

No. 1 Workshop, M-10, Middle section, Science & Technology Park, Nanshan

District, Shenzhen, Guangdong, China 518057

Telephone: +86 (0) 755 2601 2053 Fax: +86 (0) 755 2671 0594 Report No.: SZEM140500252004

Email: ee.shenzhen@sgs.com Page: 1 of 29

FCC REPORT

Application No: SZEM1411006259CR

Applicant: Creative Labs Inc. **Product Name:** Sound Blaster X7

Model No.(EUT): SB1580
Trade Mark: Creative

FCC ID: IBAAVPSB1580

Standards: 47 CFR Part 15, Subpart C (2013)

 Date of Receipt:
 2014-11-19

 Date of Test:
 2014-11-19

 Date of Issue:
 2014-11-24

Test Result: PASS *

Authorized Signature:

Jack Zhang EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

^{*} In the configuration tested, the EUT complied with the standards specified above.

Report No.: SZEM140500252004 Page: 2 of 29

Version 2

Revision Record					
Version	Chapter	Date	Modifier	Remark	
00		2014-11-24		Original	

Authorized for issue by:		
Tested By	Eric Fu	2014-11-19
	(Eric Fu) /Project Engineer	Date
Prepared By	Sade Luo.	2014-11-24
	(Sade Luo) /Clerk	Date
Checked By	Samper	2014-11-26
	(Kevin Feng) /Reviewer	Date

Report No.: SZEM140500252004

Page: 3 of 29

3 Test Summary

Test Item	Test Requirement	Test method	Result
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 (2009)	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	ANSI C63.10 (2009)	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 (2009)	PASS

Model No.: SB1580

This test report (Ref. No.: SZEM140500252004) is only valid with the original test report (Ref.

No.: SZEM140500252001).

Review this report and original report, this report changing the information of applicant and switching mode power supply.

According to the declaration from the applicant, the models in this report and models in original report were identical.

Considering to the difference, pre-scan were performed on the sample in this report to find the items which can be influential to the result in the original test report for fully retest.

Therefore in this report Conducted Emissions, Conducted Peak Output Power, Radiated Spurious

Emission were fully retested on model SB1580 and shown the data in this report, other tests please refer to original report SZEM140500252001.

Report No.: SZEM140500252004

Page: 4 of 29

4 Contents

		Page
1 C	COVER PAGE	1
2 V	ERSION	2
3 T	EST SUMMARY	3
TO OR	RIGINAL REPORT SZEM140500252001.	3
4 C	CONTENTS	4
5 G	GENERAL INFORMATION	5
5.1	CLIENT INFORMATION	5
5.2	GENERAL DESCRIPTION OF EUT	5
5.3	TEST ENVIRONMENT	7
5.4	DESCRIPTION OF SUPPORT UNITS	7
5.5	TEST LOCATION	7
5.6	TEST FACILITY	8
5.7	DEVIATION FROM STANDARDS	8
5.8	ABNORMALITIES FROM STANDARD CONDITIONS	8
5.9	OTHER INFORMATION REQUESTED BY THE CUSTOMER	8
5.10		9
6 T	EST RESULTS AND MEASUREMENT DATA	12
6.1	CONDUCTED EMISSIONS	12
6.2	CONDUCTED PEAK OUTPUT POWER	16
6.3	RADIATED SPURIOUS EMISSION	23
6.	S.3.1 Radiated Emission below 1GHz	26
6.	5.3.2 Transmitter Emission above 1GHz	28

Report No.: SZEM140500252004

Page: 5 of 29

5 General Information

5.1 Client Information

Applicant:	Creative Labs Inc.
Address of Applicant:	1901, McCarthy Boulevard, Milpitas, CA 95035, United States

5.2 General Description of EUT

Product Name:	Sound Blaster X7
Model No.	SB1580
Trade Mark:	Creative
Operation Frequency:	2402MHz~2480MHz
Bluetooth Version:	4.1
	This report is for classic mode
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)
Modulation Type:	GFSK, π/4DQPSK, 8DPSK
Number of Channel:	79
Hopping Channel Type:	Adaptive Frequency Hopping systems
Sample Type:	Fixed production
Test Power Grade:	50,30 (manufacturer declare)
Test Software of EUT:	Bluetest3 (manufacturer declare)
Antenna Type and Gain:	Type :Integral
	Gain :0.5dBi
USB Cable:	150cm(Shielded)
Audio Extension Cable:	15cm(Unshielded)
AC Cable:	120cm(Unshielded)
Audio Cable:	200cm(Unshielded)
DC Cable:	150cm(Unshielded with one ferrite core)
AC Adapter:	MODEL: GM150-2400600
	INPUT: 100-240V~50/60Hz 2.5A
	OUTPUT: 24V == 6.0A
Power Supply:	Input: DC 24V 6.0A
Test Voltage:	AC 120V 60Hz

Report No.: SZEM140500252004

Page: 6 of 29

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2441MHz
The Highest channel	2480MHz

Report No.: SZEM140500252004

Page: 7 of 29

5.3 Test Environment

Operating Environment:		
Temperature:	25.0 °C	
Humidity:	51 % RH	
Atmospheric Pressure:	1005mbar	

5.4 Description of Support Units

The EUT has been tested with associated equipment below.

The Let has been tested with associated equipment below.					
Description	Manufacturer	Model No.			
iPhone5	Apple	A1429			
Audio in cable	Supply by SGS	100cm unshielded			
Speaker	Supply by SGS	8ohm, 20W			
5.1channel speaker	Edifier	R151T			
Microphone	Supply by SGS	N/A			

5.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch E&E Lab,

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

Report No.: SZEM140500252004

Page: 8 of 29

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

VCCI

The 10m Semi-anechoic chamber and Shielded Room (7.5m x 4.0m x 3.0m) of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

• FCC – Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 556682.

Industry Canada (IC)

Two 3m Semi-anechoic chambers of SGS-CSTC Standards Technical Services Co., Ltd. have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1 & 4620C-2.

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

Report No.: SZEM140500252004

Page: 9 of 29

5.10 Equipment List

	Conducted Emission						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)		
1	Shielding Room	ZhongYu Electron	GB-88	SEL0042	2015-06-10		
2	LISN	Rohde & Schwarz	ENV216	SEL0152	2015-10-24		
3	LISN	ETS-LINDGREN	3816/2	SEL0021	2015-05-16		
4	8 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T8-02	SEL0162	2015-08-30		
5	4 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T4-02	SEL0163	2015-08-30		
6	2 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T2-02	SEL0164	2015-08-30		
7	EMI Test Receiver	Rohde & Schwarz	ESCI	SEL0022	2015-05-16		
8	Coaxial Cable	SGS	N/A	SEL0025	2015-05-29		
9	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2015-10-24		
10	Humidity/ Temperature Indicator	Shanhai Qixiang	ZJ1-2B	SEL0103	2015-10-24		
11	Barometer	Chang Chun	DYM3	SEL0088	2015-05-16		

Report No.: SZEM140500252004

Page: 10 of 29

	RE in Chamber					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)	
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEL0017	2015-06-10	
2	EMI Test Receiver	Agilent Technologies	N9038A	SEL0312	2015-09-16	
3	EMI Test software	AUDIX	E3	SEL0050	N/A	
4	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEL0015	2015-10-24	
5	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEL0006	2015-10-24	
6	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEL0076	2015-10-24	
7	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEL0053	2015-05-16	
8	Pre-Amplifier (0.1-26.5GHz)	Compliance Directions Systems Inc.	PAP-0126	SEL0168	2015-10-24	
9	Coaxial cable	SGS	N/A	SEL0027	2015-05-29	
10	Coaxial cable	SGS	N/A	SEL0189	2015-05-29	
11	Coaxial cable	SGS	N/A	SEL0121	2015-05-29	
12	Coaxial cable	SGS	N/A	SEL0178	2015-05-29	
13	Band filter	Amindeon	82346	SEL0094	2015-05-16	
14	Barometer	Chang Chun	DYM3	SEL0088	2015-05-16	
15	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2015-10-24	
16	Humidity/ Temperature Indicator	Shanhai Qixiang	ZJ1-2B	SEL0103	2015-10-24	
17	Signal Generator (10M-27GHz)	Rohde & Schwarz	SMR27	SEL0067	2015-05-16	
18	Signal Generator	Rohde & Schwarz	SMY01	SEL0155	2015-10-24	
19	Loop Antenna	Beijing Daze	ZN30401	SEL0203	2015-06-04	

Report No.: SZEM140500252004

Page: 11 of 29

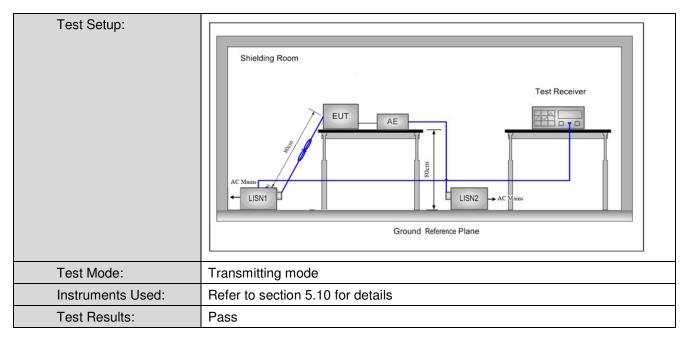
	RF connected test				
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)
1	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2015-10-24
2	Humidity/ Temperature Indicator	HYGRO	ZJ1-2B	SEL0033	2015-10-24
3	Spectrum Analyzer	Rohde & Schwarz	FSP	SEL0154	2015-10-24
4	Coaxial cable	SGS	N/A	SEL0178	2015-05-29
5	Coaxial cable	SGS	N/A	SEL0179	2015-05-29
6	Barometer	ChangChun	DYM3	SEL0088	2015-05-16
7	Signal Generator	Rohde & Schwarz	SML03	SEL0068	2015-05-16
8	Band filter	amideon	82346	SEL0094	2015-05-16
9	POWER METER	POWER METER R & S		SEL0144	2015-10-24
10	Attenuator	Beijin feihang taida	TST-2-6dB	SEL0205	2015-05-16
11	Power Divider(splitter)	Agilent Technologies	11636B	SEL0130	2015-10-24

Note: The calibration interval is one year, all the instruments are valid.

Report No.: SZEM140500252004

Page: 12 of 29

6 Test results and Measurement Data


6.1 Conducted Emissions

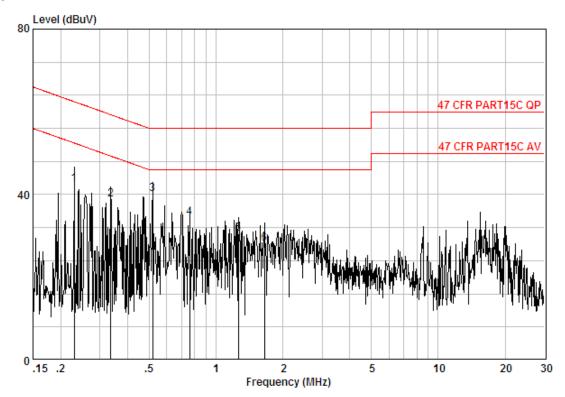
Test Requirement:	47 CFR Part 15C Section 15.207							
Test Method:	ANSI C63.10: 2009							
Test Frequency Range:	150kHz to 30MHz	150kHz to 30MHz						
Limit:	Fueron and the (MILL)	Limit (d	IBuV)					
	Frequency range (MHz)	Quasi-peak	Average					
	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5	56	46					
	5-30	60	50					
	* Decreases with the logarithn	n of the frequency.		_				
Test Procedure:	The mains terminal disturl room.	bance voltage test was	s conducted in a ship	elded				
	2) The EUT was connected to AC power source through a LISN 1 (Lir Impedance Stabilization Network) which provides a 50Ω/50μH + 50 impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was							
	exceeded. 3) The tabletop EUT was place ground reference plane. As placed on the horizontal ground reference with of the EUT shall be 0.4 m and vertical ground reference pareference plane. The LISN unit under test and bonded mounted on top of the ground between the closest points the EUT and associated except plane. 5) In order to find the maximum equipment and all of the in ANSI C63.10: 2009 on contract of the supplement and all of the supplement and all of the in the supplement and all of the supplement and suppleme	nd for floor-standing and for floor-standing and round reference plane, the a vertical ground reference blane was bonded to the 1 was placed 0.8 m from the aground reference plane. The first of the LISN 1 and the quipment was at least 0 am emission, the relative terface cables must be	erence plane. The red reference plane. The red reference plane. The horizontal ground om the boundary of the plane for LISNs his distance was EUT. All other units 0.8 m from the LISN re positions of	was ear ne he of 2.				

Report No.: SZEM140500252004

Page: 13 of 29

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.


Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Report No.: SZEM140500252004

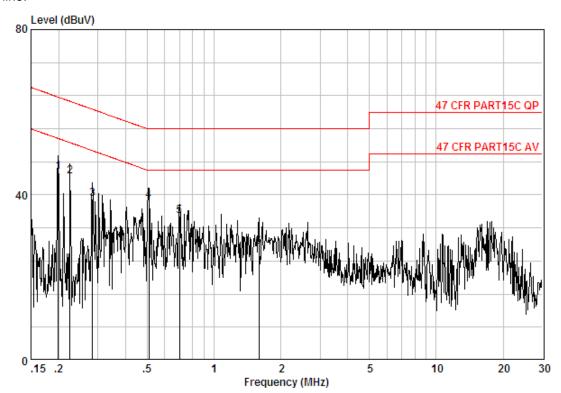
Page: 14 of 29

Live line:

Site : Shielding Room

Condition : 47 CFR PART15C QP CE LINE

Job No. : 6259CR Mode : TX mode


	Freq		LISN Factor					Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.23040	0.02	9.70	32.83	42.55	62.44	-19.88	QP
2	0.33562	0.01	9.74	29.12	38.87	59.31	-20.44	QP
3 @	0.51824	0.01	9.80	30.20	40.01	56.00	-15.99	QP
4	0.75894	0.02	9.80	24.69	34.51	56.00	-21.49	QP
5	1.262	0.02	9.80	20.60	30.42	56.00	-25.58	QP
6	1.654	0.02	9.80	18.32	28.14	56.00	-27.86	OP

Report No.: SZEM140500252004

Page: 15 of 29

Neutral line:

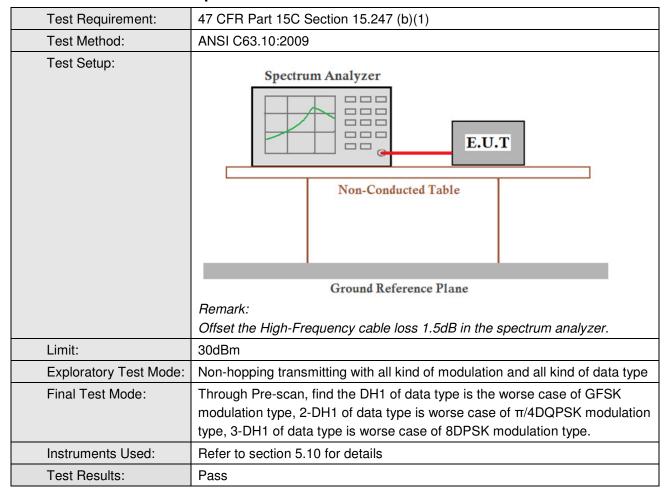
Site : Shielding Room

Condition : 47 CFR PART15C QP CE NEUTRAL

Job No. : 6259CR Mode : TX mode : BT

	Freq		LISN Factor					Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.19863	0.02	9.70	35.85	45.57	63.67	-18.10	QP
2	0.22437	0.02	9.70	34.82	44.54	62.66	-18.11	QP
3	0.28328	0.01	9.70	29.32	39.04	60.72	-21.68	QP
4	0.51007	0.01	9.80	28.79	38.60	56.00	-17.40	QP
5	0.70096	0.02	9.80	24.96	34.78	56.00	-21.22	QP
6	1.593	0.02	9.80	17.61	27.43	56.00	-28.57	QP

Notes:


- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No.: SZEM140500252004

Page: 16 of 29

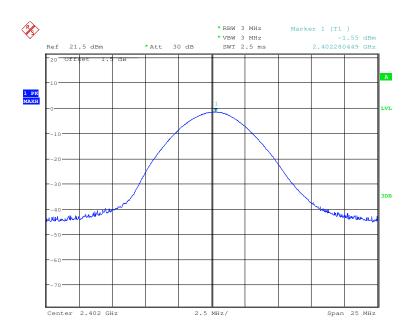
6.2 Conducted Peak Output Power

Report No.: SZEM140500252004

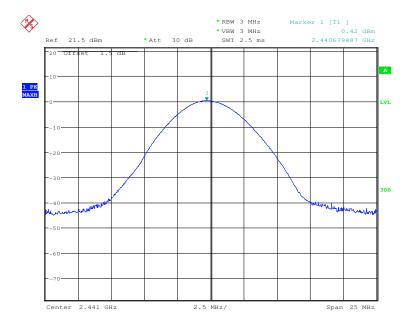
Page: 17 of 29

Measurement Data

weasurement bata												
	GFSK mode											
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result									
Lowest	-1.55	30.00	Pass									
Middle	0.42	30.00	Pass									
Highest	0.88	30.00	Pass									
	π/4DQPSK mode											
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result									
Lowest	Lowest -3.70		Pass									
Middle	-1.69	30.00	Pass									
Highest	-1.21	30.00	Pass									
	8DPSK mod	de										
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result									
Lowest	·		Pass									
Middle	-1.14	30.00	Pass									
Highest	-0.67	30.00	Pass									



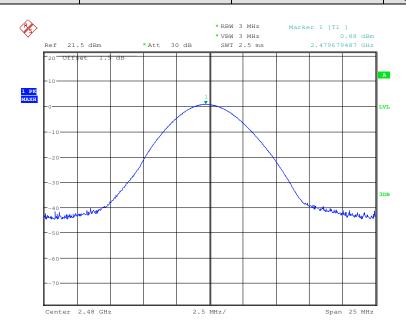
Report No.: SZEM140500252004

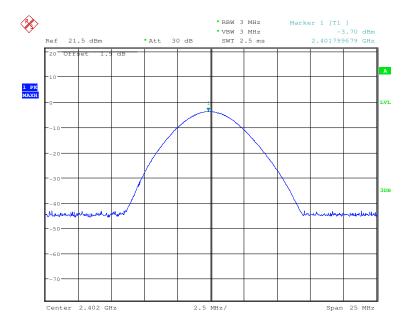

Page: 18 of 29

Test plot as follows:

Test mode: GFSK Test channel: Lowest

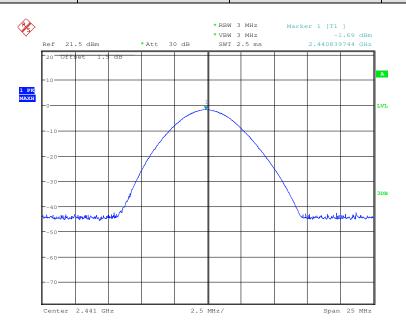
Test mode: GFSK Test channel: Middle

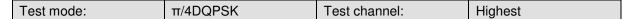


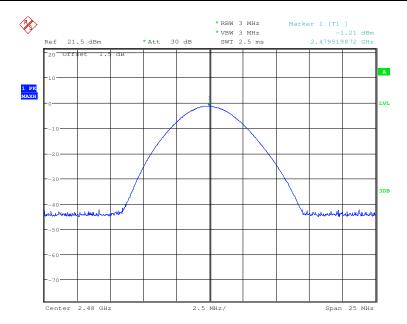

Report No.: SZEM140500252004

Page: 19 of 29

Test mode: GFSK Test channel: Highest

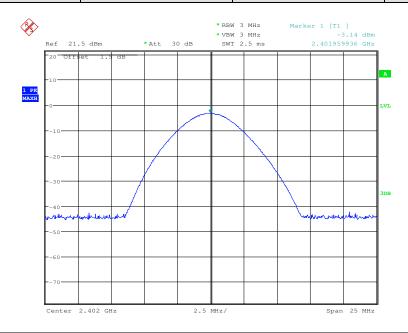


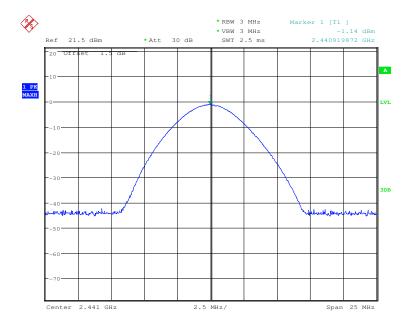



Report No.: SZEM140500252004

Page: 20 of 29

Test mode: π/4DQPSK Test channel: Middle




Report No.: SZEM140500252004

Page: 21 of 29

Test mode: 8DPSK Test channel: Lowest

Test mode: 8DPSK Test channel: Middle

Report No.: SZEM140500252004

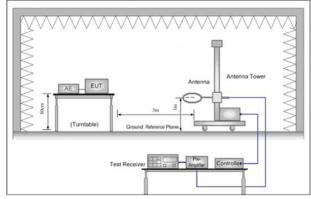
Page: 22 of 29

Test mode: 8DPSK Test channel: Highest

Report No.: SZEM140500252004

Page: 23 of 29

6.3 Radiated Spurious Emission


Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205								
Test Method:	ANSI C63.10: 2009								
Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)								
Receiver Setup:	Frequency		Detector	RBW	VBW	Remark			
	0.009MHz-0.090MH	Z	Peak	10kHz	z 30kHz	Peak			
	0.009MHz-0.090MH	Z	Average	10kHz	z 30kHz	Average			
	0.090MHz-0.110MH	Z	Quasi-peak	10kHz	30kHz	Quasi-peak			
	0.110MHz-0.490MH	Z	Peak	10kHz	30kHz	Peak			
	0.110MHz-0.490MH	Z	Average	10kHz	z 30kHz	Average			
	0.490MHz -30MHz		Quasi-peak	10kHz	z 30kHz	Quasi-peak			
	30MHz-1GHz		Quasi-peak	100 kH	lz 300kHz	Quasi-peak			
	Above 1GHz		Peak	1MHz	3MHz	Peak			
	Above Tariz		Peak	1MHz	10Hz	Average			
Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measureme distance (n			
	0.009MHz-0.490MHz	2	400/F(kHz)	-	-	300			
	0.490MHz-1.705MHz	24	1000/F(kHz)	-	-	30			
	1.705MHz-30MHz		30	-	-	30			
	30MHz-88MHz		100	40.0	Quasi-peak	3			
	88MHz-216MHz		150	43.5	Quasi-peak	3			
	216MHz-960MHz		200	46.0	Quasi-peak	3			
	960MHz-1GHz		500	54.0	Quasi-peak	3			
	Above 1GHz 500 54.0 Average 3								
	Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.								

Report No.: SZEM140500252004

Page: 24 of 29

Test Setup:

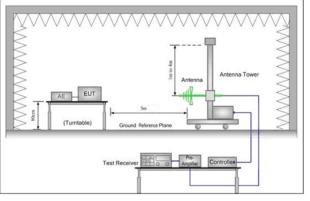


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

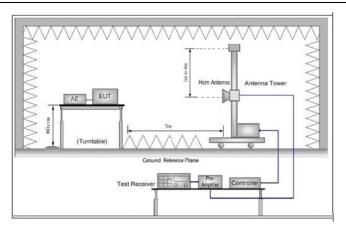


Figure 3. Above 1 GHz

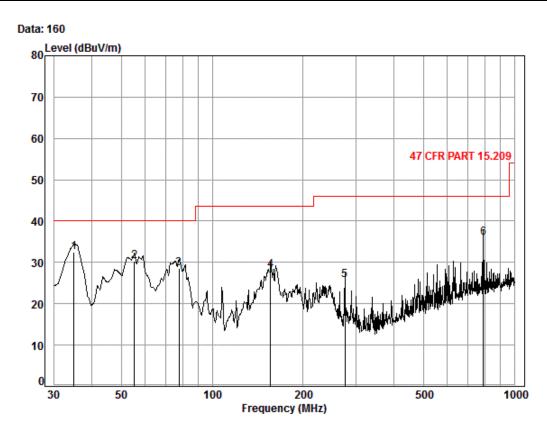
Test Procedure:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average

Report No.: SZEM140500252004

Page: 25 of 29

	method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel (2402MHz),the middle channel (2441MHz),the Highest channel (2480MHz)
	 h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case. i. Repeat above procedures until all frequencies measured was complete.
Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type Transmitting mode
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass



Report No.: SZEM140500252004

Page: 26 of 29

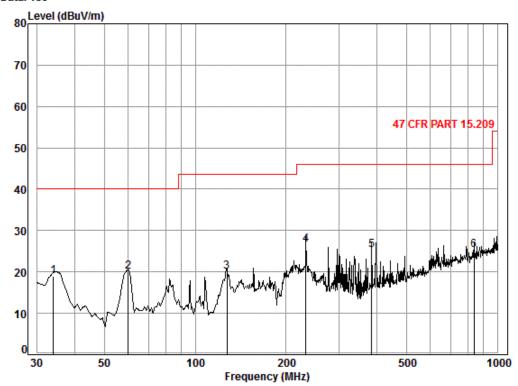
6.3.1 Radiated Emission below 1GHz

30MHz~1GHz (QP)					
Test mode:	Transmitting	Vertical			

Condition: 47 CFR PART 15.209 3m 3142C Vertical

Job No. : 6259CR Test mode: TX mode

		Cable	Ant	Preamp	Read		Limit	0ver
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	34.88	0.60	15.97	27.34	43.23	32.46	40.00	-7.54
2	55.22	0.80	7.92	27.28	48.81	30.25	40.00	-9.75
3	77.59	1.03	7.51	27.23	47.32	28.63	40.00	-11.37
4	155.91	1.33	9.35	26.88	44.27	28.07	43.50	-15.43
5	275.16	1.79	12.81	26.46	37.62	25.76	46.00	-20.24
6	787.85	3.17	22.05	27.31	38.03	35.94	46.00	-10.06



Report No.: SZEM140500252004

Page: 27 of 29

|--|

Data: 159

Condition: 47 CFR PART 15.209 3m 3142C Horizontal

Job No. : 6259CR Test mode: TX mode

	Freq			Preamp Factor				Over Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	33.92	0.60	16.31	27.34	29.43	19.00	40.00	-21.00
2	60.07	0.80	7.20	27.27	39.26	19.99	40.00	-20.01
3	127.22	1.27	7.75	27.03	37.98	19.97	43.50	-23.53
4	232.53	1.59	11.75	26.59	39.74	26.49	46.00	-19.51
5	383.93	2.16	16.11	27.03	33.99	25.23	46.00	-20.77
6	836.24	3.35	22.40	27.09	26.54	25.20	46.00	-20.80

Report No.: SZEM140500252004

Page: 28 of 29

6.3.2 Transmitter Emission above 1GHz

Worse case	mode:	GFSK(DH1)	Test	channel:	Lowest	Rema	ırk:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
1589.289	3.79	29.13	38.38	55.67	50.21	74	-23.79	Vertical
3454.486	5.90	32.84	38.72	48.98	49.00	74	-25.00	Vertical
4804.000	5.49	34.70	39.24	51.17	52.12	74	-21.88	Vertical
7206.000	8.27	35.63	39.07	48.75	53.58	74	-20.42	Vertical
9608.000	9.26	37.33	37.93	45.06	53.72	74	-20.28	Vertical
11692.920	10.14	38.39	38.56	42.89	52.86	74	-21.14	Vertical
1715.411	3.96	29.73	38.40	48.01	43.30	74	-30.70	Horizontal
3844.279	5.69	33.23	38.89	50.51	50.54	74	-23.46	Horizontal
4804.000	5.49	34.70	39.24	49.65	50.60	74	-23.40	Horizontal
7206.000	8.27	35.63	39.07	47.96	52.79	74	-21.21	Horizontal
9608.000	9.26	37.33	37.93	44.05	52.71	74	-21.29	Horizontal
11752.600	10.16	38.45	38.59	43.58	53.60	74	-20.40	Horizontal

Worse case mode:		GFSK(DH1)		t channel:	Middle	Rem	ark:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
1589.289	3.79	29.13	38.38	53.97	48.51	74	-25.49	Vertical
3598.087	5.85	33.00	38.78	48.34	48.41	74	-25.59	Vertical
4882.000	5.69	34.78	39.26	48.97	50.18	74	-23.82	Vertical
7323.000	8.41	35.50	39.06	48.22	53.07	74	-20.93	Vertical
9764.000	9.18	37.81	37.84	44.40	53.55	74	-20.45	Vertical
11169.240	9.79	38.12	38.31	43.43	53.03	74	-20.97	Vertical
1894.450	4.19	30.88	38.42	46.60	43.25	74	-30.75	Horizontal
3747.656	5.75	33.11	38.85	48.48	48.49	74	-25.51	Horizontal
4882.000	5.69	34.78	39.26	48.79	50.00	74	-24.00	Horizontal
7323.000	8.41	35.50	39.06	47.65	52.50	74	-21.50	Horizontal
9764.000	9.18	37.81	37.84	43.88	53.03	74	-20.97	Horizontal
11399.030	9.98	38.15	38.42	42.93	52.64	74	-21.36	Horizontal

Report No.: SZEM140500252004

Page: 29 of 29

Worse case mode:		GFSK(DH1) Tes		t channel:	Highest	Rem	ark:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
1597.401	3.80	29.18	38.39	54.58	49.17	74	-24.83	Vertical
3579.815	5.86	32.98	38.78	47.79	47.85	74	-26.15	Vertical
4960.000	5.89	34.86	39.29	48.04	49.50	74	-24.5	Vertical
7440.000	8.54	35.43	39.05	48.54	53.46	74	-20.54	Vertical
9920.000	9.09	38.27	37.75	42.72	52.33	74	-21.67	Vertical
11872.880	10.20	38.57	38.64	43.36	53.49	74	-20.51	Vertical
1589.289	3.79	29.13	38.38	52.97	47.51	74	-26.49	Horizontal
3525.555	5.89	32.92	38.75	48.66	48.72	74	-25.28	Horizontal
4960.000	5.89	34.86	39.29	49.41	50.87	74	-23.13	Horizontal
7440.000	8.54	35.43	39.05	48.12	53.04	74	-20.96	Horizontal
9920.000	9.09	38.27	37.75	43.77	53.38	74	-20.62	Horizontal
12178.980	10.36	38.93	38.85	43.39	53.83	74	-20.17	Horizontal

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level = Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.