

FCC - TEST REPORT

Report Number : **709502306225-00C** Date of Issue: January 22, 2024

Model : LKOUT P

Product Type : Wireless Display

Applicant : Fellowes Inc

Address : 1789 Norwood Avenue Itasca, IL 60143 United States

Production Facility : Fellowes Office Products(Suzhou) Co, Ltd

Address : 1# Shilin Road, Suzhou New & Hi-tech District,
215151 Suzhou, Jiangsu, People's Republic of China

Test Result : **Positive** **Negative**

Total pages including Appendices : 42

TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval.

1 Table of Contents

1	Table of Contents	2
2	Report Modification Record	3
3	Details about the Test Laboratory.....	3
4	Description of the Equipment under Test	4
5	Summary of Test Standards.....	7
6	Summary of Test Results.....	8
7	General Remarks	9
8	Test Setups	10
9	Systems test configuration.....	13
10	Technical Requirement	14
10.1	Conducted Emission	14
10.2	Conducted peak output power.....	19
10.3	6dB bandwidth	22
10.4	Power spectral density.....	24
10.5	Spurious RF conducted emissions	26
10.6	Band edge	30
10.7	Spurious radiated emissions for transmitter	33
11	Test Equipment List.....	40
12	System Measurement Uncertainty	41
13	Photographs of Test Set-ups	42
14	Photographs of EUT	42

2 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

Issue	Description of Change	Date of Issue
1	First Issue	01/22/2024

3 Details about the Test Laboratory

Test Site 1

Company name: TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch
No.16 Lane, 1951 Du Hui Road,
Shanghai 201108,
P.R. China

Test Firm FCC 820234

Registration
Number:

Designation
number: CN1183

IC Company
Number: 31668

CAB identifier: CN0101

Telephone: +86 21 6141 0123
Fax: +86 21 6140 8600

4 Description of the Equipment under Test

Product: Wireless Display

Model no.: LKOUT P

FCC ID: IDH-RMTDSPY

Options and accessories: NA

Rating: DC 12V for Wireless Display
100-240V~, 50/60Hz for adapter

RF Transmission Frequency:
2402~2480MHz for Bluetooth
For 2.4G & 5G Wi-Fi
For 802.11b/g/n-HT20: 2412~2462 MHz
For 802.11n-HT40: 2422~2452 MHz
5180~5240 MHz (U-NII-1)
5745~5825 MHz (U-NII-3)
WCDMA Band II/IV/V
LTE Band 2/4/5/12/13/14/66/71

No. of Operated Channel: 79 channels for Bluetooth 2.1+EDR

Ch	Fre (MH)	Ch	Fre (MHz)						
1	2402	17	2418	33	2434	49	2450	65	2466
2	2403	18	2419	34	2435	50	2451	66	2467
3	2404	19	2420	35	2436	51	2452	67	2468
4	2405	20	2421	36	2437	52	2453	68	2469
5	2406	21	2422	37	2438	53	2454	69	2470
6	2407	22	2423	38	2439	54	2455	70	2471
7	2408	23	2424	39	2440	55	2456	71	2472
8	2409	24	2425	40	2441	56	2457	72	2473
9	2410	25	2426	41	2442	57	2458	73	2474
10	2411	26	2427	42	2443	58	2459	74	2475
11	2412	27	2428	43	2444	59	2460	75	2476
12	2413	28	2429	44	2445	60	2461	76	2477
13	2414	29	2430	45	2446	61	2462	77	2478
14	2415	30	2431	46	2447	62	2463	78	2479
15	2416	31	2432	47	2448	63	2464	79	2480
16	2417	32	2433	48	2449	64	2465		

40 channels for Bluetooth 4.2 BLE

Ch	Fre(MHz)	Ch	Fre(MHz)	Ch	Fre(MHz)	Ch	Fre(MHz)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

2.4GHz WIFI: 11 for 802.11b/802.11g/802.11(H20);
7 for 802.11n(HT40)

802.11b/g/n(HT20)				802.11n(HT40)			
Ch	Fre(MHz)	Ch	Fre(MHz)	Ch	Fre(MHz)	Ch	Fre(MHz)
1	2412	7	2442	3	2422	8	2447MHz
2	2417	8	2447	4	2427	9	2452MHz
3	2422	9	2452	5	2432		
4	2427	10	2457	6	2437		
5	2432	11	2462	7	2442		
6	2437						

5180~5240 MHz (U-NII-1):

4 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20):

Channel	Frequency (MHz)	Channel	Frequency (MHz)
36	5180	44	5220
40	5200	48	5240

2 channels are provided for 802.11n (HT40), 802.11ac (VHT40):

Channel	Frequency (MHz)	Channel	Frequency (MHz)
38	5190	46	5230

1 channel is provided for 802.11ac (VHT80):

Channel	Frequency (MHz)
42	5210

5745~5825 MHz (U-NII-3): Channel 149 – 165

5 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20):

Channel	Frequency (MHz)	Channel	Frequency (MHz)
149	5745	161	5805
153	5765	165	5825
157	5785		

2 channels are provided for 802.11n (HT40), 802.11ac (VHT40):

Channel	Frequency (MHz)	Channel	Frequency (MHz)
151	5755	159	5795

1 channel is provided for 802.11ac (VHT80):

Channel	Frequency (MHz)
155	5755

Modulation:	Bluetooth 2.1+EDR FHSS: GFSK, π/4 DQPSK, 8DPSK Bluetooth 4.2+BLE DHSS: GFSK For Wi-Fi: Direct Sequence Spread Spectrum (DSSS) for 802.11b Orthogonal Frequency Division Multiplexing (OFDM) for 802.11a/b/g/n/ac
Hardware Version:	V2.0
Software Version:	11.0.1_#7210_10.1_2168A1-V2.0
Data speed:	1. Bluetooth 2.1+EDR FHSS: 1Mbps, 2Mbps, 3Mbps 2. Bluetooth 4.2+BLE DHSS: 1Mbps 3. Wi-Fi: 11b 1 ~ 11Mbps, 11g/a 6 ~ 54Mbps, 11n HT20 6.5 ~ 72.2Mbps, 11n HT 40 13.5 ~ 150Mbps, 11ac VHT40 13.5 ~ 200Mbps, 11ac VHT80 29.3 ~ 433.3Mbps
Antenna Type:	PCB Antenna
Antenna Gain:	1.99dBi for 2.4GHz; 1.98dBi for 5GHz
Description of the EUT:	The Equipment Under Test (EUT) is an Infrared Thermal Camera with Bluetooth and Wi-Fi Module. The EUT support Bluetooth 4.2+EDR and support BLE function and Wi-Fi operated at 5GHz and 2.4GHz. Only Bluetooth 4.2+EDR included in this report.
Test sample no.:	SHA-749413-2 (RF Conducted); SHA-749413-3 (RF Radiated)

The sample's mentioned in this report is/are submitted/ supplied/ manufactured by client. The laboratory therefore assumes no responsibility for accuracy of information on the brand name, model number, origin of manufacture, consignment or any information supplied.

5 Summary of Test Standards

Test Standards	
FCC Part 15 Subpart C 10-1-2021 Edition	PART 15 - RADIO FREQUENCY DEVICES Subpart C - Intentional Radiators

All the test methods were according to KDB 558074 D01 15.247 Meas Guidance v05r02 Measurement Guidance and ANSI C63.10-2020.

6 Summary of Test Results

Technical Requirements						
FCC Part 15 Subpart C		Pages	Test Site	Test Result		
Test Condition				Pass	Fail	N/A
§15.207	Conducted emission AC power port	14-18	Site 1	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
§15.247 (b) (3)	Conducted peak output power	19-21	Site 1	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
§15.247(a)(1)	20dB bandwidth	---	---	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>
§15.247(a)(1)	Carrier frequency separation	---	---	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>
§15.247(a)(1)(iii)	Number of hopping frequencies	---	---	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>
§15.247(a)(1)(iii)	Dwell Time	---	---	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>
§15.247(a)(2)	6dB bandwidth	22-23	Site 1	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
§15.247(e)	Power spectral density	24-25	Site 1	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
§15.247(d)	Spurious RF conducted emissions	26-29	Site 1	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
§15.247(d)	Band edge	30-32	Site 1	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
§15.247(d) & §15.209	Spurious radiated emissions for transmitter	33-39	Site 1	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
§15.203	Antenna requirement	See note 1		<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>

Remark 1: N/A – Not Applicable.

Note 1: The EUT uses a PCB antenna, which gain is 1.99dBi for 2.4GHz and 1.98dBi for 5GHz. In accordance to §15.203, It is considered sufficiently to comply with the provisions of this section.

7 General Remarks

Remarks

This submittal(s) (test report) is intended for FCC ID: IDH-RMTDSPY complies with Section 15.207, 15.209, 15.247 of the FCC Part 15, Subpart C rules.

This report is only for 2.4G BLE.

SUMMARY:

All tests according to the regulations cited on page 5 were

- Performed

- **Not** Performed

The Equipment under Test

- **Fulfills** the general approval requirements.

- **Does not** fulfill the general approval requirements.

Sample Received Date: August 10, 2023

Testing Start Date: August 14, 2023

Testing End Date: December 21, 2023

-TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch

Reviewed by:

Prepared by:

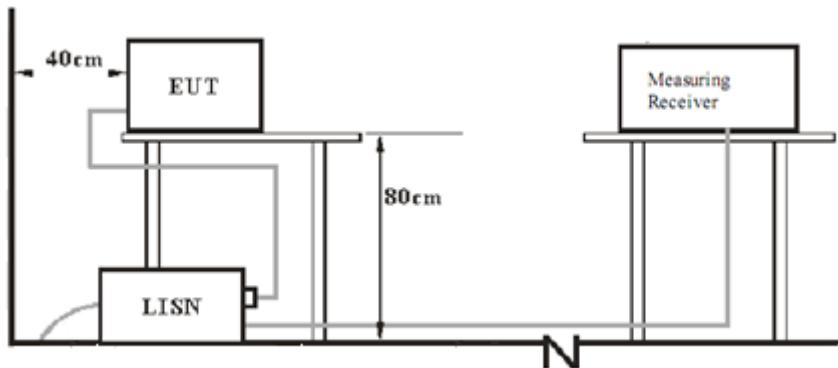
Tested by:

A handwritten signature in blue ink, appearing to read "Hui TONG".

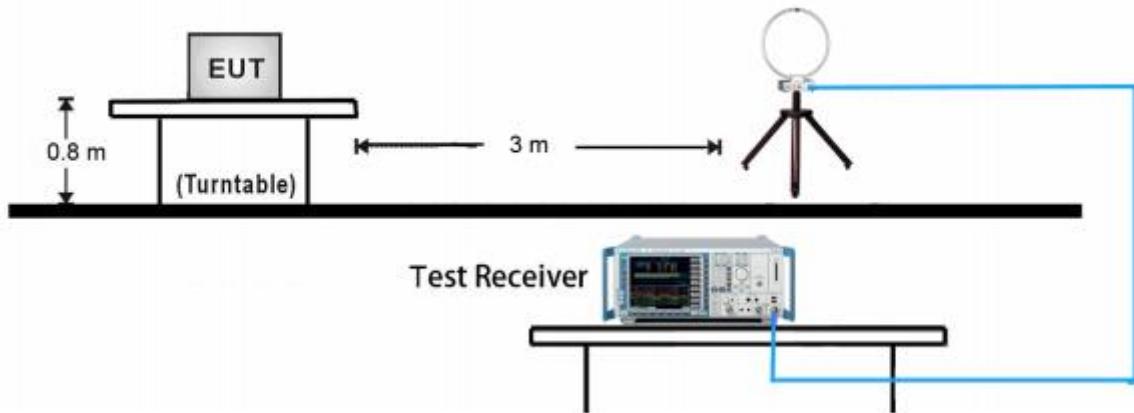
A handwritten signature in blue ink, appearing to read "Jiaxi XU".

A handwritten signature in blue ink, appearing to read "Cheng Huali".

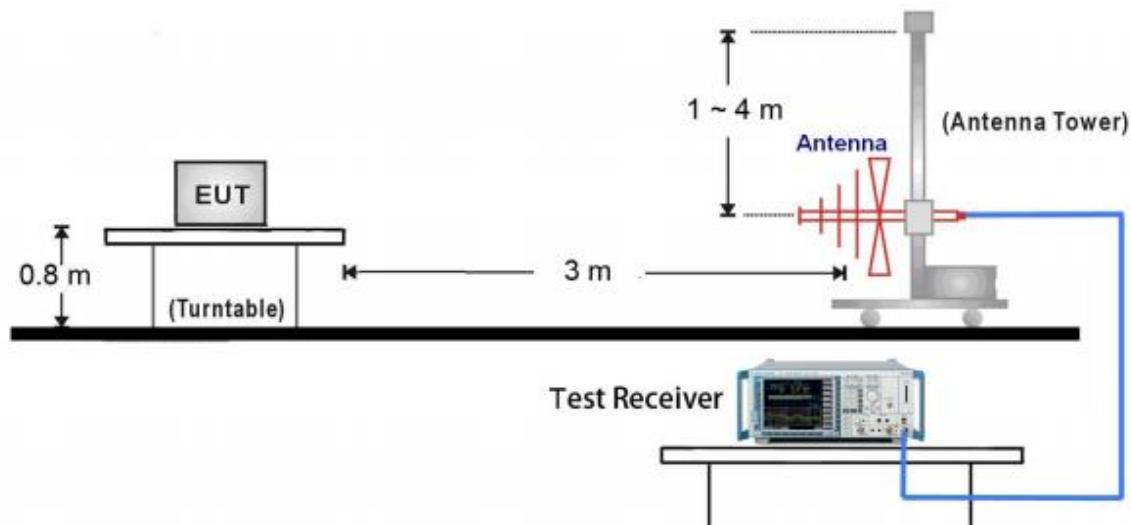
Hui TONG
Review Engineer


Jiaxi XU
Project Engineer

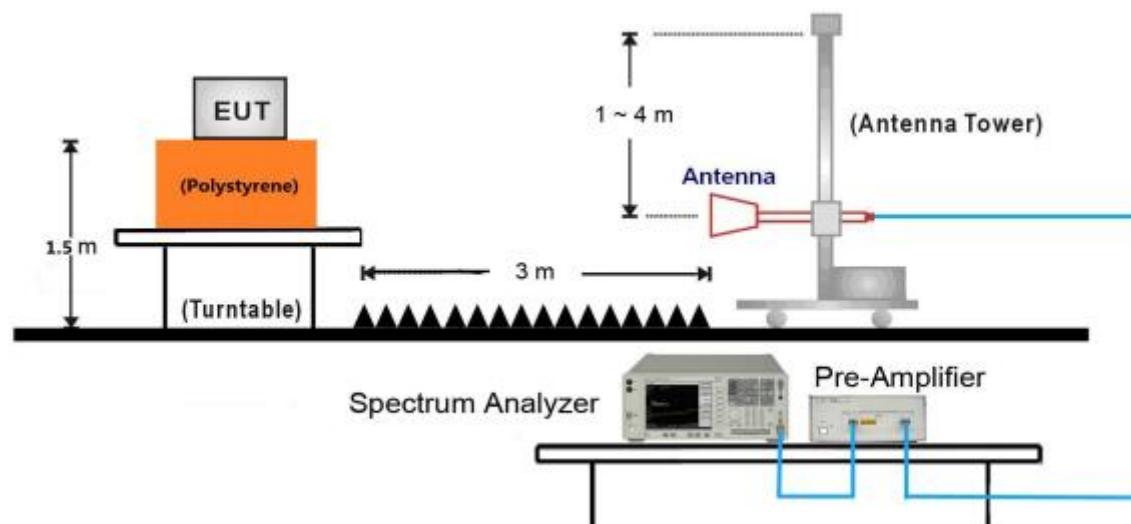
Cheng Huali
Test Engineer

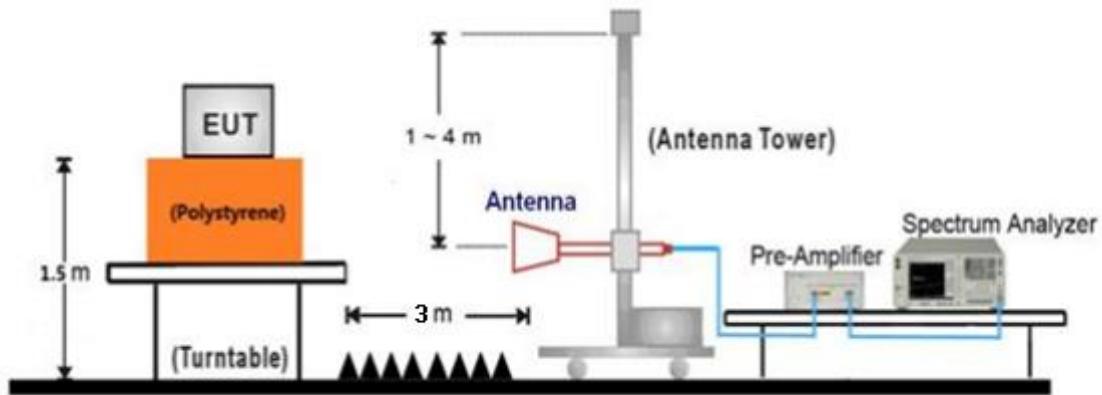

8 Test Setups

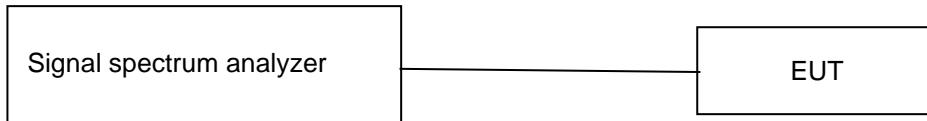
7.1 AC Power Line Conducted Emission test setups



7.2 Radiated test setups


9kHz ~ 30MHz Test Setup:


30MHz ~ 1GHz Test Setup:


1GHz ~ 18GHz Test Setup:

18GHz ~ 25GHz Test Setup:

7.3 Conducted RF test setups

9 Systems test configuration

Auxiliary Equipment Used during Test:

DESCRIPTION	MANUFACTURER	MODEL NO.(SHIELD)	S/N(LENGTH)
Notebook	Lenovo	E470	PF-OU5TS7 17/09

Test software: adb command, which used to control the EUT in continues transmitting mode

The system was configured to channel 0, 19, and 39 for the test.

Test Mode Applicability and Tested Channel Detail:

Mode	Tested Channel	Data Rate (Mbps)	Modulation	Index Value (Power level setting)
802.11b	1	1	GFSK	0x17
	19	1	GFSK	0x17
	39	1	GFSK	0x17

Non-hopping mode: The system was configured to operate at a signal channel transmitting. The test software allows the configuration and operation at the worst-case duty and the highest transmit power.

10 Technical Requirement

10.1 Conducted Emission

Test Method

1. The EUT was placed on a table, which is 0.8m above ground plane
2. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.).
3. Maximum procedure was performed to ensure EUT compliance
4. A EMI test receiver is used to test the emissions from both sides of AC line

Limit

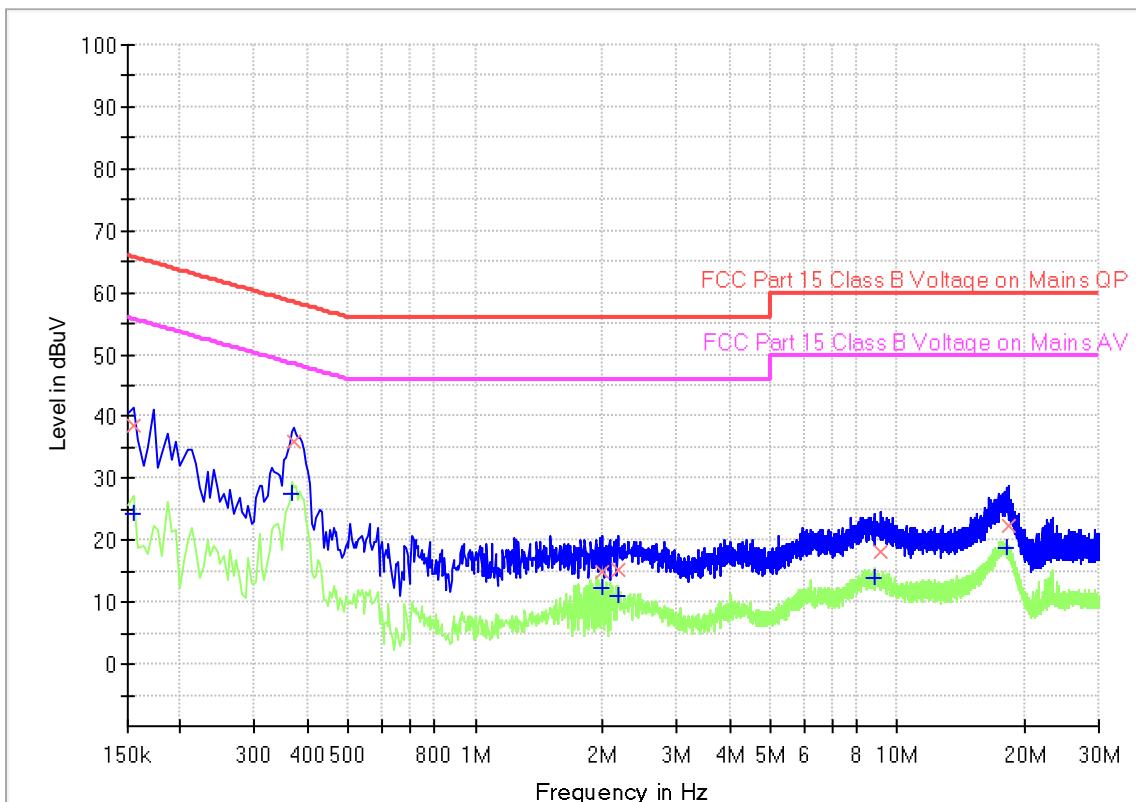
According to §15.207, conducted emissions limit as below:

Frequency MHz	QP Limit dB μ V	AV Limit dB μ V
0.150-0.500	66-56*	56-46*
0.500-5	56	46
5-30	60	50

Decreasing linearly with logarithm of the frequency

Conducted Emission

150k-30MHz Conducted Emission Test


EUT Information

EUT Name: Wireless Display
 Model: LKOUT P
 Client: Fellowes Inc.
 Op Cond: Power on, transmitting at 2402MHz, AC 120V/560Hz, T24.1, H39.1%, P102.5kPa
 Operator: Cheng Huali
 Standard: FCC Part 15.209(a)
 Comment: Phase L
 Sample No.: SHA-749413-2

Scan Setup: Voltage with 2-Line-LISN pre [EMI conducted]

Hardware Setup: Voltage with 2-Line-LISN
 Receiver: [ESR 3]
 Level Unit: dBuV

Subrange	Step Size	Detectors	IF BW	Meas. Time	Preamp
9 kHz - 150 kHz	100 Hz	PK+	200 Hz	0.02 s	0 dB
150 kHz - 30 MHz	4.5 kHz	PK+; AVG	9 kHz	0.01 s	0 dB

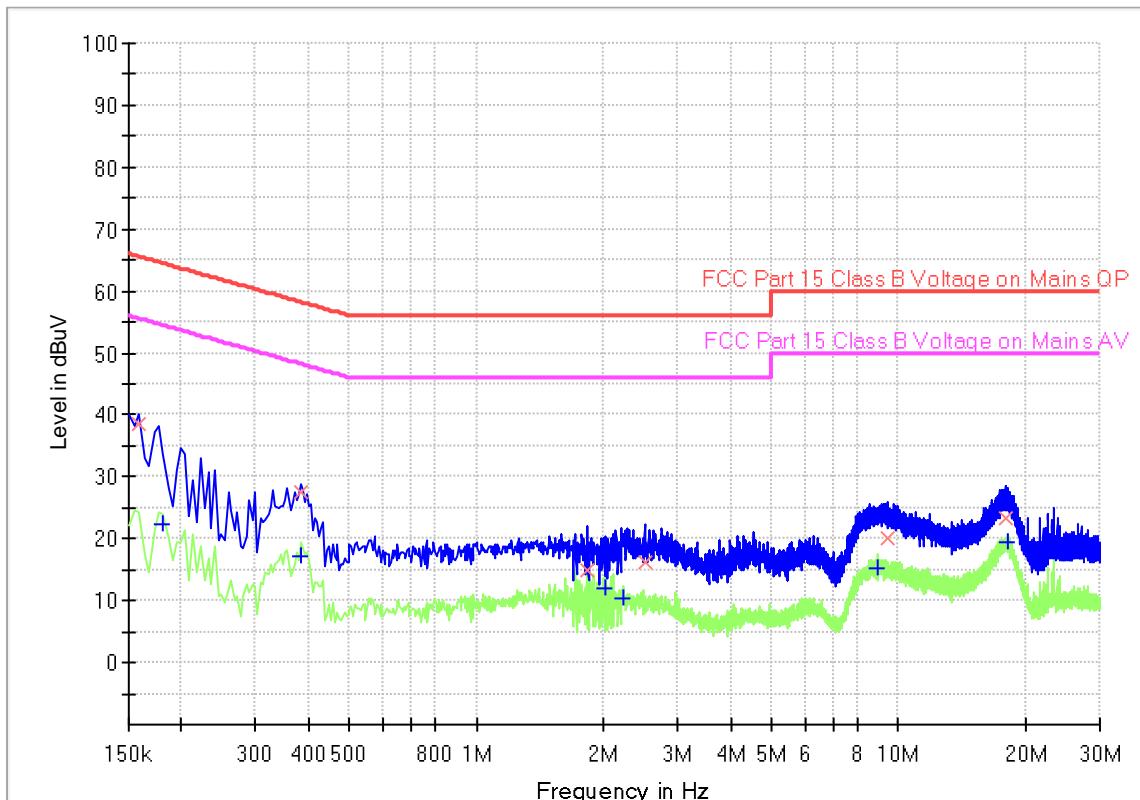
Final Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Corr. (dB)
0.154500	---	24.41	55.75	31.34	1000.0	9.000	L1	19.4
0.154500	38.64	---	65.75	27.11	1000.0	9.000	L1	19.4
0.366000	---	27.37	48.59	21.22	1000.0	9.000	L1	19.5
0.370500	36.00	---	58.49	22.49	1000.0	9.000	L1	19.5
1.999500	---	12.37	46.00	33.63	1000.0	9.000	L1	19.5
2.004000	15.04	---	56.00	40.96	1000.0	9.000	L1	19.5
2.179500	15.34	---	56.00	40.66	1000.0	9.000	L1	19.5
2.179500	---	10.89	46.00	35.11	1000.0	9.000	L1	19.5
8.812500	---	13.79	50.00	36.21	1000.0	9.000	L1	19.8
9.132000	18.16	---	60.00	41.84	1000.0	9.000	L1	19.8
18.069000	---	18.67	50.00	31.33	1000.0	9.000	L1	20.2
18.361500	22.30	---	60.00	37.70	1000.0	9.000	L1	20.3

Note 1: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB)

Factor (dB) = Cable Loss (dB) + LISN Factor (dB) + 10dB Attenuator

150k-30MHz Conducted Emission Test


EUT Information

EUT Name: Wireless Display
 Model LKOUT P
 Client: Fellowes Inc.
 Op Cond: Power on, transmitting at 2402MHz, AC 120V/560Hz, T24.1, H39.1%, P102.5kPa
 Operator: Cheng Huali
 Standard: FCC Part 15.209(a)
 Comment: Phase N
 Sample No.: SHA-749413-2

Scan Setup: Voltage with 2-Line-LISN pre [EMI conducted]

Hardware Setup: Voltage with 2-Line-LISN
 Receiver: [ESR 3]
 Level Unit: dBuV

Subrange	Step Size	Detectors	IF BW	Meas. Time	Preamplifier
9 kHz - 150 kHz	100 Hz	PK+	200 Hz	0.02 s	0 dB
150 kHz - 30 MHz	4.5 kHz	PK+; AVG	9 kHz	0.01 s	0 dB

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Corr. (dB)
0.159000	38.43	---	65.52	27.09	1000.0	9.000	N	19.4
0.181500	---	22.36	54.42	32.06	1000.0	9.000	N	19.4
0.384000	---	17.28	48.19	30.91	1000.0	9.000	N	19.5
0.384000	27.38	---	58.19	30.81	1000.0	9.000	N	19.5
1.833000	14.84	---	56.00	41.16	1000.0	9.000	N	19.5
2.026500	---	11.84	46.00	34.16	1000.0	9.000	N	19.5
2.233500	---	10.47	46.00	35.53	1000.0	9.000	N	19.5
2.503500	16.35	---	56.00	39.65	1000.0	9.000	N	19.5
8.916000	---	15.27	50.00	34.73	1000.0	9.000	N	19.7
9.447000	20.23	---	60.00	39.77	1000.0	9.000	N	19.7
17.875500	23.44	---	60.00	36.56	1000.0	9.000	N	20.0
18.064500	---	19.41	50.00	30.59	1000.0	9.000	N	20.1

Note 1: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB)

Factor (dB) = Cable Loss (dB) + LISN Factor (dB) + 10dB Attenuator

10.2 Conducted peak output power

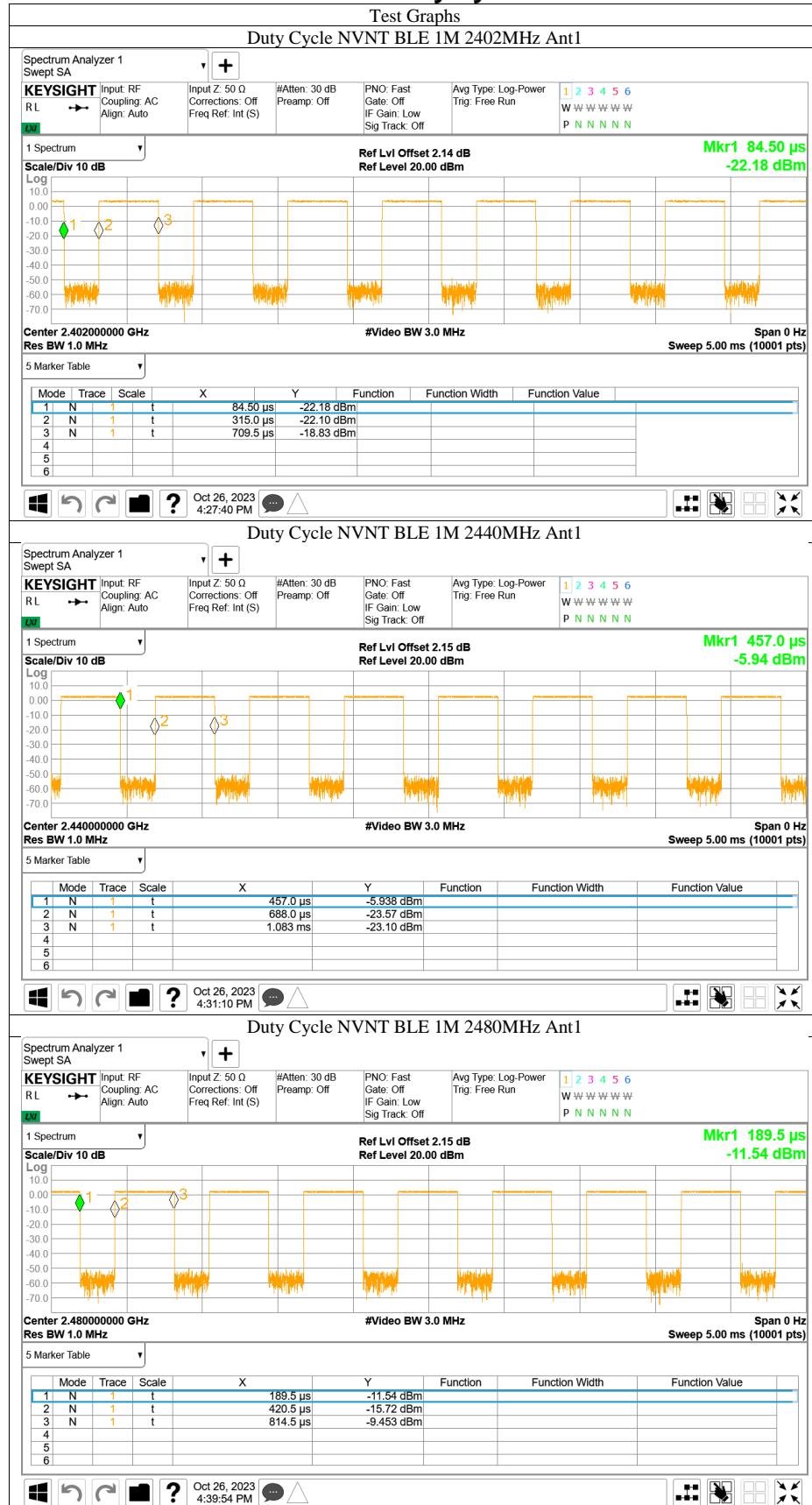
Test Method

1. Measure the duty cycle D of the transmitter output signal.
2. Set span to at least 1.5 times the OBW.
3. Set RBW = 1% to 5% of the OBW, not to exceed 1 MHz.
4. Set VBW $\geq [3 \times \text{RBW}]$.
5. Number of points in sweep $\geq [2 \times \text{span} / \text{RBW}]$. (This gives bin-to-bin spacing $\leq \text{RBW} / 2$, so that narrowband signals are not lost between frequency bins.)
6. Sweep time = auto.
7. Detector = RMS (i.e., power averaging), if available. Otherwise, use the sample detector mode.
8. Do not use sweep triggering. Allow the sweep to “free run.”
9. Trace average at least 100 traces in power averaging (rms) mode; however, the number of traces to be averaged shall be increased above 100 as needed such that the average accurately represents the true average over the ON and OFF periods of the transmitter.
10. Compute power by integrating the spectrum across the OBW of the signal using the instrument’s band power measurement function with band limits set equal to the OBW band edges. If the instrument does not have a band power function, then sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.
11. Add $[10 \log (1 / D)]$, where D is the duty cycle, to the measured power to compute the average power during the actual transmission times (because the measurement represents an average over both the ON and OFF times of the transmission).

Limits

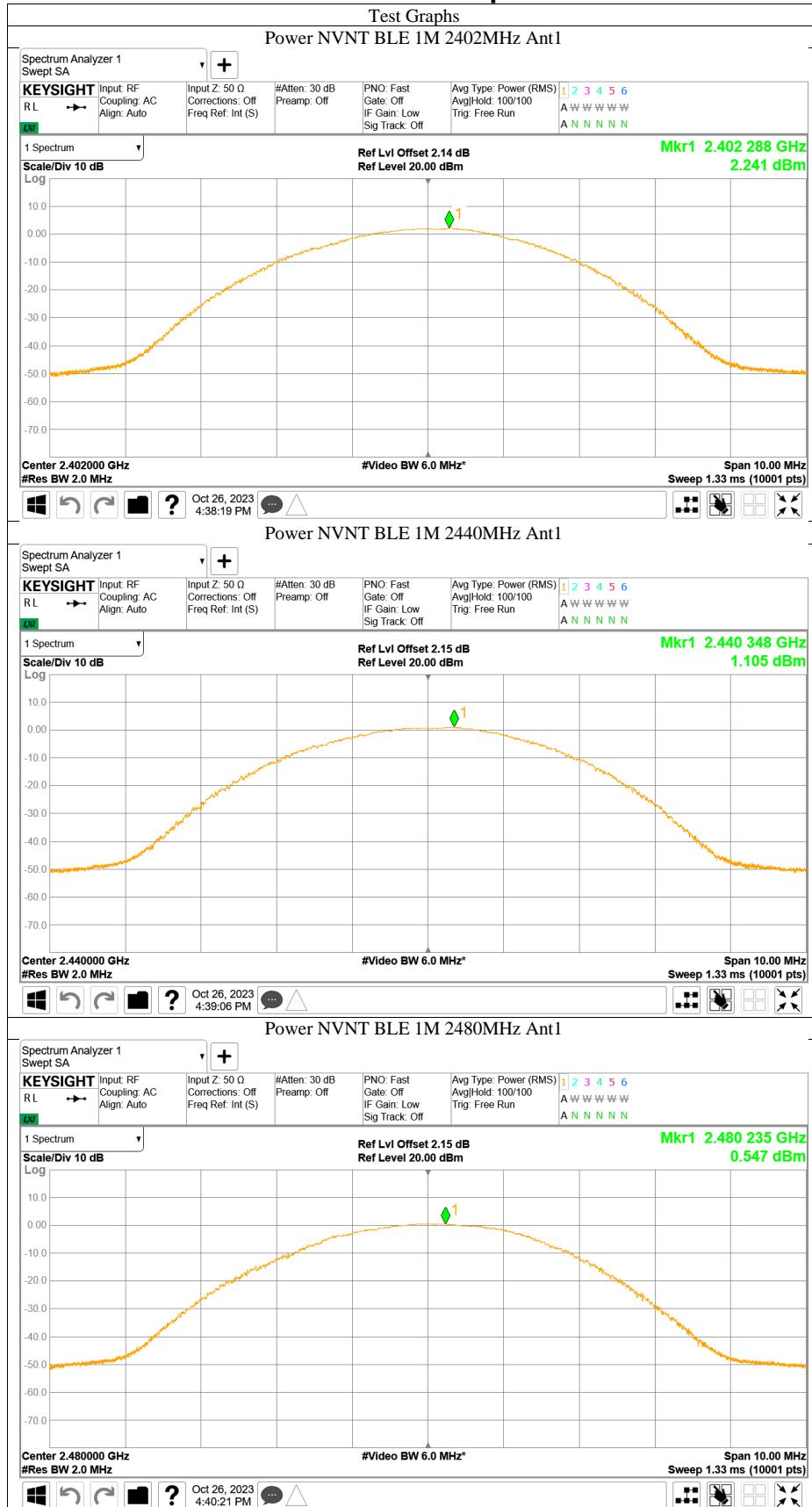
According to §15.247 (b) (3), conducted peak output power limit as below:

Conducted peak output power


Frequency Range MHz	Limit W	Limit dBm
2400-2483.5	≤ 1	≤ 30

Test result as below table

Frequency (MHz)	Duty cycle Factor (dB)	Conducted Power (dBm)	Total Power (dBm) §15.247 (b) (1)	Result
2402MHz	2	2.24	4.24	Pass
2440MHz	2	1.11	3.11	Pass
2480MHz	2	0.55	2.55	Pass



Duty cycle

Conducted Output Power

10.3 6dB bandwidth

Test Method for 6 dB Bandwidth

1. The RF output of EUT was connected to the spectrum analyzer. The path loss was compensated to the results for each measurement.
2. Set to the maximum power setting, the instrument center frequency is set to the nominal EUT channel center frequency enable the EUT transmit continuously.
3. Use the following spectrum analyzer settings:
RBW=100KHz, VBW \geq 3RBW, Sweep = auto, Detector function = peak, Trace = max hold
4. Use the automatic bandwidth measurement capability of an instrument, use the X dB bandwidth mode with X set to 6 dB.
5. Allow the trace to stabilize, record the 6 dB Bandwidth value.

Limit

6dB bandwidth Limit [kHz]

\geq 500

Test result

Data transmission rate	Frequency MHz	6dB bandwidth (MHz)		Result
		result	limit	
1Mbps	2402	0.717	\geq 0.5	Pass
	2440	0.694	\geq 0.5	Pass
	2480	0.709	\geq 0.5	Pass

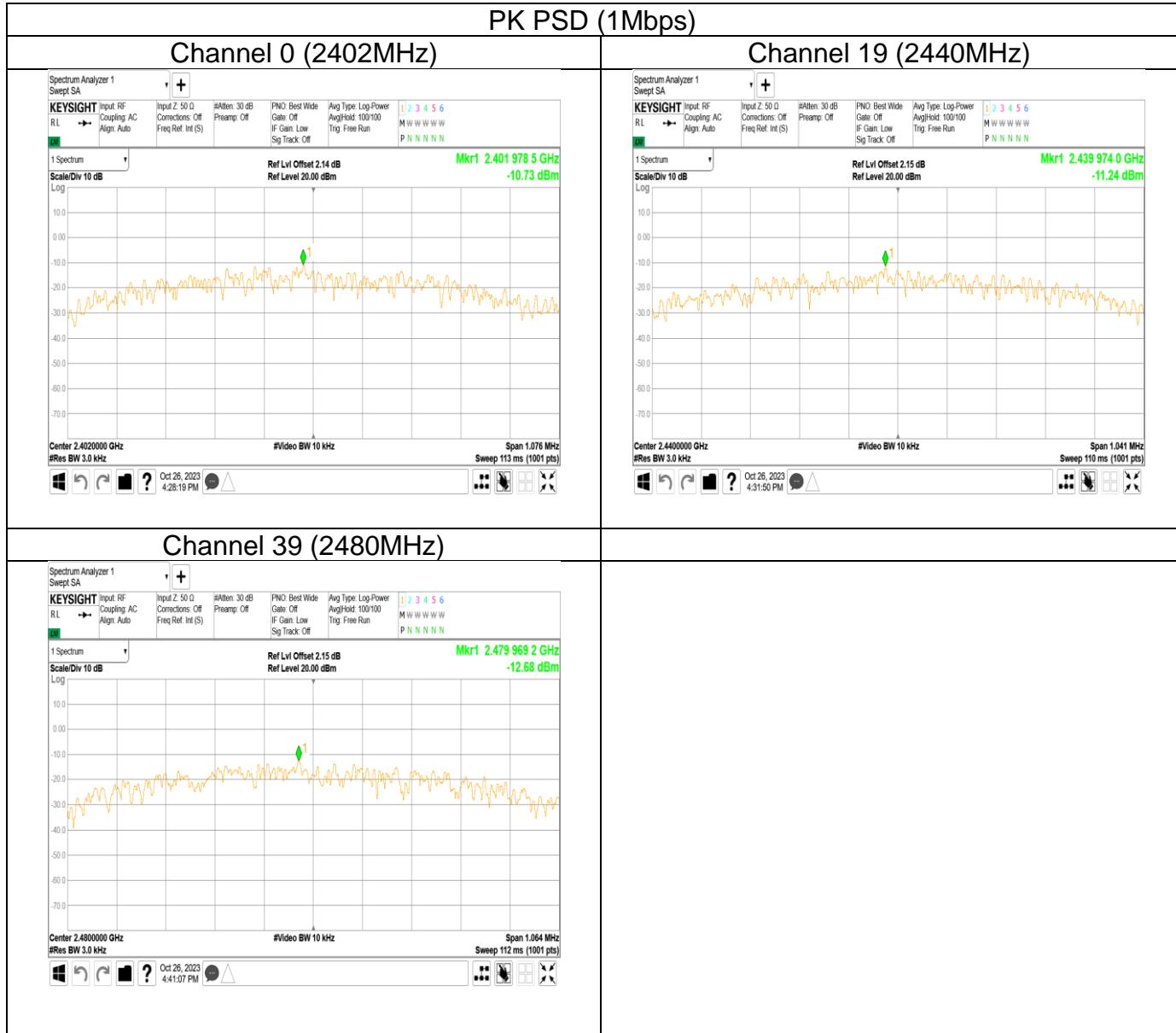
6dB Bandwidth

10.4 Power spectral density

Test Method

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance:

1. The RF output of EUT was connected to the spectrum analyzer. The path loss was compensated to the results for each measurement.
2. Set to the maximum power setting, the instrument center frequency is set to the nominal EUT channel center frequency enable the EUT transmit continuously.
3. Use the following spectrum analyzer settings:
4. Set analyzer center frequency to DTS channel center frequency. RBW=3kHz, Δ BW \geq 3RBW, Span=1.5 times DTS bandwidth, Detector=Peak, Sweep=auto, Trace= max hold.
5. Allow trace to fully stabilize, use the peak marker function to determine the maximum amplitude level within the RBW.
6. Repeat above procedures until other frequencies measured were completed.


Limit

Limit [dBm/3kHz]

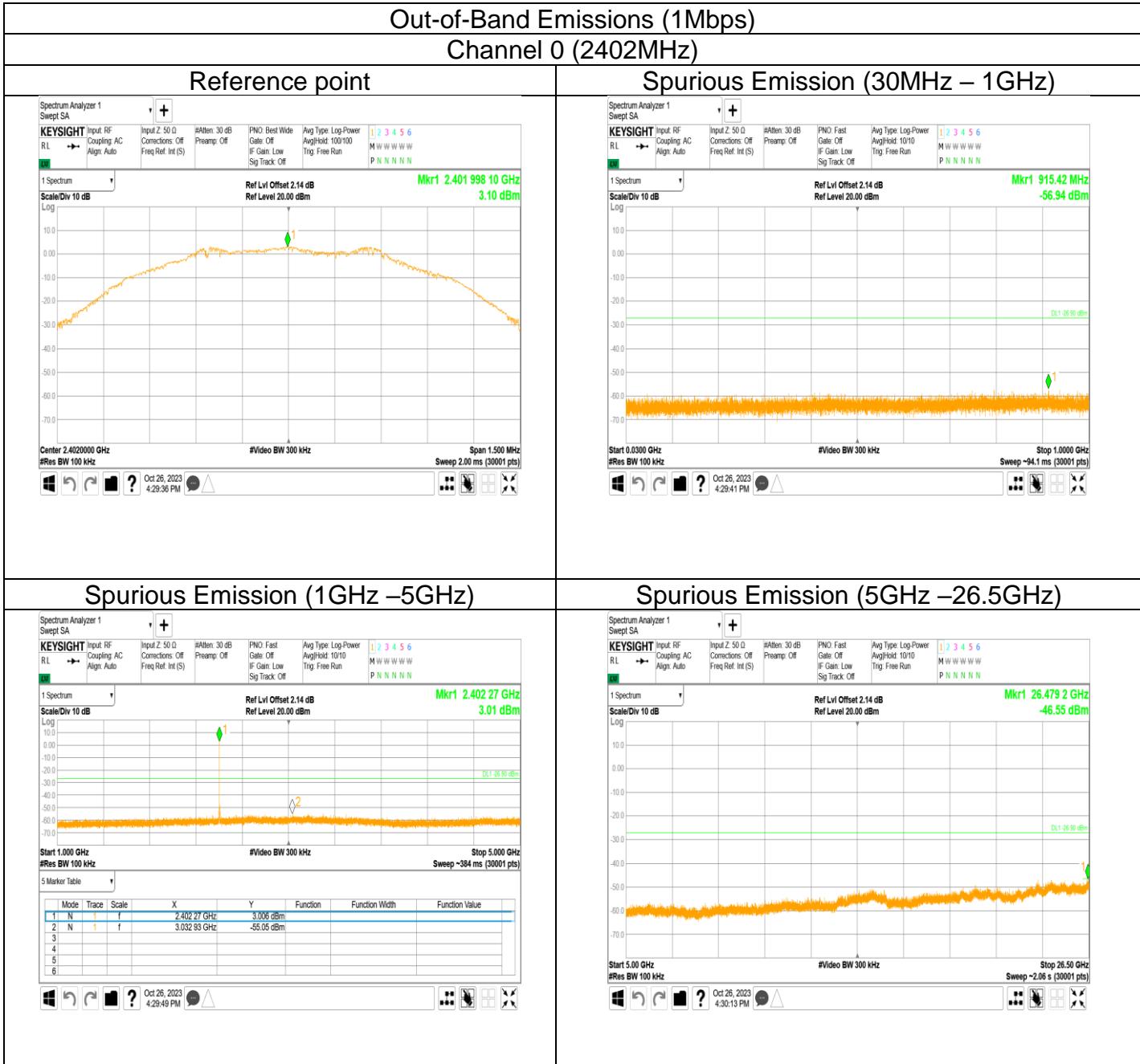
≤ 8

Test result

Data transmission rate	Frequency	Power spectral density	Result
	MHz	dBm/3kHz	
1Mbps	Top channel 2402MHz	-10.73	Pass
	Middle channel 2440MHz	-11.24	Pass
	Bottom channel 2480MHz	-12.68	Pass

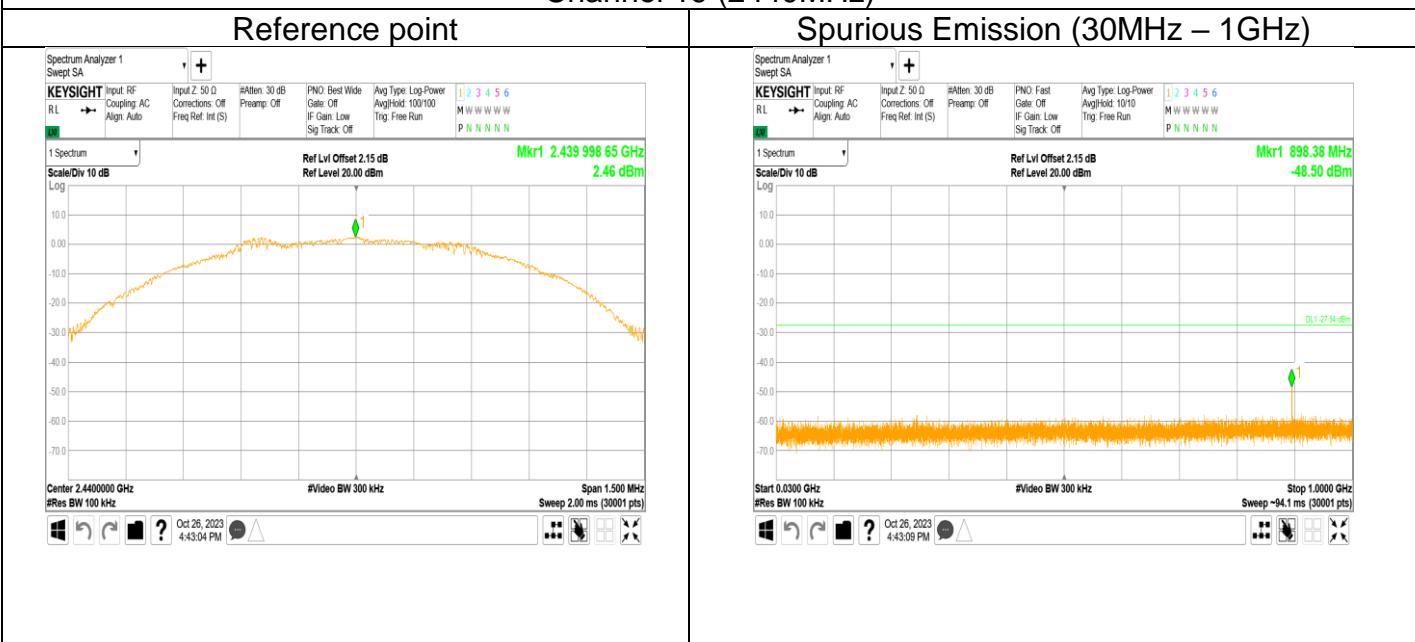
10.5 Spurious RF conducted emissions

Test Method

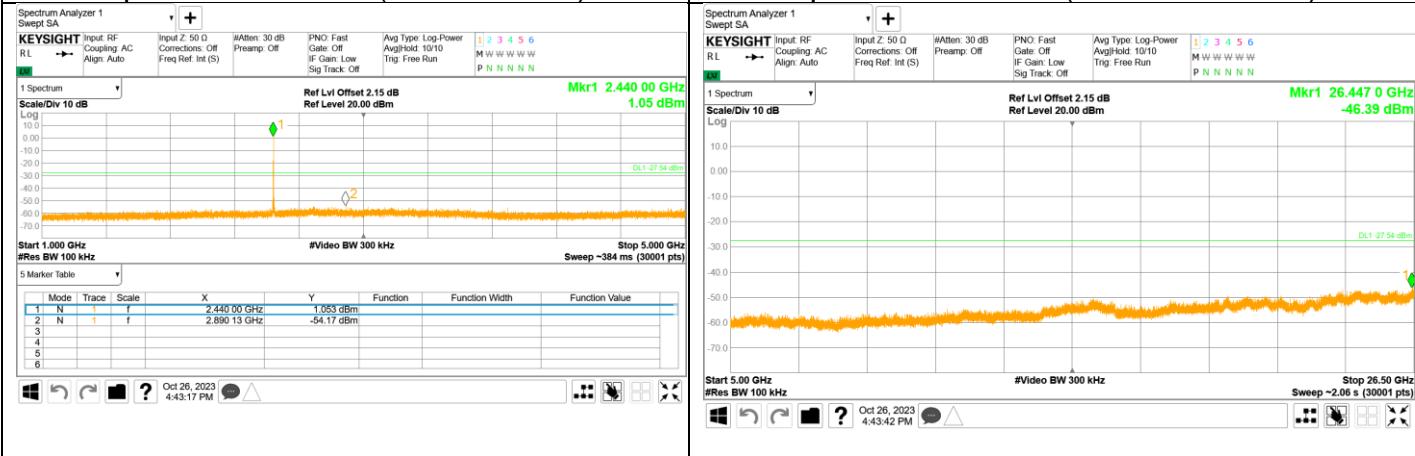

1. The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement.
2. Set to the maximum power setting, the instrument center frequency is set to the nominal EUT channel center frequency enable the EUT transmit continuously.
3. Use the following spectrum analyzer settings:
Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span.
RBW = 100 kHz, VBW≥3RBW, Sweep = auto, Detector function = peak, Trace = max hold
4. Allow the trace to stabilize. Set the marker on the peak of any spurious emission recorded.
5. The level displayed must comply with the limit specified in this Section. Submit these plots.
6. Repeat above procedures until all frequencies measured were complete.

Limit

Frequency Range MHz	Limit (dBc)
30-25000	-20

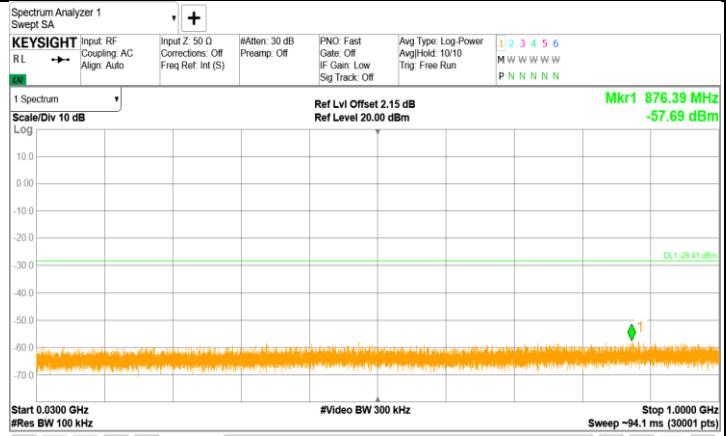


Spurious RF conducted emissions



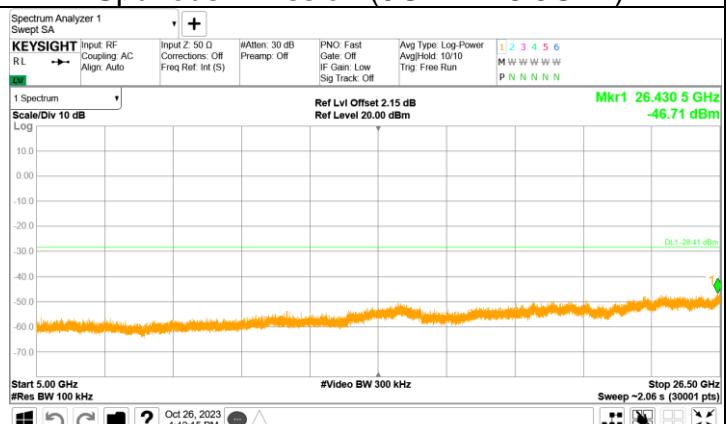
Out-of-Band Emissions (1Mbps) Channel 19 (2440MHz)

Spurious Emission (1GHz – 5GHz)



Out-of-Band Emissions (1Mbps)

Channel 39 (2480MHz)


Reference point

Spurious Emission (30MHz – 1GHz)

Spurious Emission (1GHz – 5GHz)

Spurious Emission (5GHz – 26.5GHz)

10.6 Band edge

Test Method

1. The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement.
2. Set to the maximum power setting, the instrument center frequency is set to the nominal EUT channel center frequency enable the EUT transmit continuously.
3. Use the following spectrum analyzer settings:
Span = wide enough to capture the peak level of the in-band emission and all spurious
RBW = 100 kHz, VBW \geq 3RBW, Sweep = auto, Detector function = peak, Trace = max hold
4. Allow the trace to stabilize, use the peak and delta measurement to record the result.
5. The level displayed must comply with the limit specified in this Section.
6. Repeat above procedures until all frequencies measured were complete and submit all the plots.

Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under § 15.247(b)(3), the attenuation required shall be 30 dB instead of 20 dB.

Frequency Range MHz	Limit (dBc)
30-25000	-20

Test result

10.7 Spurious radiated emissions for transmitter

Test Method

1. The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
2. The EUT was set 3 meters away from the interference – receiving antenna, which was mounted on the top of a variable – height antenna tower.
3. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
5. Use the following spectrum analyzer settings According to C63.10
 - 1) Procedure for Unwanted Emissions Measurements Below 1000 MHz

Span = wide enough to capture the peak level of the in-band emission and all spurious
 RBW = 100 kHz to 120kHz, $VBW \geq RBW$ for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.
 - 2) For Peak unwanted emissions Above 1GHz:
 Span = wide enough to capture the peak level of the in-band emission and all spurious
 RBW = 1MHz, $VBW \geq RBW$ for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

Procedures for average unwanted emissions measurements above 1GHz

- a) RBW = 1MHz.
- b) $VBW \setminus [3 \times RBW]$.
- c) Detector = RMS (power averaging), if $[span / (\# of points in sweep)] \setminus RBW / 2$.
 Satisfying this condition can require increasing the number of points in the sweep or reducing the span. If the condition is not satisfied, then the detector mode shall be set to peak.
- d) Averaging type = power (i.e., rms) (As an alternative, the detector and averaging type may be set for linear voltage averaging. Some instruments require linear display mode to use linear voltage averaging. Log or dB averaging shall not be used.)
- e) Sweep time = auto.
- f) Perform a trace average of at least 100 traces if the transmission is continuous. If the transmission is not continuous, then the number of traces shall be increased by a factor of $1 / D$, where D is the duty cycle. For example, with 50% duty cycle, at least 200 traces shall be averaged. (If a specific emission is demonstrated to be continuous—i.e., 100% duty cycle—then rather than turning ON and OFF with the transmit cycle, at least 100 traces shall be averaged.)
- g) If tests are performed with the EUT transmitting at a duty cycle less than 98%, then a correction factor shall be added to the measurement results prior to comparing with the emission limit, to compute the emission level that would have been measured had the test been performed at 100% duty cycle. The correction factor is computed as follows:
 - 1) If power averaging (rms) mode was used in the preceding step e), then the correction factor is $[10 \log (1 / D)]$, where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 3 dB shall be added to the measured emission levels.
 - 3) If linear voltage averaging mode was used in the preceding step e), then the correction

factor is $[20 \log (1 / D)]$, where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 6 dB shall be added to the measured emission levels.

3) If a specific emission is demonstrated to be continuous (100% duty cycle) rather than turning ON and OFF with the transmit cycle, then no duty cycle correction is required for that emission (AV) at frequency above 1GHz.

Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under § 15.247(b)(3), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a).

Frequency MHz	Field Strength μV/m	Field Strength dBμV/m	Detector	Measurement distance meters
0.009-0.490	2400/F(kHz)	48.5-13.8	AV	300
0.490-1.705	24000/F(kHz)	33.8-23.0	QP	30
1.705-30	30	29.5	QP	30
30-88	100	40	QP	3
88-216	150	43.5	QP	3
216-960	200	46	QP	3
960-1000	500	54	QP	3
Above 1000	500	54	AV	3
Above 1000	5000	74	PK	3

Spurious radiated emissions for transmitter

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

Data of measurement within frequency range 9kHz-30MHz is the noise floor or attenuated more than 20dB below the permissible limits or the field strength is too small to be measured, so test data does not present in this report.

Test result

Above 1GHz Transmitting spurious emission test result as below:

Test mode:GFSK 1Mbps (2402MHz)					
Frequency MHz	Measure Level (dBuV/m)	Limit (dBuV/M)	Margin (dB)	Detector	Polarization
2383.44	43.23	74.00	30.77	PK	Horiznotal
4804.11	40.21	74.00	33.79	PK	Horiznotal
2383.52	43.09	74.00	30.91	PK	Vertical
4804.12	40.34	74.00	33.66	PK	Vertical

Test mode:GFSK 1Mbps (2440MHz)					
Frequency MHz	Measure Level (dBuV/m)	Limit (dBuV/M)	Margin (dB)	Detector	Polarization
4879.40	41.21	74.00	32.79	PK	Horiznotal
4879.25	40.45	74.00	33.55	PK	Vertical

Test mode:GFSK 1Mbps (2480MHz)					
Frequency MHz	Measure Level (dBuV/m)	Limit (dBuV/M)	Margin (dB)	Detector	Polarization
2483.66	47.18	74.00	26.82	PK	Horiznotal
4960.43	41.21	74.00	32.79	PK	Horiznotal
2483.51	44.51	74.00	29.49	PK	Vertical
4959.30	41.34	74.00	32.66	PK	Vertical

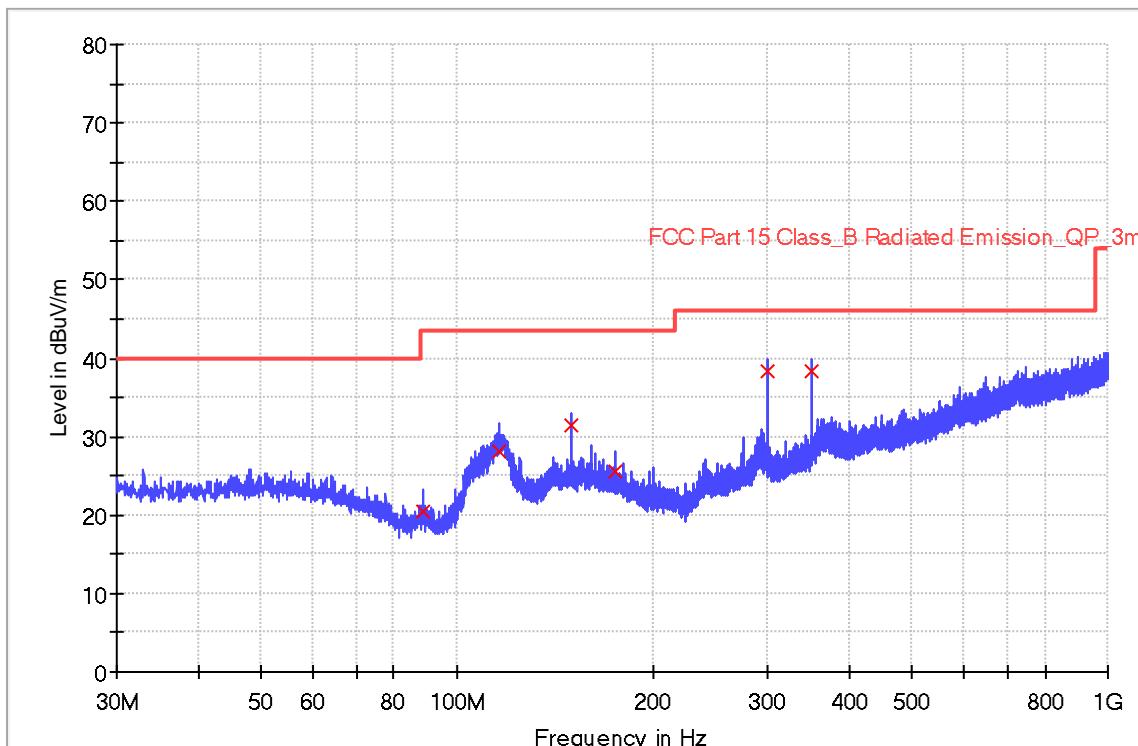
Remark:

- (1) Emission level= Original Receiver Reading + Correct Factor
- (2) Correct Factor = Antenna Factor + Cable Loss -Amplifier gain
- (3) Margin = limit – Corrected Reading

The worst case of Radiated Emission below 1GHz:

30-1000MHz Radiated Emission

EUT Information


EUT Name:	Wireless Display
Model:	LKOUT P
Client:	Fellowes Inc.
Op Cond:	Power on, transmitting at 2402MHz, AC 120V/60Hz, T23.9, 47.4%, P102.5kPa
Operator:	Cheng Huali
Test Spec:	FCC Part 15.209(a)
Comment:	Horizontal
Sample No:	SHA-749413-2

Sweep Setup: RE_VULB9168_pre_Cont_30-1000 [EMI radiated]

Hardware Setup:	RE_VULB9168
Receiver:	[ESR 3]
Level Unit:	dBuV/m

Subrange	Step Size	Detectors	Bandwidth	Sweep Time	Preamp
30 MHz - 1 GHz	48.5 kHz	PK+	120 kHz	0.2 s	20 dB

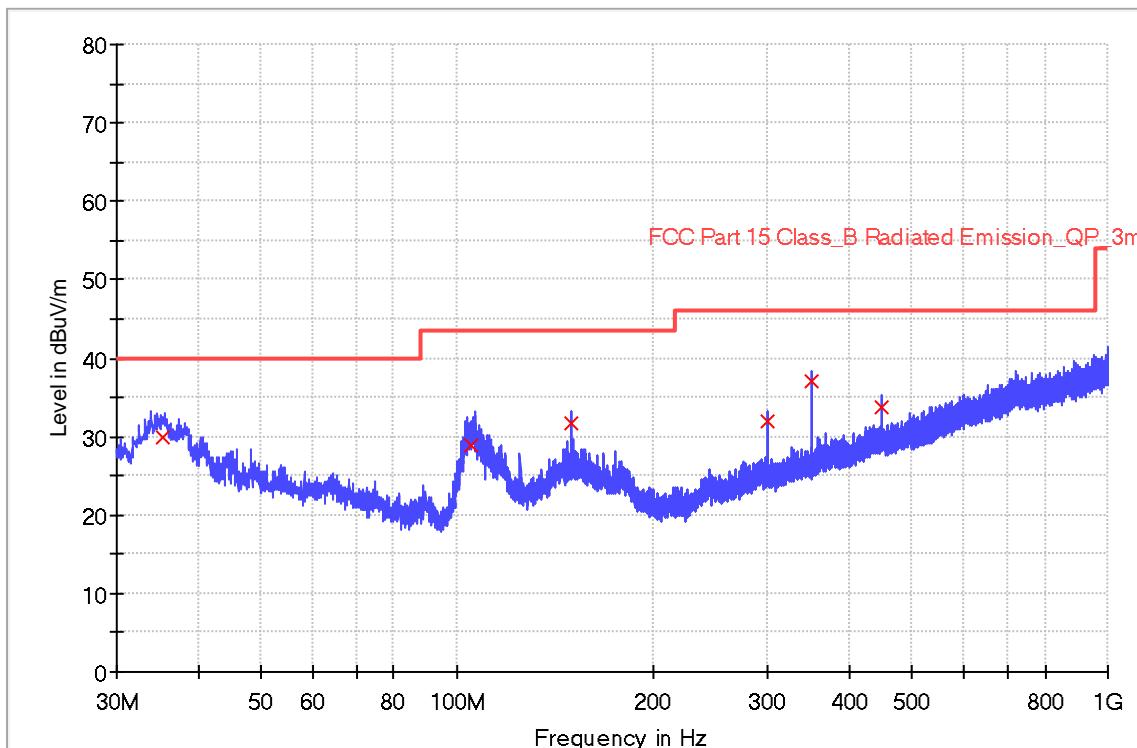
RE_VULB9168_pre_Cont_30-1000

Limit and Margin

Frequency (MHz)	QuasiPeak (dBuV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)	Margin - QPK (dB)	Limit - QPK (dBuV/m)
88.920000	20.4	1000.0	120.000	200.0	H	117.0	14.7	23.1	43.5
116.000000	28.0	1000.0	120.000	187.0	H	301.0	17.8	15.5	43.5
149.960000	31.5	1000.0	120.000	169.0	H	196.0	20.9	12.0	43.5
174.960000	25.6	1000.0	120.000	154.0	H	49.0	19.9	17.9	43.5
299.960000	38.5	1000.0	120.000	106.0	H	36.0	21.5	7.6	46.0
349.960000	38.3	1000.0	120.000	112.0	H	125.0	22.6	7.7	46.0

30-1000MHz Radiated Emission

EUT Information


EUT Name: Wireless Display
 Model: LKOUT P
 Client: Fellowes Inc.
 Op Cond: Power on, transmitting at 2402MHz, AC 120V/60Hz, T23.9, 47.4%,
 Operator: Cheng Huali
 Test Spec: FCC Part 15.247
 Comment: Vertical
 Sample No: SHA-749413-2

Sweep Setup: RE_VULB9168_pre_Cont_30-1000 [EMI radiated]

Hardware Setup: RE_VULB9168
 Receiver: [ESR 3]
 Level Unit: dBuV/m

Subrange	Step Size	Detectors	Bandwidth	Sweep Time	Preamp
30 MHz - 1 GHz	48.5 kHz	PK+	120 kHz	0.2 s	20 dB

RE_VULB9168_pre_Cont_30-1000

Limit and Margin

Frequency (MHz)	QuasiPeak (dBuV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)	Margin - QPK (dB)	Limit - QPK (dBuV/m)
35.200000	29.8	1000.0	120.000	112.0	V	136.0	19.5	10.2	40.0
104.880000	28.8	1000.0	120.000	103.0	V	95.0	16.7	14.7	43.5
150.000000	31.7	1000.0	120.000	132.0	V	236.0	20.9	11.8	43.5
300.000000	32.0	1000.0	120.000	123.0	V	98.0	21.5	14.0	46.0
350.000000	37.0	1000.0	120.000	165.0	V	47.0	22.6	9.0	46.0
450.000000	33.8	1000.0	120.000	145.0	V	163.0	25.9	12.2	46.0

Note 1: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

Note 2: The test trace is same as the ambient noise and the amplitude of the emissions are attenuated more than 20dB below the permissible (the test frequency range: 9kHz ~ 30MHz, 18GHz ~ 25GHz), therefore no data appear in the report.

11 Test Equipment List

List of Test Instruments
Test Site1

	DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DATE	CAL. DUE DATE
C	Signal spectrum analyzer	Agilent	N9020B	MY59050168	2023-2-10	2024-2-9
	Wideband power sensor	Rohde & Schwarz	NRP-Z81	105903	2023-2-10	2024-2-9
	10dB Attenuator	Aeroflex Weinschel	CG-4689	93459	2023-2-10	2024-2-9
RE	EMI Test Receiver	Rohde & Schwarz	ESR3	101906	2023-8-1	2024-7-31
	Signal Analyzer	Rohde & Schwarz	FSV40	101091	2023-8-1	2024-7-31
	Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9168	961	2021-9-23	2024-9-22
	Double-ridged waveguide horn antenna	Rohde & Schwarz	HF907	102868	2021-3-15	2024-3-14
	Pre-amplifier	Rohde & Schwarz	SCU-18D	19006451	2023-8-1	2024-7-31
	Loop antenna	Rohde & Schwarz	HFH2-Z2	100443	2023-6-15	2024-6-14
	Double Ridged Horn Antenna	ETS-Lindgren	3116C	00246076	2023-7-7	2026-7-6
	3m Semi-anechoic chamber	TDK	9X6X6	----	2021-5-8	2024-5-7
CE	EMI Test Receiver	Rohde & Schwarz	ESR3	101907	2023-8-1	2024-7-31
	LISN	Rohde & Schwarz	ENV216	101924	2023-8-1	2024-7-31

Measurement Software Information			
Test Item	Software	Manufacturer	Version
C	MTS 8310	MWRFtest	2.0.0.0
RE	EMC 32	Rohde & Schwarz	V10.50.40
CE	EMC 32	Rohde & Schwarz	V9.15.03

C - Conducted RF tests

- Conducted peak output power
- 6dB bandwidth and 99% Occupied Bandwidth
- Power spectral density*
- Spurious RF conducted emissions
- Band edge

12 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

Items	Extended Uncertainty
Conducted Disturbance at Mains Terminals	150kHz to 30MHz, LISN, 3.16dB
Radiated Disturbance	9kHz to 30MHz, 3.52dB 30MHz to 1GHz, 5.03dB (Horizontal) 5.12dB (Vertical) 1GHz to 18GHz, 5.49dB 18GHz to 40GHz, 5.63dB
RF Conducted Measurement	Power related: 1.16dB Frequency related: 6.00×10^{-8}

Measurement Uncertainty Decision Rule:

Determination of conformity with the specification limits is based on the decision rule according to IEC Guide 115: 2021, clause 4.4.3 and 4.5.1.

13 Photographs of Test Set-ups

Refer to the < Test Setup photos >.

14 Photographs of EUT

Refer to the < External Photos > & < Internal Photos >.

-----End of Test Report-----