

FCC TEST REPORT

for

PART 15, SUBPART B CLASS B

EQUIPMENT : CARDEXPERT 6326

MODEL NO. : 9723-00

F C C I D : ICUVGA-GW723

FILING TYPE : Original Grant

APPLICANT : GAINWARD CO., LTD.

12F., No. 96, Hsin Tai Wu Rd., Sec. 1, Hsi-Chih,
Taipei Hsien, Taiwan, R.O.C.

- The test result refers exclusively to the test presented test model / sample.
- Without the written authorization of the test lab., the Test Report may not be copied.

SPORTON INTERNATIONAL INC.

6F, No. 106, Hsin Tai Wu Rd., Sec. 1, Hsi Chih, Taipei Hsien, Taiwan, R.O.C.

TABLE OF CONTENT

SECTION TITLE	PAGE
CERTIFICATE OF COMPLIANCE	3
1. GENERAL DESCRIPTION OF EQUIPMENT UNDER TEST	4
1.1. APPLICANT	4
1.2. MANUFACTURER : Same as 1.1	4
1.3. BASIC DESCRIPTION OF EQUIPMENT UNDER TEST	4
1.4. FEATURE OF EQUIPMENT UNDER TEST	4
2. TEST CONFIGURATION OF EQUIPMENT UNDER TEST	5
2.1. TEST MANNER	5
2.2. DESCRIPTION OF TEST SYSTEM	5
2.3. CONNECTION DIAGRAM OF TEST SYSTEM	7
3. TEST SOFTWARE	8
4. GENERAL INFORMATION OF TEST	9
4.1. TEST FACILITY	9
4.2. STANDARD FOR METHODS OF MEASUREMENT	9
4.3. TEST IN COMPLIANCE WITH	9
4.4. FREQUENCY RANGE INVESTIGATED	9
4.5. TEST DISTANCE	9
5. TEST OF CONDUCTED POWERLINE	10
5.1. MAJOR MEASURING INSTRUMENTS	10
5.2. TEST PROCEDURES	11
5.3. TYPICAL TEST SETUP LAYOUT OF CONDUCTED POWERLINE	12
5.4. TEST RESULT OF AC POWERLINE CONDUCTED EMISSION	13
5.5. PHOTOGRAPHS OF CONDUCTED POWERLINE TEST CONFIGURATION	15
6. TEST OF RADIATED EMISSION	19
6.1. MAJOR MEASURING INSTRUMENTS	19
6.2. TEST PROCEDURES	20
6.3. TYPICAL TEST SETUP LAYOUT OF RADIATED EMISSION	21
6.4. TEST RESULT OF RADIATED EMISSION	22
6.5. PHOTOGRAPHS OF RADIATED EMISSION TEST CONFIGURATION	24
7. ANTENNA FACTOR AND CABLE LOSS	26
8. LIST OF MEASURING EQUIPMENT USED	27

CERTIFICATE NO. : F871404

CERTIFICATE OF COMPLIANCE

for

FCC PART 15, SUBPART B CLASS B

EQUIPMENT : CARDEXPERT 6326

MODEL NO. : 9723-00

F C C I D : ICUVGA-GW723

APPLICANT : GAINWARD CO., LTD.

12F., No. 96, Hsin Tai Wu Rd., Sec. 1, Hsi-Chih,
Taipei Hsien, Taiwan, R.O.C.

I HEREBY CERTIFY THAT :

The measurement shown in this report were made in accordance with the procedures given in **ANSI C63.4 -1992** and the energy emitted by this equipment was **passed** both radiated and conducted emissions **Class B** limits.

Testing was carried out on **July 20, 1998** at **SPORTON International Inc.**

Lenore Chang
Lenore Chang
President

SPORTON INTERNATIONAL INC.

6F, No. 106, Hsin Tai Wu Rd., Sec. 1, Hsi Chih, Taipei Hsien, Taiwan, R.O.C.

1. GENERAL DESCRIPTION OF EQUIPMENT UNDER TEST**1.1. APPLICANT****GAINWARD CO., LTD.**

12F., No. 96, Hsin Tai Wu Rd., Sec. 1, Hsi-Chih,
Taipei Hsien, Taiwan, R.O.C.

1.2. MANUFACTURER : Same as 1.1**1.3. BASIC DESCRIPTION OF EQUIPMENT UNDER TEST**

EQUIPMENT : CARDEXPERT 6326

MODEL NO. : 9723-00

TRADE NAME : CARDEXPERT

DATA CABLE : SHIELDED

AV CABLE : Non-shielded, 1.2M

S-VIDEO CABLE : Shielded, 1.7M

POWER SUPPLY TYPE : N/A

POWER CORD : N/A

1.4. FEATURE OF EQUIPMENT UNDER TEST

- Targeting the emerging PC market, SiS6326 is the first member of the new SiS63x6 family, which consists of high integration, super performance, and feature-rich 3D/2D graphics & video accelerators.
- Being a 208-pin PQFP package, SiS6326 integrate AGP/PCI VGA controller, 3D/2D graphics accelerator, NTSC/PAL TV-OUT solution, MPEG-2/1 video decoder, and video accelerator.
- Resolution up to 1600x1200
- Horizontal Frequency : 31.5-80KHz
- Vertical Frequency : 60-85Hz

2. TEST CONFIGURATION OF EQUIPMENT UNDER TEST**2.1. TEST MANNER**

- a. The EUT has been associated with personal computer and peripherals pursuant to ANSI C63.4-1992 and configuration operated in a manner which tended to maximize its emission characteristics in a typical application.
- b. The DELL keyboard, SONY monitor, HP printer, ACEEX modem, PRIMAX PS/2 mouse , PANASONIC video monitor and EUT were connected to the FIC P.C. for EMI test.
- c. The following display resolution were investigated during the compliance test:
 1. Horizontal frequency (640 x 480 to 1600 x 1200, 31.5KHz to 80KHz)
 2. Vertical frequency (60Hz to 85Hz)
 3. TV Mode (600x480, 60Hz, 31.4K)
- d. According to the above tests, we listed the following display modes as the worst cases:
 1. 1600 x 1200 (Non-interlanced 75KHz), refresh rate 60Hz.
 2. 640 x 480 (31.4KHz), refresh rate 60Hz.
- e. Frequency range investigated: Conduction 450 KHz to 30 MHz, Radiation 30 MHz to 2000MHz.

2.2. DESCRIPTION OF TEST SYSTEM

Support Device 1. --- MONITOR (SONY)

FCC ID	: AK8GDM17SE2T
Model No.	: GDM-17SE2T
Serial No.	: SP1006
Data Cable	: Shielded, 360 degree via metal backshells, 1.7m
Power Supply Type	: Switching
Power Cord	: Non-shielded

Support Device 2. --- KEYBOARD (DELL)

FCC ID	: GYUM92SK
Model No.	: AT101 (DE8M)
Serial No.	: SP1009
Data Cable	: Shielded, 360 degree via metal backshells, 1.9m

FCC TEST REPORT

REPORT NO. : F871404

Support Device 3. -- PS/2 MOUSE (PRIMAX)

FCC ID : EMJMUSJQ
Model No. : MUS9J
Serial No. : SP1012
Data Cable : Shielded, 1.7m

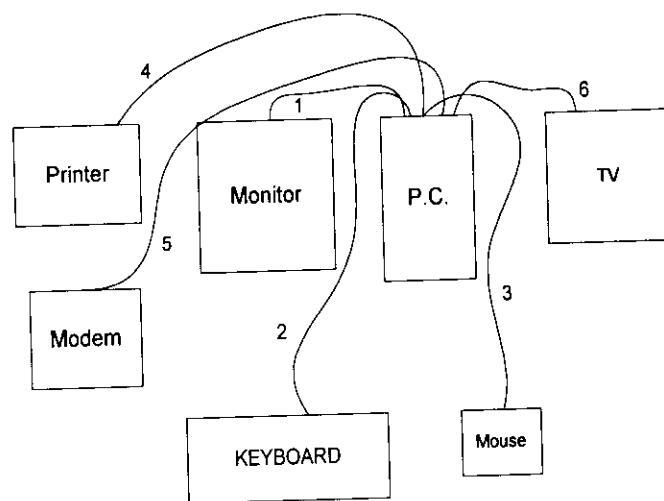
Support Device 4. --- PRINTER (HP)

FCC ID : B94C2642X
Model No. : DESK JET 400
Serial No. : SP0037
Data Cable : Shielded, 360 degree via metal backshells, 1.35m
Power Supply Type : Linear

Support Device 5. -- MODEM (ACEEX)

FCC ID : IFAXDM1414
Model No. : DM1414
Power Supply Type : Linear, AC Adapter
Power Cord : Non-shielded
Serial No. : SP1019
Data Cable : Shielded, 1.15m

Support Device 6. --- P.C. (FIC)


FCC ID : N/A
Model No. : P2L97
Serial No. : SP1003
Data Cable : Shielded
Power Cord : Non-shielded
Power Supply Type : Switching

(Remark : This support device was tested to comply with FCC standards and
authorized under a declaration of conformity.)

Support Device 7. - VIDEO MONITOR (PANASONIC)

FCC ID : N/A
Model No. : WV-CM1450
Serial No. : SP1046

2.3. CONNECTION DIAGRAM OF TEST SYSTEM

1. The I/O cable is connected from the EUT to the support device 1.
2. The I/O cable is connected to the support device 2.
3. The I/O cable is connected to the support device 3.
4. The I/O cable is connected to the support device 4.
5. The I/O cable is connected to the support device 5.
6. The I/O cable is connected from the EUT to the support device 7

3. TEST SOFTWARE

An executive program, WINFCC.EXE under WIN 98, which generate a complete line of continuously repeating " H " pattern was used as the test software.

The program was executed as follows :

- a. Turn on the power of all equipment.
- b. The PC reads the test program from the floppy disk drive and runs it.
- c. The PC sends " H " messages to the monitor, and the monitor displays " H " patterns on the screen.
- d. The PC sends " H " messages to the printer, then the printer prints them on the paper.
- e. The PC sends " H " messages to the modem.
- f. The PC sends " H " messages to the internal Hard Disk, and the Hard Disk reads and writes the message.
- g. Repeat the steps from b to f.

4. GENERAL INFORMATION OF TEST

4.1. TEST FACILITY

This test was carried out by SPORTON INTERNATIONAL INC.

Test Site Location : No. 30-1, Lin 6, Diing-Fwu Tsuen, Lin-Kou-Hsiang,
Taipei Hsien, Taiwan, R.O.C.
TEL : 886-2-2601-1640, FAX : 886-2-2601-1695

4.2. STANDARD FOR METHODS OF MEASUREMENT

ANSI C63.4-1992

4.3 .TEST IN COMPLIANCE WITH

FCC PART 15, SUBPART B CLASS B

4.4. FREQUENCY RANGE INVESTIGATED

- a. Conduction : from 450 KHz to 30 MHz
- b. Radiation : from 30 MHz to 2000 MHz.

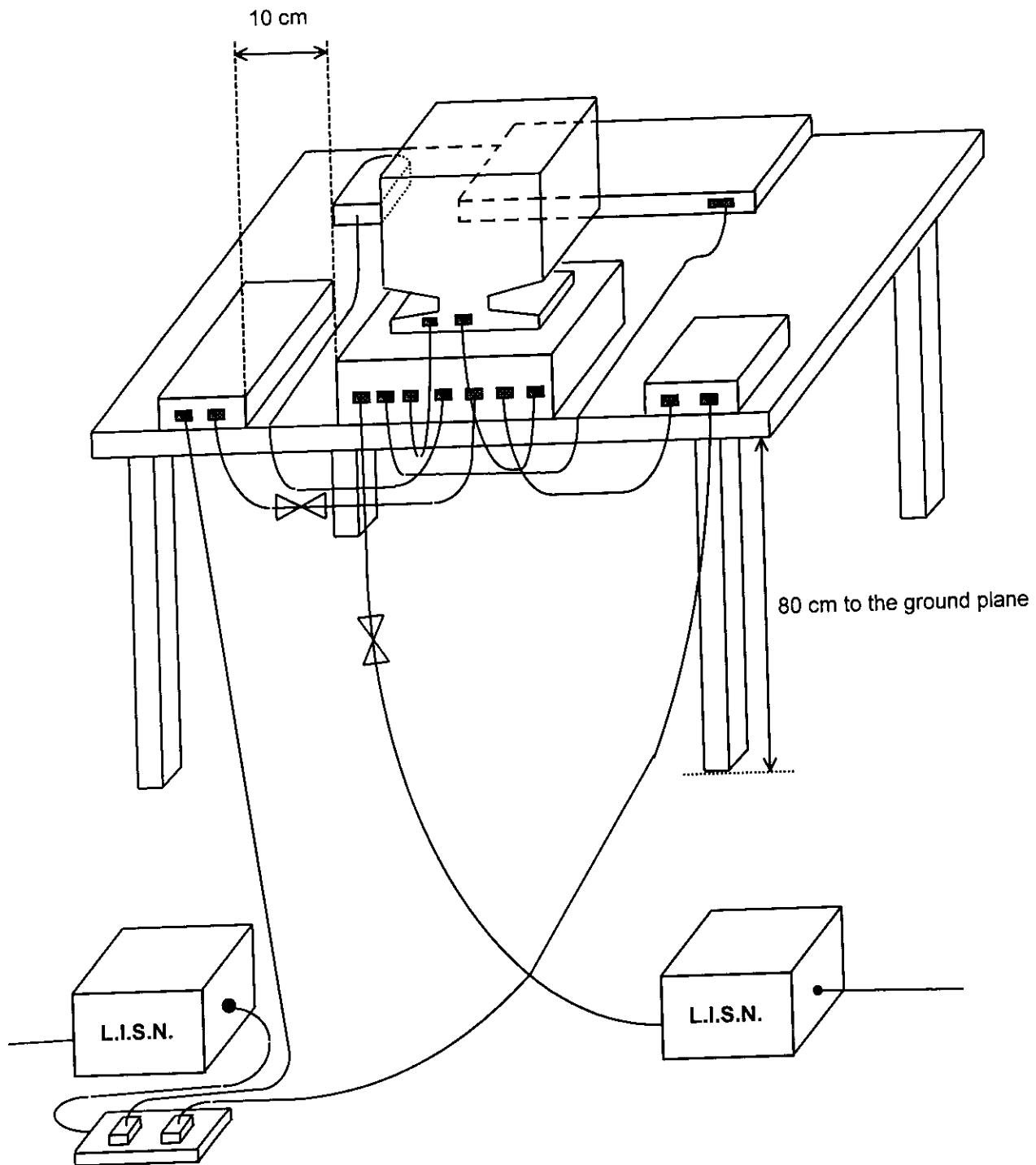
4.5. TEST DISTANCE

The test distance of radiated emission from antenna to EUT is 3M.

5. TEST OF CONDUCTED POWERLINE

Conducted Emissions were measured from 450 KHz to 30 MHz with a bandwidth of 9 KHz on the 115 VAC power and return leads of the EUT according to the methods defined in ANSI C63.4-1992 Section 3.1. The EUT was placed on a nonmetallic stand in a shielded room 0.8 meters above the ground plane as shown in Figure 5-3. The interface cables and equipment positioning were varied within limits of reasonable applications to determine the position produced maximum conducted emissions.

5.1. MAJOR MEASURING INSTRUMENTS


- Test Receiver

Attenuation	0 dB
Start Frequency	0.45 MHz
Stop Frequency	30 MHz
Step MHz	0.007 MHz
IF Bandwidth	9 KHz

5.2. TEST PROCEDURES

- a. The EUT was placed 0.4 meter from the conducting wall of the shielding room and was kept at least 80 centimeters from any other grounded conducting surface.
- b. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- c. All the support units are connect to the other LISN.
- d. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- e. The FCC states that a 50 ohm , 50 microhenry LISN should be used.
- f. Both sides of AC line were checked for maximum conducted interference.
- g. The frequency range from 450 KHz to 30 MHz was searched.
- h. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- i. If the emission level of the EUT in peak mode was 6 dB lower than the limit specified, then testing will be stopped and peak values of EUT will be reported otherwise the emissions which do not have 6 dB margin will be retested on by one using the quasi-peak method and reported.

5.3. TYPICAL TEST SETUP LAYOUT OF CONDUCTED POWERLINE

5.4. TEST RESULT OF AC POWERLINE CONDUCTED EMISSION

- Frequency Range of Test : from 0.45 MHz to 30 MHz
- All emissions not reported here are more than 10 dB below the prescribed limit.
- Temperature : 31°C
- Relative Humidity : 46 % RH
- Test Mode : **1600 x 1200, 75k, 60Hz**
- Test Date : July 20, 1998

The Conducted Emission test was passed at Neutral 1.01 MHz / 38.80 dBuV.

Frequency (MHz)	Line / Neutral	Meter Reading		Limits		Margin
		(dBuV)	(uV)	(dBuV)	(uV)	(dB)
0.71	L	38.00	79.43	48.00	251.19	-10.00
1.01	L	38.40	83.18	48.00	251.19	-9.60
2.62	L	35.10	56.89	48.00	251.19	-12.90
0.61	N	38.40	83.18	48.00	251.19	-9.60
1.01	N	38.80	87.10	48.00	251.19	-9.20
2.22	N	35.40	58.88	48.00	251.19	-12.60

Test Engineer : Kenny Chuang

Kenny Chuang

5.4.1. TEST RESULT OF AC POWERLINE CONDUCTED EMISSION

- Frequency Range of Test : from 0.45 MHz to 30 MHz
- All emissions not reported here are more than 10 dB below the prescribed limit.
- Temperature : 31°C
- Relative Humidity : 46 % RH
- Test Mode : **TV Mode (640 x 480, 31.4K, 60Hz)**
- Test Date : July 20, 1998

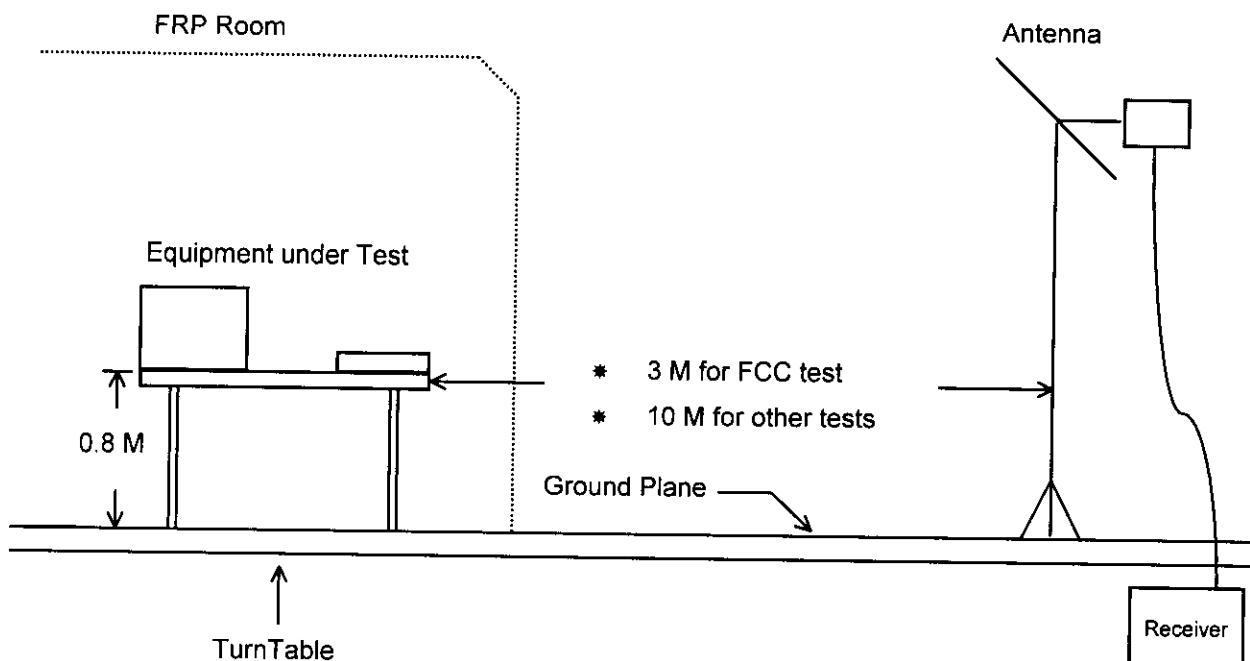
The Conducted Emission test was passed at **Neutral 9.40 MHz / 41.40 dBuV**.

Frequency (MHz)	Line / Neutral	Meter Reading		Limits (uV)	Margin (dB)
		(dBuV)	(uV)	(dBuV)	
0.71	L	40.70	108.39	48.00	251.19 -7.30
1.41	L	39.90	98.86	48.00	251.19 -8.10
0.71	N	38.40	83.18	48.00	251.19 -9.60
1.01	N	38.20	81.28	48.00	251.19 -9.80
9.40	N	41.40	117.49	48.00	251.19 -6.60
28.20	N	37.30	73.28	48.00	251.19 -10.70

Test Engineer : Kenny Chuang
Kenny Chuang

6. TEST OF RADIATED EMISSION

Radiated emissions from 30 MHz to 2000 MHz were measured with a bandwidth of 120 KHz according to the methods defines in ANSI C63.4-1992. The EUT was placed on a nonmetallic stand in the open-field site, 0.8 meter above the ground plane, as shown in Figure 6-3. The interface cables and equipment positions were varied within limits of reasonable applications to determine the positions producing maximum radiated emissions.


6.1. MAJOR MEASURING INSTRUMENTS

- RF Preselector
 - Attenuation 0 dB
 - RF Gain 20 dB
 - Signal Input Input 2 (for 20 MHz to 2 GHz)
- Spectrum Analyzer 8560E
 - Attenuation 0 dB
 - Start Frequency 30 MHz
 - Stop Frequency 2000 MHz
 - Resolution Bandwidth 1 MHz
 - Video Bandwidth 1 MHz
 - Signal Input Input 1 (for 30MHz to 2.9GHz)
- Quasi-Peak Adapter
 - Resolution Bandwidth 120 KHz
 - Frequency Band 30 MHz to 1 GHz
 - Quasi-Peak Detector ON for Quasi-Peak Mode
OFF for Peak Mode

6.2. TEST PROCEDURES

- a. The EUT was placed on a rotatable table top 0.8 meter above ground.
- b. The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- c. The table was rotated 360 degrees to determine the position of the highest radiation.
- d. The antenna is a half wave dipole and its height is varied between one meter and four meters above ground to find the maximum value of the field strength both horizontal polarization and vertical polarization of the antenna are set to make the measurement.
- e. For each suspected emission the EUT was arranged to its worst case and then tune the antenna tower (from 1 M to 4 M) and turn table (from 0 degree to 360 degrees) to find the maximum reading.
- f. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 6 dB lower than the limit specified, then testing will be stopped and peak values of EUT will be reported otherwise the emissions which do not have 6 dB margin will be repeated one by one using the quasi-peak method and reported.

6.3. TYPICAL TEST SETUP LAYOUT OF RADIATED EMISSION

6.4. TEST RESULT OF RADIATED EMISSION

- Equipment meets the technical specifications of 15.109
- Frequency Range of Test : from 30 MHz to 2000 MHz
- Test Distance : 3 M
- Temperature : 33°C
- Relative Humidity : 55% RH
- Test Mode : **1600 x 1200, 75k, 60Hz**
- Test Date : July 17, 1998
- Emission level (dBuV/m) = 20 log Emission level (uV/m)
- Sample Calculation at 40.27 MHz
Corrected Reading = $0.55 + 0.94 + 34.70 = 36.20$ (dBuV/m)

The Radiated Emission test was passed at

201.60 MHz / 36.41 dBuV (Horizontal)

Antenna Height 2.0 Meter , Turntable Degree 162°

Frequency (MHz)	Antenna Polarity	Cable Factor	Reading (dB)	Limits		Emission (dBuV)	Level (uV)	Margin (dB)			
				Loss							
				(dB)	(dBuV)						
40.27	V		0.55	0.94	34.70	40.00	100	36.20	64.57	-3.80	
202.40	V		14.08	2.40	19.64	43.50	150	36.12	63.97	-7.38	
120.80	H		10.44	1.71	23.03	43.50	150	35.17	57.35	-8.33	
199.97	H		14.05	2.40	18.45	43.50	150	34.90	55.59	-8.60	
210.40	H		14.19	2.40	16.38	43.50	150	32.97	44.51	-10.53	
201.60	H		14.07	2.40	19.94	43.50	150	36.41	66.15	-7.09	

Test Engineer : William Lee

William Lee

6.4.1. TEST RESULT OF RADIATED EMISSION

- Equipment meets the technical specifications of 15.109
- Frequency Range of Test : from 30 MHz to 2000 MHz
- Test Distance : 3 M
- Temperature : 33°C
- Relative Humidity : 55% RH
- Test Mode : **TV Mode (640 x 480, 31.4k, 60Hz)**
- Test Date : July 17, 1998

- Emission level (dBuV/m) = 20 log Emission level (uV/m)
- Sample Calculation at 50.69 MHz

Corrected Reading = $2.49 + 1.02 + 33.15 = 36.66$ (dBuV/m)

The Radiated Emission test was passed at

50.69 MHz / 36.66 dBuV (Vertical)

Antenna Height 2.0 Meter , Turntable Degree 124.

Frequency (MHz)	Antenna Polarity	Cable Factor	Reading Loss	Limits		Emission (dBuV)	Level (uV)	Margin (dB)
				(dBuV)	(uV)			
50.69	V	2.49	1.02	33.15	40.00	100	36.66	68.08
56.67	V	3.56	1.14	31.60	40.00	100	36.30	65.31
178.77	V	12.92	2.29	20.67	43.50	150	35.88	62.23
61.97	V	4.69	1.20	29.37	40.00	100	35.26	57.94
200.31	V	14.05	2.40	18.46	43.50	150	34.91	55.65
163.03	V	12.24	2.07	20.11	43.50	150	34.42	52.60
								-9.08

Test Engineer : William Lee

William Lee

7. ANTENNA FACTOR AND CABLE LOSS

Frequency (MHz)	Antenna Factor (dB)	Cable Loss (dB)
30	-1.91	0.90
35	-0.50	0.92
40	0.61	1.04
45	1.40	1.28
50	2.39	1.10
	3.54	1.11
55	4.40	1.30
60	4.84	1.40
65	5.59	1.37
70	6.21	1.24
75		
80	7.60	1.51
85	7.73	1.60
90	8.22	1.60
95	8.90	1.70
100	9.36	1.70
110	10.01	1.70
120	10.41	1.90
130	10.84	1.90
140	11.42	1.91
150	11.91	2.01
	12.25	2.11
160	12.72	2.21
170	13.02	2.30
180	13.50	2.30
190	14.05	2.40
200		
220	15.11	2.50
240	16.81	2.60
260	17.51	2.71
280	17.70	2.90
300	17.89	2.91
	18.00	3.10
320	18.33	3.20
340	19.44	3.30
360	20.31	3.40
380	21.19	3.50
400		
450	21.10	3.70
500	22.21	4.10
550	23.42	4.30
600	24.01	4.50
650	25.11	4.70
	26.00	4.90
700	26.41	5.11
750	27.10	5.50
800	27.51	5.60
850	27.90	5.80
900		
950	28.01	5.90

8. LIST OF MEASURING EQUIPMENT USED

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMC Receiver (site 2)	HP	8591EM	3710A01187	9 KHz - 18 GHz	Sep. 29, 1997	Conduction
LISN (EUT) (site 2)	Telemeter	NNB-2/16Z	98009	50 ohm / 50 uH	Jan. 29, 1998	Conduction
LISN (Support Unit) (site 2)	EMCO	3810/2NM	9703-1839	50 ohm / 50 uH	July 06, 1998	Conduction
Spectrum Analyzer (Site 3)	HP	8560E	3728A03185	30MHz - 2.9GHz	Sep. 24, 1997	Radiation
Amplifier (Site 3)	HP	8447D	2944A09068	0.1MHz -1.3GHz	Sep. 16, 1997	Radiation
Bilog Antenna (Site 3)	CHASE	CBL6112A	2320	30MHz -2GHz	Sep. 11, 1997	Radiation
Receiver (Site 3)	R&S	ESCS30	70-213-4258	9KHz - 2.75GHz	Dec. 19, 1997	Radiation
Half-wave dipole antenna (Site 3)	EMCO	3121C	9705-1285	28 M - 1GHz	May 19, 1998	Radiation
Turn Table (site 3)	EMCO	2080	9711-2022	0 ~ 360 degree	N/A	Radiation
Antenna Mast (site 3)	EMCO	2075	9710-2101	1 m- 4 m	N/A	Radiation