

**TEST REPORT
FOR THE
TIDELAND SIGNAL CORPORATION
MODEL ATN01-311-03
AUTOMATIC IDENTIFICATION SYSTEM
AID TO NAVIGATION
PHYSICAL TESTS**

Prepared for:

L3 Communications Aviation Recorders Corp.
6000 Fruitville Road
Sarasota, FL 34232
USA

Submitted by:

Green Mountain Electromagnetics, Inc.

(802) 388-3390
Fax: (802) 388-6279
E-mail: gme@gmelectro.com
219 Blake Roy Road • Middlebury, Vermont 05753

Copyright: April 7, 2008
Revised: June 25, 2008

**L3 Communications Aviation Recorders Corporation
CE Physical Testing
By
Green Mountain Electromagnetics, Inc.**

Unit: Automatic Identification System Aid to Navigation (ATN01-311-03)

Tested: March 13 - 20, 2008

Revision: Section VIII - Additional Spurious Response and Blocking Data

I. Applicable Standards:

The unit described in this report was evaluated for compliance with paragraph 7, "AIS AtoN Station Tests" of IEC 62320-2, "Maritime Navigation and Radiocommunication Equipment and Systems – Automatic Identification System (AIS), Part 2: AIS AtoN Stations – Operational and Performance Requirements, Methods of Testing and Required Test Results (2007)." All procedures and equipment are in accordance with IEC 62320-2.

GME is internationally accredited by the American Association for Laboratory Accreditation (A2LA) and meets the quality requirements in ISO/IEC 17025 (2005), "General Requirements for the Competence of Testing and Calibration Laboratories." For scope of accreditation contact GME.

II. Measurement Location:

This unit was tested at the manufacturer's laboratory. The L3 laboratory is located at 6000 Fruitville Road, Sarasota, FL.

III. Unit Tested:

The Tideland Signal Corporation, Automatic Identification System (AIS) Aid to Navigation (AtoN) Model ATN01-311-03 provides continuous remote signal and data transmission for ship identification. The ATN01-311-03 uses DC power, has a TDMA transmitter and two TDMA/GPS receivers. It consists of the multi-piece metal enclosure with connector hardware, the transmit/receive circuits, the microprocessor/data-storage electronics, and the antenna interface. The table below describes the unit tested to determine compliance with the standards:

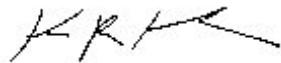
Model/P/N	Manufacturer	Serial Number
AIS AtoN ATN01-311-03	For Tideland Signal Corp. by L3 Communications Corp.	000531163

The following table describes the system physical and electrical properties:

Model	Volts/Amps/Hertz	H/W/D in cm
ATN01-311-03	12 VDC, 2.5 A	15/15/15

The table below describes the support equipment used during testing:

Product	Manufacturer	Model	Serial Number
PC	Antec	Custom by L3	L3ID 9835
Monitor	Dell	CN 0CC280	p/o L3ID 9835
Keyboard	Microsoft	Basic RT 9480	698200139238
Mouse	Logitech	MBT96A	HC6010201177
Antenna	Matsushita	GPS	n/a
Pattern/Modulation Generator (2)	Sine Qua Non	PMG-1	L3ID 5608/9
Power Supply (2)	HP	3634A	L3ID R10150/10321
Attenuator, 30 dB Fixed	Agilent	8489A	L3ID 5121
Combiner/Splitter	Mini-Circuits	ZSC-4-1	L3ID 5638
Band Reject Filter	n/a	n/a	n/a
Serial Hub	Quatech	n/a	L3ID 5636


IV. Summary of Results:

The Tideland Signal Corporation, Model ATN01-311-03 complies with the requirements in IEC 62320-2, paragraph 7. Section VIII contains the results summarized in the table below. All results are for 25-kHz TDMA operation and both receivers.

Test	Mode/Port	IEC 62320-2		Specified Value	Measured Value
		Para.	Tolerance/Limit		
1	Frequency Error	Transmit	7.1.1.1	± 500 Hz ± 500 Hz	156,025,000 Hz 162,025,000 Hz
2	Carrier Power	Transmit	7.1.1.2	± 1.5 dB	40.97 dBm LF 40.97 dBm HF
3	Modulation Spectrum	Transmit	7.1.1.3	125-kHz lmt.	62320-2 Fig. 10
4	Test Sequence and Modulation Accuracy	Transmit	7.1.1.4	0 Start 24b 01 pattern b 0-1 < only b 2-3 $\pm 20\%$ b 4-31 $\pm 10\%$ b 32-199 $\pm 10\%$ b 32-199 $\pm 10\%$	0 Start 24b 01 pattern 3400 Hz 2400 Hz 2400 Hz 1740 Hz TS1 2400 Hz TS2
5	Power vs. Time Function	Transmit	7.1.1.5	$+1.5$ dB/-3 dB $+1.5$ dB/-1 dB -50 dB _{Pc} off	62320-2 Fig. 12
6	Sensitivity	Receive	7.1.2.1	-107 dBm	$\leq 20\%$ PER
7	Error Behavior	Receive	7.1.2.2	-7/-77 dBm	$\leq 10\% / 2\%$ PER
8	Co-channel Rejection	Receive	7.1.2.3	10 dB	$\leq 20\%$ PER
9	Adj-channel Selectivity	Receive	7.1.2.4	70 dB	$\leq 20\%$ PER
10	Spurious Rejection	Receive	7.1.2.5	70 dB	$\leq 20\%$ PER
11	Intermodulation Rejection	Receive	7.1.2.6	-101 dBm & -36 dBm	$\leq 20\%$ PER
12	Blocking/Desensitization	Receive	7.1.2.7	-23 dBm & -15 dBm	$\leq 20\%$ PER
13	Conducted Spurious	Receive	7.1.3.1	9 kHz – 4 GHz	-57/-47 dBm
14	Conducted Spurious	Transmit	7.1.3.2	9 kHz – 4 GHz	-36/-30 dBm
					Within Limit
					Within Limit

Testing was performed by Kyle R. Kowalczyk, president, Green Mountain Electromagnetics and requested by:

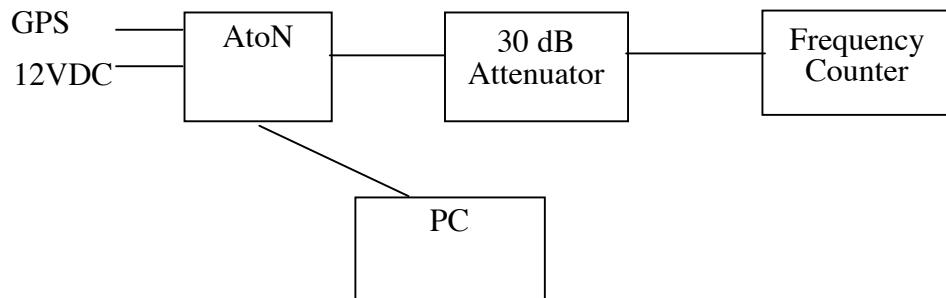
L3 Communications Aviation Recorders Corp.
6000 Fruitville Road/(PO Box 3041 34230)
Sarasota, FL 34232
USA

Kyle R. Kowalczyk
4/07/08

VI. Measuring Equipment:

The table below describes the instrumentation used by Green Mountain Electromagnetics to perform this testing:

Unit	Manufacturer	Model	Serial #	Last Cal.	Next Cal.
Spectrum Analyzer	Rohde & Schwarz	ESU	L3ID5552	11/07/07	11/07/08
Spectrum Analyzer	Rohde & Schwarz	FSEB 20	L3ID R8004	12/13/07	12/13/08
Signal Generator	Hewlett-Packard	8644B	L3ID 5456	08/28/07	08/28/08
Signal Generator	Hewlett-Packard	E4432B	L3ID R40923	01/22/08	01/22/10
Signal Generator	Marconi	2041	L3ID 501892	06/18/07	06/18/08
Frequency Counter	Agilent	53181A	L3ID R02274	07/05/07	07/05/08
Power Meter	Agilent	E4418B	L3ID 5114	04/23/07	04/23/08
Power Sensor with 30 dB Attenuator	Agilent	E9301B	L3ID 5118	06/08/07	06/08/08

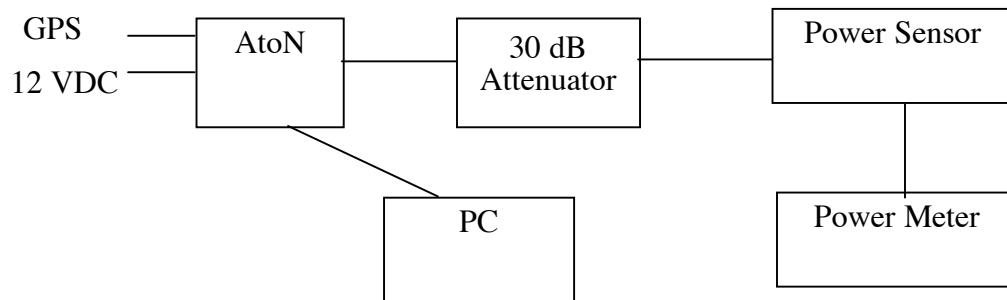

VI. Measurement Procedures for ATN01-311-03 Physical Tests:

1. Frequency Error.

Frequencies: 156.025, 162.025 MHz

Specification: ± 0.5 kHz Normal Operation

- a. Set up EUT and test instrumentation in laboratory.
 - i. Connect AtoN to 12-VDC power, PC, and GPS antenna; attach 30-dB attenuator to VHF port.
- b. Verify frequency counter and AtoN operation.
 - i. Frequency counter is connected to 30-dB attenuator.
 - ii. AtoN channels are selected from PC.
 - iii. Frequency counter requires warm-up period.
- c. Operate EUT at low channel with no modulation.
- d. Record frequency displayed on counter.
 - i. Repeat for high channel – settings are 1060 & 2088.


Block Diagram of Frequency Test

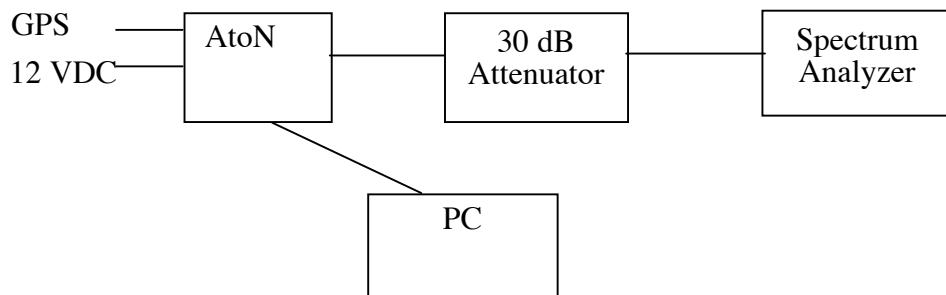
VI. Measurement Procedures for ATN01-311-03 Physical Tests Cont'd:

2. Carrier Power.

Specification: 40.97 ± 1.5 dBm (12.5W) Normal Operation

- a. Set up EUT and test instrumentation in laboratory.
 - i. Connect AtoN to 12-VDC power, PC, and GPS antenna; attach power-sensor specific 30-dB attenuator to VHF port. Connect power meter to sensor.
- b. Verify power meter and AtoN operation.
 - i. Power sensor is connected to companion 30-dB attenuator.
 - ii. AtoN channels are selected from PC. Use 162.025 MHz channel.
 - iii. Power meter requires warm-up period, calibration and zeroing.
- c. Operate EUT at high power unmodulated.
- d. Record level displayed on meter.
- e. Repeat for 156.025 MHz channel.

Block Diagram of Carrier Power Test


VI. Measurement Procedures for ATN01-311-03 Physical Tests Cont'd:

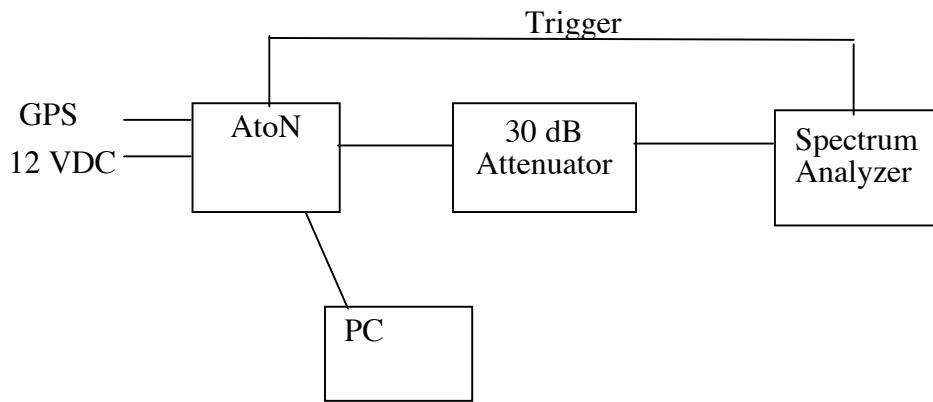
3. Modulation Spectrum Slotted Transmission.

125-kHz Envelope: 0 dBc ± 10 kHz,

Decrease -25 dBc to -60 dBc (or -30 dBm) from ± 10 kHz to ± 25 kHz,
-60 dBc (or -30 dBm) from ± 25 kHz to ± 62.5 kHz

- a. Set up EUT and test instrumentation in laboratory.
 - i. Connect AtoN to 12-VDC power, PC, and GPS antenna; attach 30-dB attenuator to VHF port.
- b. Verify analyzer and AtoN operation. Set for channel 1060 (156.025 MHz).
 - i. Spectrum analyzer is connected to 30-dB attenuator.
 - ii. AtoN test signal 3 per 62320-2, para. 6.2.4.3 is selected from PC.
 - iii. Spectrum analyzer requires warm-up period. Use 1-kHz RBW and 3-kHz VBW.
- c. Verify AtoN test signal on spectrum analyzer.
- d. Operate EUT at selected test signal with standard modulation.
- e. Record peak frequency spectrum displayed on analyzer. Figure 10 is limit.
- f. Repeat for channel 2088 (162.025 MHz).

Block Diagram of Modulation Spectrum Test


VI. Measurement Procedures for ATN01-311-03 Physical Tests Cont'd:

4. Test Sequence and Modulation Accuracy.

Test Signal 1 Specification: 24 bit 01 pattern, Start with 0 bit
Bits 0-1 deviation <3400 Hz
Bits 2-3 deviation 1920 Hz to 2880 Hz
Bits 4-31 deviation 2160 Hz to 2640 Hz
Bits 32-199 deviation 1565 Hz to 1915 Hz

Test Signal 2 Specification: 24 bit 01 pattern, Start with 0 bit
Bits 0-1 deviation <3400 Hz
Bits 2-3 deviation 1920 Hz to 2880 Hz
Bits 4-199 deviation 2160 Hz to 2640 Hz

- a. Set up EUT and test instrumentation in laboratory.
 - i. Connect AtoN to 12-VDC power, PC, and GPS antenna; attach 30-dB attenuator to VHF port. Use configuration A from figure 11. Trigger is direct into analyzer.
- b. Verify analyzer and AtoN operation. Set for 162.025 MHz.
 - i. Spectrum analyzer is connected to 30-dB attenuator.
 - ii. AtoN test signals 1 & 2 per 62320-2, para. 6.2.4.1/2 are selected from PC.
 - iii. Spectrum analyzer requires warm-up period.
- c. Operate EUT at first test signal with standard modulation.
- d. Record deviation displayed on analyzer. Use vector mode, and analog demodulation.
- e. Repeat for second test signal.
- f. Repeat for 156.025 MHz.

Block Diagram of Transmitter Accuracy Test

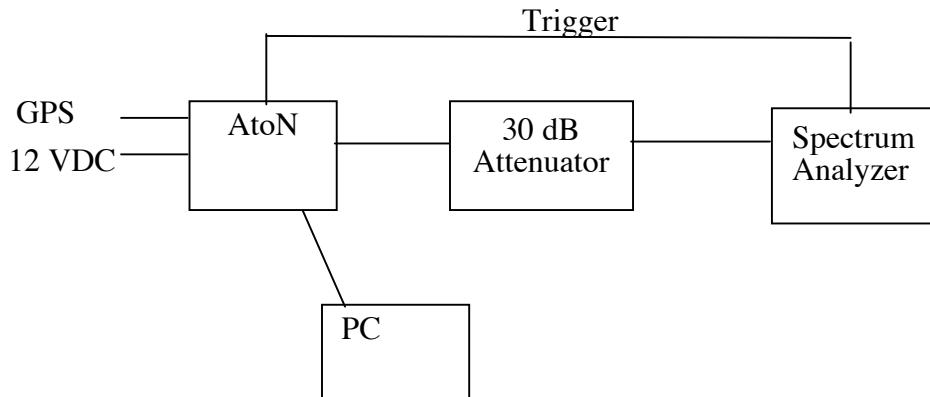
VI. Measurement Procedures for ATN01-311-03 Physical Tests Cont'd:

5. Transmitter Output Power vs. Time Function.

Start Specification: <-50 dBc at 0 μ s

Delay Specification: >-50 dBc at <624 μ s

Attack Specification 1: +1.5/-3 dB at 624 μ s

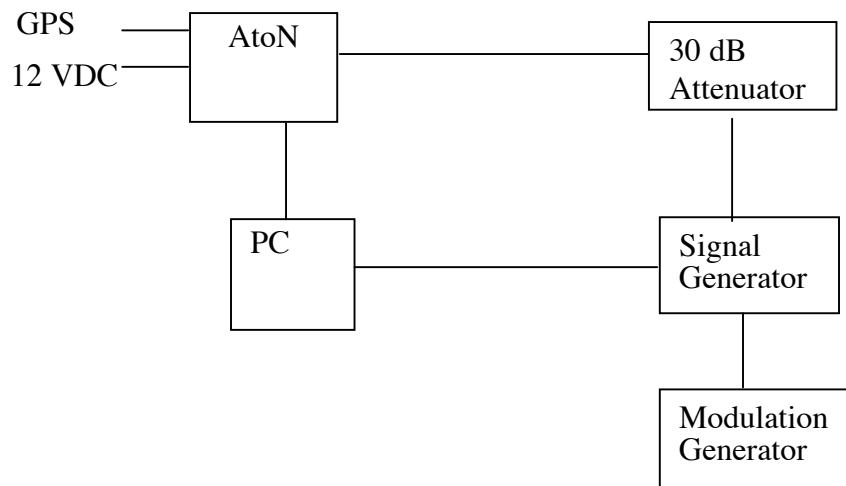

Attack Specification 2: +1.5/-1 dB at 832.4 μ s

Release Specification 1: +1.5/-1 dB at 24.024 ms

Release Specification 2: <-50 dBc at 26.146 ms

Duration Specification: Between 25.522 ms and 26.146 ms

- a. Set up EUT and test instrumentation in laboratory.
 - i. Connect AtoN to 12-VDC power, PC, and GPS antenna; attach 30-dB attenuator to VHF port. Trigger is direct into analyzer.
- b. Verify analyzer and AtoN operation. Set for channel 1060 (156.025 MHz).
 - i. Spectrum analyzer is connected to 30-dB attenuator.
 - ii. AtoN test signal 1 per 62320-2, para. 6.2.4.1 is selected from PC.
 - iii. Spectrum analyzer requires warm-up period. Use 1-MHz RBW and 1-MHz VBW.
- c. Operate EUT at first selected test signal with standard modulation.
- d. Record deviation displayed on analyzer. Use zero span.
- e. Repeat for 162.025 MHz. Mask is from figure 12.

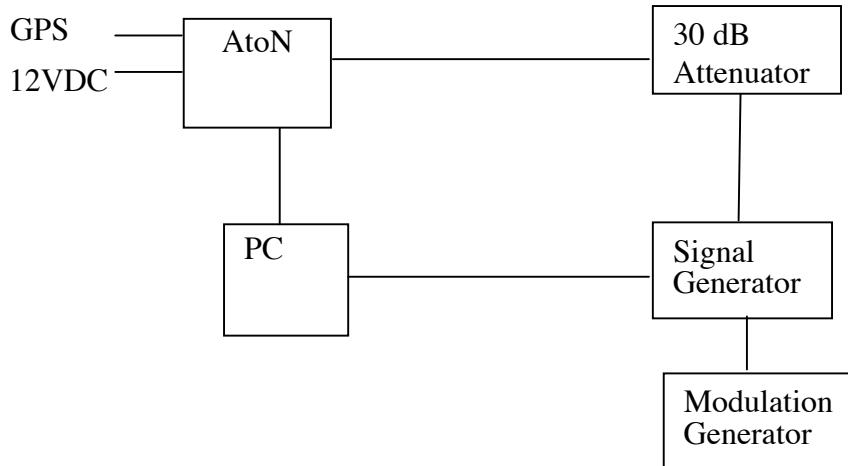

Block Diagram of Transmitter Time Function Test

VI. Measurement Procedures for ATN01-311-03 Physical Tests Cont'd:

6. Sensitivity.

Specification: -107 dBm @ $\leq 20\%$ PER Normal

- a. Set up EUT and test instrumentation in laboratory.
 - i. Connect AtoN to 12-VDC power, PC, and GPS antenna; for overload protection, attach 30-dB attenuator to VHF port.
- b. Verify PC and AtoN operation.
 - i. PC provides input to AtoN.
 - ii. Use modulation generator to provide test signal 4 per 62320-2, para. 6.2.4.4 and 200 packets.
 - iii. Signal generator set to provide -107 dBm at EUT (account for attenuator).
- c. Operate with standard modulation at 156.025 MHz.
- d. Run sensitivity software program on PC.
 - i. Software determines packet error rate.
- e. Repeat step d. for 156.025 MHz \pm 500 Hz.
- f. Repeat step d. for 162.025 MHz.
- g. Repeat step d. for 162.025 MHz \pm 500 Hz.

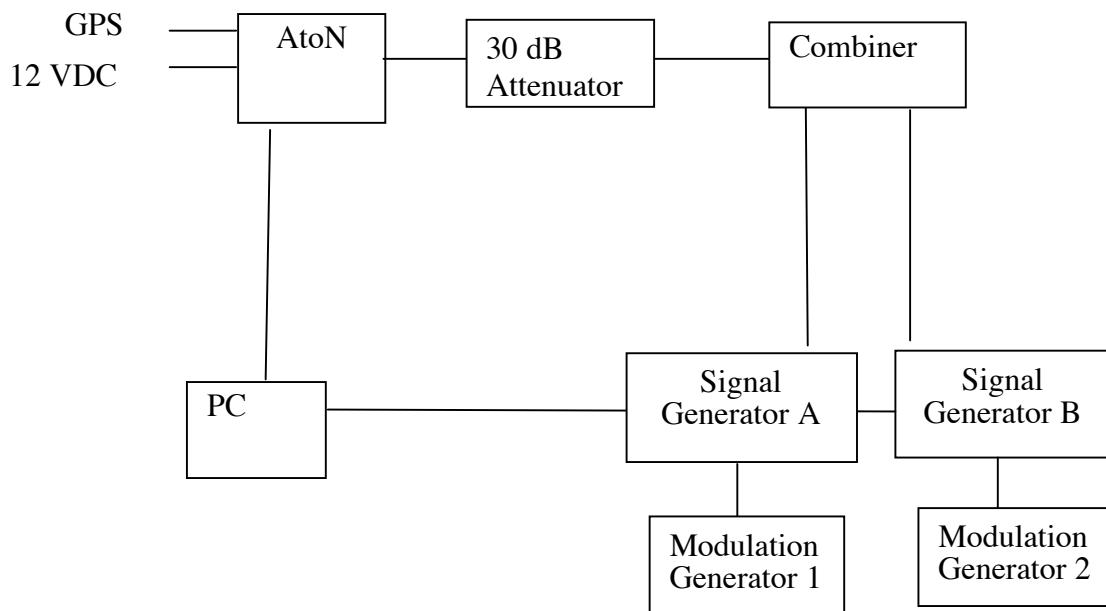

Block Diagram of Receiver Sensitivity Test

VI. Measurement Procedures for ATN01-311-03 Physical Tests Cont'd:

7. Error Behavior at High Input Levels.

Specification: -7 dBm @ $\leq 10\%$ PER, and -77 dBm @ $\leq 2\%$ PER

- a. Set up EUT and test instrumentation in laboratory.
 - i. Connect AtoN to 12-VDC power, PC, and GPS antenna; for overload protection, attach 30-dB attenuator to VHF port.
- b. Verify PC and AtoN operation.
 - i. PC provides input to AtoN.
 - ii. Use modulation generator to provide test signal 4 and 200 packets.
 - iii. Operate with modulation at 156.025 MHz
- c. Signal generator set to provide -77 dBm at EUT (account for attenuator).
- d. Run sensitivity software program on PC.
 - i. Software determines packet error rate.
- e. Signal generator set to provide -7 dBm.
- f. Run sensitivity software program on PC.
- g. Repeat steps c. to f. at 162.025 MHz.

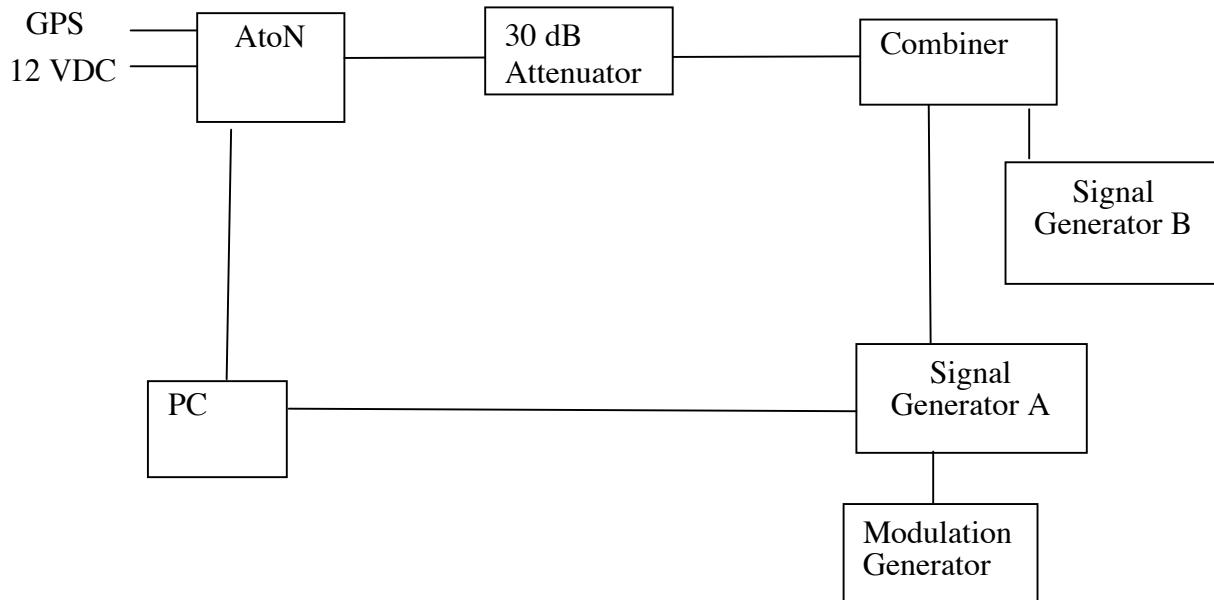

Block Diagram of Receiver Error Behavior Test

VI. Measurement Procedures for ATN01-311-03 Physical Tests Cont'd:

8. Co-Channel Rejection.

Specification: PER $\leq 20\%$

- a. Set up EUT and test instrumentation in laboratory.
 - i. Connect ATON to 12-VDC power, PC, and GPS antenna; for overload protection, attach 30-dB attenuator to VHF port.
- b. Verify PC and AtoN operation.
 - i. PC provides input to AtoN. Connect combiner output to attenuator input.
 - ii. Use modulation generator 1 to provide test signal 4 and 200 packets to SG A.
 - iii. Use modulation generator 2 to provide test signal 3 and 200 packets to SG B.
- c. PC is connected to signal generators A & B, then A & B are connected to combiner.
 - i. Signal generator A is set to provide -101 dBm at 156.025 MHz.
 - ii. Signal generator B is set to provide -111 dBm to EUT at same channel as A.
- d. Run sensitivity software program on PC.
 - i. Software determines packet error rate.
- e. Repeat step d. for 156.025 MHz ± 1000 Hz.
- f. Repeat step d. for 162.025 MHz.
- g. Repeat step d. for 162.025 MHz ± 1000 Hz.

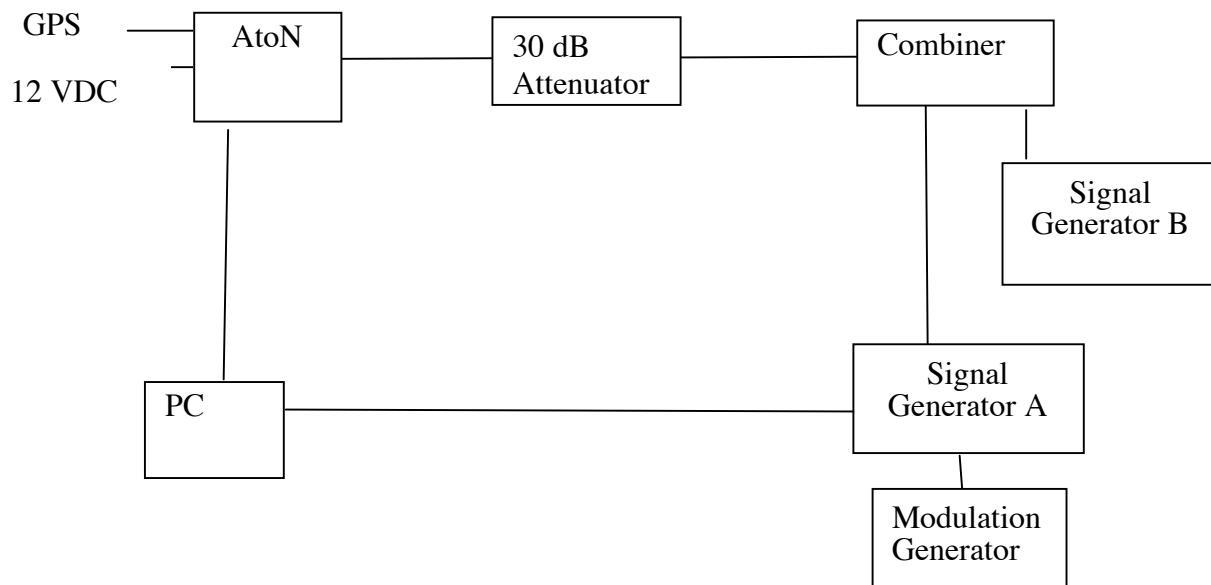

Block Diagram of Receiver Co-Channel Test

VI. Measurement Procedures for ATN01-311-03 Physical Tests Cont'd:

9. Adjacent Channel Selectivity.

Specification: PER $\leq 20\%$

- a. Set up EUT and test instrumentation in laboratory.
 - i. Connect ATON to 12-VDC power, PC, and GPS antenna; for overload protection, attach 30-dB attenuator to VHF port.
- b. Verify PC and AtoN operation.
 - i. PC provides input to AtoN. Connect combiner output to attenuator input.
 - ii. Use modulation generator to provide test signal 4 and 200 packets to SG A.
 - iii. Use settings on SG B for 400-Hz modulation with 3-kHz deviation.
- c. PC is connected to signal generators A & B, then A & B are connected to combiner.
 - i. Signal generator A is set to provide -101 dBm at 156.025 MHz.
 - ii. Signal generator B is set to provide -31 dBm to EUT at channel 25 kHz above A.
- d. Run sensitivity software program on PC.
 - i. Software determines packet error rate.
- e. Repeat step d. at channel 25 kHz below A.
- f. Repeat step c. to e. for 162.025 MHz.

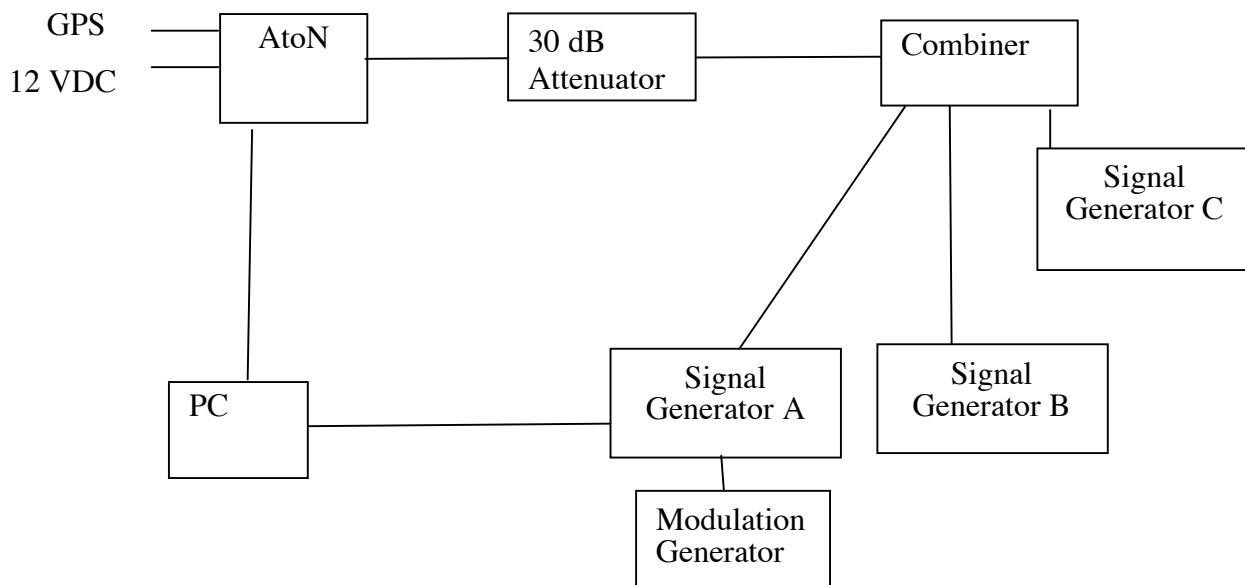

Block Diagram of Receiver Adj-Channel Test

VI. Measurement Procedures for ATN01-311-03 Physical Tests Cont'd:

10. Spurious Response Rejection.

Specification: PER $\leq 20\%$.

- a. Set up EUT and test instrumentation in laboratory.
 - i. Connect AtoN to 12-VDC power, PC, and GPS antenna; for overload protection, attach 30-dB attenuator to VHF port. Use PER method for sweeps and at specified frequencies. SFI calculations are in results.
- b. Verify PC and AtoN operation.
 - i. PC provides input to AtoN. Connect combiner output to attenuator input.
 - ii. Use modulation generator to provide test signal 4 and 200 packets to SG A.
- c. PC is connected to signal generators A & B, then A & B are connected to combiner.
 - i. Signal generator A is set to provide EUT with -101 dBm at 162.025 MHz
 - ii. Signal generator B set to provide -31 dBm EUT, FM modulated 400 Hz/3 kHz.
 - iii. Signal generator B set to provide sweeps to EUT per calculations in results (VIII-10).
- d. Run sensitivity software program on PC. Sweep over limited frequency range.
 - i. Software determines packet error rate.
 - ii. Record frequencies that create PER $\geq 2\%$.
- e. Run PER for frequencies identified during sweeps and all calculated SFI's.

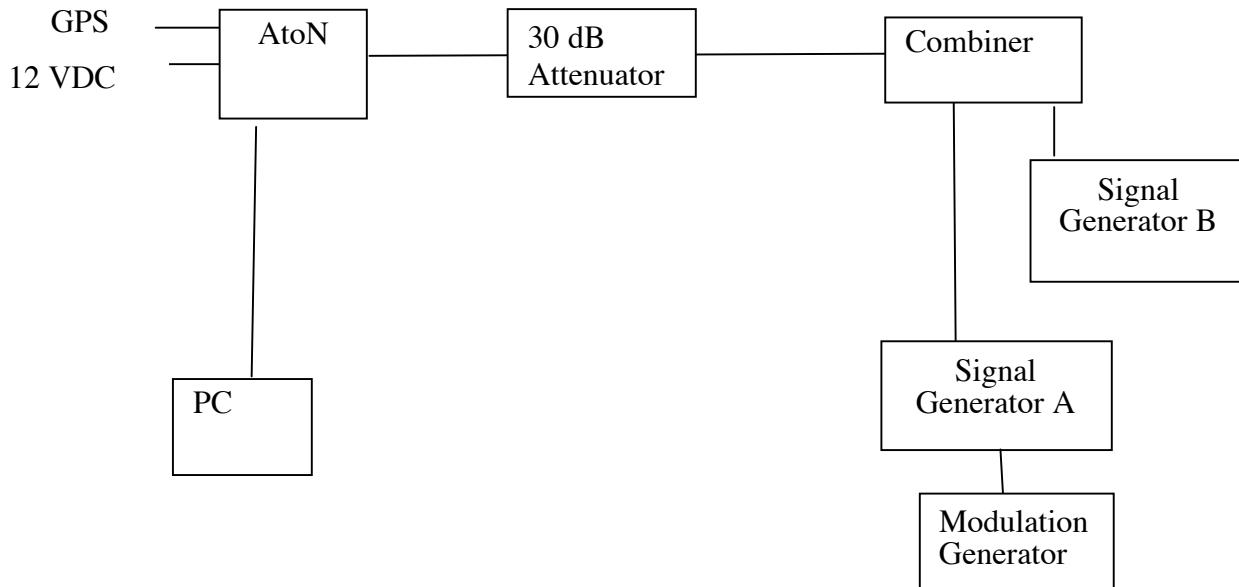

Block Diagram of Receiver Spurious Rejection Test

VI. Measurement Procedures for ATN01-311-03 Physical Tests Cont'd:

11. Intermodulation Rejection.

Specification: PER $\leq 20\%$

- a. Set up EUT and test instrumentation in laboratory.
 - i. Connect AtoN to 12-VDC power, PC, and GPS antenna; for overload protection, attach 30-dB attenuator to VHF port.
- b. Verify PC and AtoN operation.
 - i. PC provides input to AtoN. Connect combiner output to attenuator input.
 - ii. Use modulation generator to provide test signal 4 and 200 packets to SG A.
- c. PC controls signal generator A, and SG A – C are connected to combiner.
 - i. Signal generator A is set to provide -101 dBm at 162.025 MHz.
 - ii. Signal generator B provides -36 dBm at 161.525 MHz, unmodulated.
 - iii. Signal generator C provides -36 dBm at 161.025, FM modulated at 400 Hz/3 kHz.
- d. Record generator levels necessary for correct signal at EUT.
- e. Operate EUT with standard modulation at selected (A) channel.
- f. Run sensitivity software program on PC.
 - i. Software determines packet error rate.
- g. Repeat step e. with A at 156.025 MHz, B at 156.525 MHz, and C at 157.025 MHz.


Block Diagram of Receiver Intermodulation Rejection Test

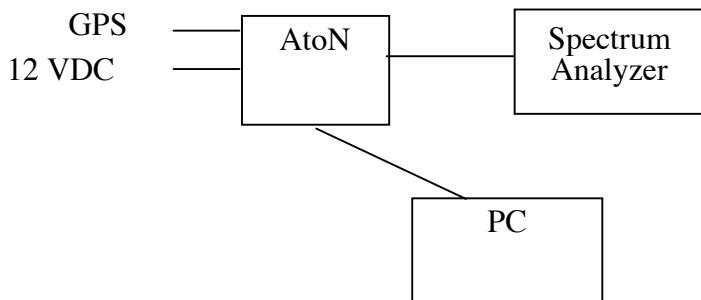
VI. Measurement Procedures for ATN01-311-03 Physical Tests Cont'd:

12. Blocking or Desensitization.

Specification: PER $\leq 20\%$

- a. Set up EUT and test instrumentation in laboratory.
 - i. Connect AtoN to 12-VDC power, PC, and GPS antenna; for overload protection, attach 30-dB attenuator to VHF port.
- b. Verify PC and AtoN operation.
 - i. PC provides input to AtoN. Connect combiner output to attenuator input.
 - ii. Use modulation generator to provide test signal 4 and 200 packets to SG A.
- c. PC monitors signal generator A and SG A – B are connected to combiner.
 - i. Signal generator A is set to provide -101 dBm at 156.025 MHz.
 - ii. Signal generator B set to provide -23 dBm at 156.525 MHz, unmodulated.
- d. Run spurious-rejection software program on PC.
 - i. Software determines packet error rate.
- e. Repeat step d. with B at 155.525, 157.025, 155.025, 158.025, 154.025 all MHz.
- f. Set B to -15 dBm, keep A at 156.025 MHz.
- g. Repeat step d. with B at 161.025, 151.025, 166.025, 146.025 all MHz.
- h. Repeat step d. with B set to -23 dB at 162.525 MHz, and A at 162.025 MHz.
- i. Repeat step d. with B at 161.525, 163.025, 161.025, 164.025, 160.025 all MHz.
- j. Set B to -15 dBm, keep A at 162.025 MHz.
- k. Repeat step d. with B at 167.025, 157.025, 172.025, 152.025 all MHz.

Block Diagram of Receiver Blocking Test


VI. Measurement Procedures for ATN01-311-03 Physical Tests Cont'd:

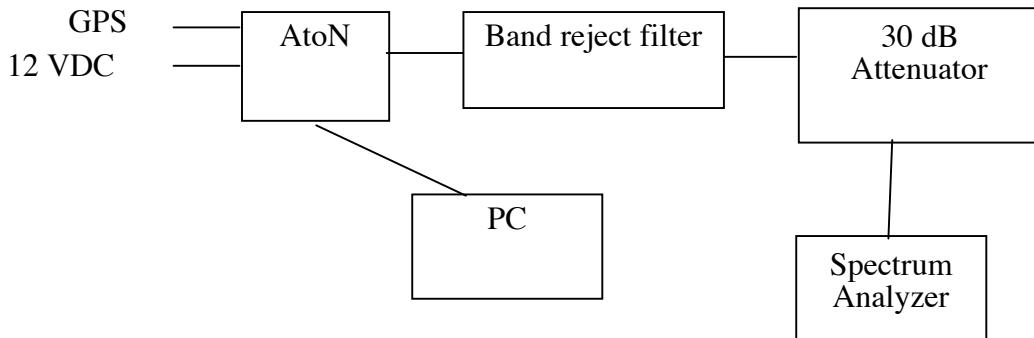
13. Conducted Spurious - Receive.

Specification: 9 kHz to 1 GHz: -57 dBm

1 GHz to 4 GHz: -47 dBm

- a. Set up EUT and test instrumentation in laboratory.
 - i. Connect AtoN to 12-VDC power and GPS antenna.
- b. Verify analyzer and AtoN operation.
 - i. Spectrum analyzer is connected to VHF port.
 - ii. Spectrum analyzer requires warm-up period.
- c. Verify AtoN test signal on spectrum analyzer.
- d. Put AtoN in receive only mode.
- e. Record frequency spectrum displayed on analyzer.

Block Diagram of Conducted Spurious Test


VI. Measurement Procedures for ATN01-311-03 Physical Tests Cont'd:

14. Conducted Spurious - Transmit.

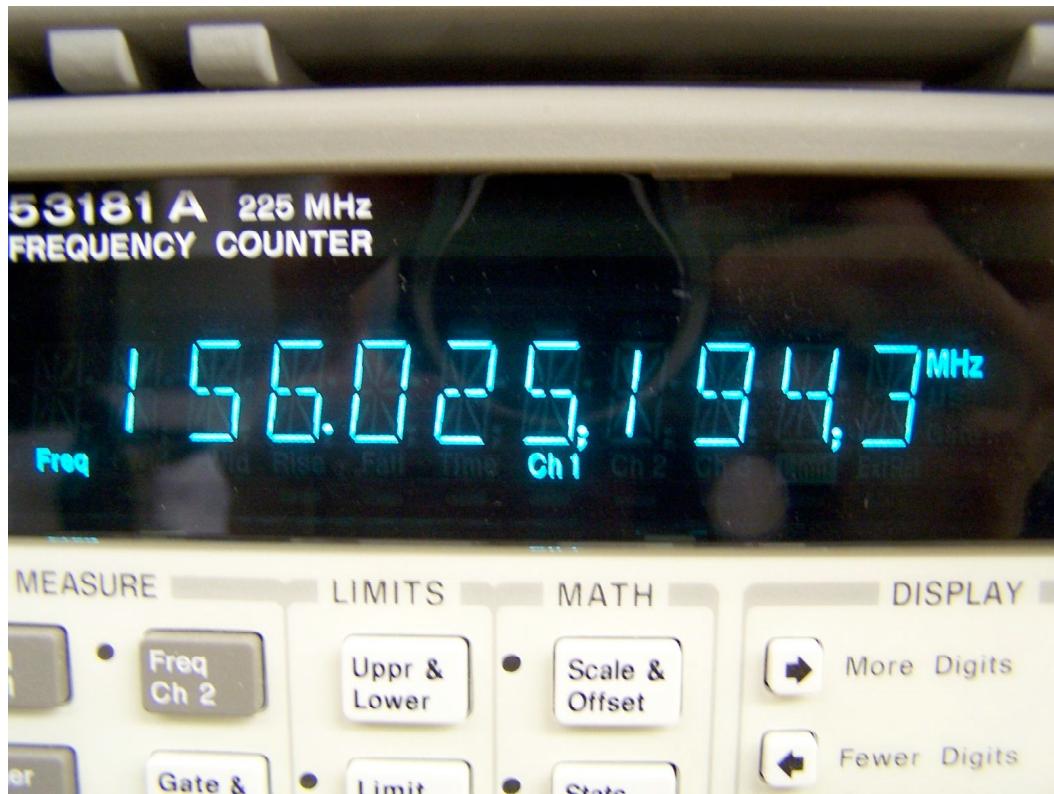
Specification: 9 kHz to 1 GHz: -36 dBm

1 GHz to 4 GHz: -30 dBm

- a. Set up EUT and test instrumentation in laboratory.
 - i. Connect AtoN to 12-VDC power and GPS antenna.
- b. Verify analyzer and AtoN operation.
 - i. Spectrum analyzer is connected to attenuator and filter VHF port.
 - ii. Spectrum analyzer requires warm-up period.
 - iii. Connect filter to VHF port.
- c. Operate AtoN transmitter unmodulated.
- d. Tune band reject filter to fundamental frequency of transmitter: Exclude frequencies ± 62.5 kHz from fundamental.
- e. Record required frequency spectrum displayed on analyzer.

Block Diagram of Conducted Spurious Test

VII. Test Setup Photographs for ATN01-311-03 Physical Tests:

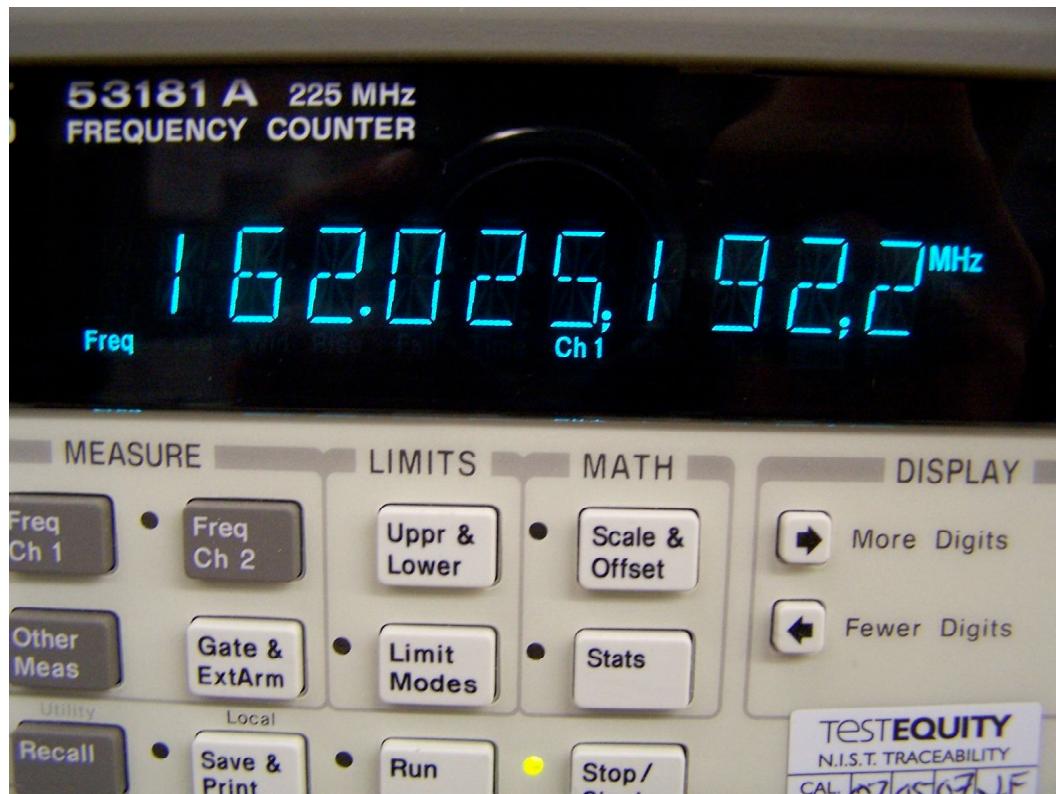


VIII. Measurement Results for ATN01-311-03 Physical Tests:

1. Frequency Error - Low.

Frequencies: 156.025 MHz

Specification: ± 0.5 kHz Normal Operation



VIII. Measurement Results for ATN01-311-03 Physical Tests:

1. Frequency Error High.

Frequencies: 162.025 MHz

Specification: ± 0.5 kHz Normal Operation

VIII. Measurement Results for ATN01-311-03 Physical Tests Cont'd:

2. Carrier Power at 156.025 MHz.

Specification: 40.97 ± 1.5 dBm (39.47 dBm to 42.47 dBm)

VIII. Measurement Results for ATN01-311-03 Physical Tests Cont'd:

2. Carrier Power at 162.025 MHz.

Specification: 40.97 ± 1.5 dBm (39.47 dBm to 42.47 dBm)

