

RF Exposure Evaluation declaration

Product Name	USB PUCK
Model No.	EF0170-TX
FCC ID	IBAMSEF0170T2

Applicant	ant Creative Labs Inc	
Address	1901 McCarthy Boulevard, Milpitas, CA 95035	

Date of Receipt	June. 14, 2010
Date of Declaration	July. 01, 2010
Report No.	106248R-RFUSP28V01

The declaration results relate only to the samples calculated.

The declaration shall not be reproduced except in full without the written approval of QuieTek Corporation. This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

1. RF Exposure Evaluation

1.1. Limits

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency Range	Electric Field	Magnetic Field	Power Density	Average Time	
(MHz)	Strength (V/m)	Strength (A/m)	(mW/cm ²)	(Minutes)	
(A) Limits for Occupational/ Control Exposures					
300-1500			F/300	6	
1500-100,000			5	6	
(B) Limits for General Population/ Uncontrolled Exposures					
300-1500			F/1500	6	
1500-100,000			1	30	

F= Frequency in MHz

Friis Formula

Friis transmission formula: $Pd = (Pout*G)/(4*pi*r^2)$

Where

Pd = power density in mW/cm²

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

Pd id the limit of MPE, 1 mW/cm². If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

1.2. Test Procedure

Software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.

The temperature and related humidity: 18°C and 78% RH.

1.3. Test Result of RF Exposure Evaluation

Product : USB PUCK

Test Item : RF Exposure Evaluation

Test Site : No.3 OATS

Antenna Gain

Antenna Gain: The maximum Gain measured in fully anechoic chamber is 1.91dBi in linear scale.

Output Power Into Antenna & RF Exposure Evaluation Distance (1.91dBi):

Channel	Frequency (MHz)	Output Power to Antenna (mW)	Power Density at R = 20 cm (mW/cm2)
2	2405.00	1.3996	0.000432
20	2441.00	1.3772	0.000425
38	2477.00	1.2912	0.000399

The distance r (4th column) calculated from the Fries transmission formula is far shorter than 20 cm separation requirement.