Note: This report is issued subject to TÜV SÜD PSB's "Terms and Conditions Governing Technical Services". The terms and conditions governing the issue of this report are set out as attached within this report.

Choose certainty.
Add value.

COMPLIANCE REPORT ON TESTING IN ACCORDANCE WITH SAR (SPECIFIC ABSORPTION RATE) REQUIREMENTS

Supplement C (Edition 01-01) FCC OET Bulletin 65 (Edition 97-01)

OF A touch screen MP4 player [Model:NSC-FL02]

TEST

TÜV SÜD PSB Pte Ltd,

FACILITY Electrical & Electronics Centre (EEC), Product Services,

1 Science Park Drive, Singapore 118221

PREPARED FOR

Creative Technology Ltd.

31, International Business Park Creative Resource

S609921

Tel: (+65) 68954252

Fax: (+65) 68954054

QUOTATION NUMBER Q09EEC00556

JOB NUMBER S09EEC00529

TEST PERIOD 08-Apr-2009 – 15-Apr-2009

PREPARED BY

APPROVED BY

They

Stanley Siah Associate Engineer Daniel Yeo Assistant Vice President

Laboratory: TÜV SÜD PSB Pte. Ltd. Testing Services No.1 Science Park Drive Singapore 118221

Phone: +65-6885 1333

Fax: +65-6776 8670

www.tuv-sud-psb.sg

Co. Reg: 199002667R

E-mail: testing@tuv-sud-psb.sg

LA-2007-0380-A LA-2007-0380-A-1 LA-2007-0381-F LA-2007-0382-B LA-2007-0384-G LA-2007-0384-G LA-2007-0386-C

The results reported herein have been performed in accordance with the laboratorys terms of accreditation under the Singapore Accreditation Council - Singapore Laboratory Accreditation Scheme. Tests/Calibrations marked "Not SAC-SINGLAS Accredited" in this Report are not included in the SAC-SINGLAS Accreditation Schedule for our laboratory.

Regional Head Office: TÜV SÜD Asia Pacific Pte. Ltd. 3 Science Park Drive, #04-01/05 The Franklin, Singapore 118223

TABLE OF CONTENTS

TEST SUMMARY

PRODUCT DESCRIPTION

TEST RESULTS

ANNEX A - TEST INSTRUMENTATION & GENERAL PROCEDURES

ANNEX B - EUT PHOTOGRAPHS (Confidential-intentional blank)

ANNEX C - TISSUE SIMULANT DATA SHEETS

ANNEX D - SAR VALIDATION RESULTS

ANNEX E - MEASUREMENT UNCERTAINTY

ANNEX F - SAR PROBE CALIBRATION CERTIFICATES

ANNEX G - REFERENCES

SUD

TEST SUMMARY

The product was tested in accordance with the following standards.

Test Results Summary

	Test Standards	Description	Pass / Fail
•	Supplement C (Edition 01-01) to FCC OET Bulletin 65 (Edition 97-01)	SAR Measurement (Wi-Fi 2450MHz) Body worn Configuration Only	Pass *
•	ANSI/IEEE Standard C95.1-1993		

- The worst-case SAR value was found to be 1.260 W/kg which is lower than the maximum limit of 1.60 W/kg, over 1g of tissue. The device conforms to the requirements of the standard when the maximum measured SAR value is less than or equal to the limit.
- * Based on spatial peak uncontrolled exposure / general population level: Head: 1.60 W/kg, over 1g of tissue.

Body: 1.60 W/kg, over 1g of tissue.

Modifications

No modifications were made.

DEVICE DESCRIPTION

DEVICE DESCRIPTION

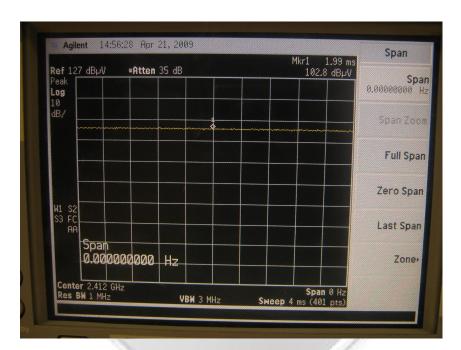
Description	The Equipment Under Test (EUT) is a MP4 player with touch screen
•	· · · · · · · · · · · · · · · · · · ·
Device Category	Portable Device
-	
Exposure Environment	General Population/Uncontrolled exposure
Test Device Type	Production Unit
Brand Name	Zii, Zii EGG (tested model);
Serial Numbers	Nil
Model	NSC-FL02
FCC ID	IBANSC-FL02
- A	
Canada IC:	2315A-NSC-FL02

DEVICE OPERATING CONFIGURATION

Operating Frequencies	<u>Wi-Fi mode</u>	
	Channel 1 (2412Mhz) Channel 6 (2437Mhz) Channel 11 (2462Mhz)	
Operating Temperature Tolerance	(0 ~ 45) Degree Celsius	
Operating Voltage Tolerance	(3.7 ±5%) Volt DC	
Continuous Transmission Tolerance	The EUT shall cause no problem after transmitting for 4 hours.	
Rated Output Power	15dBm ± 1.5dBm, Maximum (802.11b)	
	12dBm ± 1.5dBm, Maximum (802.11g)	
Antenna Type	Internal Chip antenna(built in)	
EUT Crest Factor	1.0	
Input Power	AC 100~240V, DC 5V, Rechargeable Battery	
Accessories	Power adapter, earphone	

MANUFACTURER

Manufacturer Address	Creative Technology Itd 31, International business Park Creative Resource S609921
DID	(+65) 68954490
Fax	(+65) 68954953



DEVICE OPERATING CONDITION

DEVICE OPERATING CONDITION

The EUT has only one single transmit antenna. SAR was evaluated with the radio transmitting at the 6Mbps and 11Mbps data rate for each mode based on the measured conducted peak power.

The EUT was put into exercised by using software control operating at the following frequencies 2.412GHz, 2.437GHz and 2.462GHz (lowest, middle and highest channel). The EUT was set to maximum output power level transmission ,this was confirm with a spectrum analyzer set to zero span as shown below set up.

TEMPERATURE AND HUMIDITY

802.11b/g (Body)

Ambient Temperature: $24 \pm 1^{\circ}$ C Tissue Temperature: $24 \pm 1^{\circ}$ C Humidity: 54% to 59%

TEST RESULTS

The measurement results were obtained with the EUT tested in the conditions described in this report (Annex A).

Table 1 - Body Worn Position SAR Test Results - (Wi-Fi) 6Mbps

Phantom Configuration		Antenna	•	kg), average over 1g Tissue Test Channel & Frequency	
		Position	Channel: 1 2412MHz	Channel: 6 2437MHz	Channel: 11 2462MHz
Flat Phantom	EUT Front Touched Phantom	fixed	0.117	0.116	0.133
Flat Phantom	EUT Rear Touched Phantom	fixed	0.183	0.331	0.359
Output Peak Power (dBm) Before Test			12.38	12.47	13.48
Output Peak Power (dBm) After Test			12.37	12.46	13.42

Table 2 - Body Worn Position SAR Test Results - (Wi-Fi) 11Mbps

Phantom	Device Test Antenna Positions Position	Antenna	SAR (W/kg), average over 1g Tissue Device Test Channel & Frequency		
Configuration		Channel: 1 2412MHz	Channel: 6 2437MHz	Channel: 11 2462MHz	
Flat Phantom	EUT Front Touched Phantom	fixed	0.621	0.349	0.301
Flat Phantom	EUT Rear Touched Phantom	fixed	1.260	0.909	1.220
Output Peak Power (dBm) Before Test			17.00	16.87	16.83
Output Peak Power (dBm) After Test		16.88	16.82	16.81	

Remarks:

- 1. All modes of operations were investigated and the worst-case SAR levels are reported.
- A fully charged Li-Polymer Battery Description DC 3.7V, 1200mAh was used for each mode of operation.
- 3. For the peak power measurement across all the data rates are listed in page 32 and 33 of this report.
- 4. For **Wi-Fi 6Mbps** the worst-case SAR value was found to be **0.359W/Kg** (over a 1g tissue) at **Channel 11** which is lower than the maximum limit of 1.60 W/Kg, please refer to the above table.
- 5. For **Wi-Fi 11Mbps**, the worst-case SAR value was found to be **1.260W/Kg** (over a 1g tissue) at **Channel 1** which is lower than the maximum limit of 1.60 W/Kg, please refer to the above table.
- 6. The SAR limit of 1.60W/Kg (Spatial Peak level for Uncontrolled Exposure / General Population) is based on the Test Standards:
 - a) Supplement C (Edition 01-01) to FCC OET Bulletin 65 (Edition 97-01)
 - b) ANSI/IEEE Standard C95.1-1993
- 7. Others consideration used for the above test;
 - i) KDB 248227 dated May 2007
 - ii) KDB 447498 D01 dated Jan 2009

TEST RESULTS (6Mbps Front)

Ambient Temperature: $24 \pm 1^{\circ}$ C Tissue Temperature: $24 \pm 1^{\circ}$ C Humidity: 54% to 59%

Test Laboratory: TUV SUD PSB PTE LTD.

Date/Time: 4/13/2009 10:56:22 AM

File Name: EUT Front_Ch 1_2412MHz 6mbps.da4

Program Name: EUT Front_Ch 1_2412MHz_Data 1.da4

Phantom section: Flat Section

DUT: MP4 player

Communication System: 2450 Mhz

Frequency: 2412 MHz

Duty Cycle: 1:1

Medium: Body 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.97$ mho/m; $\varepsilon_r =$

52.1; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

Electronics: DAE4 Sn627 Calibrated: 6/14/2007

Phantom: SAM 12 Measurement SW: DASY4, V4.7 Build 80

Probe: EX3DV4 - SN3541 ConvF(7.07, 7.07, 7.07) Calibrated: 7/13/2007

Post processing SW: SEMCAD, V1.8 Build 186

Sensor-Surface: 4mm (Mechanical Surface Detection)

EUT Rear Ch 1 2412MHz Data 1/Area Scan (14x26x1): Measurement grid:

dx=5mm, dy=5mm

Maximum value of SAR (measured) = 0.117 mW/g

EUT Rear_Ch 1_2412MHz_Data 1/Zoom Scan (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.72 V/m; Power Drift = 2.28 dB

Peak SAR (extrapolated) = 0.367 W/kg

SAR(1 g) = 0.117 mW/g; SAR(10 g) = 0.059 mW/gMaximum value of SAR (measured) = 0.122 mW/g

TEST RESULTS

Ambient Temperature: $24 \pm 1^{\circ}$ C Tissue Temperature: $24 \pm 1^{\circ}$ C Humidity: 54% to 59%

Test Laboratory: TUV SUD PSB PTE LTD.

Date/Time: 4/13/2009 11:50:24 AM

File Name: EUT Front_Ch 6_2437MHz_6mbps.da4

Program Name: EUT Front _Ch 6_2437MHz_Data 1.da4

Phantom section: Flat Section

DUT: MP4 player

Communication System: 2450 Mhz

Frequency: 2437 MHz

Duty Cycle: 1:1

Medium: Body 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.04$ mho/m; $\varepsilon_r = 2.04$ mho/m; ε_r

51.9; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

Electronics: DAE4 Sn627 Calibrated: 6/14/2007

Phantom: SAM 12 Measurement SW: DASY4, V4.7 Build 80

Probe: EX3DV4 - SN3541 ConvF(7.07, 7.07, 7.07) Calibrated: 7/13/2007

Post processing SW: SEMCAD, V1.8 Build 186

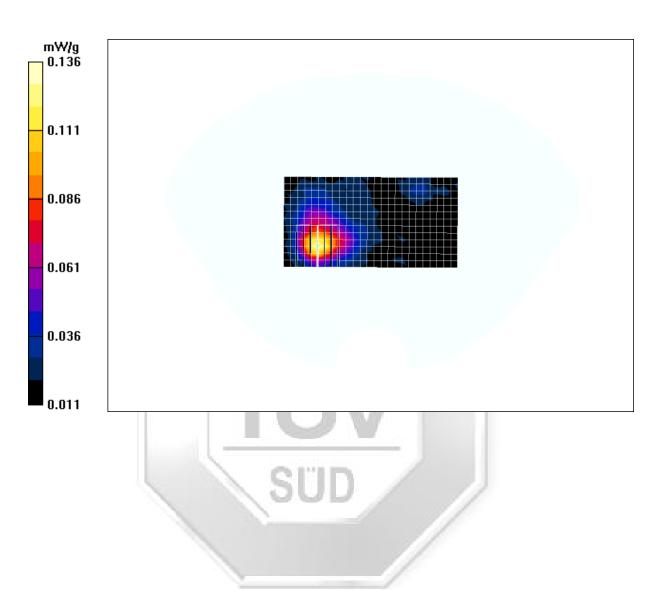
Sensor-Surface: 4mm (Mechanical Surface Detection)

EUT Front Ch 6 2437MHz Data 1/Area Scan (14x26x1): Measurement grid:

dx=5mm, dy=5mm

Maximum value of SAR (measured) = 0.131 mW/g

EUT Front_Ch 6_2437MHz_Data 1/Zoom Scan (7x7x7)/Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.65 V/m; Power Drift = -0.494 dB

Peak SAR (extrapolated) = 0.270 W/kg

SAR(1 g) = 0.116 mW/g; SAR(10 g) = 0.061 mW/gMaximum value of SAR (measured) = 0.136 mW/g

TEST RESULTS

Ambient Temperature: $24 \pm 1^{\circ}$ C Tissue Temperature: $24 \pm 1^{\circ}$ C Humidity: 54% to 59%

Test Laboratory: TUV SUD PSB PTE LTD.

Date/Time: 4/13/2009 1:38:18 PM

File Name: EUT Front_Ch 11_2462MHz_6mbps.da4

Program Name: EUT Front _Ch 11_2462MHz_Data 1.da4

Phantom section: Flat Section

DUT: MP4 player

Communication System: 2450 Mhz

Frequency: 2462 MHz

Duty Cycle: 1:1

Medium: Body 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.04$ mho/m; $\varepsilon_r =$

51.9; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

Electronics: DAE4 Sn627 Calibrated: 6/14/2007

Phantom: SAM 12 Measurement SW: DASY4, V4.7 Build 80

Probe: EX3DV4 - SN3541 ConvF(7.07, 7.07, 7.07) Calibrated: 7/13/2007

Post processing SW: SEMCAD, V1.8 Build 186

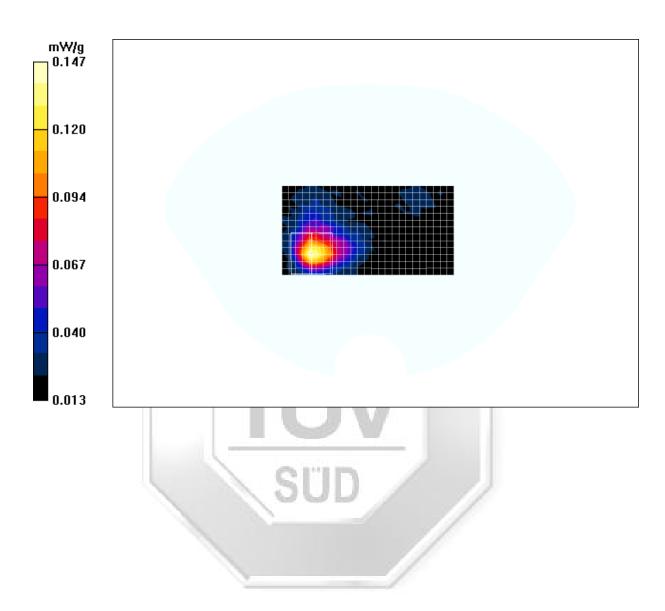
Sensor-Surface: 4mm (Mechanical Surface Detection)

EUT Front Ch 11 2462MHz Data 1/Area Scan (14x26x1): Measurement grid:

dx=5mm, dy=5mm

Maximum value of SAR (measured) = 0.144 mW/g

EUT Front_Ch 11_2462MHz_Data 1/Zoom Scan (7x7x7)/Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.38 V/m; Power Drift = -0.473 dB

Peak SAR (extrapolated) = 0.379 W/kg

SAR(1 g) = 0.133 mW/g; SAR(10 g) = 0.065 mW/gMaximum value of SAR (measured) = 0.147 mW/g

TEST RESULTS (6Mbps Rear)

Ambient Temperature: $24 \pm 1^{\circ}$ C Tissue Temperature: $24 \pm 1^{\circ}$ C Humidity: 54% to 59%

Test Laboratory: TUV SUD PSB PTE LTD.

Date/Time: 4/14/2009 8:38:54 AM

File Name: EUT Rear_Ch 1_2412MHz 6mbps.da4

Program Name: EUT Rear _Ch 1_2412MHz_Data 1.da4

Phantom section: Flat Section

DUT: MP4 player

Communication System: 2450 Mhz

Frequency: 2412 MHz

Duty Cycle: 1:1

Medium: Body 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.97$ mho/m; $\varepsilon_r =$

52.1; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

Electronics: DAE4 Sn627 Calibrated: 6/14/2007

Phantom: SAM 12 Measurement SW: DASY4, V4.7 Build 80

Probe: EX3DV4 - SN3541 ConvF(7.07, 7.07, 7.07) Calibrated: 7/13/2007

Post processing SW: SEMCAD, V1.8 Build 186

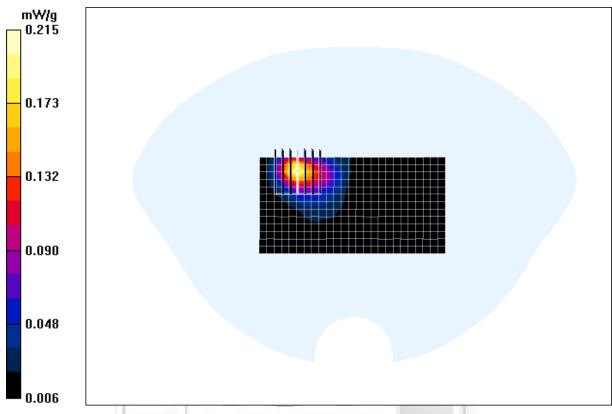
Sensor-Surface: 4mm (Mechanical Surface Detection)

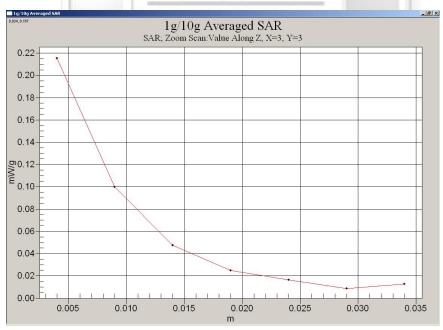
EUT Rear Ch 1 2412MHz Data 1/Area Scan (14x26x1): Measurement grid:

dx=5mm, dy=5mm

Maximum value of SAR (measured) = 0.203 mW/g

EUT Rear_Ch 1_2412MHz_Data 1/Zoom Scan (7x7x7)/Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 2.15 V/m; Power Drift = 1.69 dB

Peak SAR (extrapolated) = 0.482 W/kg

SAR(1 g) = 0.183 mW/g; SAR(10 g) = 0.081 mW/gMaximum value of SAR (measured) = 0.215 mW/g

TEST RESULTS

Ambient Temperature: $24 \pm 1^{\circ}$ C Tissue Temperature: $24 \pm 1^{\circ}$ C Humidity: 54% to 59%

Test Laboratory: TUV SUD PSB PTE LTD.

Date/Time: 4/13/2009 4:03:05 PM

File Name: EUT Rear_Ch 6_2437MHz_6mbps.da4

Program Name: EUT Rear _Ch 6_2437MHz_Data 1.da4

Phantom section: Flat Section

DUT: MP4 player

Communication System: 2450 Mhz

Frequency: 2437 MHz

Duty Cycle: 1:1

Medium: Body 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.04$ mho/m; $\varepsilon_r =$

51.9; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

Electronics: DAE4 Sn627 Calibrated: 6/14/2007

Phantom: SAM 12 Measurement SW: DASY4, V4.7 Build 80

Probe: EX3DV4 - SN3541 ConvF(7.07, 7.07, 7.07) Calibrated: 7/13/2007

Post processing SW: SEMCAD, V1.8 Build 186

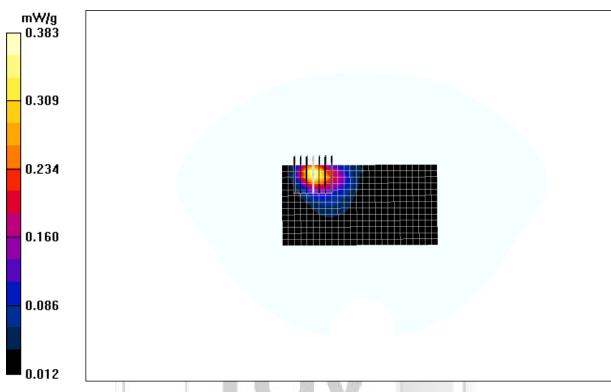
Sensor-Surface: 4mm (Mechanical Surface Detection)

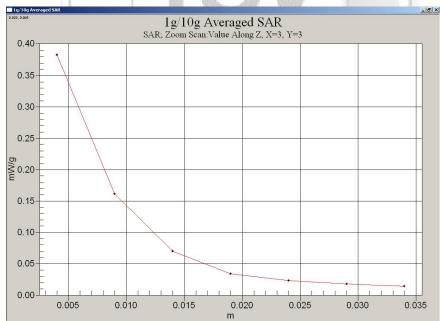
EUT Rear Ch 6 2437MHz Data 1/Area Scan (14x26x1): Measurement grid:

dx=5mm, dy=5mm

Maximum value of SAR (measured) = 0.367 mW/g

EUT Rear_Ch 6_2437MHz_Data 1/Zoom Scan (7x7x7)/Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 3.46 V/m; Power Drift = 0.185 dB

Peak SAR (extrapolated) = 0.961 W/kg

SAR(1 g) = 0.331 mW/g; SAR(10 g) = 0.141 mW/gMaximum value of SAR (measured) = 0.383 mW/g

TEST RESULTS

Ambient Temperature: $24 \pm 1^{\circ}$ C Tissue Temperature: $24 \pm 1^{\circ}$ C Humidity: 54% to 59%

Test Laboratory: TUV SUD PSB PTE LTD.

Date/Time: 4/13/2009 2:40:57 PM

File Name: EUT Rear_Ch 11_2462MHz_6mbps.da4

Program Name: EUT Rear _Ch 11_2462MHz_Data 1.da4

Phantom section: Flat Section

DUT: MP4 player

Communication System: 2450 Mhz

Frequency: 2462 MHz

Duty Cycle: 1:1

Medium: Body 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.04$ mho/m; $\varepsilon_r =$

51.9; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

Electronics: DAE4 Sn627 Calibrated: 6/14/2007

Phantom: SAM 12 Measurement SW: DASY4, V4.7 Build 80

Probe: EX3DV4 - SN3541 ConvF(7.07, 7.07, 7.07) Calibrated: 7/13/2007

Post processing SW: SEMCAD, V1.8 Build 186

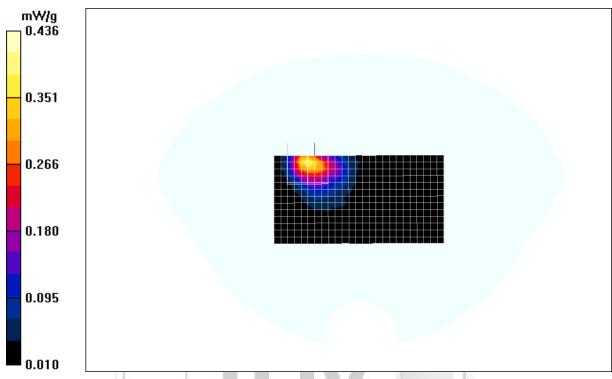
Sensor-Surface: 4mm (Mechanical Surface Detection)

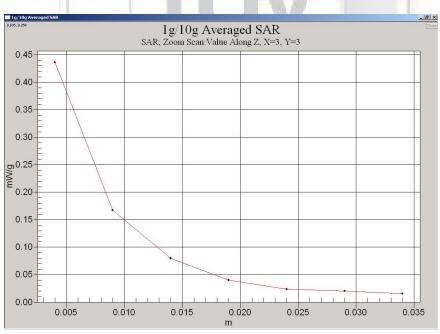
EUT Rear Ch 6 2462MHz Data 1/Area Scan (14x26x1): Measurement grid:

dx=5mm, dy=5mm

Maximum value of SAR (measured) = 0.398 mW/g

EUT Rear_Ch 6_2462MHz_Data 1/Zoom Scan (7x7x7)/Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 3.15 V/m; Power Drift = 0.860 dB

Peak SAR (extrapolated) = 1.10 W/kg

SAR(1 g) = 0.359 mW/g; SAR(10 g) = 0.150 mW/gMaximum value of SAR (measured) = 0.436 mW/g

TEST RESULTS (11Mbps Front)

Ambient Temperature: $24 \pm 1^{\circ}$ C Tissue Temperature: $24 \pm 1^{\circ}$ C Humidity: 54% to 59%

Test Laboratory: TUV SUD PSB PTE LTD.

Date/Time: 4/9/2009 4:10:19 PM

File Name: EUT Front Ch 1_2412MHz11mbps.da4

Program Name: EUT Front _Ch 1_2412MHz_Data 1.da4

Phantom section: Flat Section

DUT: MP4 player

Communication System: 2450 Mhz

Frequency: 2412 MHz

Duty Cycle: 1:1

Medium: Body 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.97$ mho/m; $\varepsilon_r =$

52.1; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

Electronics: DAE4 Sn627 Calibrated: 6/14/2007

Phantom: SAM 12 Measurement SW: DASY4, V4.7 Build 80

Probe: EX3DV4 - SN3541 ConvF(7.07, 7.07, 7.07) Calibrated: 7/13/2007

Post processing SW: SEMCAD, V1.8 Build 186

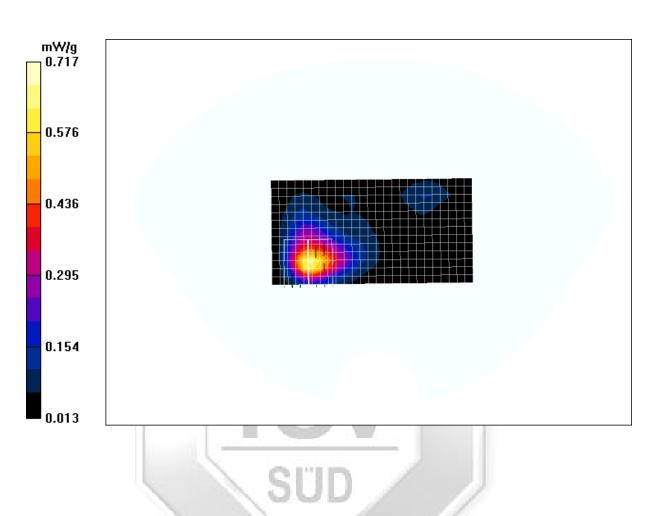
Sensor-Surface: 4mm (Mechanical Surface Detection)

EUT Rear Ch 1 2412MHz Data 1/Area Scan (14x26x1): Measurement grid:

dx=5mm, dy=5mm

Maximum value of SAR (measured) = 0.651 mW/g

EUT Rear_Ch 1_2412MHz_Data 1/Zoom Scan (7x7x7)/Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.08 V/m; Power Drift = 1.10 dB

Peak SAR (extrapolated) = 1.52 W/kg

SAR(1 g) = 0.621 mW/g; SAR(10 g) = 0.280 mW/gMaximum value of SAR (measured) = 0.717 mW/g

TEST RESULTS

Ambient Temperature: $24 \pm 1^{\circ}$ C Tissue Temperature: $24 \pm 1^{\circ}$ C Humidity: 54% to 59%

Test Laboratory: TUV SUD PSB PTE LTD.

Date/Time: 4/13/2009 8:58:39 AM

File Name: EUT Front_Ch 6_2437MHz_11mbps.da4

Program Name: EUT Front _Ch 6_2437MHz_Data 1.da4

Phantom section: Flat Section

DUT: MP4 player

Communication System: 2450 Mhz

Frequency: 2437 MHz

Duty Cycle: 1:1

Medium: Body 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.04$ mho/m; $\varepsilon_r =$

51.9; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

Electronics: DAE4 Sn627 Calibrated: 6/14/2007

Phantom: SAM 12 Measurement SW: DASY4, V4.7 Build 80

Probe: EX3DV4 - SN3541 ConvF(7.07, 7.07, 7.07) Calibrated: 7/13/2007

Post processing SW: SEMCAD, V1.8 Build 186

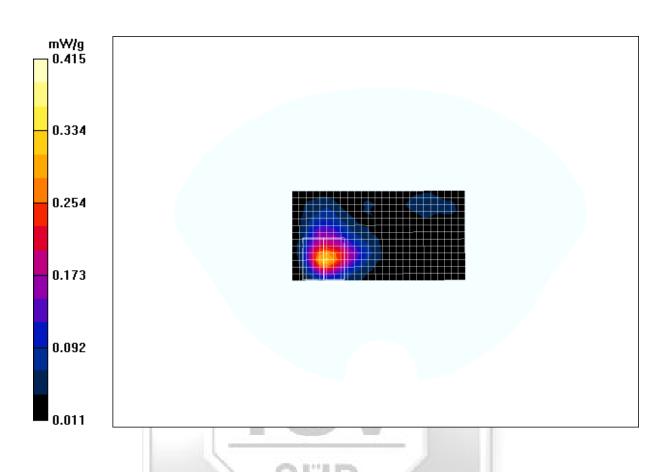
Sensor-Surface: 4mm (Mechanical Surface Detection)

EUT Rear Ch 6 2437MHz Data 1/Area Scan (14x26x1): Measurement grid:

dx=5mm, dy=5mm

Maximum value of SAR (measured) = 0.321 mW/g

EUT Rear_Ch 6_2437MHz_Data 1/Zoom Scan (7x7x7)/Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.14 V/m; Power Drift = 0.485 dB

Peak SAR (extrapolated) = 0.885 W/kg

SAR(1 g) = 0.349 mW/g; SAR(10 g) = 0.159 mW/gMaximum value of SAR (measured) = 0.415 mW/g

TEST RESULTS

Ambient Temperature: $24 \pm 1^{\circ}$ C Tissue Temperature: $24 \pm 1^{\circ}$ C Humidity: 54% to 59%

Test Laboratory: TUV SUD PSB PTE LTD.

Date/Time: 4/13/2009 9:47:35 AM

File Name: EUT Front_Ch 11_2462MHz_11mbps.da4

Program Name: EUT Front _Ch 11_2462MHz_Data 1.da4

Phantom section: Flat Section

DUT: MP4 player

Communication System: 2450 Mhz

Frequency: 2462 MHz

Duty Cycle: 1:1

Medium: Body 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.04$ mho/m; $\varepsilon_r = 2.04$ mho/m; ε_r

51.9; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

Electronics: DAE4 Sn627 Calibrated: 6/14/2007

Phantom: SAM 12 Measurement SW: DASY4, V4.7 Build 80

Probe: EX3DV4 - SN3541 ConvF(7.07, 7.07, 7.07) Calibrated: 7/13/2007

Post processing SW: SEMCAD, V1.8 Build 186

Sensor-Surface: 4mm (Mechanical Surface Detection)

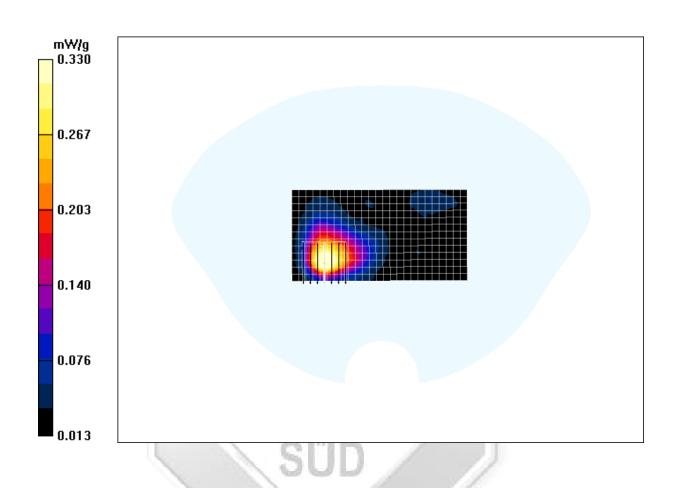
EUT Front Ch 11 2462MHz Data 1/Area Scan (14x26x1): Measurement grid:

dx=5mm, dy=5mm

Maximum value of SAR (measured) = 0.385 mW/g

EUT Front_Ch 11_2462MHz_Data 1/Zoom Scan (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 4.60 V/m; Power Drift = -0.068 dB

Peak SAR (extrapolated) = 0.772 W/kg

SAR(1 g) = 0.301 mW/g; SAR(10 g) = 0.141 mW/g

Maximum value of SAR (measured) = 0.330 mW/g

TEST RESULTS (11Mbps Rear)

Ambient Temperature: $24 \pm 1^{\circ}$ C Tissue Temperature: $24 \pm 1^{\circ}$ C Humidity: 54% to 59%

Test Laboratory: TUV SUD PSB PTE LTD.

Date/Time: 4/9/2009 3:13:54 PM

File Name: EUT Rear_Ch 1_2412MHz 11mbps.da4

Program Name: EUT Rear _Ch 1_2412MHz_Data 1.da4

Phantom section: Flat Section

DUT: MP4 player

Communication System: 2450 Mhz

Frequency: 2412 MHz

Duty Cycle: 1:1

Medium: Body 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.97$ mho/m; $\varepsilon_r =$

52.1; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

Electronics: DAE4 Sn627 Calibrated: 6/14/2007

Phantom: SAM 12 Measurement SW: DASY4, V4.7 Build 80

Probe: EX3DV4 - SN3541 ConvF(7.07, 7.07, 7.07) Calibrated: 7/13/2007

Post processing SW: SEMCAD, V1.8 Build 186

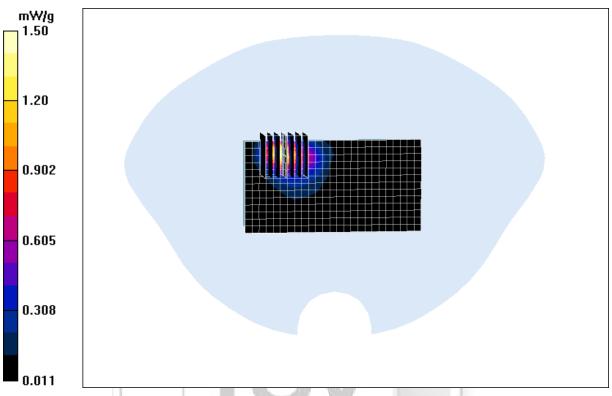
Sensor-Surface: 4mm (Mechanical Surface Detection)

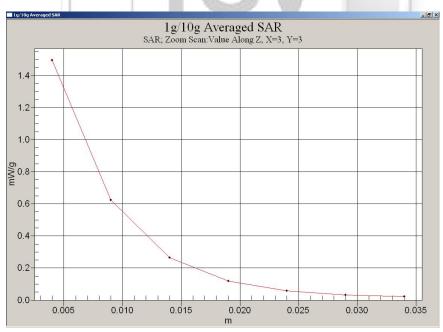
EUT Rear Ch 1 2412MHz Data 1/Area Scan (14x26x1): Measurement grid:

dx=5mm, dy=5mm

Maximum value of SAR (measured) = 1.43 mW/g

EUT Rear_Ch 1_2412MHz_Data 1/Zoom Scan (7x7x7)/Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 5.36 V/m; Power Drift = 0.121 dB

Peak SAR (extrapolated) = 3.47 W/kg

SAR(1 g) = 1.26 mW/g; SAR(10 g) = 0.517 mW/gMaximum value of SAR (measured) = 1.50 mW/g

TEST RESULTS

Ambient Temperature: $24 \pm 1^{\circ}$ C Tissue Temperature: $24 \pm 1^{\circ}$ C Humidity: 54% to 59%

Test Laboratory: TUV SUD PSB PTE LTD.

Date/Time: 4/9/2009 11:50:39 AM

File Name: EUT Rear_Ch 6_2437MHz_11mbps.da4

Program Name: EUT Rear _Ch 6_2437MHz_Data 1.da4

Phantom section: Flat Section

DUT: MP4 player

Communication System: 2450 Mhz

Frequency: 2437 MHz

Duty Cycle: 1:1

Medium: Body 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.04$ mho/m; $\varepsilon_r = 2.04$ mho/m; ε_r

51.9; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

Electronics: DAE4 Sn627 Calibrated: 6/14/2007

Phantom: SAM 12 Measurement SW: DASY4, V4.7 Build 80

Probe: EX3DV4 - SN3541 ConvF(7.07, 7.07, 7.07) Calibrated: 7/13/2007

Post processing SW: SEMCAD, V1.8 Build 186

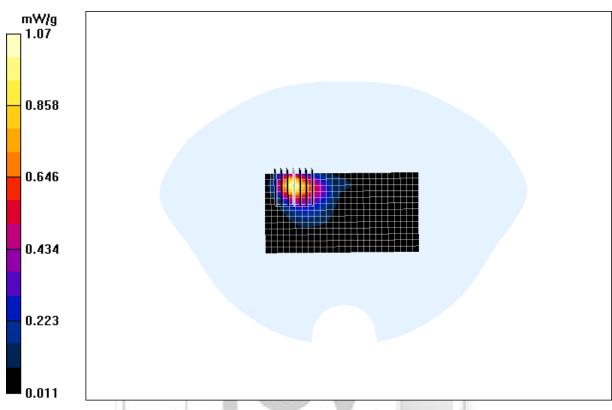
Sensor-Surface: 4mm (Mechanical Surface Detection)

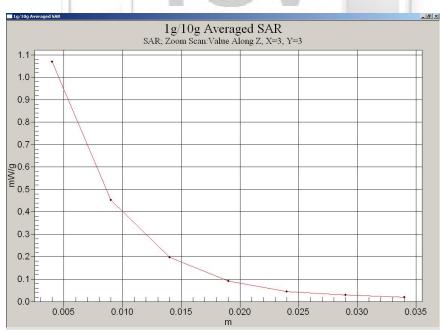
EUT Rear Ch 6 2437MHz Data 1/Area Scan (14x26x1): Measurement grid:

dx=5mm, dy=5mm

Maximum value of SAR (measured) = 1.03 mW/g

EUT Rear_Ch 6_2437MHz_Data 1/Zoom Scan (7x7x7)/Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 4.13 V/m; Power Drift = 1.00 dB

Peak SAR (extrapolated) = 2.38 W/kg

SAR(1 g) = 0.909 mW/g; SAR(10 g) = 0.385 mW/gMaximum value of SAR (measured) = 1.07 mW/g

TEST RESULTS

Ambient Temperature: $24 \pm 1^{\circ}$ C Tissue Temperature: $24 \pm 1^{\circ}$ C Humidity: 54% to 59%

Test Laboratory: TUV SUD PSB PTE LTD.

Date/Time: 4/9/2009 1:52:04 PM

File Name: EUT Rear_Ch 11_2462MHz_11mbps.da4

Program Name: EUT Rear _Ch 11_2462MHz_Data 1.da4

Phantom section: Flat Section

DUT: MP4 player

Communication System: 2450 Mhz

Frequency: 2462 MHz

Duty Cycle: 1:1

Medium: Body 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.04$ mho/m; $\varepsilon_r =$

51.9; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

Electronics: DAE4 Sn627 Calibrated: 6/14/2007

Phantom: SAM 12 Measurement SW: DASY4, V4.7 Build 80

Probe: EX3DV4 - SN3541 ConvF(7.07, 7.07, 7.07) Calibrated: 7/13/2007

Post processing SW: SEMCAD, V1.8 Build 186

Sensor-Surface: 4mm (Mechanical Surface Detection)

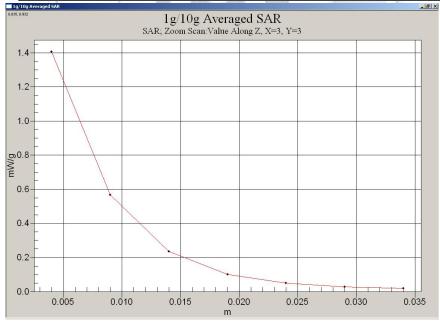
EUT Rear_Ch 11_2462MHz_Data 1/Area Scan (14x26x1): Measurement grid:

dx=5mm, dy=5mm

Maximum value of SAR (measured) = 1.37 mW/g

EUT Rear_Ch 11_2462MHz_Data 1/Zoom Scan (7x7x7)/Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 4.78 V/m; Power Drift = 0.919 dB

Peak SAR (extrapolated) = 3.33 W/kg

SAR(1 g) = 1.22 mW/g; SAR(10 g) = 0.495 mW/gMaximum value of SAR (measured) = 1.41 mW/g

Data Rate	Frequency	Conducted Peak Output p
D0D014 414	MHz	dBm
DQPSK 1Mbps	CH1 2412MHz	15.86
	CH6 2437MHz	15.24
	CH11 2462MHz	14.89
Data Rate	Frequency	Conducted Peak Output p
	MHz	dBm
DQPSK 2Mbps	CH1 2412MHz	12.52
	CH6 2437MHz	11.72
	CH11 2462MHz	12.77
	/	
Data Rate	Frequency MHz	Conducted Peak Output p
CCK 5.5Mbps	CH1 2412MHz	14.58
CCK 5.5Wibps	CH1 2412MHZ CH6 2437MHz	
//	CH0 2437MHZ CH11 2462MHz	14.49 14.36
	CHTT 2462IVIHZ	14.36
Data Rate	Frequency	Conducted Peak Output p
Data Hato	MHz	dBm
CCK 11Mbps	CH1 2412MHz	17.00
00.1.1.1.1.0	CH6 2437MHz	16.87
	CH11 2462MHz	16.83
Data Rate	Frequency	Conducted Peak Output p
	MHz	dBm
(802.11g) 6Mbps	CH1 2412MHz	12.38
	CH6 2437MHz	12.47
	CH11 2462MHz	13.48
Data Rate	Frequency	Conducted Peak Output p
Bata Nato	MHz	dBm
(802.11g) 9Mbps	CH1 2412MHz	11.84
(882.119) 811120	CH6 2437MHz	12.28
	CH11 2462MHz	13.27
	_	
Data Rate	Frequency	Conducted Peak Output p
	MHz	dBm
(802.11g) 12Mbps	CH1 2412MHz	11.63
	CH6 2437MHz	12.10
	CH11 2462MHz	13.15
Data Rate	Frequency	Conducted Peak Output p
	MHz	dBm
(802.11g)18Mbps	CH1 2412MHz	11.45
(CH6 2437MHz	12.01
	CLI44 04C0MIL-	12.01

CH11 2462MHz

12.94

Data Rate	Frequency	Conducted Peak Output power
	MHz	dBm
(802.11g) 24Mbps	CH1 2412MHz	11.94
	CH6 2437MHz	12.33
	CH11 2462MHz	13.26

Data Rate	Frequency	Conducted Peak Output power
	MHz	dBm
(802.11g) 36Mbps	CH1 2412MHz	11.62
	CH6 2437MHz	12.08
	CH11 2462MHz	13.15

Data Rate	Frequency MHz	Conducted Peak Output power dBm
(802.11g) 48Mbps	CH1 2412MHz	11.44
11	CH6 2437MHz	12.19
1/2	CH11 2462MHz	13.27

Data Rate	Frequency MHz	Conducted Peak Output power dBm
(802.11g) 54Mbps	CH1 2412MHz	12.13
	CH6 2437MHz	12.45
	CH11 2462MHz	13.13

SUD

This Report is issued under the following conditions:

- Results of the testing/calibration in the form of a report will be issued immediately after the service has been completed or terminated.
- 2. Unless otherwise requested, a report shall contain only technical results. Analysis and interpretation of the results and professional opinion and recommendations expressed thereupon, if required, shall be clearly indicated and additional fee paid for, by the Client.
- 3. This report applies to the sample of the specific product/equipment given at the time of its testing/calibration. The results are not used to indicate or imply that they are applicable to other similar items. In addition, such results must not be used to indicate or imply that TÜV SÜD PSB approves, recommends or endorses the manufacturer, supplier or user of such product/equipment, or that TÜV SÜD PSB in any way "quarantees" the later performance of the product/equipment.
- 4. The sample/s mentioned in this report is/are submitted/supplied/manufactured by the Client. TÜV SÜD PSB therefore assumes no responsibility for the accuracy of information on the brand name, model number, origin of manufacture, consignment or any information supplied.
- 5. Additional copies of the report are available to the Client at an additional fee. No third party can obtain a copy of this report through TÜV SÜD PSB, unless the Client has authorised TÜV SÜD PSB in writing to do so.
- 6. TÜV SÜD PSB may at its sole discretion add to or amend the conditions of the report at the time of issue of the report and such report and such additions or amendments shall be binding on the Client.
- 7. All copyright in the report shall remain with TÜV SÜD PSB and the Client shall, upon payment of TÜV SÜD PSB's fees for the carrying out of the tests/calibrations, be granted a license to use or publish the report to the third parties subject to the terms and conditions herein, provided always that TÜV SÜD PSB may at its absolute discretion be entitled to impose such conditions on the license as it sees fit.
- 8. Nothing in this report shall be interpreted to mean that TÜV SÜD PSB has verified or ascertained any endorsement or marks from any other testing authority or bodies that may be found on that sample.
- This report shall not be reproduced wholly or in parts and no reference shall be made by the Client to TÜV SÜD PSB or to the report or results furnished by TÜV SÜD PSB in any advertisements or sales promotion.
- 10. Unless otherwise stated, the tests are carried out in TÜV SÜD PSB Pte Ltd, No.1 Science Park Drive Singapore 118221.

January 2008

TEST INSTRUMENTATION & GENERAL PROCEDURES

ANNEX A

ANNEX A TEST INSTRUMENTATION & GENERAL PROCEDURE

TEST INSTRUMENTATION & GENERAL PROCEDURES

ANNEX A

A.1 General Test Procedure

In the SAR measurement, the positioning of the probes must be performed with sufficient accuracy to obtain repeatable measurements in the presence of rapid spatial attenuation phenomena. The accurate positioning of the E-field probe is accomplished by using a high precision robot. The robot can be taught to position the probe sensor following a specific pattern of points. In a first sweep, the sensor is positioned as close as possible to the interface, with the sensor enclosure touching the inside of the fiberglass shell. The SAR is measured on a grid of points, which covers the curved surface of the phantom in an area larger than the size of the EUT. After the initial scan, a high- resolution grid is used to locate the absolute maximum measured energy point. At this location, attenuation versus depth scan will be accomplished by the measurement system to calculate the SAR value.

A.2 SAR Test Instrumentation

SAR Measurement System

Positioning Equipment

Type: High Precision Industrial Robot, RX90.
Precision: High precision (repeatability 0.02mm)
Reliability: High reliability (industrial design)

Compaq Computer

Type: 2.4GHz Pentium
Memory: 512MB SDRAM
Operating System: Windows 2000
Dell Monitor: 17" LCD

Dosimetric E-Field Probe

Type: ET3DV6
Isotropy Error (∅): ±0.25dB

Dynamic Range: 0.01 – 100 W/kg

Phantom & Tissue

Phantom: "Phantom SAM 12" and "450MHz Phantom" were manufactured by SPEAG. Tissue: Simulated Tissue with electrical characteristics similar to those of the

human at normal body temperature (23 ± 1°C)

Shell: Fiberglass shell phantom with 2mm thickness for "Phantom SAM 12".

Fiberglass shell phantom with 2mm or 6mm thickness for "450MHz Flat

Phantom".

TEST INSTRUMENTATION & GENERAL PROCEDURES

ANNEX A

A.3 Test Setup

Phantom

The "Phantom SAM 12", manufactured by SPEAG is a fiberglass shell phantom with 2 mm shell thickness. It has three measurement areas:

- Left hand
- Right hand
- Flat phantom

The "Phantom SAM 12" table comes in the sizes: A 100x50x85 cm (LxWxH). The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. Only one device holder is necessary if two phantoms are used (e.g., for different solutions).

Simulated tissue

Simulated Tissue: Suggested in a paper by George Hartsgrove and colleagues in University of Ottawa Ref.: Bioelectromagnetics 8:29-36 (1987)

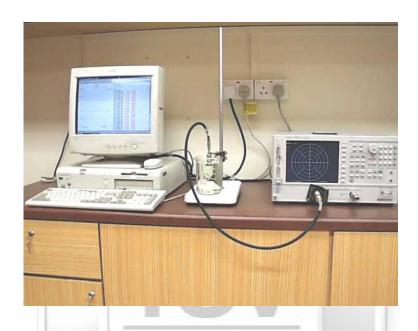
This simulated tissue is mainly composed of water, sugar and salt. At higher frequencies, in order to achieve the proper conductivity, the solution does not contain salt. Also, at these frequencies, D.I. water and alcohol is preferred.

Tissue Density: Approximately 1.25 g/cm³

Preparation

The ingredients (i.e. water, sugar, salt, etc) required to prepare the simulated tissue are carefully weighed and poured into a clean container for mixing. A stirring paddle, that is attached to a hand drill is used to stir the solution for a duration of about 30 minutes or more. When the ingredients are completely dissolved, the solution is left in the container for the air bubbles to disappear.

Measurement of Electrical Characteristics of Simulated Tissue


- 1) S-PARAMETER Network Analyzer, Agilent 8753ES (30kHz 6GHz)
- 2) Agilent 85070D Dielectric Probe Kit

TEST INSTRUMENTATION & GENERAL PROCEDURES

ANNEX A

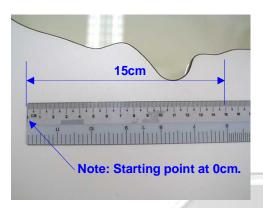
ELECTRICAL CHARACTERISTIC MEASUREMENT SETUP

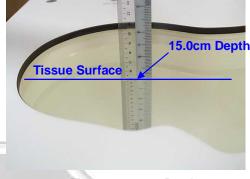
Description of the Agilent 85070D Dielectric Probe Kit

The 85070D is a dielectric probe that is used to measure the intrinsic electrical properties of materials in the RF and microwave frequency bands. The 85070D software allows you to measure the complex dielectric constant (also called permittivity) of liquids and semi-solids, incuding the dielectric loss factor of loss tangent.

To obtain data at hundreds of frequencies in seconds, simply immerse the probe into liquids or semi-solids - no special fixtures or containers are required. The 85070D must be used in conjunction with an Agilent network analyzer. The network analyzer provides the high frequency stimulus, and measures the reflected response.

The probe transmits a signal into the material under test (MUT). The measured reflected response from the materials is then related to its dielectric properties. A computer controls the system, and runs software that guides the user through a measurement sequence. An effort is made to keep the results dielectric constant and conductivity within 5 % of published data.


Tissue Depth


The tissue depth at the "Phantom SAM 12", "450MHz Flat Phantom – 6mm Shell Thickness" & "450MHz Flat Phantom – 2mm Shell Thickness" is approximately 15cm ± 0.5 cm.

TEST INSTRUMENTATION & GENERAL PROCEDURES

ANNEX A

At "Phantom SAM 12"

Tissue - 15.0cm Depth

The DASY4 holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The intended use position in the CENELEC document is has a rotation angle of 65° and an inclination angle of 80°. The rotation centers for both scales is the ear opening. Thus the device needs no repositioning when changing the angles. The device rotation around the device axis is not changed in the holder. In the CENELEC standard it is always 0°. If the standard changes, a support will be provided with the new angle.

- 1. "Cheek/Touch Position" the device is brought toward the mouth of the head phantom by pivoting against the "ear reference point" or along the "N-F" line for the SCC-34/SC-2 head phantom. This test position is established:
- i) When any point on the display, keypad or mouthpiece portions of the handset is in contact with the phantom.
- ii) (Or) When any portion of a foldout, sliding or similar keypad cover opened to its intended selfadjusting normal use position is in contact with the cheek or mouth of the phantom.

For existing head phantoms – when the handset loses contact with the phantom at the pivoting point, rotation should continue until the device touches the cheek of the phantom or breaks its last contact from the ear spacer.

2. "Ear/Tilt Position" – With the handset aligned in the "Cheek/Touch Position":

TEST INSTRUMENTATION & GENERAL PROCEDURES

ANNEX A

- i) If the earpiece of the handset is not in full contact with the phantom's ear spacer (in the "Cheek/Touch position") and the peak SAR location for the "Cheek/Touch" position is located at the ear spacer region or corresponds to the earpiece region of the handset, the device should be returned to the "initial ear position" by rotating it away from the mouth until the earpiece is in full contact with the ear spacer.
- ii) (Otherwise) The handset should be moved (translated) away from the cheek perpendicular to the line passes through both "ear reference points" (note: one of these ear reference points may not physically exist on a split head model) for approximate 2-3 cm. While it is in this position, the handset is tilted away from the mouth with respect to the "test device reference point" by 15°. After the tilt, it is then moved (translated) back toward the head perpendicular to the line passes through both "ear reference points" until the device touches the phantom or the ear spacer. If the antenna touches the head first, the positioning process should be repeated with a tilt angle less than 15° so that the device and its antenna would touch the phantom simultaneously. This test position may require a device holder or positioner to achieve the translation and tilting with acceptable positioning repeatability.

3. **Body Worn Configuration**

All body worn accessories are tested for the FCC RF exposure compliance. The phone is positioned into carrying case (if available) and placed below of the flat phantom. Headset or ear piece (if available) is connected during measurements.

4. System Checking

The manufacturer calibrates the probe annually. Dielectric parameters of the tissue stimulants were measured every day using the dielectric probe kit and network analyser 8753ES. Refer to annex C. A system check measurement was made following the determination of the dielectric parameters of the stimulant using the dipole validation system. A power level of 250mW was supplied to the dipole antenna which was placed under the flat section of the twin SAM phantom. The system checking results (dielectric parameters and SAR values) are in Annex D.

TEST INSTRUMENTATION & GENERAL PROCEDURES

ANNEX A

Instrument	<u>Model</u>	S/No	Cal Due Date	
Boonton RF Power Meter (Dual Channel)	4532	97701	1 April 2010	1
Boonton Power Sensor	51075	51075	1 April 2010	√
Boonton Power Sensor	51075	32002	1 April 2010	1
S-Parameter Network Analyzer (30kHz – 6GHz)	8753ES	MY40001026	31 Mar 2010	1
Agilent 85070D Dielectric Probe Kit	85075D	21356	-	1
Anritsu RF Signal Generator (10MHz – 20GHz)	68347C	04306	-	1
Amplifier Research Power Amplifier (1MHz – 1000MHz)	25W1000B	27225	-	
Amplifier Research Power Amplifier (800MHz – 4.2GHz)	25S1G4A	29346	-	٧
Agilent Dual Directional Coupler (0.1~2.0)GHz	HP778D	18289	-	1
AR Directional Coupler (0.8~4.2)GHz	DC7144	29245	-	
2450MHz System Validation Dipole	D2450V2	752	23 Jun 2009	V
Data Acquisition Electronics (DAE4)	DAE4	627	24 Jun 2009	√
Dosimetric E-field Probe	EX3DV4	3541	23 July 2009	√

TEST SETUP PHOTOGRAPHS

ANNEX B

TEST SETUP PHOTOGRAPHS

ANNEX B

Confidential-intentional blank

ANNEX C

ANNEX C TISSUE SIMULANT DATA SHEETS

Creative Technology Ltd. MP4 player [Model: NSC-FL02]

Tissue Simulant ANNEX C

Date :	08-Apr-2009
Type of Tissue	Body
Target Frequency (MHz)	2450
Target Dielectric Constant	52.7
Target Conductivity (S/m)	1.9
Composition (by weight)	Water 25500 (72.55%)
	Glycol 9610 (27.34%)
	Sugar (0%)
9	Salt 38.4 (0.11%)
//	HEC (0%)
	Preventol D7 (0%)
Measured Dielectric Constant	51.85
Measured Conductivity (S/m)	1.9639

Probe Name	Dosimetric E-field Probe
	EX3DV4
Probe Serial Number	3541
Sensor Offset (mm)	1.0
Conversion Factor	7.54 ± 11.8 %
Probe Calibration Due Date (DD/MM/YY)	23/06/09

Tissue Simulant ANNEX C

Body Tissue a	t 2450MHz		
Frequency	e'	e"	Conductivity
2440000000	51.7352	14.4148	1.9540
2440800000	51.7523	14.4245	1.9560
2441600000	51.7634	14.4271	1.9570
2442400000	51.7861	14.4346	1.9586
2443200000	51.7819	14.4306	1.9587
2444000000	51.7969	14.4347	1.9599
2444800000	51.7909	14.4411	1.9614
2445600000	51.8003	14.4327	1.9609
2446400000	51.8283	14.4368	1.9621
		724	
2447200000	51.828	14.4344	1.9624
2448000000	51.8469	14.4402	1.9639
2448800000	51.8477	14.4564	1.9667
2449600000	51.838	14.4545	1.9671
2450400000	51.8625	14.458	1.9682
2451200000	51.8485	14.4771	1.9715
2452000000	51.8432	14.4861	1.9733
2452800000	51.8677	14.4896	1.9744
2453600000	51.8619	14.4894	1.9751
2454400000	51.8622	14.4962	1.9766
2455200000	51.851	14.4981	1.9775
2456000000	51.8475	14.5033	1.9789
2456800000	51.8494	14.5063	1.9799
2457600000	51.8399	14.5044	1.9803
2458400000	51.8408	14.5205	1.9832
2459200000	51.8312	14.5186	1.9836
2460000000	51.8349	14.5177	1.9841
2460800000	51.8304	14.5361	1.9872
2461600000	51.8131	14.5309	1.9872
2462400000	51.803	14.5196	1.9863
2463200000	51.8128	14.5258	1.9878
2464000000	51.79	14.5229	1.9880
2464800000	51.7795	14.5341	1.9902
2465600000	51.7771	14.526	1.9897
2466400000	51.7599	14.5209	1.9897
2467200000	51.7521	14.5151	1.9895
2468000000	51.7509	14.5257	1.9916
2468800000	51.7299	14.5189	1.9913
2469600000	51.7182	14.5115	1.9910
2470400000	51.7226	14.5198	1.9928
2471200000	51.7016	14.5131	1.9925
0.4=0000000	- 4	4 4 = 4 = 4	4 0000

Tested by:	SSW
Date :	08-apr-2009
Frequency:	2450MHz
Mixture:	Body Tissue
Tissue	

24°C

temp:

Composition		
Tap Water	0.0g	0.00%
Ultra Pure Water	25000.0g	72.15%
Sugar	0.0g	0.00%
Glyco	9610.0g	27.73%
Salt	38.0g	0.10%
Preventol D7	0.0g	0.00%
Total Weight	34648g	100.0%

Result (FCC)	Dielectric Constant	Conductivity
Measured	51.85	1.9639
Target (FCC)	52.7	1.95
Low Limit	50.065	1.8525
High Limit	55.335	2.0475
% Off Target	-1.62	0.71

(e' = Dielectric Constant)

14.5121

(e" = Loss Factor)

2472000000 51.7053

1.9930

SAR VALIDATION ANNEX D

SAR VALIDATION Annex D

SAR Validation - Body Tissue at 2450MHz (Dipole forward power = 250mW)

Ambient Temperature: $24 \pm 1^{\circ}$ C Tissue Temperature: $24 \pm 1^{\circ}$ C Humidity: 54% to 59%

Test Laboratory: TUV SUD PSB PTE LTD.

Date/Time: 4/8/2009 9:23:28 AM

File Name: 2450MHz_System validation.da4

Program Name: 2450MHz_System validation.da4

Phantom section: Flat Section

DUT: Dipole 2450 MHz

Communication System: CW

Frequency: 2450 MHz

Duty Cycle: 1:1

Medium: Body 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.94$ mho/m; $\varepsilon_r =$

52.1; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

Electronics: DAE4 Sn627 Calibrated: 6/14/2007

Phantom: SAM 12 Measurement SW: DASY4, V4.7 Build 80

Probe: EX3DV4 - SN3541 ConvF(7.07, 7.07, 7.07) Calibrated: 7/13/2007

Post processing SW: SEMCAD, V1.8 Build 186

Sensor-Surface: 4mm (Mechanical Surface Detection)

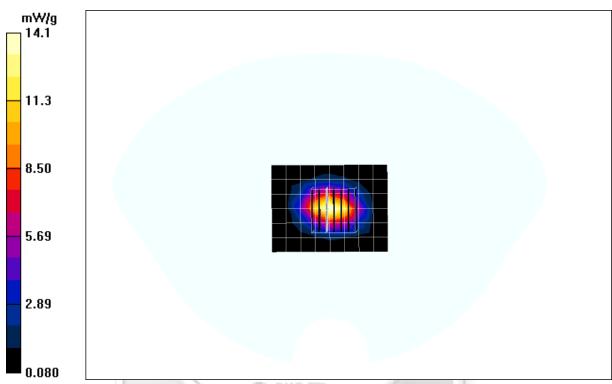
2450MHz_Data 1/Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm

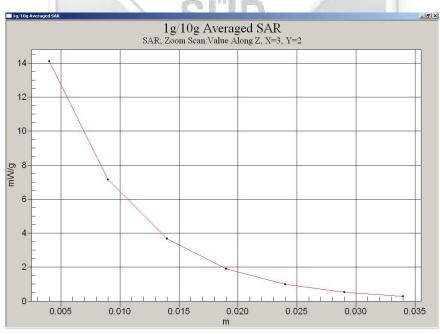
Maximum value of SAR (measured) = 14.8 mW/g

2450MHz_Data 1/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 87.6 V/m; Power Drift = -0.153 dB


Peak SAR (extrapolated) = 24.8 W/kg


SAR(1 g) = 12.4 mW/g; SAR(10 g) = 5.83 mW/gMaximum value of SAR (measured) = 14.1 mW/g

SAR VALIDATION

Annex D

Test Report No. S09EEC00118 dated 23 Jan 2009

MEASUREMENT UNCERTAINITY

ANNEX E

ANNEX E MEASUREMENT UNCERTAINTY

ANNEX E

Measurement Uncertainty

All test measurement carried out are traceable to national standards. The uncertainty of measurement at a confidence level of 95%, with a coverage of 2, is ±20.6%.

Error Description	Uncertainty Value ± %	Probability Distribution	Divisor	ci 1g	Standard Unc.(1g)	Vi or Veff
Measurement System						
Probe Calibration	± 4.8	normal	1	1	± 4.8	∞
Axial isotropy	± 4.7	rectangular	√3	(1-cp)^1/2	± 1.9	8
Hemispherical Isotropy	± 9.6	rectangular	√3	(cp)^1/2	± 3.9	∞
Spatial resolution	± 0.0	rectangular	√3	1	± 0.0	∞
Boundary effects	± 1.0	rectangular	$\sqrt{3}$	1	± 0.6	∞
Linearity	± 4.7	rectangular	$\sqrt{3}$	1	± 2.7	∞
System Detection limit	± 1.0	rectangular	√3	1	± 0.6	8
Readout electronics	± 1.0	normal	1	1	± 1.0	8
Response time	± 0.8	rectangular	$\sqrt{3}$	1	± 0.5	8
Integration time	± 2.6	rectangular	√3	1	± 1.5	8
RF ambient conditions	± 3.0	rectangular	√3	1	± 1.7	8
Probe Positioning Mechanical Tolerance	± 0.4	rectangular	√3	1	± 0.2	8
Probe Positioning with respect to Phantom Shell	± 2.9	rectangular	√3	1	± 1.7	8
Extrapolation, Interpolation and Integration Algorithms for Max. SAR Evaluation	± 1.0	rectangular	√3	1/	± 0.6	8
7						
Test Sample Related			31			
Device positioning	± 2.9	normal	1	1	± 2.9	145
Device holder uncertainty	± 3.6	normal	1	1	± 3.6	5
Power drift	± 5.0	rectangular	√3	1	± 2.9	∞
Phantom and Tissue Paramet	ers					
Phantom uncertainty	± 4.0	rectangular	√3	1	± 2.3	∞
Liquid conductivity (target)	± 5.0	rectangular	√3	0.64	± 1.8	∞
Liquid conductivity (meas)	± 2.5	normal	1	0.64	± 1.6	∞
Liquid permittivity (target)	± 5.0	rectangular	√3	0.6	± 1.7	∞
Liquid permittivity (meas)	± 2.5	normal	1	0.6	± 1.5	∞
Combined Standard Uncertain	l nty				± 10.3	330
Coverage Factor for 95%		k=2				
Extended Standard Uncertain	ty				± 20.6	

SAR PROBE CALIBRATION CERTIFICATES

ANNEX F

ANNEX F SAR PROBE CALIBRATION CERTIFICATES

SÜD

SAR PROBE CALIBRATION CERTIFICATES

ANNEX F

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

enty supesse

Accreditation No.: SCS 108

C

(47/41:357:45(9)/54**4:4**[4](44/48: Object Calibration procedure(s) QA CAL-0 Ev6 and QA CAL-23 v3 Calibration procedure for dosimetric E-field probe Calibration date: Condition of the calibrated item This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards Cal Date (Certificate No.) ID# Scheduled Calibration GB41293874 Power meter E4419B 1-Apr-08 (No. 217-00788) Apr-09 Power sensor E4412A MY41495277 1-Apr-08 (No. 217-00788) Apr-09 Power sensor E4412A MY41498087 1-Apr-08 (No. 217-00788) Apr-09 Reference 3 dB Attenuator SN: S5054 (3c) 8-Aug-07 (No. 217-00719) Aug-08 Reference 20 dB Attenuator SN: S5086 (20b) 31-Mar-08 (No. 217-00787) Apr-09 Reference 30 dB Attenuator SN: S5129 (30b) 8-Aug-07 (No. 217-00720) Aug-08 Reference Probe ES3DV2 SN: 3013 2-Jan-08 (No. ES3-3013_Jan08) Jan-09 DAE4 SN: 660 3-Sep-07 (No. DAE4-660 Sep07) Sep-08 Secondary Standards Check Date (in house) Scheduled Check RF generator HP 8648C US3642U01700 4-Aug-99 (in house check Oct-07) In house check: Oct-09 Network Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-07) In house check: Oct-08 Function Calibrated by: Approved by: Issued: June 25, 2008 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3541_Jun08

Page 1 of 9

SAR PROBE CALIBRATION CERTIFICATES

ANNEX F

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

Service suisse d'étalonnage

C Servizio svizzero di taratura

Accreditation No.: SCS 108

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConvF

sensitivity in TSL / NORMx,y,z

DCP

diode compression point

Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., ϑ = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003. "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,v,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from \pm 50 MHz to \pm 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3541_Jun08

Page 2 of 9

Creative Technology Ltd. MP4 player [Model: NSC-FL02]

SAR PROBE CALIBRATION CERTIFICATES

ANNEX F

Probe EX3DV4

SN:3541

Manufactured:

May 3, 2004

Last calibrated:

July 13, 2007

Recalibrated:

June 23, 2008

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: EX3-3541_Jun08

Page 3 of 9

SAR PROBE CALIBRATION CERTIFICATES

ANNEX F

EX3DV4 SN:3541

June 23, 2008

DASY - Parameters of Probe: EX3DV4 SN:3541

Sensitivity in Free Space ^A			Diode Compres			
NormX	0.44 ± 10.1%	μV/(V/m) ²	DCP X	89 mV		
NormY	0.39 ± 10.1%	μV/(V/m) ²	DCP Y	89 mV		
NormZ	0.45 ± 10.1%	μ V/(V/m) ²	DCP Z	89 mV		

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL	900 MHz	Typical SAR gradient: 5 % per mm

Sensor Center to Phantom Surface Distance		2.0 mm	3.0 mm
SAR _{be} [%]	Without Correction Algorithm	9.6	6.4
SAR _{be} [%]	With Correction Algorithm	0.5	0.3

TSL 1750 MHz Typical SAR gradient	: 10	10	1 %	6	pe	r r	nm
-----------------------------------	------	----	-----	---	----	-----	----

Sensor Center to Phantom Surface Distance		2.0 mm	3.0 mm
SAR _{be} [%]	Without Correction Algorithm	5.9	3.2
SAR _{be} [%]	With Correction Algorithm	0.6	0.4

Sensor Offset

Probe Tip to Sensor Center

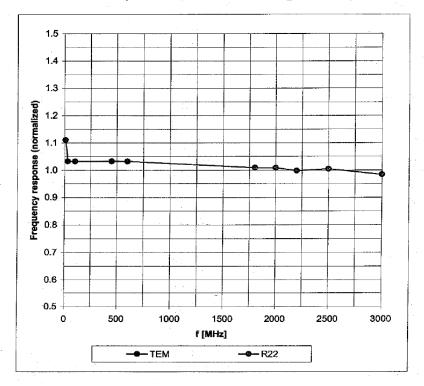
1.0 mm

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

^B Numerical linearization parameter: uncertainty not required.

SAR PROBE CALIBRATION CERTIFICATES


ANNEX F

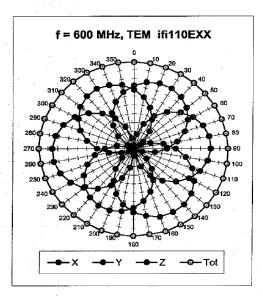
EX3DV4 SN:3541

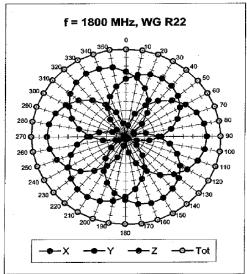
June 23, 2008

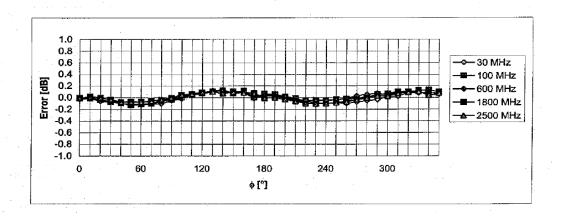
Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


SAR PROBE CALIBRATION CERTIFICATES


ANNEX F

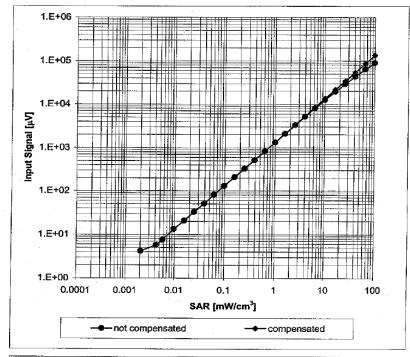

EX3DV4 SN:3541

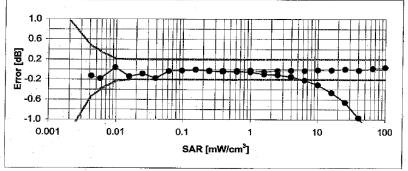
June 23, 2008

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

SAR PROBE CALIBRATION CERTIFICATES


ANNEX F


EX3DV4 SN:3541

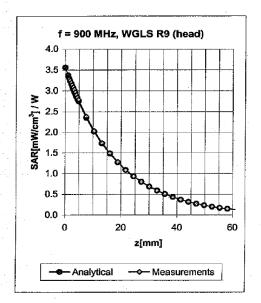
June 23, 2008

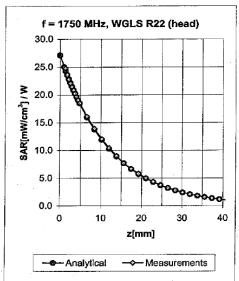
Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Page 59 of 68


SAR PROBE CALIBRATION CERTIFICATES


ANNEX F

EX3DV4 SN:3541

June 23, 2008

Conversion Factor Assessment

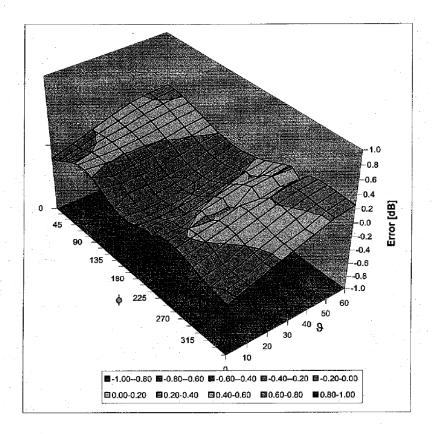
f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Aipha	Depth	ConvF Uncertainty
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.51	0.80	9.45 ± 11.0% (k=2)
1750	±50/±100	Head	40.1 ± 5%	1.37 ± 5%	0.69	0.59	8.53 ± 11.0% (k=2)
1900	± 50 / ± 100	Head	$40.0 \pm 5\%$	$1.40 \pm 5\%$	0.74	0.56	8.27 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.62	0.62	7.55 ± 11.0% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.71	0.72	9.47 ± 11.0% (k=2)
1750	± 50 / ± 100	Body	53.4 ± 5%	1.49 ± 5%	0.70	0.61	8.23 ± 11.0% (k=2)
1900	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.72	0.60	7.85 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.55	0.74	7.40 ± 11.0% (k=2)

Certificate No: EX3-3541_Jun08

Page 8 of 9

 $^{^{\}rm c}$ The validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

SAR PROBE CALIBRATION CERTIFICATES


ANNEX F

EX3DV4 SN:3541

June 23, 2008

Deviation from Isotropy in HSL

Error (φ, θ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

SAR PROBE CALIBRATION CERTIFICATES

ANNEX F

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

TUVSUD PSB

Certificate No. DAE4-627_Jun08

Accreditation No.: SCS 108

(e)VEISISAU(e)VEE			
Object	DAE4 - SD 000 D	04 BA - SN: 627	
Calibration procedure(s)	QA CAL-06 v12 Calibration proces	dure for the data acquisition electro	nics (DAE)
)			
Calibration date:	June 24, 2008		
Condition of the calibrated item	In Tolerance	200	
This calibration certificate documen	nts the traceability to natio	nal standards, which realize the physical units o	f measurements (SI).
The measurements and the uncertain	ainties with confidence pro	obability are given on the following pages and ar	e part of the certificate.
	· · · · · · · · · · · · · · · · · · ·	r facility: environment temperature (22 ± 3)°C an	d humidity < 70%.
Calibration Equipment used (M&TE			
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Fluke Process Calibrator Type 702	SN: 6295803	04-Oct-07 (No: 6467)	Oct-08
Keithley Multimeter Type 2001	SN: 0810278	03-Oct-07 (No: 6465)	Oct-08
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Calibrator Box V1.1	SE UMS 006 AB 1004	06-Jun-08 (in house check)	In house check: Jun-09
			·
			-
		·	
	Name	Function	Signature
Calibrated by:	Demlinique Steffen	Fechrician .	Adda
			$\boldsymbol{arOmega}$
Approved by:	Fin Borgholt	R&D Director X	Alman -
		ull without written approval of the laboratory.	issued: June 24, 2008

Certificate No: DAE4-627_Jun08

Page 1 of 5

Creative Technology Ltd. MP4 player [Model: NSC-FL02]

SAR PROBE CALIBRATION CERTIFICATES

ANNEX F

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

SAR PROBE CALIBRATION CERTIFICATES

ANNEX F

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range:

1LSB =

6.1μV ,

full range = -100...+300 mV full range = -1......+3mV

Low Range:

1LSB =

61nV ,

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	x	Y	Z
High Range	405.023 ± 0.1% (k=2)	404.027 ± 0.1% (k=2)	404.480 ± 0.1% (k=2)
Low Range	3.96098 ± 0.7% (k=2)	3.96430 ± 0.7% (k=2)	3.96793 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	204°±1°

SAR PROBE CALIBRATION CERTIFICATES

ANNEX F

Appendix

1. DC Voltage Linearity

High Range		Input (μV)	Reading (μV)	Error (%)
Channel X	+ Input	200000	200000.5	0.00
Channel X	+ Input	20000	20005.24	0.03
Channel X	- Input	20000	-19997.03	-0.01
Channel Y	+ Input	200000	199999.6	0.00
Channel Y	+ Input	20000	20008.45	0.04
Channel Y	- Input	20000	-20004.40	0.02
Channel Z	+ Input	200000	199999.5	0.00
Channel Z	+ Input	20000	20001.90	0.01
Channel Z	- Input	20000	-19999.97	0.00

Low Range		Input (μV)	Reading (μV)	Error (%)
Channel X	+ Input	2000	1999.9	0.00
Channel X	+ Input	200	200.05	0.03
Channel X	- Input	200	-200.16	0.08
Channel Y	+ Input	2000	1999.9	0.00
Channel Y	+ Input	200	199.24	-0.38
Channel Y	- Input	200	-200.84	0.42
Channel Z	+ Input	2000	1999.9	0.00
Channel Z	+ Input	200	199.12	-0.44
Channel Z	- Input	200	-200.87	0.44

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	15.03	14.38
	- 200	-13.32	-13.25
Channel Y	200	8.11	7.69
	- 200	-7.94	-8.46
Channel Z	200	7.68	7.22
	- 200	-8.32	-8.92

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	-	3.80	-0.58
Channel Y	200	0.95	-	4.99
Channel Z	200	-0.43	-0.86	-

Certificate No: DAE4-627_Jun08

Page 4 of 5

SAR PROBE CALIBRATION CERTIFICATES

ANNEX F

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15897	16674
Channel Y	16261	16405
Channel Z	15840	16234

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MΩ

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	-0.42	-1.54	0.98	0.37
Channel Y	-1.36	-2.42	0.07	0.41
Channel Z	-0.32	-2.65	2.10	0.38

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance

	Zeroing (MOhm)	Measuring (MOhm)
Channel X	0.2001	199.3
Channel Y	0.2001	199.9
Channel Z	0.2001	200.1

8. Low Battery Alarm Voltage (verified during pre test)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (verified during pre test)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.0	+6	+14
Supply (- Vcc)	-0.01	-8	-9

REFERENCES ANNEX G

REFERENCES ANNEX G

The methods and procedures used for the measurements contained in this report are details in the following reference standards:

Publications	Year	Title
Supplement C (Edition 01-	2001	"Evaluating Compliance with FCC Guidelines for Human
01) to FCC OET Bulletin 65		Exposure to radio Frequency Fields"
(Edition 97-01)		
IEEE Standard 1528-200X	2000	"Product Performance Standards Relative to the safe Use of
	23	Electromagnetic Energy"
ANSI/IEEE C95.3	1992	"Recommended Practice for the Measurement of Potentially
		Hazardous Electromagnetic Fields - RF and Microwave"
ANSI/IEEE C95.1	1992	"Safety Levels with Respect to Human Exposure to Radio
		Frequency Electromagnetic Fields, 3kHz to 300GHz"
	3//	Procedure to determine the Specific Absorption Rate (SAR)
EN62209-1	2006	for hand-held devices used in close proximity to the ear
		(300MHz – 3GHz)