} = 1V V _{CC} = 15V, V _o = 2V		10	15		10	15		10	15		mA
	V _{in-} = 0V, V _{in-} = 1V V _{CC} = 15V, V _{in} = 200m ¹			12	100		12	100		215			μА
Differential Input Voltage	Vic	COMPANY OF THE PARK OF THE PAR				Voc			Voc			Voc	V

LM258/A, LM358/A, LM2904 LINEAR INTEGRATED CIRCUIT

ELECTRICAL CHARACTERISTICS

ELECTRICAL TOTAL TOTAL ($V_{CC}=5.0V$, $V_{EE}=GND$, unless otherwise specified)
The following specification apply over the range of $-25^{\circ}C \le Ta \le +85^{\circ}C$ for the LM258, and the $0^{\circ}C \le Ta \le +70^{\circ}C$ for the LM358, and the $-40^{\circ}C \le Ta \le +85^{\circ}C$ for the LM2904

Characteristic	Symbol	Test Conditions		LM258		8	LM358			LM2904			
Characteristic	Symbol			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage	Vio	V _{CM} = 0V to V _{CC} -1,5V V _C = 1,4V, R _S = 0Ω				7.0			9.0			10.0	mV
Input Offset Voltage Drift	Δνω/ΔΤ	$R_{\Delta} = 0\Omega$			7.0			7.0			7,0	1	"V/°C
Input Offset Current	lo					100			150		45	200	nA
Input Offset Current Drift	ΔΙω/ΔΤ				10			10	-		10		pA/*C
Input Bias Current	l _{ra}				40	300		40	500		40	500	nA
Input Common-Mode Voltage Range		Vcc = 30V (LM2904, Vcc = 26V)		0		Vcc -2.0	0		Vcs -2.0			Vcc -2.0	v
Large Signal Voltage Gain	Av	V _{CC} = 15V, R _L ≥ 2.0KΩ V _D = 1V to 11V		25			15			15			V/mV
	Von	V _{cc} = 30V	$R_c = 2K\Omega$	26			26			25		- 15	٧
Output Voltage Swing		Vcc = 26V for 2904	R _c = 10KΩ	27	28		27	28		27	28		V
	Voc	V _{CC} = 5V, R _{L≥} 10KΩ			5	20		5	20		5	100	mV
Output Current	Isoure	V _{in.} = 1V, V _{in.} = 0V V _{CC} = 15V, V _O = 2V		10	30		10	30		10	30		mA
	Lora	V _m = 0V, V _m = 1V V _{cc} = 15V, V _c = 2V		5	8		5	9		5	9		mA
Differential Input Voltage	Vio					Vec			Vcc			Vec	V

