FCC Part 15 Subpart B&C §15.247 RSS-210 ISSUE No. :8

Test Report

Equipment Under Test	2.4GHz Radio Control System
Model Name	AURORA 9X
Applicant	Hitec RCD Inc.
FCC ID	IFHAURORA9X
IC	3420A-AURORA9X
Manufacturer	Hitec RCD PHILIPPINES, INC.
Date of Test(s)	2013. 08.05 ~ 2013. 08. 14
Date of Issue	2013. 08. 16

In the configuration tested, the EUT complied with the standards specified above.

Issue to	Issue by	
Hitec RCD Inc. 12115 Paine Street, Poway, CA 92064, USA Tel.: 858-748-6948 Fax: 858-748-1767	MOVON CORPORATION 194-1, Geumeo-ri, Pogok-eup, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 449-812 Tel.: +82-31-338-8837 Fax: +82-31-338-8847	

Revision history

Revision	Date of issue	Description	Revised by
	August 16, 2013	Initial	

Table of contents

1. ATTESTATION OF TEST RESULTS	4
2. EUT DESCRIPTION	5
3. INFORMATION ABOUT THE FHSS CHARACTERISTICS	6
4. MEASUREMENT EQUIPMENT	7
5. TRANSMITTER RADIATED SPURIOUS EMISSIONS AND CONDUCTED SPURIOU EMISSIONS	
6. CONDUCTED POWER LINE TEST	29
7. RECEIVER RADIATED SPURIOUS EMISSIONS	32
8. 20 dB BANDWIDTH MEASUREMENT & 99 % BANDWIDTH MEASUREMENT	36
9. MAXIMUM PEAK OUTPUT POWER MEASUREMENT	44
10. HOPPING CHANNEL SEPARATION	49
11. NUMBER OF HOPPING FREQUENCY	51
12. TIME OF OCCUPANCY(DWELL TIME)	53
13. ANTENNA REQUIREMENT	
14. RF EXPOSURE EVALUATION	58
15. TEST SETUP PHOTO OF EUT	60

Report Number: MOV-13-RF-I022

1. Attestation of test results

1.1. Details of applicant

Applicant

Hitec RCD Inc.

Address

12115 Paine Street, Poway, CA 92064, USA

Contact Person :

Tony Ohm

Telephone

858-748-6948 858-748-1767

Fax 1.2. Summary of test results

The EUT has been tested according to the following specifications:

Section in FCC part 15	Section in RSS-Gen, RSS-210	Description	Result
§15.205(a) §15.209 §15.247(d)	A8.5	Transmitter radiated spurious emissions, Conducted spurious emission	С
§15.109(a)	RSS-Gen 6	Receiver radiated spurious emission	С
§15.247(a)(1)	A8.1(1)	20 dB bandwidth and 99 % bandwidth	С
§15.247(b)(1)	A8.4(2)	Maximum peak output power	С
§15.247(a)(1)	A8.1(2)	Frequency separation	С
§15.247(a)(1)(iii)	A8.1(4)	Number of hopping frequency	С
§15.247(a)(1)(iii)	A8.1(4)	Time of occupancy(Dwell time)	С
§15.247(i) §1.1307(b)(1)	RSS-Gen 5.5 RSS-102	RF exposure evaluation	С

The sample was tested according to the following specification:

FCC Parts 15.247; ANSI C-63.4-2003

FCC Public Notice DA 00-705

RSS-210 and ISSUE No.: 8 Date: 2010 TEST SITE REGISTRATION NUMBER:

FCC(670686), IC(6432B-1)

X Abbreviation

C Complied

Not applicable

Fail

Approval Signatories

Test and Report Completed by :	Report Approval by :	
175	Len	
Raymond Kim Test Engineer MOVON CORPORATION	Issac Jin Technical Manager MOVON CORPORATION	

Page: (4) of (61)

2. EUT Description

Kind of product 2.4GHz Radio Control System		
Model Name	AURORA 9X	
Serial Number	N/A	
Power supply DC 7.2 V		
Frequency range(SLT)	2 406 MHz ~ 2 474 MHz , 2 480 MHz	
Frequency range(Opti-mini)	2 405.6 Mb ~ 2 471.6 Mb	
Modulation technique	AFHSS(GFSK)	
Number of channels	110(Opti-mini), 70(SLT)	
Antenna gain	0.71 dB i (Max.)	
TEST SITE REGISTRATION NUMBER	FCC(670686), IC(6432B-1)	

2.1. Declarations by the manufacturer

SLT channel band operates in 2 406 to 2 474 and 2 480 Mb

2 480 Mb is used paring channel

So. Test channel is Below

Opti-mini

Channel	Freq(Mb)
LOW	2 405.6
MID	2 441.0
HIGH	2 471.6

SLT

Channel	Freq(Mb)
LOW	2 406
MID	2 440
HIGH	2 474
HIGH-1	2 480

2.2. Details of modification

None

3. Information about the FHSS characteristics

3.1. Pseudorandom frequency hopping sequence

The product operates in 2 405.6 to 2 471.6 Mb Band

AURORA 9X is 2.4GHz R/C Transceiver.

AURORA 9X has the 111 channels but when this product operates, gets only 21 channels among the 111 channels and then it would begin to be hop at random among 21 channels that channels spacing are over 1 Mz. The 21 channels are real hopping channels and whenever turn on the product, always try to get new 21 channels. The reason why get new 21 channels is to get the good receive sensitivity channels.

Example of a 21 hopping sequence in data mode: 40,21,44,23,42,53,46,55,48,33,52,35,50,65,54...

Also, operates in 2 406 to 2 474 and 2 480 Mb with SLT channel band.

AURORA 9X in SLT channel band is 2.4GHz R/C Transceiver.

AURORA 9X in SLT channel band has the 70 channels but when this product operates, gets only 16 channels

among the 70 channels and then it would begin to be hop at random among 16 channels that channels spacing are over 1 Mb. The 16 channels are real hopping channels and whenever turn on the product, always try to get new 16 channels. The reason why get new 16 channels is to get the good receive sensitivity channels.

Example of a 16 hopping sequence in data mode: 40,21,44,23,42,53,46,55,48,33,52,35,50,65,54...

3.2 Equal Hopping Frequency Use

2.4Ghz system in Radio Control industry has no compatibility in different manufactures. Also each manufactures has their own protocol.

3.3 System Receiver Input Bandwidth

The input bandwith of receiver is 1MHz. Master is Transmitter and Slave is Receiver.

Master can have multiple slaves.

The master determines the hopping sequence.

Master determines the hopping sequence that clear channel can be found by scanning operation. The slave follows this sequence.

Slave is receiving the sequence via ID setting

Both devices shift between RX and TX time slot according to the clock of the master

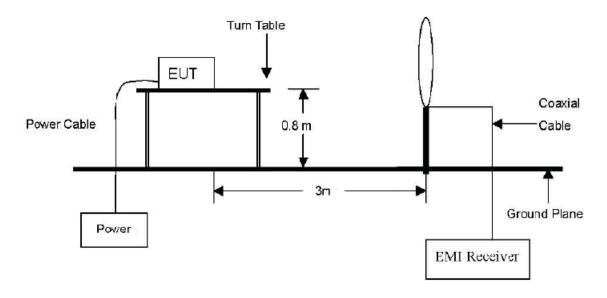
3.4 Equipment Description

15.247(g): In accordance with 2.4Ghz system in Radio Control industry, the system is designed to comply with all of The regulations in Section15.247 when the transmitter is presented with a continuous data (or information) system.

15.247(h):In accordance with 2.4Ghz system in Radio Control industry, the system does not coordinate it channels selection/ hopping sequence with other frequency hopping systems for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

4. Measurement equipment

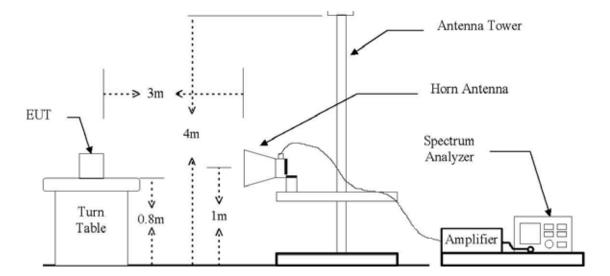
Equipment	Manufacturer	Model	Serial number	Calibration Interval	Calibration due.
EMI Test Receiver	R&S	ESIB26	100196/026	1 year	2013-12-14
Signal Generator	R&S	SMR27	100089	1 year	2013-12-13
Spectrum Analyzer	R&S	FSV-40	100832	1 year	2013-10-04
Power Meter	Agilent	E4416A	GB41290645	1 year	2013-10-04
Power Sensor	Agilent	9327A	US40441490	1 year	2013-10-04
Double Redge Horn Antenna	R&S	HF906	100236	2 year	2015-02-28
Horn Antenna	A.H.SYSTEMS	SAS-572	269	2 year	2013-09-07
Ultra Broadband Antenna	R&S	HL562	100170	1 year	2013-12-13
Power Amplifier	MITEQ	AM-1431	1497315	1 year	2013-10-04
Power Amplifier	MITEQ	AFS43-01002600	1374382	1 year	2013-10-04
High Pass Filter	Wainwright	WHK3.0/18G-10SS	508	1 year	2013-10-04
DC Power Supply	HP	6674A	3637A01351	1 year	2013-10-04
Controller	INNCO	CO2000	co200/064/6961003/L	N/A	N/A
Antenna Master	INNCO	MA4000	MA4000/038/6961003/L	N/A	N/A
Loop Antenna	ETS LINDGREN	6502	00118166	2 year	2013-10-10


* Remark; Support equipment

Description	Manufacturer	Model	Serial number
-	-	-	-


5. Transmitter radiated spurious emissions and conducted spurious emissions 5.1. Test setup

5.1.1. Transmitter radiated spurious emissions


The diagram below shows the test setup that is utilized to make the measurements for emission from 9kHz to 30MHz Emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 Mz to 1 Gz emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 1 \oplus to 24 \oplus emissions.

5.2. Limit

According to §15.247(d), in any 100 klb bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 klb bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in section §15.209(a) is not required. In addition, radiated emission which in the restricted band, as define in section §15.205(a), must also comply the radiated emission limits specified in section §15.209(a) (see section §15.205(c))

According to § 15.109(a), for an intentional radiator devices, the general required of field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values :

Frequency (畑)	Distance (Meters)	Radiated at 3M (dBµV/m)	Radiated (μ//m)
0.009-0.490	300		2400/F(kHz)
0.490-1.705	30	See the remark	24000/F(kHz)
1.705–30.0	30		30
30 - 88	3	40.0	100
88 – 216	3	43.5	150
216 – 960	3	46.0	200
Above 960	3	54.0	500

*Remark

- 1. Emission level in $dB \, uV/m = 20 \log (uV/m)$
- 2. Measurement was performed at an antenna to the closed point of EUT distance of meters.
- 3. Distance extrapolation factor = 40log(Specific distance/ test distance) (dB) Limit line=Specific limits(dB uV) + distance extrapolation factor.

5.3. Test procedures

Radiated emissions from the EUT were measured according to the dictates of ANSI C63.4:2003 In case of the air temperature of the test site is out of the range is 10 to 40°C before the testing proceeds the warm-up time of EUT maintain adequately

5.3.1. Test procedures for radiated spurious emissions

- 1. The EUT is placed on a turntable, which is 0.8 m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.

*** Remark**;

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 10 \(\mathbb{k} \mathbb{L} \) for Peak detection (PK) at frequency below 30 \(\mathbb{M} \mathbb{L} \)
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Peak detection (PK) or Quasi-peak detection (QP) at frequency below 1 GHz.
- 3. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 Mb for Peak detection and frequency above 1 Gb.
- 4. The resolution bandwidth of test receiver/spectrum analyzer is 1 Mb z and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1 Gb.

5.3.2. Test procedures for conducted spurious emissions

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
- 2. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using RBW = 100 kHz, VBW = 100 kHz.

5.4. Test result

Ambient temperature: 32 $^{\circ}$ C Relative humidity: 55 $^{\circ}$ R.H.

5.4.1. Spurious radiated emission

The frequency spectrum from 9 kHz to 30 MHz was investigated. Emission levels are not reported much lower than the limits by over 20 dB. All reading values are peak values.

To get a maximum emission levels from the EUT, the EUT was moved throughout the XY, XZ, and YZ planes.

Operation mode : Opti-mini mode

A. Low channel (2 405.6 Mb)

Radiated emissions		Ant.	Correctio	n factors	Total	Lir	nit	
Frequency (ME)	Reading (dBμV)	Detector mode	Pol.	Ant. factor (dB/m)	CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)

No other emissions were detected at a level greater than 20dB below limit.

B. Middle channel (2 441.0 Mb)

Radiated emissions		Ant.	Correction factors		Total	Limit		
Frequency (雁)	Reading (dBμV)	Detector mode	Pol.	Ant. factor (dB/m)	CL (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)

No other emissions were detected at a level greater than 20dB below limit.

C. High channel (2 471.6 贴)

Radiated emissions		Ant.	Correctio	n factors	Total	Lir	nit	
Frequency (ME)	Reading (dBμV)	Detector mode	Pol.	Ant. factor (dB/m)	CL (dB)	Actual (dBµV/m)	Limit (dBµN/m)	Margin (dB)

No other emissions were detected at a level greater than 20dB below limit.

*** Remark**

- 1. Actual = Reading + Ant. factor + CL (Cable loss)
- 2. Distance extrapolation factor = 40 log (specific distance / test distance) (dB)
- 3. Limit line = specific Limits (dBuV) + Distance extrapolation factor
- 4. 15.31 Measurement standards.

Operation mode : SLT mode A. Low channel (2 406 Mb)

Radiated emissions		Ant.	Correctio	n factors	Total	Lir	nit	
Frequency (Mb)	Reading (dBμV)	Detector mode	Pol.	Ant. factor (dB/m)	CL (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)

No other emissions were detected at a level greater than 20dB below limit.

B. Middle channel (2 440 Mb)

	Radiated emissions			Ant.	Correctio	n factors	Total	Lir	mit	
	Frequency (Mb)	Reading (dBμV)	Detector mode	Pol.	Ant. factor (dB/m)	CL (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)	
1										

No other emissions were detected at a level greater than 20dB below limit.

C. High channel (2 474 账)

Radi	Radiated emissions		Ant.	Correction factors		Total	Lir	mit
Frequency (M址)	Reading (dBμV)	Detector mode	Pol.	Ant. factor (dB/m)	CL (dB)	Actual (dΒμV/m)	Limit (dBµN/m)	Margin (dB)
No other emissions were detected at a level greater than 20dB below limit.								

D. High-1 channel (2 480 Mb)

2. High i chaine (2 400 mill)									
Radiated emissions		Ant.	Correction factors		Total	Limit			
Frequency (MHz)	Reading (dBμV)	Detector mode	Pol.	Ant. factor (dB/m)	CL (dB)	Actual (dΒμV/m)	Limit (dBµN/m)	Margin (dB)	
No other emissions were detected at a level greater than 20dB below limit.									

*** Remark**

- 1. Actual = Reading + Ant. factor + CL (Cable loss)
- 2. Distance extrapolation factor = 40 log (specific distance / test distance) (dB)
- 3. Limit line = specific Limits (dBuV) + Distance extrapolation factor
- 4. 15.31 Measurement standards.

5.4.2. Spurious radiated emission

The frequency spectrum from 30 Mb to 1 000 Mb was investigated. Emission levels are not reported much lower than the limits by over 20 dB. All reading values are peak values.

To get a maximum emission levels from the EUT, the EUT was moved throughout the XY, XZ, and YZ planes.

Operation mode: Opti-mini mode

A. Low channel (2 405.6 账)

Radi	Radiated emissions			Correctio	n factors	Total	Limit	
Frequency (MHz)	Reading (dBμV)	Detector mode	Pol.	Ant. factor (dB/m)	CL (dB)	Actual (dBµV/m)	Limit (dBµN/m)	Margin (dB)
31.94	17.29	PK	V	16.55	1.64	35.48	40.00	4.52
35.83	9.44	PK	Н	14.33	1.71	25.48	40.00	14.52
127.19	3.18	PK	V	16.69	3.19	23.06	43.50	20.44
142.74	2.41	PK	Н	18.83	3.42	24.66	43.50	18.84
Above 200.00	Not detected							

B. Middle channel (2 441.0 胍)

Radi	Radiated emissions			Correctio	n factors	Total	Limit	
Frequency (M址)	Reading (dBμV)	Detector mode	Pol.	Ant. factor (dB/m)	CL (dB)	Actual (dBμV/m)	Limit (dBµV/m)	Margin (dB)
31.94	17.11	PK	V	16.55	1.64	35.30	40.00	4.70
35.83	9.56	PK	Н	14.33	1.71	25.60	40.00	14.40
127.19	3.25	PK	V	16.69	3.19	23.13	43.50	20.37
142.74	2.44	PK	Н	18.83	3.42	24.69	43.50	18.81
Above 200.00	Not detected							

***** Remark

- 1. Actual = Reading + Ant. factor + CL (Cable loss)
- 2. 15.31 Measurement standards.

C. High channel (2 471.6 账)

Radi	ated emissio	ons	Ant.	Correctio	n factors	Total	Lir	nit
Frequency (Mb)	Reading (dBμV)	Detector mode	Pol.	Ant. factor (dB/m)	CL (dB)	Actual (dΒμV/m)	Limit (dBµN/m)	Margin (dB)
31.94	17.05	PK	V	16.55	1.64	35.24	40.00	4.76
35.83	9.58	PK	Н	14.33	1.71	25.62	40.00	14.38
127.19	3.54	PK	V	16.69	3.19	23.42	43.50	20.08
142.74	2.15	PK	Н	18.83	3.42	24.40	43.50	19.10
Above 200.00	Not detected							

*** Remark**

- 1. Actual = Reading + Ant. factor + CL (Cable loss)
- 2. 15.31 Measurement standards.

Operation mode: SLT mode A. Low channel (2 406 Mb)

Radi	ated emissio	ons	Ant.	Correctio	Correction factors		Lir	nit
Frequency (Mb)	Reading (dBμV)	Detector mode	Pol.	Ant. factor (dB/m)	CL (dB)	Actual (dΒμV/m)	Limit (dBµN/m)	Margin (dB)
31.94	17.02	PK	V	16.55	1.64	35.21	40.00	4.79
35.83	9.55	PK	Н	14.33	1.71	25.59	40.00	14.41
127.19	3.58	PK	V	16.69	3.19	23.46	43.50	20.04
142.74	2.23	PK	Н	18.83	3.42	24.48	43.50	19.02
Above 200.00	Not detected							

B. Middle channel (2 440 11位)

Radi	Radiated emissions			Correctio	Correction factors		Lir	nit
Frequency (M地)	Reading (dBμV)	Detector mode	Pol.	Ant. factor (dB/m)	CL (dB)	Actual (dBµV/m)	Limit (dBµN/m)	Margin (dB)
31.94	16.87	PK	V	16.55	1.64	35.06	40.00	4.94
35.83	9.45	PK	Н	14.33	1.71	25.49	40.00	14.51
127.19	3.55	PK	V	16.69	3.19	23.43	43.50	20.07
142.74	2.21	PK	Н	18.83	3.42	24.46	43.50	19.04
Above 200.00	Not detected							

*** Remark**

- 1. Actual = Reading + Ant. factor + CL (Cable loss)
- 2. 15.31 Measurement standards.

C. High channel (2 474 账)

Radi	ated emissio	ons	Ant.	Correctio	n factors	Total	Lir	nit
Frequency (Mb)	Reading (dBμV)	Detector mode	Pol.	Ant. factor (dB/m)	CL (dB)	Actual (dΒμV/m)	Limit (dBµN/m)	Margin (dB)
31.94	16.93	PK	V	16.55	1.64	35.12	40.00	4.88
35.83	9.35	PK	Н	14.33	1.71	25.39	40.00	14.61
127.19	3.25	PK	V	16.69	3.19	23.13	43.50	20.37
142.74	2.48	PK	Н	18.83	3.42	24.73	43.50	18.77
Above 200.00	Not detected							

D. High-1 channel (2 480 11/b)

Radi	ated emissio	ons	Ant.	Correctio	n factors	Total	Lir	nit
Frequency (M地)	Reading (dBμV)	Detector mode	Pol.	Ant. factor (dB/m)	CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
31.94	17.05	PK	V	16.55	1.64	35.24	40.00	4.76
35.83	9.43	PK	Н	14.33	1.71	25.47	40.00	14.53
127.19	3.15	PK	V	16.69	3.19	23.03	43.50	20.47
142.74	2.42	PK	Н	18.83	3.42	24.67	43.50	18.83
Above 2.00.00	Not detected							

*** Remark**

- 1. Actual = Reading + Ant. factor + CL (Cable loss)
- 2. 15.31 Measurement standards.

5.4.3. Spurious radiated emission

The frequency spectrum above 1 000 $\,^{\text{Mb}}$ was investigated. Emission levels are not reported much lower than the limits by over 20 $\,^{\text{dB}}$.

To get a maximum emission levels from the EUT, the EUT was moved throughout the XY, XZ, and YZ planes.

Operation mode: Opti-mini mode

A. Low channel (2 405.6 贴)

Radi	iated emissi	ons	Ant.	Correctio	n factors	Total	Limit	
Frequency (ME)	Reading (dBμV)	Detector mode	Pol.	Ant. factor (dB/m)	Amp + CL (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)

No other emissions were detected at a level greater than 20dB below limit.

B. Middle channel (2 441.0 贮)

Radi	ated emissi	a Detector		Correction factors		Total	Limit	
Frequency (M拉)	Reading (dBμV)	Detector mode	Pol.	Ant. factor (dB/m)	Amp + CL (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)

No other emissions were detected at a level greater than 20dB below limit.

C. High channel (2 471.6 账)

Radia	ated emissi	ding Detector		Correction factors		Total	Lim	nit
Frequency (M地)	Reading (dBμV)	Detector mode	Pol.	Ant. factor (dB/m)	Amp + CL (dB)	Actual (dΒμV/m)	Limit (dBµV/m)	Margin (dB)

No other emissions were detected at a level greater than 20dB below limit.

*** Remark**

- 2. Radiated emissions measured in frequency above 1 000 Mb were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Actual = Reading + Ant. factor + Amp + CL (Cable loss)
- 5. 15.31 Measurement standards.

Operation mode: SLT mode

A. Low channel (2 406 N地)

Radiated emissions	s Ant.	Correction factors		Total	Limit	
Frequency Reading (dBµV)	Detector mode Pol.	Ant. factor (dB/m)	Amp + CL (dB)	Actual (dΒμV/m)	Limit (dBµN/m)	Margin (dB)

No other emissions were detected at a level greater than 20dB below limit.

B. Middle channel (2 440 Mb)

Radi	Radiated emissions			Correctio	n factors	Total	Lin	nit
Frequency (ME)	Reading (dBμV)	Detector mode	Pol.	Ant. factor (dB/m)	Amp + CL (dB)	Actual (dBμV/m)	Limit (dBµN/m)	Margin (dB)

No other emissions were detected at a level greater than 20dB below limit.

C. High channel (2 474 账)

Radia	ated emissi	ons	Ant.	Corre	ction factors	Total	Limit			
Frequency (M址)	Reading (dBµV)	Detector mode	Pol.	Ant. factor (dB/m)	Amp + CL (dB)	Actual (dΒμΝ/m)	Limit (dBµV/m)	Margin (dB)		
	No other emissions were detected at a level greater than 20dB below limit.									

D. High-1 channel (2 480 Mb)

Rad	Radiated emissions			Corre	ction factors	Total	Limit		
Frequency (Mtz)	Reading (dBµV)	Detector mode	Pol.	Ant. factor (dB/m)	Amp + CL (dB)	Actual (dΒμΝ/m)	Limit (dBµV/m)	Margin (dB)	
	No other contests and attended at a local contest to the contest t								

No other emissions were detected at a level greater than 20dB below limit.

*** Remark**

- 2. Radiated emissions measured in frequency above 1 000 Mb were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Actual = Reading + Ant. factor + Amp + CL (Cable loss)
- 5. 15.31 Measurement standards.

5.4.4. Band Edge

Operation mode: Opti-mini mode

A. 2 310 - 2 390 Mb measurement

Radi	ated emissi	ons	Ant.	Correction factors		Total	Lin	nit
Frequency (M地)	Reading (dBμV)	Detector mode	Pol.	Ant. factor (dB/m)	CL (dB)	Actual (dΒμΝ/m)	Limit (dBµV/m)	Margin (dB)
2 390.00	29.58	Peak	Н	28.36	2.00	55.94	74.00	18.06
2 390.00	16.54	Average	Н	28.36	2.00	42.90	54.00	11.10
2 390.00	36.04	Peak	V	28.36	2.00	62.40	74.00	11.60
2 390.00	18.65	Average	V	28.36	2.00	45.01	54.00	8.99

B. 2 483.5 - 2 500 № measurement

Radi	ated emissi	ons	Ant.	Correctio	n factors	Total	Lin	nit
Frequency (M地)	Reading (dBμV)	Detector mode	Pol.	Ant. factor (dB/m)	CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
2 483.50	29.34	Peak	Н	28.36	2.00	55.70	74.00	18.30
2 483.50	16.87	Average	Н	28.36	2.00	43.23	54.00	10.77
2 483.50	41.23	Peak	V	28.36	2.00	67.59	74.00	6.41
2 483.50	17.77	Average	V	28.36	2.00	44.13	54.00	9.87

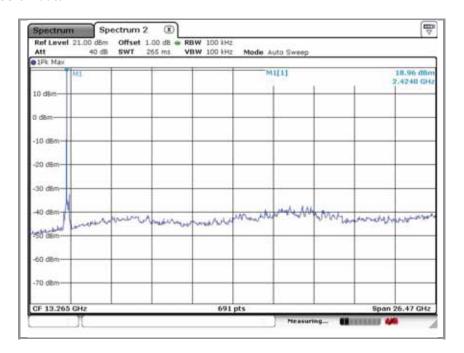
Operation mode: SLT mode

A. 2 310 - 2 390 Mb measurement

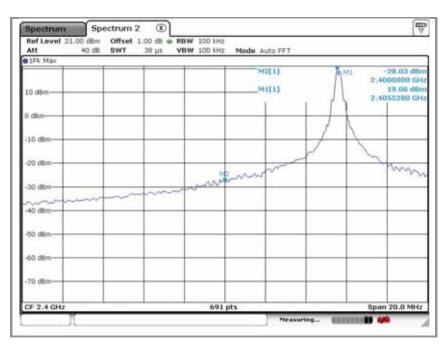
Radi	ated emissi	ons	Ant.	Correction factors		Total	Limit	
Frequency (M地)	Reading (dBμV)	Detector mode	Pol.	Ant. factor (dB/m)	CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
2 390.00	29.94	Peak	Н	28.36	2.00	56.30	74.00	17.70
2 390.00	16.99	Average	Н	28.36	2.00	43.35	54.00	10.65
2 390.00	30.92	Peak	V	28.36	2.00	57.28	74.00	16.72
2 390.00	16.79	Average	V	28.36	2.00	43.15	54.00	10.85

B. 2 483.5 - 2 500 Mb measurement for 2 474 Mb

Radiated emissions		Ant.	Correction factors		Total	Lin	nit	
Frequency (Mb)	Reading (dBμV)	Detector mode	Pol.	Ant. factor (dB/m)	CL (dB)	Actual (dΒμΝ/m)	Limit (dBµN/m)	Margin (dB)
2 483.50	30.88	Peak	Н	28.36	2.00	57.24	74.00	16.76
2 483.50	16.91	Average	Н	28.36	2.00	43.27	54.00	10.73
2 483.50	44.13	Peak	V	28.36	2.00	70.49	74.00	3.51
2 483.50	16.96	Average	V	28.36	2.00	43.32	54.00	10.68

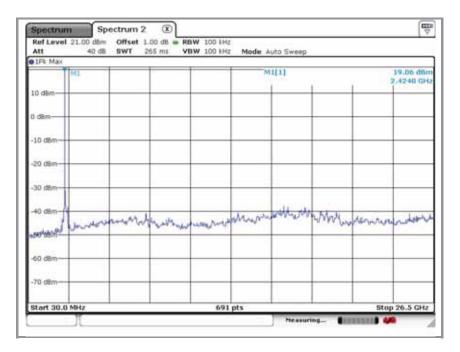

C. 2 483.5 – 2 500 № measurement for 2 480 №

Radiated emissions			Ant.	Correction factors		Total	Lin	nit
Frequency (MHz)	Reading (dBμV)	Detector mode	Pol.	Ant. factor (dB/m)	CL (dB)	Actual (dΒμV/m)	Limit (dBµV/m)	Margin (dB)
2 483.50	30.54	Peak	Н	28.36	2.00	56.90	74.00	17.10
2 483.50	16.84	Average	Н	28.36	2.00	43.20	54.00	10.80
2 483.50	42.45	Peak	V	28.36	2.00	68.81	74.00	5.19
2 483.50	18.11	Average	V	28.36	2.00	44.47	54.00	9.53

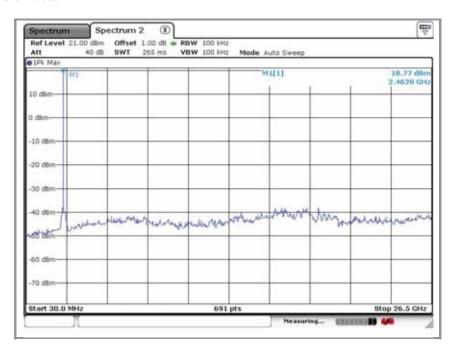

5.4.4. Spurious RF conducted emissions: Plot of spurious RF conducted emission Operation mode: Opti-mini mode

A. Low channel (2 405.6 账)

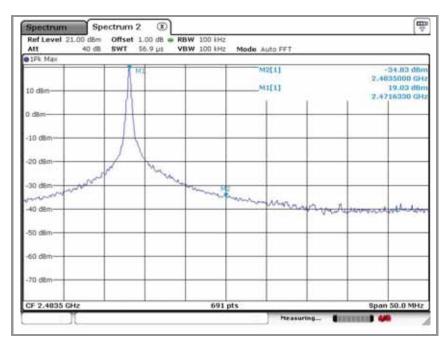
Unwanted Emission data



Band-edge data

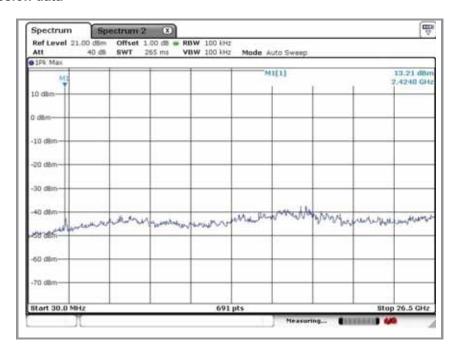

B. Middle channel (2 441.0 账)

Unwanted Emission data



C. High channel (2 471.6 账)

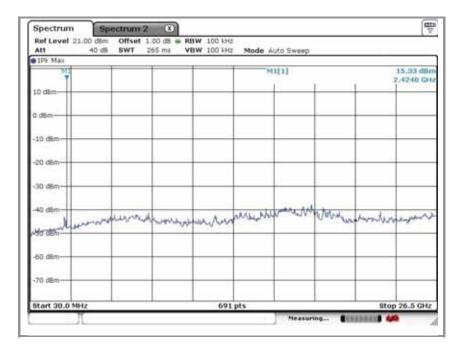
Unwanted Emission data


Band-edge data

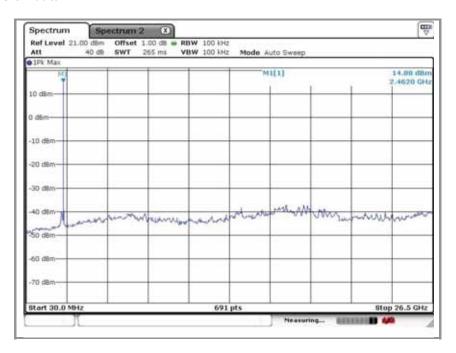
Operation mode: SLT mode

A. Low channel (2 406 贮)

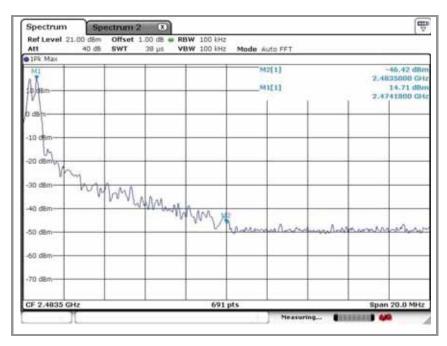
Unwanted Emission data



Band-edge data

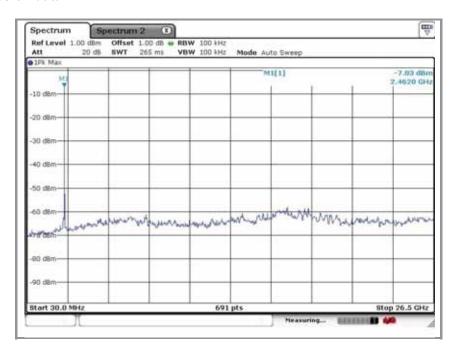

B. Middle channel (2 440 Mb)

Unwanted Emission data

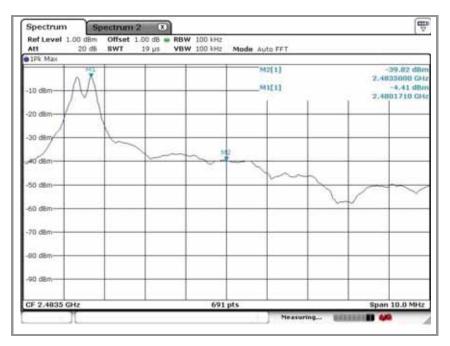


C. High channel (2 474 账)

Unwanted Emission data

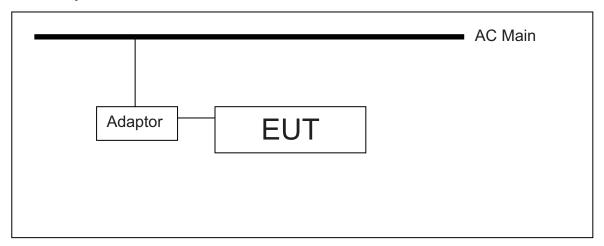


Band-edge data



D. High-1 channel (2 480 11/b)

Unwanted Emission data



Band-edge data

6. Conducted power line test

6.1. Test setup

6.2. Limit

According to §15.107(a) for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 klb to 30 Mb, shall not exceed the limits in the following table, as measured using a 50 uH/50 ohm line impedance stabilization network (LISN). Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequencies ranges.

Everyone of Emission (Alla)	Conducted limit (dBμV/m)				
Frequency of Emission (咃)	Quasi-peak	Average			
0.15 – 0.50	66 - 56*	56 - 46*			
0.50 - 5.00	56	46			
5.00 – 30.0	60	50			

*** Remark**

Decreases with the logarithm of the frequency.

6.3. Test procedures

The test procedure is performed in a 6.5 m \times 3.6 m \times 3.6 m (L \times W \times H) shielded room. The EUT along with its peripherals were placed on a 1.0 m(W) \times 1.5 m(L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.

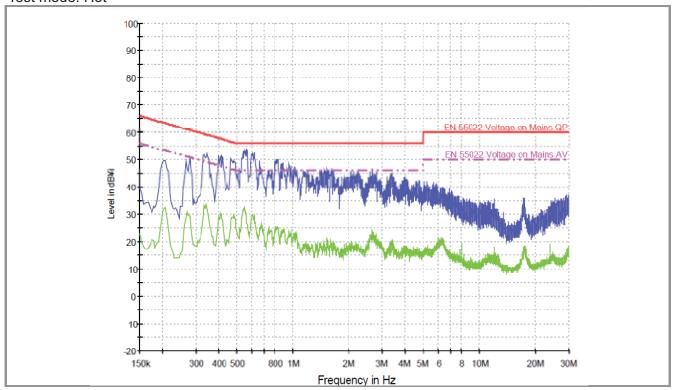
The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room. The excess power cable between the EUT and the LISN was bundled. The power cables of peripherals were unbundled. All connecting cables of EUT and peripherals were moved to find the maximum emission.

6.4. Test results

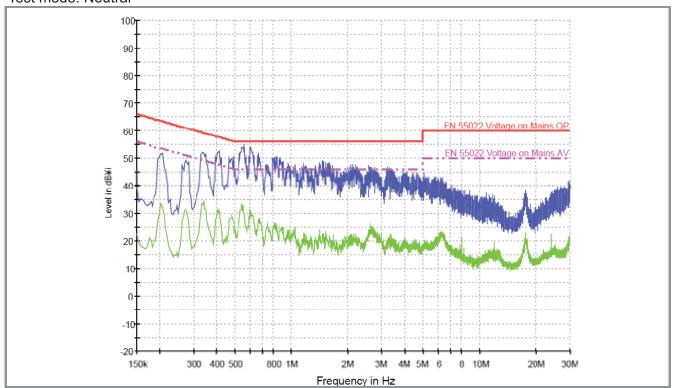
Ambient temperature: $\underline{25 \ ^{\circ}C}$ Relative humidity: $\underline{50 \ \% \ R.H.}$

Frequency range: 0.15 Mb ~ 30 Mb

Measured bandwidth: 9 kHz


From (MI)	Lina	Q-Peak						
Freq. (畑)	Line	Level(dBμV/m)	Limit(dBμV/m)	Margin(dB)				
0.20	N	47.85	63.61	15.76				
0.34	L	47.51	59.20	11.69				
0.55	N	49.68	56.00	6.32				
0.60	N	50.12	56.00	5.88				
8.03	N	33.11	60.00	26.89				
17.04	N	30.08	60.00	29.92				

Eroa (Mk)	Lina	Average					
Freq. (Mb)	Line	Level(dBμV/m)	Limit (dBμV/m)	Margin(dB)			
0.55	N	34.12	46.00	11.88			
0.60	N	31.68	46.00	14.32			


※ RemarkLine(H): Hot
Line(N): Neutral

Plot of conducted power line

Test mode: Hot

7. Receiver radiated spurious emissions

7.1. Test setup

Same as clause 5.1.

7.1.1. Receiver radiated spurious emissions

Same as clause 5.1.1

7.2. Limit

According to §15.109(a), Except for Class A digital devices, the field strength of radiated emission from unintentional radiator at a distance of 3 m shall not exceed the following values:

Frequency (쌘)	Distance (Meters)	Radiated (dB <i>µ</i> V/m)	Radiated (μ̄V/m)
0.009-0.490	300		2400/F(kHz)
0.490-1.705	30	See the remark	24000/F(kHz)
1.705–30.0	30		30
30 - 88	3	40.0	100
88 – 216	3	43.5	150
216 – 960	3	46.0	200
Above 960	3	54.0	500

7.3. Test procedures

Same as clause 5.3.

Radiated emissions from the EUT were measured according to the dictates of ANSI C63.4:2009 In case of the air temperature of the test site is out of the range is 10 to 40°C before the testing proceeds the warm-up time of EUT maintain adequately

7.3.1. Test procedures for radiated spurious emissions

Same as Clause 5.3.1.

7.4. Test results

Ambient temperature: 32 $^{\circ}$ C Relative humidity: 55 $^{\circ}$ R.H.

7.4.1. Spurious radiated emission.

The frequency spectrum from 30 Mb to 26.5 Gb was investigated. Emission levels are not reported much lower than the limits by over 30 dB. All reading values are peak values.

Operation mode: Opti-mini mode

A. LOW channel (2 405.6 账)

Radiated emissions		Ant.	Correctio	n factors	Total	Lin	nit	
Frequency (畑)	Reading (dBμV)	Detector mode	Pol.	Ant. factor (dB/m)	Amp + CL (dB)	Actual (dΒμV/m)	Limit (dBµN/m)	Margin (dB)
No other projectors were detected at a level annotanth as 20 dB halow livet								

No other emissions were detected at a level greater than 20dB below limit.

B. MID channel (2 441.0 赋)

Radiated emissions		Ant.	Correctio	n factors	Total	Lin	nit	
Frequency (Mtz)	Reading (dBμV)	Detector mode	Pol.	Ant. factor (dB/m)	Amp + CL (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
No other emissions were detected at a level greater than 20dB below limit.								

C. High channel (2 471.6 Mb)

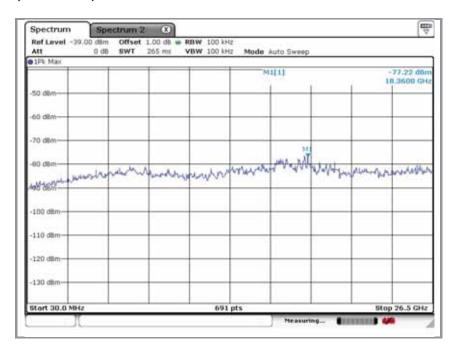
Radiated emissions		Ant.	Correctio	n factors	Total	Lin	nit	
Frequency (M拉)	Reading (dBμV)	Detector mode	Pol.	Ant. factor (dB/m)	Amp + CL (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)

No other emissions were detected at a level greater than 20dB below limit.

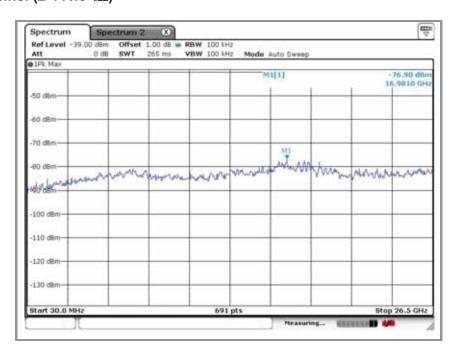
***** Remark:

Actual = Reading + Ant. factor + Amp + CL (Cable loss)

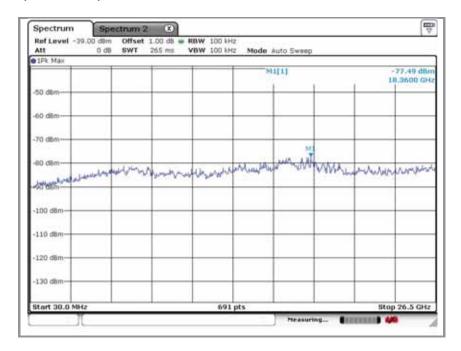
Operation mode: SLT mode Not supported Receiver mode


*** Remark:**

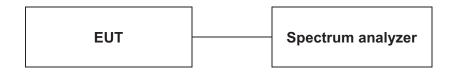
Actual = Reading + Ant. factor + Amp + CL (Cable loss)


7.4.2. Spurious RF conducted emissions: Plot of spurious RF conducted emission

Operation mode: Opti-mini mode


A. Low channel (2 405.6 账)

B. Middle channel (2 441.0 账)



C. High channel (2 471.6 账)

8. 20 dB bandwidth measurement & 99 % bandwidth measurement

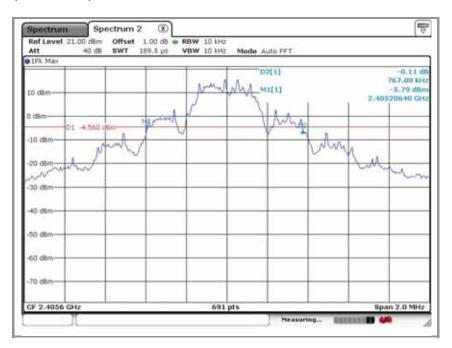
8.1. Test setup

8.2. Limit

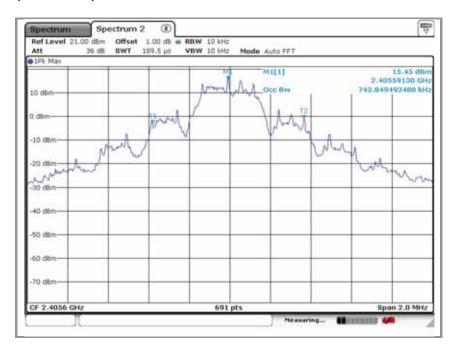
Not applicable

8.3. Test procedure

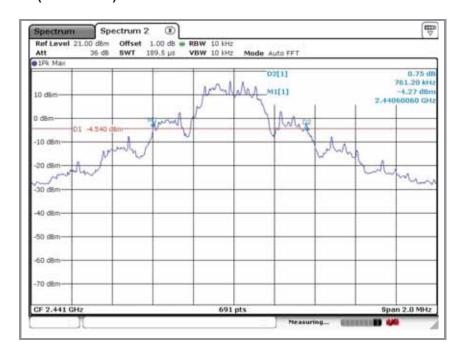
- 1. The 20 dB band width was measured with a spectrum analyzer connected to RF antenna connector (conducted measurement) while EUT was operating in transmit mode at the appropriate center frequency. The analyzer center frequency was set to the EUT carrier frequency, using the analyzer. Display Line and Marker Delta functions, the 20 dB band width of the emission was determined.
- 2. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using RBW = 10 kHz, VBW = 10 kHz, Span = 5 MHz.

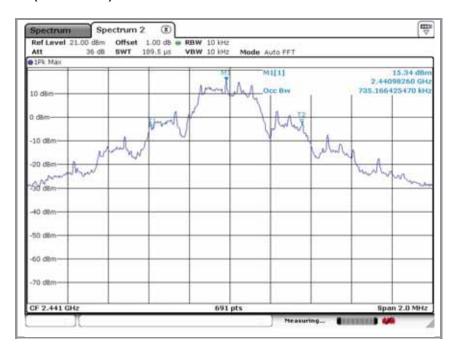

8.4. Test results

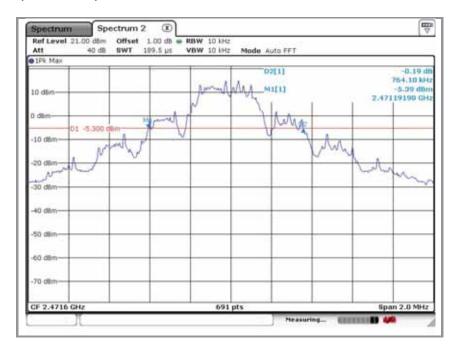
Ambient temperature: $\underline{24\ ^{\circ}C}$ Relative humidity: $\underline{43\ \%\ R.H.}$

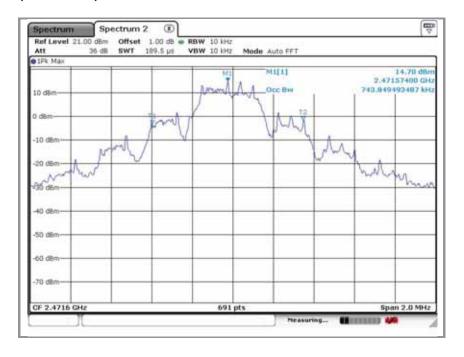

Operation mode	Frequency(酏)	20 dB bandwidth(账)	99 % bandwidth(Mb)
	2 405.6	0.767	0.744
Opti-mini	2 441.0	0.761	0.735
	2 471.6	0.764	0.744
SLT	2 406	0.775	0.738
	2 440	0.787	0.747
	2 474	0.772	0.734
	2 480	0.790	0.729

Operation mode: Opti-mini mode

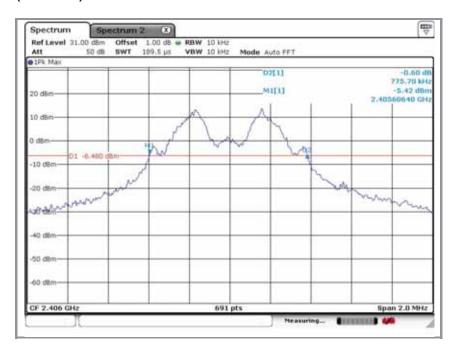

A. Low channel (2 405.6 Mb) - 20 dB bandwidth


B. Low channel (2 405.6 №) - 99 % bandwidth

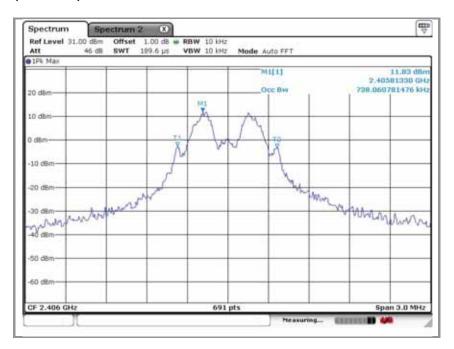

C. Middle channel (2 441.0 Mb) - 20 dB bandwidth


D. Middle channel (2 441.0 1 mb) - 99 % bandwidth

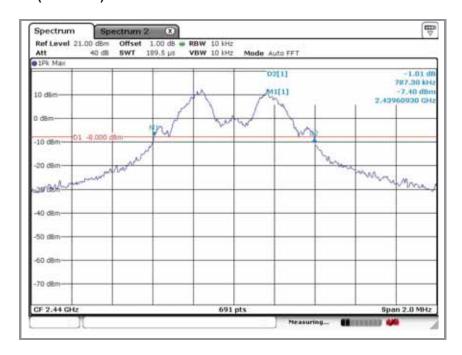
E. High channel (2 471.6 Mb) - 20 dB bandwidth

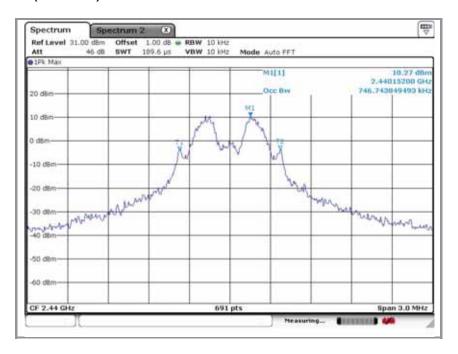


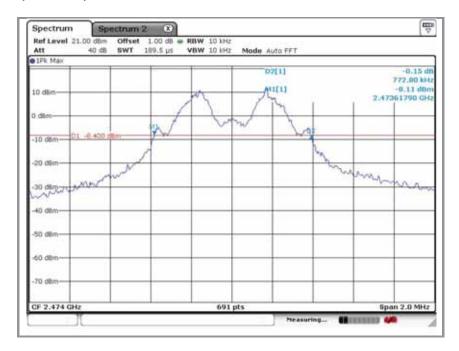
F. High channel (2 471.6 №) - 99 % bandwidth

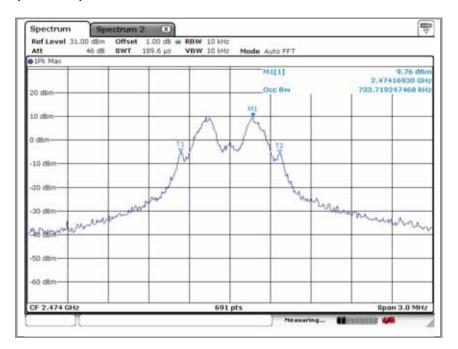


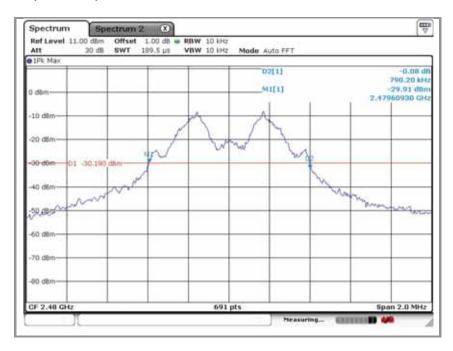
Operation mode: SLT mode

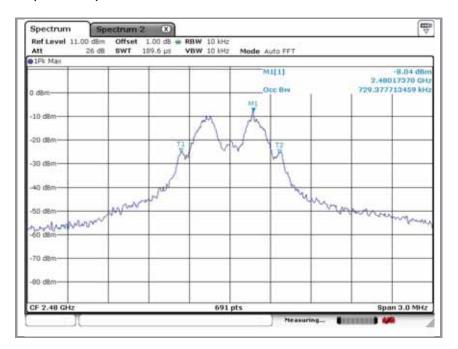

A. Low channel (2 406 Mb) - 20 dB bandwidth


B. Low channel (2 406 №) - 99 % bandwidth


C. Middle channel (2 440 Mb) - 20 dB bandwidth


D. Middle channel (2 440 Mb) - 99 % bandwidth


E. High channel (2 474 Mb) - 20 dB bandwidth


F. High channel (2 474 №) - 99 % bandwidth

G. High-1 channel (2 480 №) – 20 dB bandwidth

H. High-1 channel (2 480 №) - 99 % bandwidth

9. Maximum peak output power measurement

9.1. Test setup.

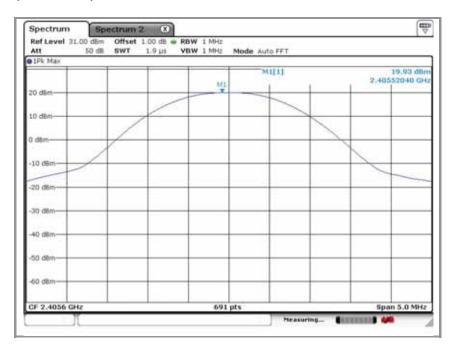
9.2. Limit

The maximum peak output power of the intentional radiator shall not exceed the following:

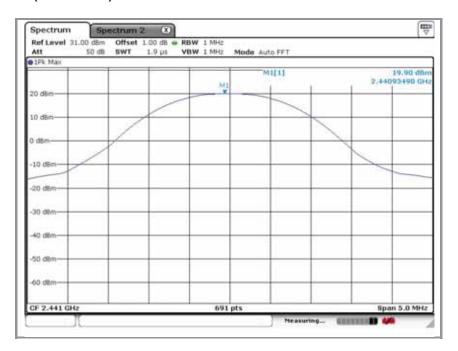
- 1. §15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW
- 2. §15.247(b)(1), For frequency hopping systems operating in the 2 400 − 2 483.5 Mb employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5 725 − 5 805 Mb band: 1 Watt.

9.3. Test procedure

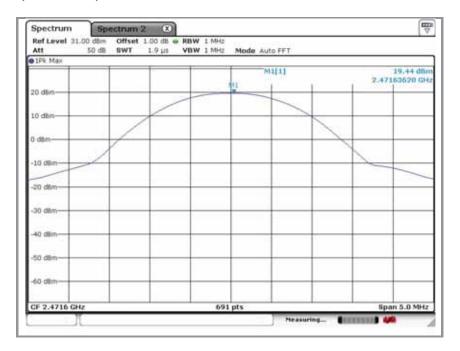
- 1. The RF power output was measured with a Spectrum analyzer connected to the RF Antenna connector(conducted measurement) while EUT was operating in transmit mode at the appropriate center frequency, A spectrum analyzer was used to record the shape of the transmit signal.
- 2. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using; Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW ≥ 20 dB BW, VBW ≥ RBW, Sweep = auto, Detector function = peak, Trace = max hold


9.4. Test results

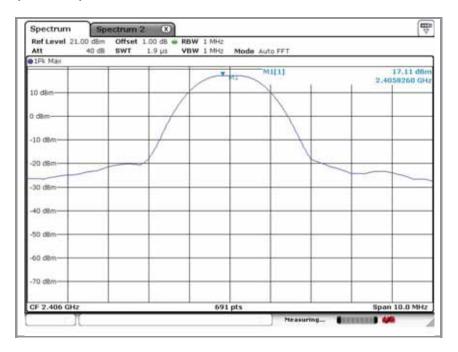
Ambient temperature: $\underline{24\ \mathbb{C}}$ Relative humidity: $\underline{43\ \%\ R.H.}$


Operation mode	Frequency(酏)	Peak output power(dBm)	Limit(dBm)
	2 405.6	19.93	30
Opti-mini	2 441.0	19.90	30
	2 471.6	19.44	30
SLT	2 406	17.11	30
	2 440	16.23	30
	2 474	14.77	30
	2 480	-4.49	30

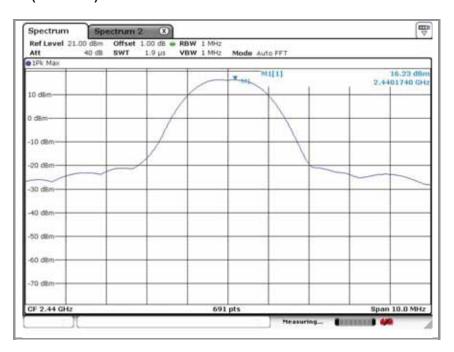
Operation mode: Opti-mini mode


A. Low channel (2 405.6 Mb)

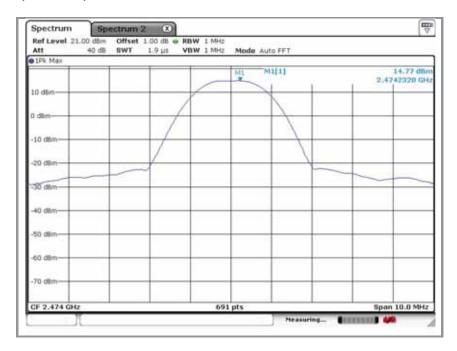
B. Middle channel (2 441.0 Mb)

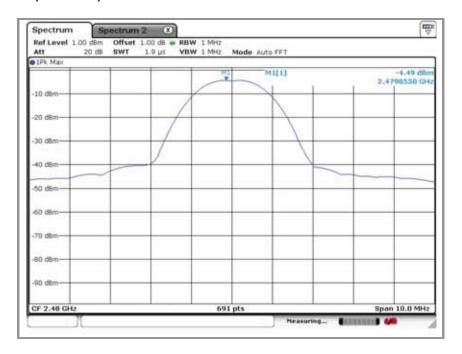


C. High channel (2 471.6 账)



Operation mode: SLT mode


A. Low channel (2 406 5)


B. Middle channel (2 440 账)

C. High channel (2 474 雕)

D. High-1 channel (2 480 账)

10. Hopping channel separation

10.1. Test setup

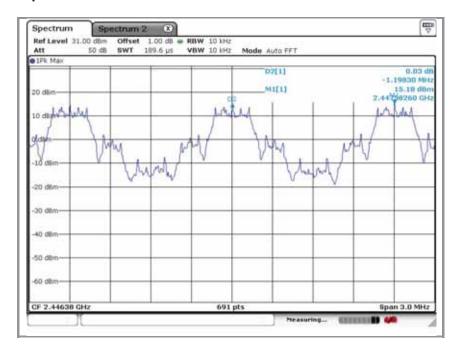
10.2. Limit

§15.247(a)(1) Frequency hopping system operating in 2 400 – 2 483.5 \pm Band may have hopping channel carrier frequencies that are separated by 25 \pm or two-third of 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 \pm mW.

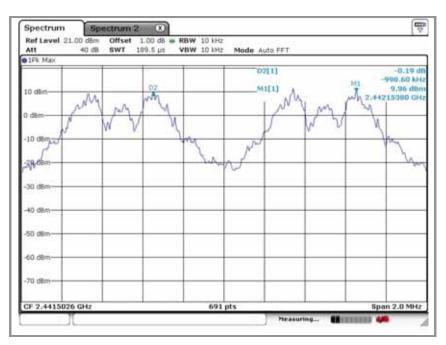
10.3. Test procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT as shown in test setup without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- 3. By using the max hold function record the separation of adjacent channels.
- 4. Measure the frequency difference of these two adjacent channels by spectrum analyzer mark function. And then plot the result on spectrum analyzer screen.
- 5. Repeat above procedures until all frequencies measured were complete.
- 6. Set center frequency of spectrum analyzer = middle of hopping channel.
- 7. Set the spectrum analyzer as RBW = 100 kHz, VBW = 100 kHz, Span = 5 MHz and Sweep = auto.

10.4. Test results


Ambient temperature: 24 °C Relative humidity: 43 % R.H.

Operation mode	Frequency (Mb)	Adjacent hopping Channel separation (紀)	Two-third of 20 dB bandwidth (紀2)	Minimum bandwidth (ੴ)
Opti-mini	2 446.4	1.198	0.511	25
SLT	2 441.5	0.998	0.525	25


Remark:

20 dB bandwidth measurement, the measured channel separation should be greater than two-third of 20 dB bandwidth or Minimum bandwidth.

Operation mode: Opti-mini mode

Operation mode: SLT mode

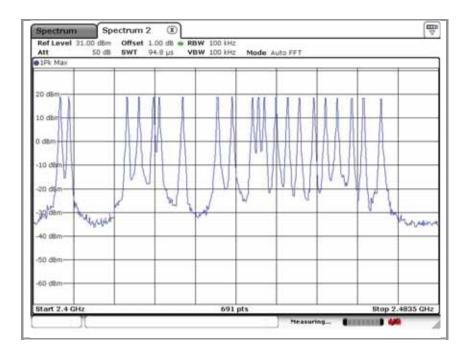
11. Number of hopping frequency

11.1. Test setup

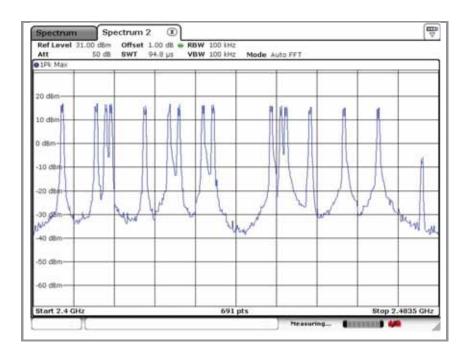
11.2. Limit

§15.247(a)(1)(iii) For frequency hopping system operating in the 2 400 - 2 483.5 Mb bands shall use at least 15 hopping frequencies.

11.3. Test procedure


- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna the port to the Spectrum analyzer
- 3. Set spectrum analyzer Start = 2 400 Mb, Stop = 2 441.5 Mb, Sweep = auto and Start = 2 441.5 Mb, Stop = 2 483.5 Mb, Sweep = auto.
- 4. Set the spectrum analyzer as RBW, VBW = 300 klb.
- 5. Max hold, view and count how many channel in the band.

11.4. Test results


Ambient temperature: $24 \degree$ Relative humidity: 43 % R.H.

Mode	Number of Hopping Frequency	Limit	
Opti-mini	21	≥ 15	
SLT	16	≥ 15	

Operation mode: Opti-mini mode

Operation mode: SLT mode

12. Time of occupancy(Dwell time)

12.1. Test setup

12.2. Limit

§15.247(a)(1)(iii) For frequency hopping system operating in the 2 400 - 2 483.5 Mb band, the average time of occupancy on any frequency shall not be greater than 0.4 second within a 31.6 second period.

A period time = 0.4(s) * 21 = 8.4(s) for OPTI-MINI

A period time = 0.4(s) * 16 = 6.4(s) for SLT

12.3. Test procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT as shown in test setup without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable.
- 3. Adjust the center frequency of spectrum analyzer on any frequency be measured and set spectrum analyzer to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- 4. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- 5. Repeat above procedures until all frequencies measured were complete.

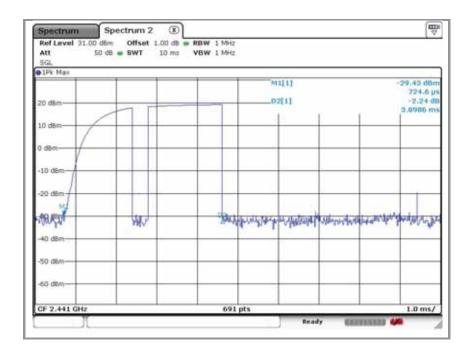
12.4. Test results

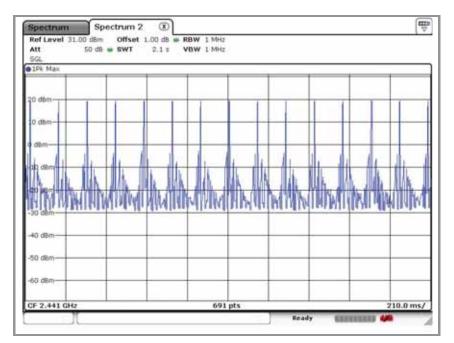
Ambient temperature: 24 °C Relative humidity: 43 % R.H.

0.4 seconds within a 8.4&6.4 second period per any frequency

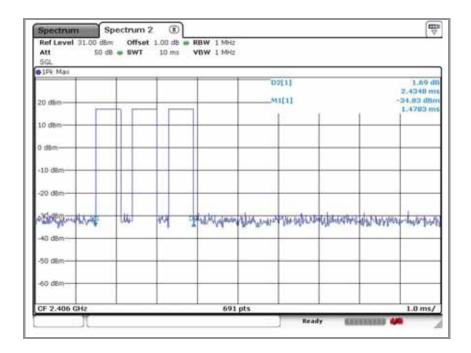
Operation mode: Opti-mini mode

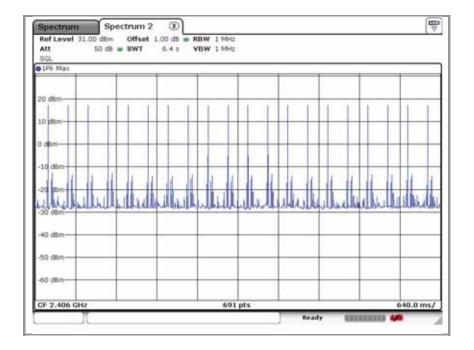
Number of transmission ina 8.4s (21Hopping*0.4)	Length of Transmission Time (msec)	Result (msec)	Limit (msec)
15(Times / 0.84sec) *4 = 60	3.898 6	233.92	400


Operation mode: SLT mode


Number of transmission ina 6.4s (16Hopping*0.4)	Length of Transmission Time (msec)	Result (msec)	Limit (msec)
20(Times / 6.4sec) = 20	2.434 8	48.70	400

*** Remark:**


dwell time = {(number of hopping per second / number of slot) x duration time per channel} x 0.4 ms


A. Opti-mini

B. SLT

13. Antenna requirement

13.1. Standard Applicable

For intentional device, according to FCC 47 CFR Section §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section §15.247 (b) if transmitting antennas of directional gain greater than 6 $\,\mathrm{dB}\,\mathrm{i}$ are used, the power shall be reduced by the amount in $\,\mathrm{dB}\,\mathrm{t}$ that the gain of the antenna exceeds 6 $\,\mathrm{dB}\,\mathrm{i}$.

13.2. Antenna Connected Construction

Antenna used in this product is External type (Dipole Antenna) gain of 0.7 dBi.

14. RF exposure evaluation

14.1. Environmental evaluation and exposure limit according to FCC CFR 47 part 1, 1.1307(b), 1.1310

According to §15.247(e)(i) and §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines. According to KDB 447498 (2)(a)(i)

Limits for maximum permissible exposure (MPE)

Frequency range (쌘)	Electric field Magnetic field strength(V/m) strength (A/m)		Power density (ﷺ/ﷺ)	Average time		
(A) Limits for Occupational / Control exposures						
300 – 1 500			F/300	6		
1 500 – 100 000			5	6		
(B) Limits for General Population / Uncontrol Exposures						
300 – 1 500			F/1 500	6		
1 500 – 100 000			1	<u>30</u>		

14.2. Friis transmission formula : Pd=(Pout*G)\(4*pi*R2)

Where

Pd= Power density in mW/cm2

Pout=output power to antenna in mW

G= Numeric gain of the antenna relative to isotropic antenna

Pi=3.1416

R= distance between observation point and center of the radiator in cm

Pd the limit of MPE, 1 mW/cm². If we know the maximum gain of the antenna and total power input to the antenna, through the calculation, we will know the distance where the MPE limit is reached.

14.3. Test result of RF exposure evaluation

Test Item : RF Exposure evaluation data

Test Mode : Normal operation

14.4. Output power into antenna & RF exposure evaluation distance

Antenna gain: 0.7 dBi

Operation mode: Opti-mini mode

Frequency (쌘)	Output Peak power to antenna (dBm)	Antenna gain (dBi)	Antenna Gain (dBi) Numeric	Power density at 20 cm (mW/cm)	Power density Limits (ﷺ)
2 405.6	19.93	0.37	1.09	0.021 3	
2 441.0	19.90	0.71	1.18	0.022 9	1
2 471.6	19.44	0.28	1.07	0.018 7	

Operation mode: SLT mode

Frequency (쌘)	Output Peak power to antenna (dBm)	Antenna gain (dBi)	Antenna Gain (dBi) Numeric	Power density at 20 cm (ﷺ)	Power density Limits (ﷺ)
2 406	17.11	0.37	1.09	0.011 1	
2 440	16.23	0.71	1.18	0.009 8	1
2 474	14.77	0.28	1.07	0.006 4	1
2 480	-4.49	0.28	1.07	0.000 1	

*** Remark**

The power density Pd (5th column) at a distance of 20 $\,\mathrm{cm}\,$ calculated from the friis transmission formula is far below the limit of 1 $\,\mathrm{mW/cm^2}\,$.

15. Test setup photo of EUT

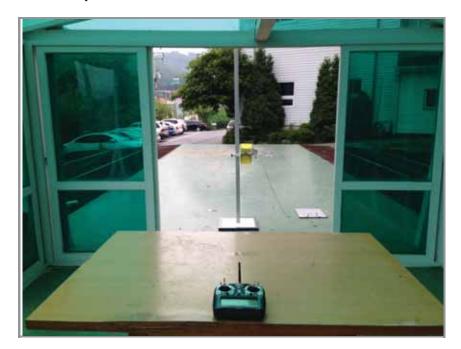

Photo of radiated spurious emission at below 30 №

Photo of radiated spurious emission at 30 № ~ 1 000 №

Photo of radiated spurious emission at above 1 000 №

