

Compliance Testing, LLC

Previously Flom Test Lab EMI, EMC, RF Testing Experts Since 1963 toll-free: (866) 311-3268 fax: (480) 926-3598

http://www.ComplanceTesting.com info@ComplanceTesting.com

Test Report

Prepared for: L-3 Aviation Products

Model: 228E5733-00

Description: AFIRS 228S Satellite Data Unit

Serial Number: N/A

FCC ID: IB2AFIRS228S0

То

FCC Part 25

Date of Issue: November 20, 2017

On the behalf of the applicant:

L-3 Aviation Products PO Box 3041 Sarasota, FL 34232

Attention of:

Dan Gross, Program Manager Ph: (941)371-0811 E-Mail: Dan.Gross@L3T.com

Prepared By Compliance Testing, LLC 1724 S. Nevada Way Mesa, AZ 85204 (480) 926-3100 phone / (480) 926-3598 fax <u>www.compliancetesting.com</u> Project No: p1790002

1

Alex Macon Project Test Engineer

This report may not be reproduced, except in full, without written permission from Compliance Testing. All results contained herein relate only to the sample tested

Test Report Revision History

Revision	Date	Revised By	Reason for Revision
1.0	10/20/17	Alex Macon	Original Document
2.0	11/14/17	Amanda Reed	Updated FCC ID
3.0	11/17/17	Alex Macon	Updated Ansi 63.4 version on page 5 Updated block diagram on page 10 Relocated output power plots under the output power procedure. Updated test procedure on page 11 Updated Equipment utilized list Added emission designator to page 5

Table of Contents

Description	<u>Page</u>
Standard Test Conditions and Engineering Practices	5
Test Result Summary	6
Power Limits	7
Emissions Limitations for Mobile Earth Stations	10
Occupied Bandwidth	11
Emission Masks	14
Frequency Tolerance (Temperature Variation)	17
Field Strength of Spurious Radiation	19
Test Equipment Utilized	20

ILAC / A2LA

Compliance Testing, LLC, has been accredited in accordance with the recognized International Standard ISO/IEC 17025:2005. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer joint ISO-ILAC-IAF Communiqué dated January 2009).

The tests results contained within this test report all fall within our scope of accreditation, unless noted in the table below.

Please refer to <u>http://www.compliancetesting.com/labscope.html</u> for current scope of accreditation.

Testing Certificate Number: 2152.01

FCC Site Reg. #349717

IC Site Reg. #2044A-2

Non-accredited tests contained in this report:

N/A

Standard Test Conditions and Engineering Practices

Unless otherwise indicated, the procedures contained in ANSI C63.4-2014 were observed during testing.

Prior to testing, the EUT was tuned up in accordance with the manufacturer's alignment procedures. All external gain controls were maintained at the position of maximum and/or optimum gain throughout the testing.

Measurement results, unless otherwise noted, are worst case measurement.

Unless otherwise indicated in the specific measurement results, the ambient temperature was maintained within the range of 10° to 40°C (50° to 104°F) and the relative humidity levels were in the range of 10% to 90%.

Environmental Conditions							
Temperature (°C)	TemperatureHumidityPressure(°C)(%)(mbar)						
25.24	33.85	969.47					

Test and Measurement Data

All tests and measurement data shown were performed in accordance with FCC Rules and Regulations, Volume II; Part 2 and the following individual Parts: FCC Part 25 Satellite Communications.

Prior to testing the EUT was tuned up in accordance with the manufacturer's alignment procedures. All external gain controls were maintained at the position of maximum and/or optimum gain throughout the testing.

Measurement results, unless otherwise noted, are worst case measurements.

EUT Description Model: 228E5733-00 Description: AFIRS 228S Satellite Data Unit Firmware: N/A Software: N/A Serial Number: N/A Additional Information: Iridium sitcom system used in aircrafts which utilizes an authorized emission designator of 41K7V7D and 41K7V7W

EUT Operation during Tests

The EUT was placed in a test mode by the manufacturer. The test mode allowed the device to transmit continuously on high mid and low channels.

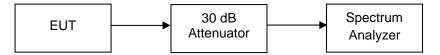
Test Result Summary

Specification	Test Name	Pass, Fail, N/A	Comments
25.204	Power Limits	Pass	
25.202(f)	Emissions Mask	Pass	
25.216(c)(g)(i) 25.202(f)	Emissions Limits for Mobile Earth Stations	Pass	
25.202(d)	Frequency Tolerance	Pass	

Power Limits Engineer: Alex Macon Test Date: 10/17/2017

Test Procedure

The UUT was connected to a Spectrum analyzer through a 20 dB attenuator. Attenuator and cable losses were input into the analyzer as a reference level offset to ensure accurate measurements were obtained. The EIRP is a summation of the conducted power and the antenna gain.


The following setting on spectrum analyzer is used for measuring average power of the fundamental:

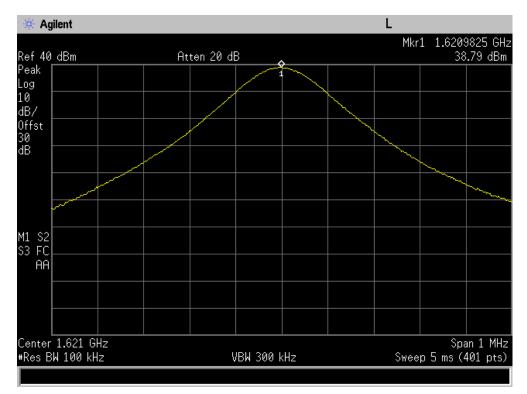
- 1- Set span to at least 1.5 times the OBW
- 2- Set RBW = 1-5% of the OBW, not to exceed 1 MHz.
- 3- Set VBW \geq 3 × RBW
- 4- Set number of points in sweep \geq 2 × span / RBW
- 5- Sweep time = auto-couple
- 6- Detector = RMS (power averaging)

8- Trace average at least 100 traces in power averaging (i.e., RMS) mode

9- Compute the power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with the band limits set equal to the OBW band edges. If the instrument does not have a band power function, then sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

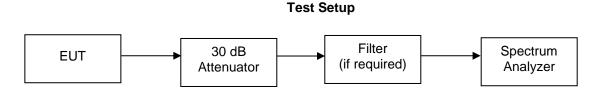

Test Setup

Transmitter Average Output Power


Tuned Frequency (MHz)	Conducted Output Power (dBm)	Antenna Gain (dBi)	EIRP Output Power (dBm)	Specification Limit
1616.0188	38.13	3	41.38	No limit for Mobile Earth Stations
1620.9825	38.79	3	41.79	No limit for Mobile Earth Stations
1625.950	38.63	3	41.63	No limit for Mobile Earth Stations

Output Power Plot 1616.0188 MHz

Output Power Plot 1620.9825 MHz


Output Power Plot 1625.950 MHz

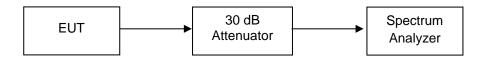
Emissions Limitations for Mobile Earth Stations Engineer: Alex Macon Test Date: 10/17/2017

Test Procedure

The EUT was connected directly to a spectrum analyzer and the conducted spurious emissions were measured to ensure that the EUT met the requirements specified. Only the worst-case emission at each frequency was reported. Notch and high pass filters were utilized to ensure that the fundamental power did not force the input of the spectrum analyzer into compressions. These losses in addition to cable losses were input into the analyzer as a reference level offset to ensure accurate measurements were obtained.

Emissions Limitations Summary Table

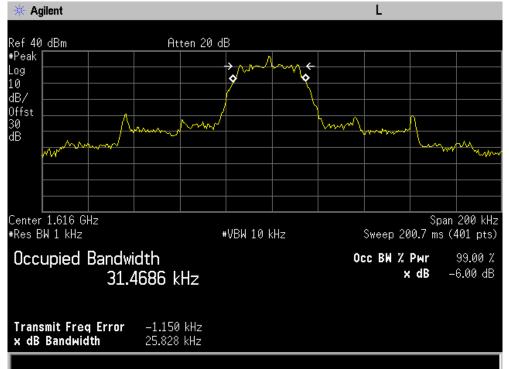
Tuned Frequency (MHz)	Result	Comments
1616.0188	Pass	See Plots
1620.9825	Pass	See Plots
1625.950	Pass	See Plots


See Annex A for test plots

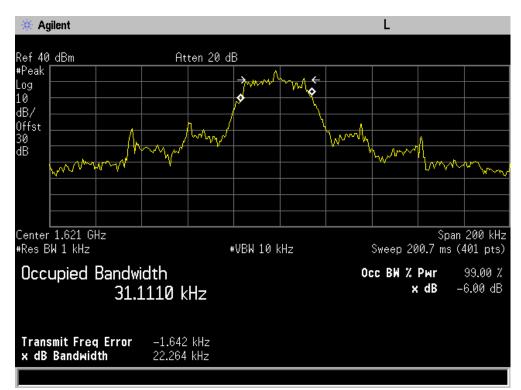
Occupied Bandwidth Engineer: Alex Macon Test Date: 10/17/2017

Test Procedure

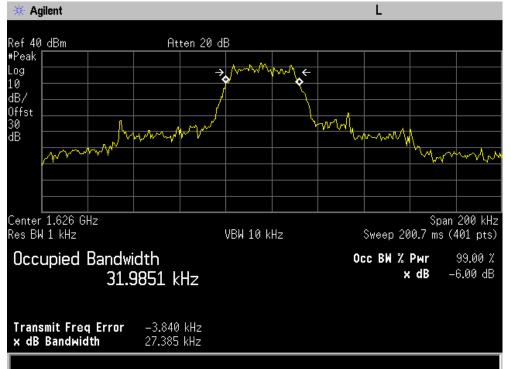
The EUT was connected directly to a spectrum analyzer. The occupied bandwidth of the modulated output was measured and plotted. Attenuator and cable losses were input into the analyzer as a reference level offset to ensure accurate measurements were obtained. ANSI C63.26 2015 section 5.4.4 was followed to obtain results.


Note: There is no requirement for occupied bandwidth in Part 25 for Mobile Earth Stations. However, the emissions masks are based upon the occupied bandwidth. This information is reported for reference only.

Frequency (MHz)	Measured Bandwidth (kHz)
1616.0188	31.4686
1620.9825	31.1110
1625.950	31.9851

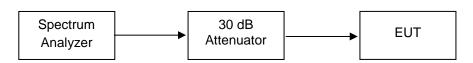

Test Results

1616.0188 MHz



^{1620.9825} MHz

1625.950 MHz

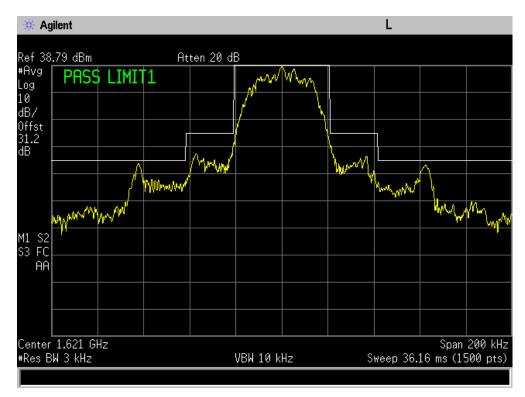


Emission Masks Engineer: Alex Macon Test Date: 10/17/2017

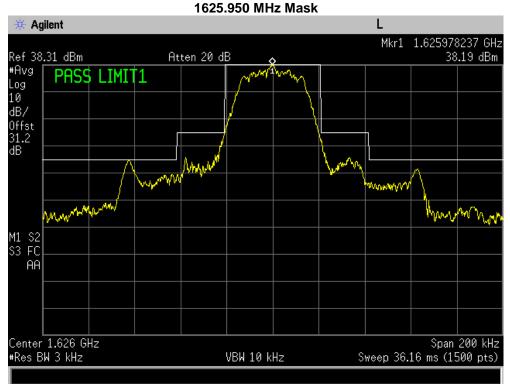
Test Procedure

The EUT was connected directly to a spectrum analyzer to verify that the EUT met the requirements for emission mask. Attenuator and cable losses were input into the analyzer as a reference level offset to ensure accurate measurements were obtained.

Test Setup



Emission Mask Plots



1616.0188 MHz Mask

1620.9825 MHz Mask

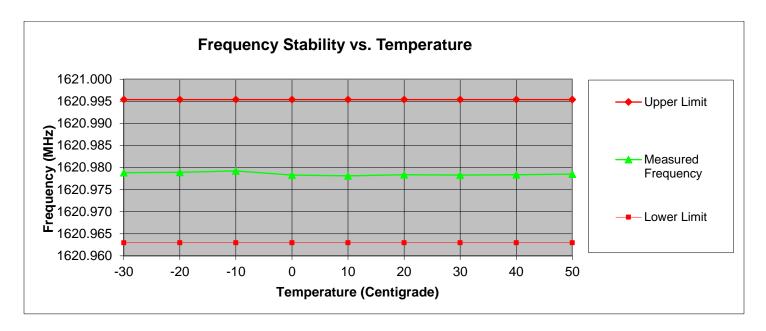
Frequency Tolerance (Temperature Variation) Test Engineer: Alex Macon Test Date: 10/17/2017 Limit: 0.001%

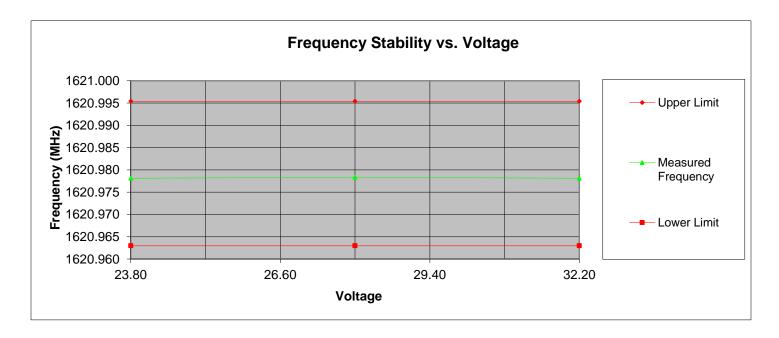
Test Procedure

The EUT was placed inside an environmental test chamber, and connected to a spectrum analyzer. The span and RBW was adjusted for narrowband operation to ensure an accurate measurement of the CW signal. The temperature was varied from –30 to +50°C in 10°C increments. After a 30-minute soak time the output frequency was

The temperature was varied from -30 to +50°C in 10°C increments. After a 30-minute soak time the output frequency was measured. At 20°C the voltage was varied +/- 15% from the nominal voltage.

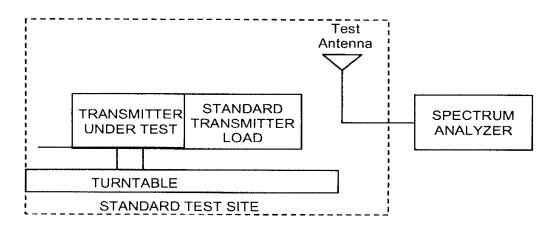
Test Setup


Frequency Versus Temperature


Tuned Frequency (MHz)	Frequency Tolerance %	Upper Limit (MHz)	Lower Limit (MHz)	centigrade	Frequency	Margin	Lower Margin (MHz)
1620.98	0.0010	1620.9953798	1620.9629602	-30	1620.9788400	0.0165398	0.0158798
		1620.9953798	1620.9629602	-20	1620.9789200	0.0164598	0.0159598
		1620.9953798	1620.9629602	-10	1620.9792400	0.0161398	0.0162798
		1620.9953798	1620.9629602	0	1620.9782790	0.0171008	0.0153188
		1620.9953798	1620.9629602	10	1620.9781190	0.0172608	0.0151588
		1620.9953798	1620.9629602	20	1620.9783590	0.0170208	0.0153988
		1620.9953798	1620.9629602	30	1620.9782790	0.0171008	0.0153188
		1620.9953798	1620.9629602	40	1620.9783590	0.0170208	0.0153988
		1620.9953798	1620.9629602	50	1620.9785190	0.0168608	0.0155588

Frequency Versus Voltage

Tuned Frequency (MHz)	Frequency Tolerance %	Upper Limit (MHz)	Lower Limit (MHz)	Nominal Voltatge	J. J	Frequency	Margin	Lower Margin (MHz)
1620.9	0.0010	1620.9953798	1620.9629602	28.00	23.80	1620.9781190	-0.0172608	0.01515879
		1620.9953798	1620.9629602		28.00	1620.9783590	-0.0170208	0.01539879
		1620.9953798	1620.9629602		32.20	1620.9781190	-0.0172608	0.01515879


Field Strength of Spurious Radiation

Test Engineer: Alex Macon Test Date: 10/17/2017

Test Procedure

- A) Connect the equipment as illustrated
- B) Adjust the spectrum analyzer for the following settings:
 - 1) Resolution Bandwidth 100 kHz (< 1 GHZ), 1 MHZ (> 1GHz)
 - 2) Video Bandwidth \geq 3 times Resolution Bandwidth, or 30 kHz
 - 3) Sweep Speed ≤2000 Hz/second
 - 4) Detector Mode = Mean or Average Power
- C) Place the transmitter to be tested on the turntable in the standard test site. The transmitter is transmitting into a non- radiating load that is placed on the turntable. The RF cable to this load should be of minimum length.
- D) For each spurious measurement, the test antenna should be adjusted to the correct length for the frequency involved. This length may be determined from a calibration ruler supplied with the equipment. Measurements shall be made from the lowest radio frequency generated in the equipment to the tenth harmonic of the carrier, except for the region close to the carrier equal to ± the test bandwidth (see section 1.3.4.4).
- E) For each spurious frequency, raise and lower the test antenna from 1 m to 4 m to obtain a maximum reading on the spectrum analyzer with the test antenna at horizontal polarity. Repeat this procedure to obtain the highest possible reading. Record this maximum reading.
- F) Repeat Step E) for each spurious frequency with the test antenna polarized vertically.

Test Setup

See Annex B for test plots

Test Equipment Utilized

Description	Manufacturer	Model #	CT Asset #	Last Cal Date	Cal Due Date
Horn Antenna	ARA	DRG-118/A	i00271	6/16/16	6/16/18
Humidity / Temp Meter	Newport	IBTHX-W-5	i00282	6/9/17	6/9/18
Spectrum Analyzer	Agilent	E4407B	i00331	10/19/16	10/19/17
Bi-Log Antenna	Schaffner	CBL 6111D	i00349	8/3/16	8/3/18
EMI Analyzer	Agilent	E7405A	i00379	2/22/17	2/22/18
3 Meter Semi-Anechoic Chamber	Panashield	3 Meter Semi-Anechoic Chamber	i00428	8/15/16	8/15/19
PSA Spectrum Analyzer	Agilent	E4445A	i00471	9/6/2017	9/6/2018
Temperature Chamber	Tenney	Tenney Jr	i00027	Verified or	n: 10/17/17
Preamplifier	Miteq	AFS44 00101 400 23-10P- 44	i00509	N/A	N/A

In addition to the above listed equipment standard RF connectors and cables were utilized in the testing of the described equipment. Prior to testing these components were tested to verify proper operation.

END OF TEST REPORT