

EMC TEST REPORT

(FULL COMPLIANCE)

Report Number: 102144226BOX-007a Project Number: G102144226

Report Issue Date: 08/20/2015

Model(s) Tested: V9E-VP Model(s) Partially Tested: V9E-SP

(Fundamental and harmonic frequencies

were tested on the V9E-SP)

Standards: CFR47 "Telecommunications" FCC Part 15 Subpart C:2015

"Intentional Radiators" 15.249 "Operation within the bands 902-928 MHz, 2400-2483.5 MHz, 5725-5875 MHZ, and 24.0-24.25 GHz"

Tested by:
Intertek Testing Services NA, Inc.
70 Codman Hill Road
Boxborough, MA 01719
USA

Client: LoJack Corporation 40 Pequot Way Canton, MA 02021 USA

Report prepared by

Report reviewed by

Vathana Ven / Staff Engineer, EMC

Kouma Sinn / Staff Engineer, EMC

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Intertek

Report Number: 102144226BOX-007a Issued: 08/20/2015

Table of Contents

1	Introduction and Conclusion	3
2	Test Summary	3
3	Client Information	4
4	Description of Equipment Under Test and Variant Models	4
5	System Setup and Method	6
6	Fundamental Field Strength	7
7	Transmitter Occupied Bandwidth	17
8	Transmitter and Receiver Radiated Spurious Emissions	23
9	AC Mains Conducted Emissions	46
10	Revision History	51

1 Introduction and Conclusion

The tests indicated in section 2.0 were performed on the product constructed as described in section 4.0. The remaining test sections are the verbatim text from the actual data sheets used during the investigation. These test sections include the test name, the specified test Method, a list of the actual Test Equipment Used, documentation Photos, Results and raw Data. No additions, deviations, or exclusions have been made from the standard(s) unless specifically noted.

Based on the results of our investigation, we have concluded the products tested Comply with the requirements of the standard(s) indicated. The results obtained in this test report pertain only to the item(s) tested. Intertek does not make any claims of compliance for samples or variants which were not tested.

2 Test Summary

Section	Test full name	Result
3	Client Information	
4	Description of Equipment Under Test and Variant Models	
5	System Setup and Method	
6	Fundamental Field Strength (FCC§15.249(a),(e))	Pass
7	Transmitter Occupied Bandwidth (FCC15.215)	Pass
8	Transmitter and Receiver Radiated Spurious Emissions (FCC §15.209,15.249(a),(d))	Pass
9	AC Mains Conducted Emissions (FCC §15.207)	N/A*
10	Revision History	

^{* -} EUT is battery powered

3 Client Information

This EUT was tested at the request of:

Client: LoJack Corporation

40 Pequot Way Canton, MA 02021

USA

Contact: Vincent Ricci
Telephone: (781) 302-4332
Fax: Not provided
Email: vricci@lojack.com

4 Description of Equipment Under Test and Variant Models

Manufacturer: LoJack Corporation

40 Pequot Way Canton, MA 02021

USA

Equipment Under Test						
Description Manufacturer Model Number Serial Number						
Vehicle Location Unit	LoJack Corporation	V9E-VP	0F4B030			
Vehicle Location Unit LoJack Corporation		V9E-SP	0F4B035			

Receive Date:	07/13/2015, 07/30/2015	
Received Condition:	Good	
Type:	Production	

Description of Equipment Under Test (provided by client)

The V9E-VP and V9E-SP are mobile Vehicle Location Transponders which also incorporates a 2.4 GHz short range radio device. This radio is battery operated and transmits at 2402 to 2481 MHz and use an integral trace antenna.

Equipment Under Test Power Configuration					
Rated Voltage Rated Current Rated Frequency Number of Phases					
3.6 & 7.2 VDC	Not label on the device	N/A	N/A		

Operating modes of the EUT:

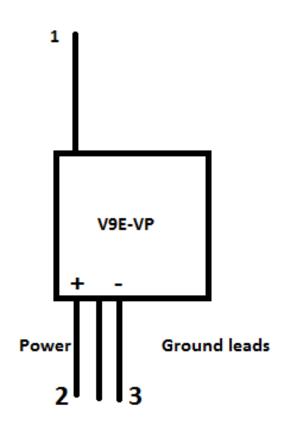
No.	Descriptions of EUT Exercising
1	The Vehicle Location Unit was powered from internal 3.6V & 7.2V Lithium battery pack and was programmed to transmit continuously during testing. During the frequency stability and the transient frequency behavior testing, the transmitter was unmodulated.

Software used by the EUT:

	No.	Descriptions of EUT Exercising
	1	None
Ī		

Radio/Receiver Characteristics				
Frequency Band(s)	2402-2481 MHz			
Modulation Type(s)	MSK			
Maximum Output Power	-0.66 dBm or 0.000859W			
Test Channels	3			
Occupied Bandwidth	0.847 MHz (Lo channel), 0.847 MHz (Mid channel), 1.052 MHz (Hi channel)			
Frequency Hopper: Number of Hopping Channels	N/A			
Frequency Hopper: Channel Dwell Time	N/A			
Frequency Hopper: Max interval between				
two instances of use of the same channel	N/A			
MIMO Information (# of Transmit and				
Receive antenna ports)	N/A			
Equipment Type	Standalone			
ETSI LBT/Adaptivity	N/A			
ETSI Adaptivity Type	N/A			
ETSI Temperature Category (I, II, III)	N/A			
ETSI Receiver Category (1, 2, 3)	N/A			
Antenna Type and Gain	Integral antenna			

5 System Setup and Method


	Cables							
ID Description Length (m) Shielding Ferrites Termina								
1	Antenna	1.067	None	None	Antenna			
2	DC Ground	0.4	None	None	None			
3	Control	0.4	None	None	None			

Support Equipment					
Description	Model Number	Serial Number			
None					

5.1 Method:

Configuration as required by ANSI C63.10:2013.

5.2 EUT Block Diagram:

6 Fundamental Field Strength

6.1 Method

Tests are performed in accordance with FCC §15.249(a)(e).

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
Radiated Emissions, 10m	30-1000 MHz	3.5 dB	6.3 dB
Radiated Emissions, 3m	30-1000 MHz	3.5 dB	6.3 dB
Radiated Emissions, 3m	1-6 GHz	4.2 dB	5.2 dB
Radiated Emissions, 3m	6-15 GHz	4.2 dB	5.5 dB
Radiated Emissions, 3m	15-18 GHz	4.2 dB	5.5 dB
Radiated Emissions, 3m	18-40 GHz	4.2 dB	5.5 dB

As shown in the table above our radiated emissions $U_{\it lab}$ is less than the corresponding $U_{\it CISPR}$ reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

Where $FS = Field Strength in dB_{\mu}V/m$

RA = Receiver Amplitude (including preamplifier) in $dB\mu V$

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

 $RA = 52.0 dB\mu V$ AF = 7.4 dB/m CF = 1.6 dB AG = 29.0 dB $FS = 32 dB\mu V/m$

To convert from $dB\mu V$ to μV or mV the following was used:

UF =
$$10^{(NF/20)}$$
 where UF = Net Reading in μ V
NF = Net Reading in dB μ V

Example:

FS = RA + AF + CF - AG =
$$52.0 + 7.4 + 1.6 - 29.0 = 32.0$$

UF = $10^{(32 \text{ dB}\mu\text{V} / 20)} = 39.8 \text{ }\mu\text{V/m}$

Intertek

Report Number: 102144226BOX-007a Issued: 08/20/2015

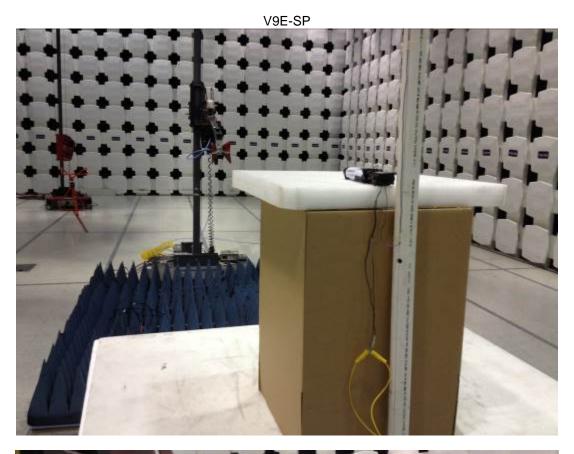
6.2 Test Equipment Used:

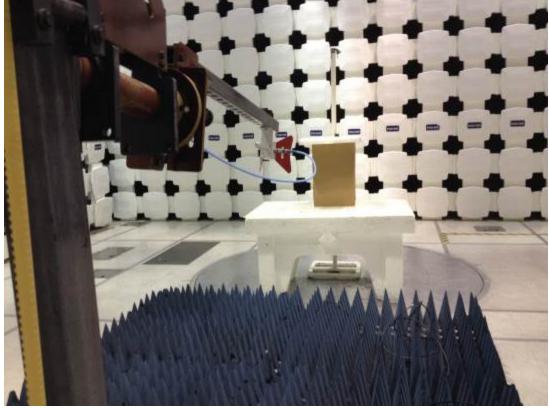
Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV004'	Weather Station	Davis Instruments	7400	PE80529A61A	10/06/2014	10/06/2015
ETS001'	1-18GHz DRG Horn Antenna	ETS-Lindgren	3117	00143259	01/14/2015	01/14/2016
145128'	EMI Receiver (20 Hz - 40 Ghz)	Rohde & Schwarz	ESIB 40	839283/001	03/14/2015	03/14/2016
145-410'	Cables 145-400 145-403 145-405 145-406 145-407	Huber + Suhner	10m Track A Cables	multiple	10/04/2014	10/04/2015

Software Utilized:

Name	Manufacturer	Version
Excel 2003	Microsoft	(11.8231.8221) SP3
EMI Boxborough.xls	Intertek	08/27/10


6.3 Results:


The fundamental field strength must not exceed an average limit of 94 dBuV/m and a peak limit of 114 dBuV/m, which is 20 dB higher than the average limit.


Average factor of 15.8 dB was applied to peak readings of the emissions to obtain average readings.

The samples tested were found to Comply.

6.4 Setup Photographs:

6.5 Test Data:

V9E-SP Fundamental Radiated Emissions

Company: LoJack Corporation

Antenna & Cables: HF Bands: N, LF, HF, SHF

 Model #: V9E-SP
 Antenna: ETS001 01-14-16.txt
 ETS001 01-14-16.txt

 Serial #: 0F4B035
 Cable(s): 145-416 2m Track 8 1-150Hz Cable 150-04-15.xxt
 NONE.

Engineers: Vathana Ven

Location: 10m Chamber Barometer: DAV004

Filter:

Project #: G102144226 Date(s): 07/31/15

Standard: FCC Part 15 Subpart C 15.249 Temp/Humidity/Pressure: 25 deg. C 41% 997 mB

 Receiver: 145128_03-14-16
 Limit Distance (m): 3

 PreAmp: 145014 05-13-16.txt
 Test Distance (m): 3

PreAmp Used? (Y or N): Y Voltage/Frequency: Battery Frequency Range: See below

Net = Reading (dBuV/m) + Antenna Factor (dB1/m) + Cable Loss (dB) - Preamp Factor (dB) - Distance Factor (dB)

Peak: PK Quasi-Peak: QP Average: AVG RMS: RMS; NF = Noise Floor, RB = Restricted Band; Bandwidth denoted as RBW/VBW

	Ant.			Antenna	Cable	Pre-amp	Distance					1
Detector	Pol.	Frequency	Reading	Factor	Loss	Factor	Factor	Net	Limit	Margin	Bandwidth	
Type	(V/H)	MHz	dB(uV)	dB(1/m)	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB		FC
				WSP	Self powe	red, Lo Ch	annel	•			•]
MaxH PK	Н	2402.000	55.63	31.96	5.87	0.00	0.00	93.46	114.00	-20.54	1/3MHz]
AVG	Н	2402.000	39.83	31.96	5.87	0.00	0.00	77.66	94.00	-16.34	1/3MHz]
MaxH PK	V	2402.000	51.40	31.96	5.87	0.00	0.00	89.23	114.00	-24.77	1/3MHz]
AVG	V	2402.000	35.60	31.96	5.87	0.00	0.00	73.45	94.00	-20.55	1/3MHz]
•				WSP	Self power	ed, Mid Ch	annel	•	•			
MaxH PK	Н	2442.000	53.31	32.11	5.93	0.00	0.00	91.35	114.00	-22.65	1/3MHz]
AVG	Η	2442.000	37.51	32.11	5.93	0.00	0.00	75.55	94.00	-18.45	1/3MHz]
MaxH PK	V	2442.000	52.78	32.11	5.93	0.00	0.00	90.82	114.00	-23.18	1/3MHz]
AVG	V	2442.000	36.98	32.11	5.93	0.00	0.00	75.02	94.00	-18.98	1/3MHz]
				WSP	Self powe	red, Hi Ch	annel					1
MaxH PK	Н	2481.000	53.43	32.27	5.98	0.00	0.00	91.68	114.00	-22.32	1/3MHz	1
AVG	Н	2481.000	37.63	32.27	5.98	0.00	0.00	76.00	94.00	-18.00	1/3MHz	
MaxH PK	V	2481.000	52.24	32.27	5.98	0.00	0.00	90.49	114.00	-23.51	1/3MHz	
AVG	V	2481.000	36.44	32.27	5.98	0.00	0.00	74.69	94.00	-19.31	1/3MHz	1

IC

V9E-VP Radiated Emissions

Company: LoJack Corporation

Antenna & Cables: HF Bands: N, LF, HF, SHF

Model #: V9E-VP

Antenna: ETS001 01-14-16.txt ETS001 01-14-16.txt

Serial #: 0F4B030 Cable(s): 145-416 3m Track B 1-150Hz Cable 10-04-15.txl NONE.

Engineers: Vathana Ven Location: 10m Chamber Barometer: DAV004 Filter:

Project #: G102144226 Date(s): 07/30/15

2481.000

2481.000

2481.000

2481.000

55.03

39.23

52.00

36.20

32.27

32.27

32.27

32.27

MaxH PK

AVG

MaxH PK

AVG

Н

V

V

Standard: FCC Part 15 Subpart C 15.249 Temp/Humidity/Pressure: 22 deg. C 53% 998 mB

 Receiver: 145128_03-14-16
 Limit Distance (m): 3

 PreAmp: 145014 05-13-16.txt
 Test Distance (m): 3

PreAmp Used? (Y or N): Y Voltage/Frequency: Battery Frequency Range: See below

Net = Reading (dBuV/m) + Antenna Factor (dB1/m) + Cable Loss (dB) - Preamp Factor (dB) - Distance Factor (dB) Peak: PK Quasi-Peak: QP Average: AVG RMS: RMS; NF = Noise Floor, RB = Restricted Band; Bandwidth denoted as RBW/VBW

Ant. Antenna Cable Pre-amp Distance Reading Detector Pol. Factor Net Limit Bandwidth Frequency Loss Factor Factor Margin (V/H) MHz dB(uV) dB(1/m) dΒ dΒ dΒ dB(uV/m) dB(uV/m) dΒ FCC Type WSP Vehicle powered, Lo Channel MaxH PK Н 2402.000 56.73 31.96 5.87 0.00 0.00 94.56 114.00 -19.44 1/3MHz AVG Н 2402.000 40.93 31.96 5.87 0.00 0.00 78.76 94.00 -15.24 1/3MHz MaxH PK 2402.000 53.70 31.96 5.87 0.00 0.00 91.53 114.00 -22.47 1/3MHz AVG 1/3MHz ٧ 2402.000 37.90 31.96 5.87 0.00 0.00 75.73 94.00 -18.27 WSP Vehicle powered, Mid Channel MaxH PK 2442.000 1/3MHz Н 54.04 32.11 5.93 0.00 0.00 92.08 114.00 -21.92 AVG Н 2442.000 38.24 32.11 5.93 0.00 0.00 76.87 94.00 -17.13 1/3MHz MaxH PK ٧ 2442.000 0.00 -25.16 1/3MHz 50.80 32.11 5.93 0.00 88.84 114.00 AVG ٧ 2442.000 35.00 5.93 0.00 0.00 73.04 94.00 -20.96 1/3MHz 32.11

IC

Note that the duty cycle was measured to be \sim 16.1%, therefore a duty cycle correction factor of 15.8 dB was applied to the peak results to obtain the average reading.

WSP Vehicle powered, Hi Channel

5.98

5.98

5.98

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

93.28

77.48

90.25

74.45

114.00

94.00

114.00

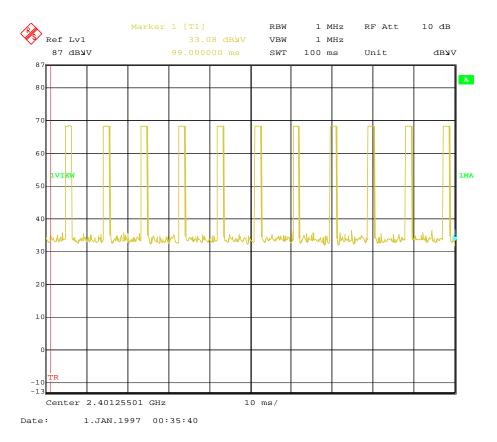
94.00

-20.72

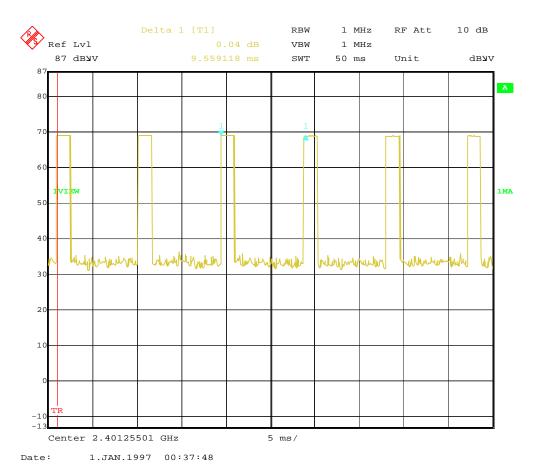
-16.52

-23.75

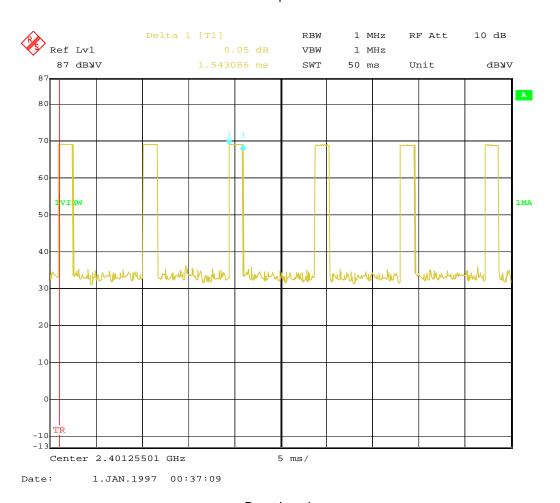
-19.55


1/3MHz

1/3MHz


1/3MHz

1/3MHz


Non-Specific Radio Report Shell Rev. August 2015 Page 13 of 51

Pulse trains in 100 ms period

Burst Period

Burst length

Duty cycle factor = 20*LOG(1.543086/9.559118) = 15.8406

	Vathana VenV	Test Date:	07/30/2015, 07/31/2015
Supervising/Reviewing Engineer:			
(Where Applicable)	N/A		
Product Standard:	FCC §15.249(a),(e)	Limit Applied:	Below specified limits
	12VDC (Car Battery) +		
Input Voltage:	6VDC (Internal Battery)		
Pretest Verification w/		Ambient Temperature:	22, 25 °C
Ambient Signals or			
BB Source:	Yes	Relative Humidity:	53, 41 %
		Atmospheric Pressure:	998, 997 mbars

Deviations, Additions, or Exclusions: None

7 Transmitter Occupied Bandwidth

7.1 Method

Tests are performed in accordance with FCC 15.215.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty

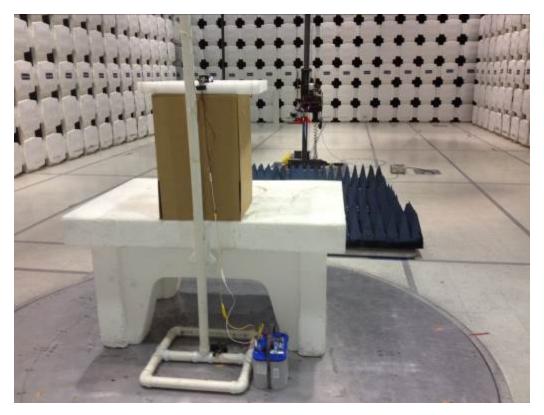
Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
Radiated Emissions, 10m	30-1000 MHz	3.5 dB	6.3 dB
Radiated Emissions, 3m	30-1000 MHz	3.5 dB	6.3 dB
Radiated Emissions, 3m	1-6 GHz	4.2 dB	5.2 dB
Radiated Emissions, 3m	6-15 GHz	4.2 dB	5.5 dB
Radiated Emissions, 3m	15-18 GHz	4.2 dB	5.5 dB
Radiated Emissions, 3m	18-40 GHz	4.2 dB	5.5 dB

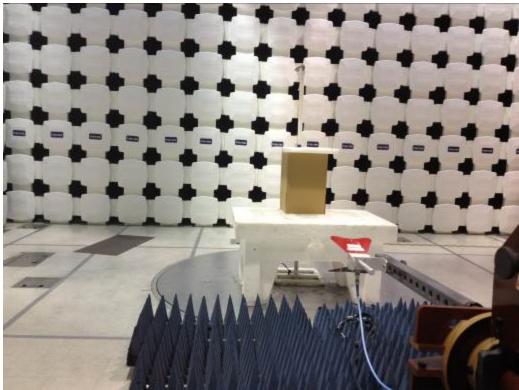
As shown in the table above our radiated emissions $U_{\it lab}$ is less than the corresponding $U_{\it CISPR}$ reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

7.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV004'	Weather Station	Davis Instruments	7400	PE80529A61A	10/06/2014	10/06/2015
ETS001'	1-18GHz DRG Horn Antenna	ETS-Lindgren	3117	00143259	01/14/2015	01/14/2016
145128'	EMI Receiver (20 Hz - 40 Ghz)	Rohde & Schwarz	ESIB 40	839283/001	03/14/2015	03/14/2016
145-410'	Cables 145-400 145-403 145-405 145-406 145-407	Huber + Suhner	10m Track A Cables	multiple	10/04/2014	10/04/2015

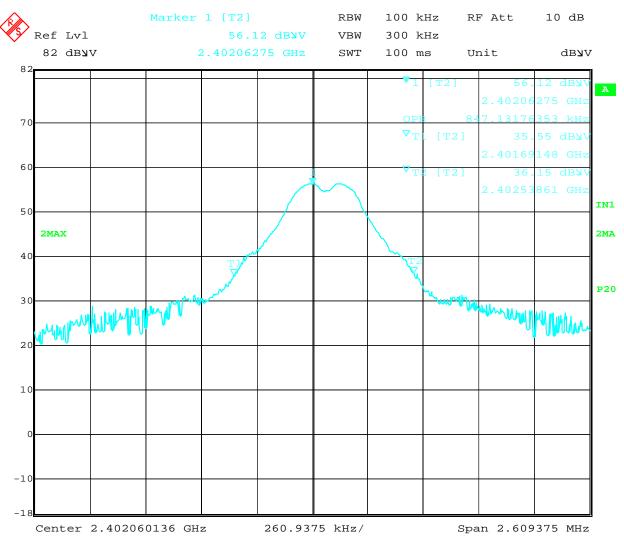
Software Utilized:

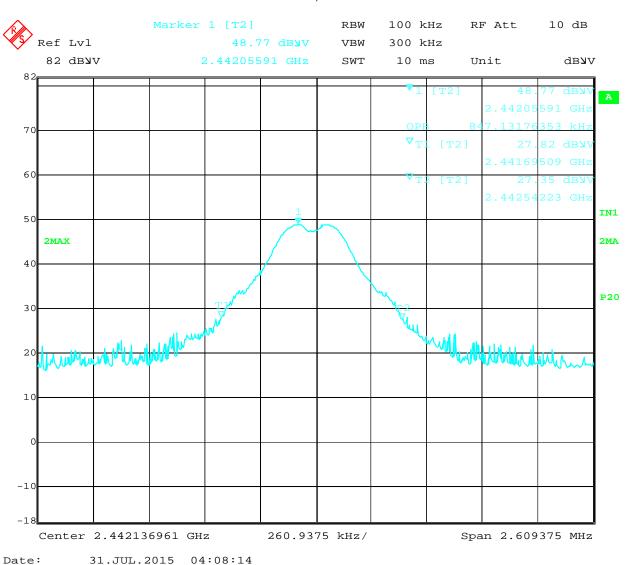

Name	Manufacturer	Version
None		


7.3 Results:

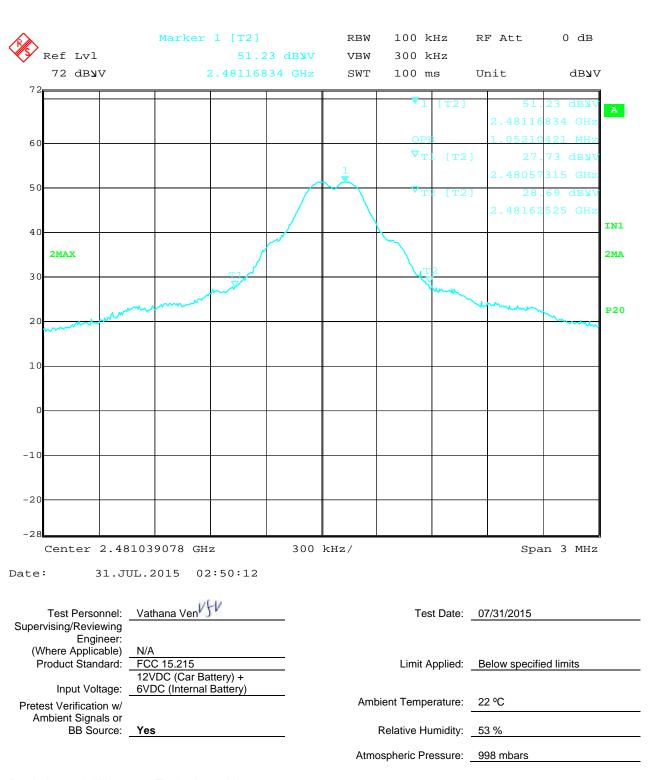
The 20 dB bandwidth of the fundamental must remain inside the band of operation, 2.4-2.4835 GHz.

The sample tested was found to Comply.


7.4 Setup Photographs:


7.5 Plots/Data:

Lo channel, 0.847 MHz



Date: 31.JUL.2015 04:39:57

Mid channel, 0.847 MHz

Hi channel, 1.052 MHz

Deviations, Additions, or Exclusions: None

8 Transmitter and Receiver Spurious Emissions

8.1 Method

Tests are performed in accordance with FCC §15.209, 15.249(a)(d).

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A wooden table 80 cm high is used for table-top equipment.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
Radiated Emissions, 10m	30-1000 MHz	3.5 dB	6.3 dB
Radiated Emissions, 3m	30-1000 MHz	3.5 dB	6.3 dB
Radiated Emissions, 3m	1-6 GHz	4.2 dB	5.2 dB
Radiated Emissions, 3m	6-15 GHz	4.2 dB	5.5 dB
Radiated Emissions, 3m	15-18 GHz	4.2 dB	5.5 dB
Radiated Emissions, 3m	18-40 GHz	4.2 dB	5.5 dB

As shown in the table above our radiated emissions $U_{\it lab}$ is less than the corresponding $U_{\it CISPR}$ reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

Where $FS = Field Strength in dB_{\mu}V/m$

RA = Receiver Amplitude (including preamplifier) in $dB\mu V$

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

 $RA = 52.0 \text{ dB}_{\mu}V$ AF = 7.4 dB/m CF = 1.6 dB AG = 29.0 dB $FS = 32 \text{ dB}_{\mu}V/m$

To convert from $dB\mu V$ to μV or mV the following was used:

UF =
$$10^{(NF/20)}$$
 where UF = Net Reading in μ V NF = Net Reading in $dB\mu$ V

Example:

FS = RA + AF + CF - AG =
$$52.0 + 7.4 + 1.6 - 29.0 = 32.0$$

UF = $10^{(32 \text{ dB}\mu\text{V}/20)} = 39.8 \text{ }\mu\text{V/m}$

8.2 Test Equipment Used:

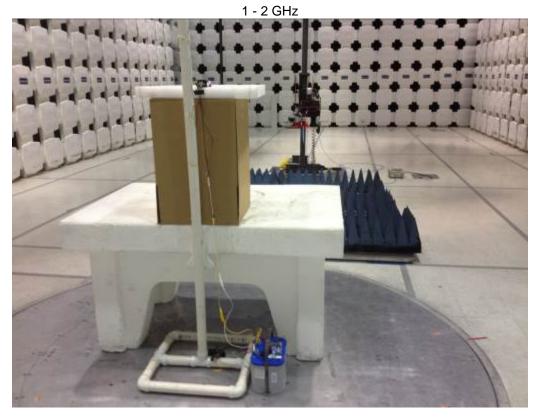
Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV004'	Weather Station	Davis Instruments	7400	PE80529A61A	10/06/2014	10/06/2015
145106'	Bilog Antenna (30MHz - 5GHz)	Sunol Sciences	JB5	A111003	10/24/2014	10/24/2015
ETS001'	1-18GHz DRG Horn Antenna	ETS-Lindgren	3117	00143259	01/14/2015	01/14/2016
REA003'	1GHz High Pass Filter	Reactel, Inc	7HS-1G/10G-S11	06-1	12/30/2013	12/30/2015
145014'	Preamplifier (1 GHz to 26.5 GHz)	Hewlett Packard	8449B	3008A00232	05/13/2015	05/13/2016
145128'	EMI Receiver (20 Hz - 40 Ghz)	Rohde & Schwarz	ESIB 40	839283/001	03/14/2015	03/14/2016
			10m Track A			
145-410'	Cables 145-400 145-403 145-405 145-406 145-407	Huber + Suhner	Cables	multiple	10/04/2014	10/04/2015
CBLHF2012						
-2M-2	2m 9kHz-40GHz Coaxial Cable - SET2	Huber & Suhner	SF102	252675002	02/05/2015	02/05/2016
EMC04'	ANTENNA, RIDGED GUIDE, 18-40 GHZ	EMCO	3116	2090	04/07/2015	04/07/2016
PRE9'	100MHz-40GHz Preamp	MITEQ	NSP4000-NFG	1260417	10/13/2014	10/13/2015
CBLHF2012						
-5M-2'	5m 9kHz-40GHz Coaxial Cable - SET2	Huber & Suhner	SF102	252676002	02/05/2015	02/05/2016

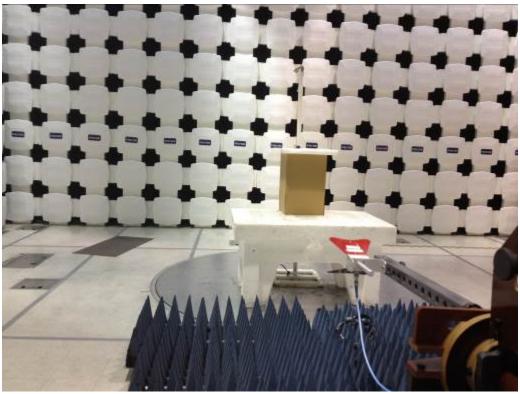
Software Utilized:

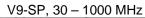
Name	Manufacturer	Version
Excel 2003	Microsoft	(11.8231.8221) SP3
EMI Boxborough.xls	Intertek	08/27/10

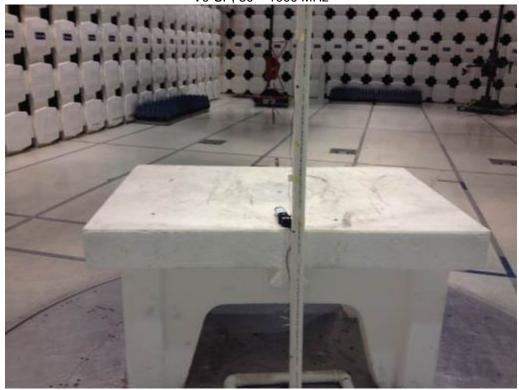
8.3 Results:

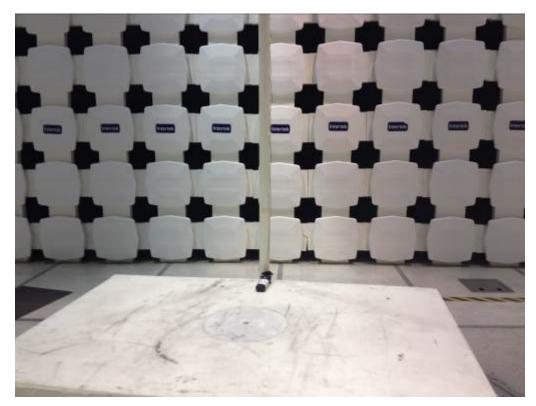
Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209 and RSS-Gen Table 1, whichever is the lesser attenuation. Harmonic emissions must not exceed an average limit of 54 dBuV/m and a peak limit of 74 dBuV/m.

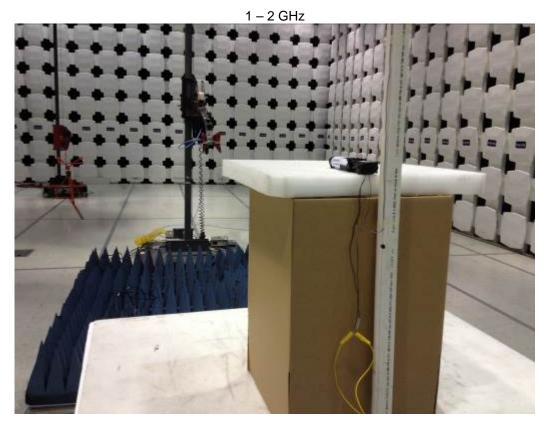

During testing, the EUT was in receive mode in between transmit bursts. Therefore the results show compliance of the receive mode as well as the transmit mode.

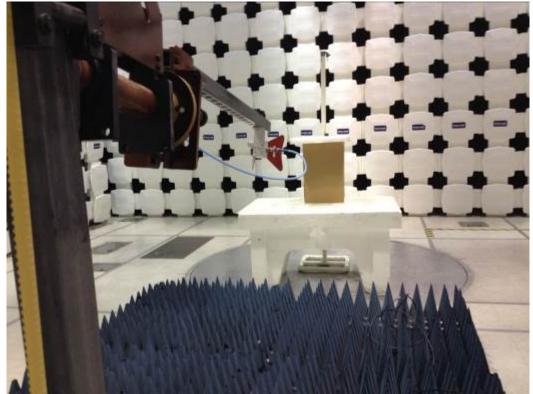

The sample tested was found to comply.


8.4 Setup Photographs:

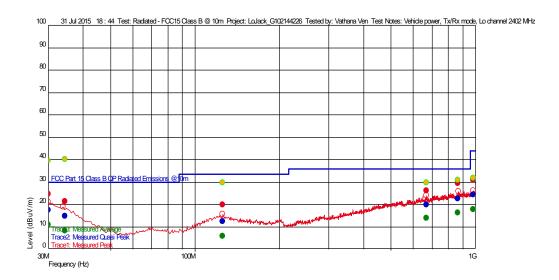








Test Data: 8.5


Test Information Test Details

Test:

Project: Test Notes:

User Entry
Radiated - FCC15 Class B @ 10m
LoJack_G102144226
Vehicle power, Tx/Rx mode, Lo channel 2402 MHz
25 deg C
41%, 997 mB
Vathana Ven
31 Jul 2015 18:44 Temperature: Humidity: Tested by: Test Started:

Prescan Emission Graph

Measured Peak Value

Measured Quasi Peak Value

Measured Average Value

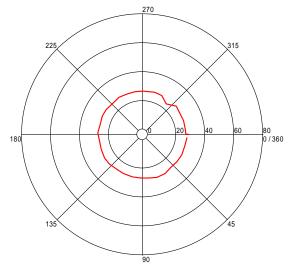
Maximum Value of Mast and Turntable

Swept Peak Data

Swept Quasi Peak Data

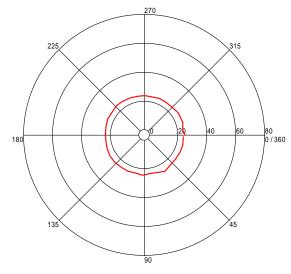
__ Swept Average Data

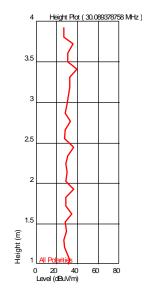
Emissions Test Data

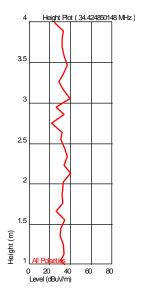

Trace2: Measured Quasi Peak

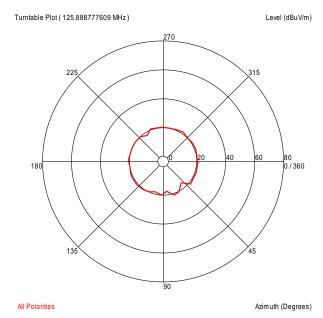
Frequency (Hz)	Level (dBuV/m)	AF	PA+CL	Limit (dBuV/m)	Margin (dBuV/m)	Hor (), Ver ()	Azimuth (deg)(Deg)	Mast Height(m)	RBW(Hz)	Comment
125.888777609 M	12.27	13.900	-24.654	33.520	-21.25	1	317	4.00	120 k	
983.398396886 M	24.21	22.568	-21.176	43.980	-19.77	Ì	319	1.36	120 k	
668.024448629 M	19.81	19.500	-21.859	36.020	-16.21	· 	0	2.14	120 k	
34.424850148 M	14.63	17.745	-26.036	30.000	-15.37		47	2.23	120 k	
867.785370535 M	22.60	21.711	-21.384	36.020	-13.42	1	359	3.52	120 k	
30.089378758 M	17.52	20.946	-26.028	30.000	-12.48	İ	359	3.50	120 k	

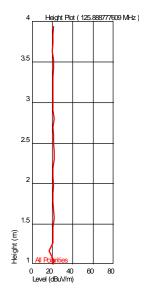
Additional Information


Azimuth Plots

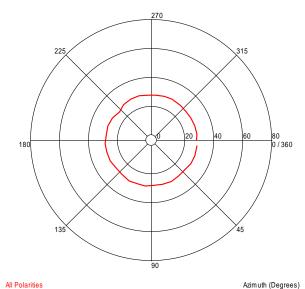

All Polarities Azimuth (Degrees)

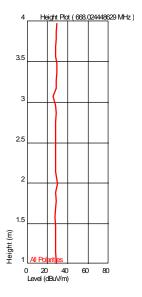

Turntable Plot (34.424850148 MHz) Level (dBuV/m)

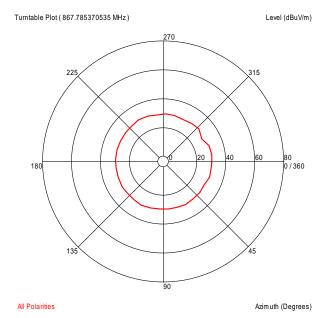


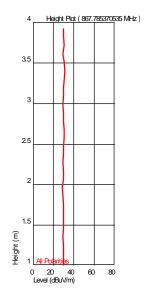

All Polarities Azimuth (Degrees)

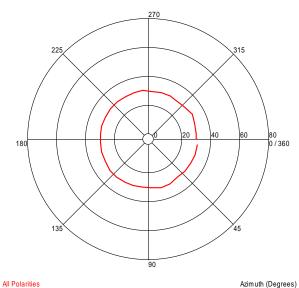
Turntable Plots

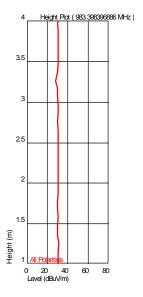








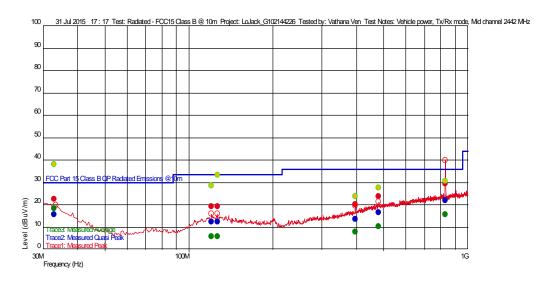




Turntable Plot (983.398396886 MHz)

Level (dBuV/m)

Test Information


Test Details

Test:

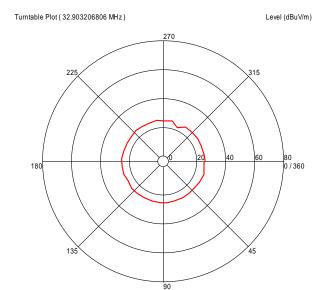
Project: Test Notes:

User Entry
Radiated - FCC15 Class B @ 10m
LoJack_G102144226
Vehicle power, Tx/Rx mode, Mid channel 2442 MHz
25 deg C
41%, 997 mB
Vathana Ven
31 Jul 2015 17:17 Temperature: Humidity: Tested by: Test Started:

Prescan Emission Graph

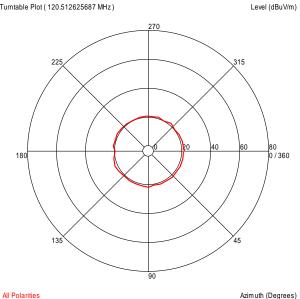
- Measured Peak Value
- Measured Quasi Peak Value
- Measured Average Value Maximum Value of Mast and Turntable
- Swept Peak Data
 - Swept Quasi Peak Data

Additional Information

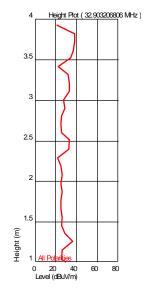

__ Swept Average Data

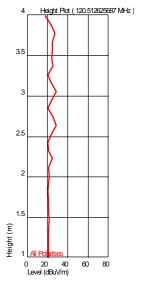
Emissions Test Data

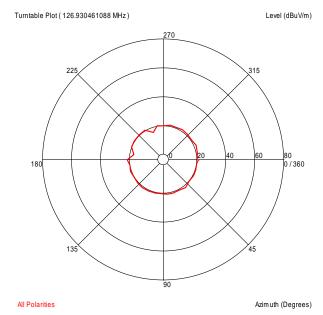
Trace2: Measured Quasi Peak

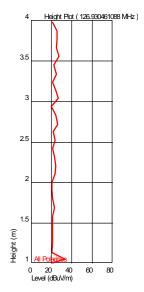

		- u								
Frequency (Hz)	Level (dBuV/m)	AF	PA+CL	Limit (dBuV/m)	Margin (dBuV/m)	Hor (), Ver ()	Azimuth (deg)(Deg)	Mast Height(m)	RBW(Hz)	Comment
395.093988116 M	13.50	15.204	-22.791	36.020	-22.52		271	3.94	120 k	
126.930461088 M	12.28	13.807	-24.647	33.520	-21.24		1	1.14	120 k	
120.512625687 M	12.43	13.900	-24.691	33.520	-21.09		145	3.16	120 k	
479.898597154 M	16.65	17.498	-22.544	36.020	-19.37	1	228	2.80	120 k	
32.903206806 M	15.64	18.958	-26.033	30.000	-14.36		360	3.82	120 k	
831.875350287 M	21.97	21.262	-21.461	36.020	-14.05	1	197	3.41	120 k	

Azimuth Plots

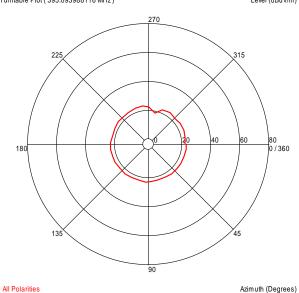

All Polarities Azimuth (Degrees)

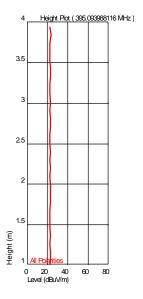

Turntable Plot (120.512625687 MHz)

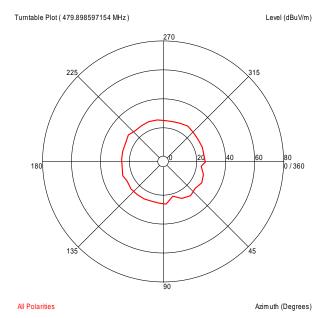


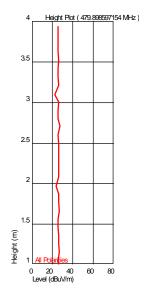

Azimuth (Degrees)

Turntable Plots

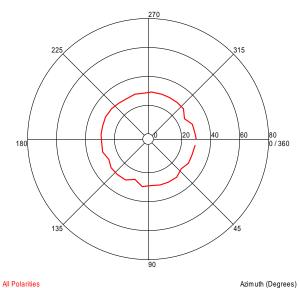


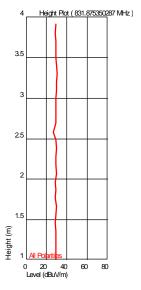


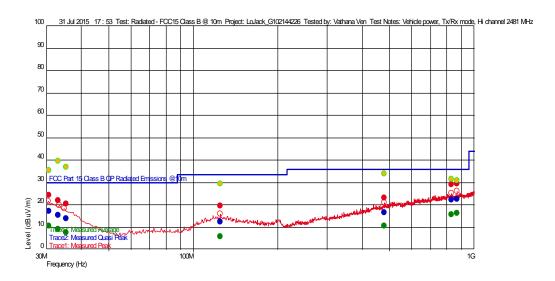



Turntable Plot (395.093988116 MHz)

Level (dBuV/m)






Test Information

Test Details Test:

Project: Test Notes:

User Entry
Radiated - FCC15 Class B @ 10m
LoJack_G102144226
Vehicle power, Tx/Rx mode, Hi channel 2481 MHz
25 deg C
41%, 997 mB
Vathana Ven
31 Jul 2015 17:53 Temperature: Humidity: Tested by: Test Started:

Prescan Emission Graph

Measured Peak Value

Measured Quasi Peak Value Measured Average Value

Maximum Value of Mast and Turntable

Swept Peak Data

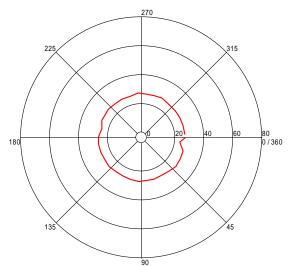
Swept Quasi Peak Data

Additional Information

__ Swept Average Data

Emissions Test Data

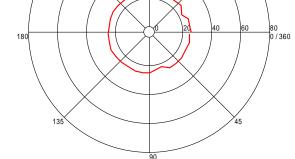
Trace2: Measured Quasi Peak


Frequency (Hz)	Level (dBuV/m)	AF	PA+CL	Limit (dBuV/m)	Margin (dBuV/m)	Hor (), Ver ()	Azimuth (deg)(Deg)	Mast Height(m)	RBW(Hz)	Comment
125.212024046 M	12.26	13.900	-24.659	33.520	-21.26		18	3.84	120 k	
478.924248345 M	16.63	17.478	-22.546	36.020	-19.39		108	1.14	120 k	
35.380761084 M	13.94	17.057	-26.038	30.000	-16.06	İ	161	1.05	120 k	
33.077154701 M	15.51	18.831	-26.034	30.000	-14.49		0	3.72	120 k	
829.681363086 M	22.11	21.300	-21.466	36.020	-13.91		1	3.93	120 k	
868.314629108 M	22.63	21.733	-21.383	36.020	-13.39		254	2.57	120 k	
30.67835677 M	17.06	20.593	-26.029	30.000	-12.94		50	3.69	120 k	

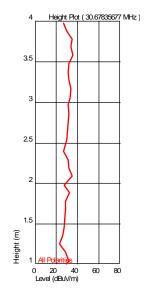
Level (dBuV/m)

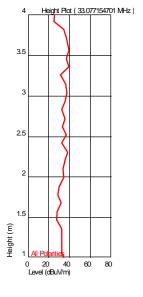
Level (dBuV/m)

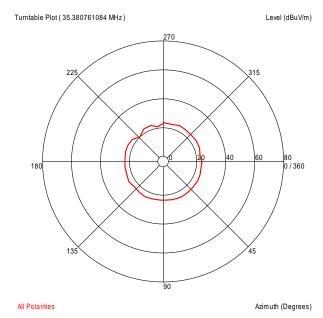
Azimuth Plots



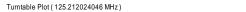
All Polarities Azimuth (Degrees)

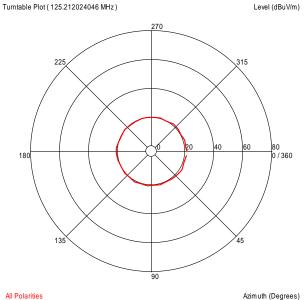

Turntable Plot (33.077154701 MHz)

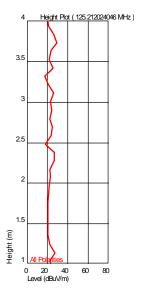


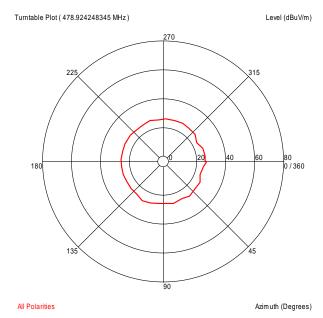


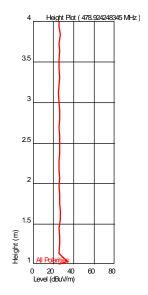

All Polarities Azimuth (Degrees)


Turntable Plots

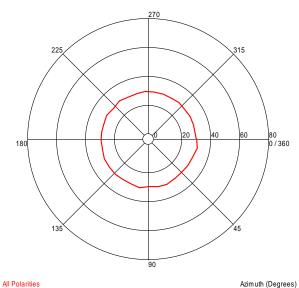


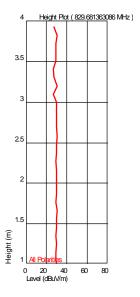


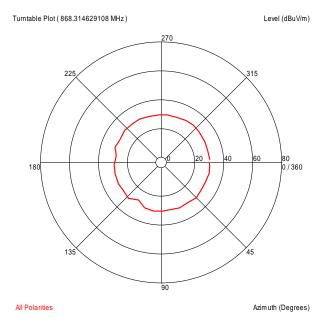


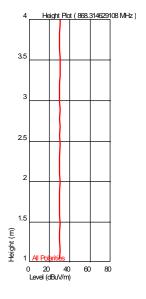












V9E-VP Spurious Radiated Emissions

 Company: LoJack Corporation
 Antenna & Cables:
 HF
 Bands: N, LF, HF, SHF

 Model #: V9E-VP
 Antenna: ETS001 01-14-16.txt
 ETS001 01-14-16.txt
 EMC04

Serial #: 0F4B030 Cable(s): 145-416 3m Track B 1-15GHz Cable 10-04-15.txt NONE.

Engineers: Vathana Ven Location: 10m Chamber Barometer: DAV004 Filter: REA003 CBLHF2012-2M-2

Project #: G102144226 Date(s): 07/30/15 PRE9 CBLHF2012-5M-2

Standard: FCC Part 15 Subpart C 15.249
Receiver: 145128_03-14-16 Limit Distance (m

Temp/Humidity/Pressure: 22 deg. C 53% 998 mB

PreAmp Used? (Y or N): Y Voltage/Frequency: Battery Frequency Range: 1-25GHz

Net = Reading (dBuV/m) + Antenna Factor (dB1/m) + Cable Loss (dB) - Preamp Factor (dB) - Distance Factor (dB)

Peak: PK Quasi-Peak: QP Average: AVG RMS: RMS; NF = Noise Floor, RB = Restricted Band; Bandwidth denoted as RBW/VBW

Peak:	PK Quasi-F	Peak: QP Av	erage: AVG	RMS: RMS	S; NF = Nois	se Floor, RE	s = Restricte	d Band; Bar	ndwidth den	oted as RB	W/VBW	_		
	Ant.			Antenna	Cable	Pre-amp	Distance					1		
Detector	Pol.	Frequency	Reading	Factor	Loss	Factor	Factor	Net	Limit	Margin	Bandwidth			
Туре	(V/H)	MHz	dB(uV)	dB(1/m)	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB		FCC	IC	Harmonic?
			, ,	, ,	Band Edge	Emissions		` '	, ,			1		
MaxH Pk	Н	2483.500	25.69	32.28	5.99	0.00	0.00	63.95	74.00	-10.05	1/3MHz	RB		
AVG	Н	2483.500	10.51	32.28	5.99	0.00	0.00	48.77	54.00	-5.23	1/3MHz	RB		
MaxH Pk		2483.500	26.40	32.28	5.99	0.00	0.00	64.66	74.00	-9.34	1/3MHz	RB		
AVG	V	2483.500	11.22	32.28	5.99	0.00	0.00	49.48	54.00	-4.52	1/3MHz	RB		
		2.00.000		mp and filter					01.00		., 02	1		
MaxH PK	Н	4962.000	39.67	34.24	8.79	34.99	0.00	47.71	74.00	-26.29	1/3MHz	1		
AVG	H	4962.000	24.49	34.24	8.79	34.99	0.00	32.53	54.00	-21.47	1/3MHz	1		
MaxH Pk		7443.000	40.73	35.63	10.83	34.99	0.00	52.20	74.00	-21.80	1/3MHz	Noise floor	RB	
AVG	Н	7443.000	30.20	35.63	10.83	34.99	0.00	41.67	54.00	-12.33	1/3MHz	Noise floor	RB	
MaxH Pk		9924.000	39.29	37.01	12.51	35.63	0.00	53.18	74.00	-20.82	1/3MHz		RB	
	Н		29.70							-10.41	1/3MHz	Noise floor	RB	
AVG		9924.000		37.01	12.51	35.63	0.00	43.59	54.00		1	Noise floor	KD	
MaxH Pk		12405.000	41.15	39.00	11.64	35.63	0.00	56.16	74.00	-17.84	1/3MHz	Noise floor		
AVG	Н	12405.000	30.30	39.00	11.64	35.63	0.00	45.31	54.00	-8.69	1/3MHz	Noise floor		
MaxH Pk	+	14886.000	39.90	39.76	14.50	35.94	0.00	58.22	74.00	-15.78	1/3MHz	Noise floor		
AVG	H	14886.000	29.90	39.76	14.50	35.94	0.00	48.22	54.00	-5.78	1/3MHz	Noise floor		
MaxH Pk		17367.000	41.00	41.84	17.04	35.94	0.00	63.94	74.00	-10.06	1/3MHz	Noise floor		
AVG	Н	17367.000	30.60	41.84	17.04	35.94	0.00	53.54	54.00	-0.46	1/3MHz	Noise floor		
				np and filter	· -							1		
MaxH Pk		4884.000	39.00	34.16	8.66	35.63	0.00	46.18	74.00	-27.82	1/3MHz	4		
AVG	Н	4884.000	23.82	34.16	8.66	35.63	0.00	31.00	54.00	-23.00	1/3MHz	4		
MaxH Pk	_	7326.000	36.40	35.62	10.74	35.63	0.00	47.12	74.00	-26.88	1/3MHz	Noise floor		
AVG	Н	7326.000	25.60	35.62	10.74	35.63	0.00	36.32	54.00	-17.68	1/3MHz	Noise floor		
MaxH Pk	Н	9768.000	37.40	36.86	12.38	34.07	0.00	52.57	74.00	-21.43	1/3MHz	Noise floor		
AVG	Н	9768.000	25.60	36.86	12.38	34.07	0.00	40.77	54.00	-13.23	1/3MHz	Noise floor		
MaxH Pk	Н	12210.000	35.89	38.97	11.91	34.07	0.00	52.70	74.00	-21.30	1/3MHz	Noise floor		
AVG	Н	12210.000	25.00	38.97	11.91	34.07	0.00	41.81	54.00	-12.19	1/3MHz	Noise floor		
MaxH Pk	Н	14752.000	35.45	39.73	14.24	34.87	0.00	54.55	74.00	-19.45	1/3MHz	Noise floor		
AVG	Н	14752.000	25.00	39.73	14.24	34.87	0.00	44.10	54.00	-9.90	1/3MHz	Noise floor		
MaxH Pk	Н	17094.000	35.83	41.77	16.77	34.87	0.00	59.51	74.00	-14.49	1/3MHz	Noise floor		
AVG	Н	17094.000	24.00	41.77	16.77	34.87	0.00	47.68	54.00	-6.32	1/3MHz	Noise floor		
			Pre-Ar	mp and filter	(REA003) ı	used, Lo Ch	annel = 240	2 MHz						
MaxH Pk	Н	4804.000	40.20	34.19	8.52	35.63	0.00	47.28	74.00	-26.72	1/3MHz	1		
AVG	Н	4804.000	25.02	34.19	8.52	35.63	0.00	32.10	54.00	-21.90	1/3MHz			
MaxH Pk	Н	7206.000	38.55	35.69	10.60	35.63	0.00	49.21	74.00	-24.79	1/3MHz	Noise floor		
AVG	Н	7206.000	26.20	35.69	10.60	35.63	0.00	36.86	54.00	-17.14	1/3MHz	Noise floor		
MaxH Pk	Н	9608.000	38.12	36.68	12.09	34.07	0.00	52.82	74.00	-21.18	1/3MHz	Noise floor		
AVG	Н	9608.000	25.67	36.68	12.09	34.07	0.00	40.37	54.00	-13.63	1/3MHz	Noise floor		
MaxH Pk	Н	12010.000	35.88	38.80	12.19	34.07	0.00	52.79	74.00	-21.21	1/3MHz	Noise floor		
AVG	Н	12010.000	23.63	38.80	12.19	34.07	0.00	40.54	54.00	-13.46	1/3MHz	Noise floor		
MaxH Pk	+	14412.000	35.42	39.28	13.87	34.87	0.00	53.70	74.00	-20.30	1/3MHz	Noise floor		
AVG	H	14412.000	24.20	39.28	13.87	34.87	0.00	42.48	54.00	-11.52	1/3MHz	Noise floor		
MaxH Pk		16814.000	35.10	41.48	16.50	34.87	0.00	58.21	74.00	-15.79	1/3MHz	Noise floor		
AVG	H	16814.000	23.59	41.48	16.50	34.87	0.00	46.70	54.00	-7.30		Noise floor		
		.00.1.000	_0.00		. 5.00	3 ::5	3.00		000		., 51111112	J. 10.00 11001		

Hand scan was performed above 18GHz at a distance of less than 1m and no emissions were detected above equipment measuring noise floor.

V9E-SP Spurious Radiated Emissions

Company: LoJack Corporation

Antenna & Cables: HF Bands: N, LF, HF, SHF

Model #: V9E-SP

Antenna: ETS001 01-14-16.txt ETS001 01-14-16.txt EMC04

Serial #: 0F4B035 Cable(s): 145-416 3m Track B 1-15GrHz Cable 10-04-15.tot NONE. CBLHF2012-2M-2

Engineers: Vathana Ven Location: 10m Chamber Barometer: DAV004 Filter: REA003 PRE9 CBLHF2012-5M-2

Project #: G102144226 Date(s): 07/31/15

Standard: FCC Part 15 Subpart C 15.249 Temp/Humidity/Pressure: 25 deg. C 41% 997 mB

PreAmp Used? (Y or N): Y Voltage/Frequency: Battery Frequency Range: 1-25GHz

Net = Reading (dBuV/m) + Antenna Factor (dB1/m) + Cable Loss (dB) - Preamp Factor (dB) - Distance Factor (dB)

Peak: PK Quasi-Peak: QP Average: AVG RMS: RMS; NF = Noise Floor, RB = Restricted Band; Bandwidth denoted as RBW/VBW

Peak: P		Peak: QP Av	erage: AVG					a Bana; Bar	nawiath aend	oted as RB	W/VBW	1		
Datastas	Ant.		Dandina	Antenna	Cable	Pre-amp	Distance	Net	Linais	Manain	Bandwidth			
Detector	Pol. (V/H)	Frequency	Reading	Factor dB(1/m)	Loss dB	Factor dB	Factor dB	Net	Limit	Margin	Bandwidth	FCC	IC	Uarmania?
Туре	(V/H)	MHz	dB(uV)	ub(I/III)	Band Edge		uБ	dB(uV/m)	dB(uV/m)	dB		FCC	iC	Harmonic?
MaxH PK	Н	2483.500	27.70	32.28	5.99	0.00	0.00	65.96	74.00	-8.04	1/3MHz	RB		
AVG	Н	2483.500	12.52	32.28	5.99	0.00	0.00	50.78	54.00	-3.22	1/3MHz	RB		
MaxH PK	V	2483.500	26.00	32.28	5.99	0.00	0.00	64.26	74.00	-9.74	1/3MHz	RB		
AVG	V	2483.500	10.82	32.28	5.99	0.00	0.00	49.08	54.00	-4.92	1/3MHz	RB		
				mp and filter		used, Hi Ch	annel = 248		l.			1		
MaxH PK	Н	4962.000	41.10	34.24	8.79	34.99	0.00	49.14	74.00	-24.86	1/3MHz	1		
AVG	Н	4962.000	25.92	34.24	8.79	34.99	0.00	33.96	54.00	-20.04	1/3MHz			
MaxH PK	Н	7443.000	36.93	35.63	10.83	34.99	0.00	48.40	74.00	-25.60	1/3MHz	Noise floor		
AVG	Н	7443.000	25.60	35.63	10.83	34.99	0.00	37.07	54.00	-16.93	1/3MHz	Noise floor		
MaxH PK	Н	9924.000	37.26	37.01	12.51	35.63	0.00	51.15	74.00	-22.85	1/3MHz	Noise floor		
AVG	Н	9924.000	27.00	37.01	12.51	35.63	0.00	40.89	54.00	-13.11	1/3MHz	Noise floor		
MaxH PK	H	12405.000	36.72	39.00	11.64	35.63	0.00	51.73	74.00	-22.27	1/3MHz	Noise floor		
AVG	<u>H</u>	12405.000	24.80	39.00	11.64	35.63	0.00	39.81	54.00	-14.19	1/3MHz	Noise floor		
MaxH PK	<u>H</u>	14886.000	35.56	39.76	14.50	35.94	0.00	53.88	74.00	-20.12	1/3MHz	Noise floor		
AVG	<u>H</u>	14886.000	25.20	39.76	14.50	35.94	0.00	43.52	54.00	-10.48	1/3MHz	Noise floor		
MaxH PK AVG	H H	17367.000	35.10	41.84	17.04 17.04	35.94 35.94	0.00	58.04 47.94	74.00	-15.96	1/3MHz	Noise floor		
AVG		17367.000	25.00 Pro-Am	41.84 np and filter					54.00	-6.06	1/3MHz	Noise floor		
MaxH PK	Н	4884.000	43.23	34.16	8.66	35.63	0.00	50.41	74.00	-23.59	1/3MHz	1		
AVG	Н.	4884.000	28.05	34.16	8.66	35.63	0.00	35.23	54.00	-18.77	1/3MHz			
MaxH PK	Н	7326.000	37.27	35.62	10.74	35.63	0.00	47.99	74.00	-26.01	1/3MHz	Noise floor		
AVG	Н	7326.000	26.30	35.62	10.74	35.63	0.00	37.02	54.00	-16.98	1/3MHz	Noise floor		
MaxH PK	Н	9768.000	37.17	36.86	12.38	34.07	0.00	52.34	74.00	-21.66	1/3MHz	Noise floor		
AVG	Н	9768.000	25.60	36.86	12.38	34.07	0.00	40.77	54.00	-13.23	1/3MHz	Noise floor		
MaxH PK	Н	12210.000	36.24	38.97	11.91	34.07	0.00	53.05	74.00	-20.95	1/3MHz	Noise floor		
AVG	Н	12210.000	25.00	38.97	11.91	34.07	0.00	41.81	54.00	-12.19	1/3MHz	Noise floor		
MaxH PK	Н	14752.000	35.45	39.73	14.24	34.87	0.00	54.55	74.00	-19.45	1/3MHz	Noise floor		
AVG	Н	14752.000	25.00	39.73	14.24	34.87	0.00	44.10	54.00	-9.90	1/3MHz	Noise floor		
MaxH PK	Н	17094.000	34.93	41.77	16.77	34.87	0.00	58.61	74.00	-15.39	1/3MHz	Noise floor		
AVG	Н	17094.000	23.00	41.77	16.77	34.87	0.00	46.68	54.00	-7.32	1/3MHz	Noise floor		
		1		np and filter	`									
MaxH PK	<u>H</u>	4804.000	42.34	34.19	8.52	35.63	0.00	49.42	74.00	-24.58	1/3MHz			
AVG	<u>H</u>	4804.000	26.60	34.19	8.52	35.63	0.00	33.68	54.00	-20.32	1/3MHz			
MaxH PK	<u>H</u>	7206.000	37.56	35.69	10.60	35.63	0.00	48.22	74.00	-25.78		Noise floor		
AVG MaxH PK	<u>Н</u> Н	7206.000 9608.000	26.70	35.69 36.68	10.60	35.63 34.07	0.00	37.36 51.97	54.00 74.00	-16.64 -22.03	1/3MHz 1/3MHz	Noise floor		
AVG	<u> </u>	9608.000	37.27 25.87	36.68	12.09 12.09	34.07	0.00	40.57	54.00	-13.43	1/3MHz	Noise floor		
MaxH PK	<u>н</u> Н	12010.000	36.49	38.80	12.09	34.07	0.00	53.40	74.00	-13.43	1/3MHz	Noise floor Noise floor		
AVG	<u>п</u>	12010.000	24.95	38.80	12.19	34.07	0.00	41.86	54.00	-12.14	1/3MHz	Noise floor		
MaxH PK	Н Н	14412.000	35.33	39.28	13.87	34.87	0.00	53.61	74.00	-20.39	1/3MHz	Noise floor		
AVG	Н Н	14412.000	23.34	39.28	13.87	34.87	0.00	41.62	54.00	-12.38	1/3MHz	Noise floor		
MaxH PK	— 	16814.000	35.47	41.48	16.50	34.87	0.00	58.58	74.00	-15.42	1/3MHz	Noise floor		
AVG	<u></u> Н	16814.000	24.12	41.48	16.50	34.87	0.00	47.23	54.00	-6.77	1/3MHz	4		

Hand scan was performed above 18GHz at a distance of less than 1m and no emissions were detected above equipment measuring noise floor.

Intertek

Report Number: 102144226BOX-007a Issued: 08/20/2015

Test Personnel:

Vathana Ven

Product Standard:

FCC §15.209, 15.249(a),(d)

12VDC (Car Battery) + 6VDC (Internal Battery)

Input Voltage:

Pretest Verification w/

BB Source: BB Source

Test Date: 07/30/2015, 07/31/2015 Test Levels: Below specified limits

Ambient Temperature:

25 °C

Relative Humidity:

41 %

Atmospheric Pressure: 997 mbars

Deviations, Additions, or Exclusions: None

9 Receiver Radiated Spurious Emissions

9.1 Method

Tests are performed in accordance with FCC 2.1053, 90.210(d).

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A wooden table 80 cm high is used for table-top equipment.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
Radiated Emissions, 10m	30-1000 MHz	3.5 dB	6.3 dB
Radiated Emissions, 3m	30-1000 MHz	3.5 dB	6.3 dB
Radiated Emissions, 3m	1-6 GHz	4.2 dB	5.2 dB
Radiated Emissions, 3m	6-15 GHz	4.2 dB	5.5 dB
Radiated Emissions, 3m	15-18 GHz	4.2 dB	5.5 dB
Radiated Emissions, 3m	18-40 GHz	4.2 dB	5.5 dB

As shown in the table above our radiated emissions $U_{\it lab}$ is less than the corresponding $U_{\it CISPR}$ reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

Where $FS = Field Strength in dB_{\mu}V/m$

RA = Receiver Amplitude (including preamplifier) in $dB\mu V$

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

 $RA = 52.0 dB\mu V$ AF = 7.4 dB/m CF = 1.6 dB AG = 29.0 dB $FS = 32 dB\mu V/m$

To convert from $dB\mu V$ to μV or mV the following was used:

UF =
$$10^{(NF/20)}$$
 where UF = Net Reading in μ V NF = Net Reading in $dB\mu$ V

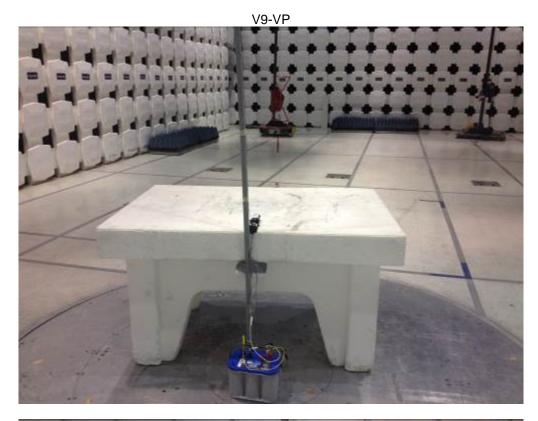
Example:

FS = RA + AF + CF - AG =
$$52.0 + 7.4 + 1.6 - 29.0 = 32.0$$

UF = $10^{(32 \text{ dB}\mu\text{V}/20)} = 39.8 \text{ }\mu\text{V/m}$

9.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
	·			PE80529A61		
DAV004'	Weather Station	Davis Instruments	7400	Α	10/06/2014	10/06/2015
145106'	Bilog Antenna (30MHz - 5GHz)	Sunol Sciences	JB5	A111003	10/24/2014	10/24/2015
ETS001'	1-18GHz DRG Horn Antenna	ETS-Lindgren	3117	00143259	01/14/2015	01/14/2016
ETS002'	1-18GHz DRG Horn Antenna	ETS Lindgren	3117	00143260	04/10/2015	04/10/2016
ANT1A'	BROADBAND ANTENNA	Compliance Design	B100	1649	11/04/2014	11/04/2015
ANT1B'	BROADBAND ANTENNA	Compliance Design	B200	1650	11/04/2014	11/04/2015
ANT1C'	BROADBAND ANTENNA	Compliance Design	B300	00668	11/04/2014	11/04/2015
			7HS-1G/10G-			
REA003'	1GHz High Pass Filter	Reactel, Inc	S11	06-1	12/30/2013	12/30/2015
HEW62'	Synthesized Sweep Generator	Hewlett Packard	83620A	3213A01244	05/13/2015	05/13/2017
145014'	Preamplifier (1 GHz to 26.5 GHz)	Hewlett Packard	8449B	3008A00232	05/13/2015	05/13/2016
145128'	EMI Receiver (20 Hz - 40 Ghz)	Rohde & Schwarz	ESIB 40	839283/001	03/14/2015	03/14/2016
			10m Track A			
145-410'	Cables 145-400 145-403 145-405 145-406 145-407	Huber + Suhner	Cables	multiple	10/04/2014	10/04/2015
CBLHF2012 -2M-1'	2m 9kHz-40GHz Coaxial Cable - SET1	Huber & Suhner	SF102	252675001	02/05/2015	02/05/2016


Software Utilized:

Name	Manufacturer	Version
Excel 2003	Microsoft	(11.8231.8221) SP3
EMI Boxborough.xls	Intertek	08/27/10

9.3 Results:

The sample tested was found to comply.

9.4 Setup Photographs:

9.5 **Test Data:**

Radiated Emissions

Company: LoJack Corporation Antenna & Cables: Bands: N, LF, HF, SHF Ν Model #: V9-VP Antenna: 145106 10mh 10-21-15.txt 145106 10mh 10-21-15.txt

Serial #: 0F4B036 Cable(s): MS-410 10M Track A Cables SHA're 2 GHz REDUCED POINTS 10-04-15.81 NONE.

Engineers: Vathana Ven Location: 10m Chamber Barometer: DAV004 Filter: NONE

Project #: G102144226 Date(s): 07/13/15

Standard: FCC Part 15 Subpart B Class B Temp/Humidity/Pressure: 22 deg. C 44% 1000 mB

Receiver: 145128_03-14-16 Limit Distance (m): 3 PreAmp: PRE145003 9-24-2011 Test Distance (m): 10

> PreAmp Used? (Y or N): Ν Voltage/Frequency: Battery Frequency Range: 30-2000 MHz

Net = Reading (dBuV/m) + Antenna Factor (dB1/m) + Cable Loss (dB) - Preamp Factor (dB) - Distance Factor (dB) Peak: PK Quasi-Peak: QP Average: AVG RMS: RMS; NF = Noise Floor, RB = Restricted Band; Bandwidth denoted as RBW/VBW

					,									
	Ant.			Antenna	Cable	Pre-amp	Distance							
Detector	Pol.	Frequency	Reading	Factor	Loss	Factor	Factor	Net	Limit	Margin	Bandwidth			
Type	(V/H)	MHz	dB(uV)	dB(1/m)	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB		FCC	IC	Harmonic?
					Rxn	node								
QP	V	100.000	19.85	10.30	1.59	27.10	-10.46	15.10	33.00	-17.90	120/300 kHz			Noise floor
QP	V	200.000	20.42	12.80	2.17	27.80	-10.46	18.05	36.00	-17.95	120/300 kHz			Noise floor
QP	V	400.000	16.69	15.60	3.29	28.60	-10.46	17.44	36.00	-18.56	120/300 kHz	RB	RB	Noise floor
QP	V	600.000	18.59	18.60	3.79	28.60	-10.46	22.84	36.00	-13.16	120/300 kHz			Noise floor
QP	V	800.000	19.70	21.30	4.69	28.20	-10.46	27.95	36.00	-8.05	120/300 kHz			Noise floor
QP	V	50.000	19.00	7.90	1.12	0.00	-10.46	38.48	40.00	-1.52	120/300 kHz			

During testing, the EUT was in receive mode in between transmit bursts.

Test Personnel: Vathana Ven Test Date: 07/13/2015

Product Standard: FCC Part 90 Test Levels: Below specified limits

12VDC (Car Battery) + Input Voltage: 6VDC (Internal Battery)

Ambient Temperature: 22 °C Pretest Verification w/

44 % Relative Humidity: BB Source: N/A Atmospheric Pressure: 1000 mbars

Deviations, Additions, or Exclusions: None

Intertek

Report Number: 102144226BOX-007a Issued: 08/20/2015

10 Revision History

Revision	Date	Report Number	Prepared	Reviewed	Notes
Level			Ву	Ву	
0	08/17/2015	102144226BOX-007	VFV	KPS 43	Original Issue
1	08/20/2015	102144226BOX-007a	VFV	KPS 43	Address and EUT block diagram corrections