

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = \frac{PG}{4\pi R^2}$$

where: S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

Maximum peak output power at device output terminal:	49.16 dBm
Cable and Jumper loss:	0.0 dB
Maximum peak output power at antenna input terminal:	49.16 dBm
	82413.8115 mW
Single Antenna gain (typical):	0 dBi
Number of Antennae:	1
Total Antenna gain (typical):	0 dBi
	1 (numeric)
Prediction distance:	40 cm
Prediction frequency:	34700 MHz
MPE limit for Occupational exposure at prediction frequency:	5 mW/cm ²

4.098927 mW/cm² Power density at prediction frequency:

Margin of Compliance: 0.86299851 dB

PPROVAL

