

TEST REPORT

Report Number: 30536141 Project Number: 3053614 April 10, 2004

Testing performed on the

Frequency Hopping Spread Spectrum (FHSS) Transmitter Module

Model Numbers: LPT-24
FCC ID: IA9LPT24RC
to
FCC Part 15.247

for

OMNEX Control Systems, Inc.

A2LA Certificate Number: 1755-01

Test Performed by:

Intertek 1365 Adams Court Menlo Park, CA 94025

Test Authorized by:

OMNEX Control Systems Inc. Bld. 74 – 1833 Coast Meridian Road Port Coquitlam, British Columbia

Prepared by:	12 Andr	Date: April 10, 2004	
	Bruce Gordon		
Reviewed by:	David Chernomordia	Date: April 10, 2004	
	David Chernomordik		

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to copy or distribute this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program. This report must not be used to claim product endorsement by A2LA, NIST nor any other agency of the U.S. Government.

TABLE OF CONTENTS

1.0	Sum	mary of Tests	3
2.0	Gene	ral Description	4
	2.1	Product Description	
	2.2	Related Submittal(s) Grants	4
	2.3	Test Methodology	5
	2.4	Test Facility	5
3.0	Syste	em Test Configuration	6
	3.1	Support Equipment	6
	3.2	Block Diagram of Test Setup	6
	3.3	Justification	7
	3.4	Software Exercise Program.	7
	3.5	Mode of Operation During Test	7
	3.6	Modifications Required for Compliance	7
4.0	Meas	surement Results	
	4.1	Conducted Output Power at Antenna Terminals	8
	4.2	Hopping Channel 20 dB Bandwidth	9
	4.3	Minimum Hopping Channel Carrier Frequency Separation	12
	4.4	Minimum Number of Hopping	13
	4.5	Average Channel Occupancy Time	
	4.6	Out-of-Band Radiated Emissions (except emissions in restricted bands)	20
	4.7	Transmitter Radiated Emissions in Restricted Bands	32
	4.8	Radiated Emissions from digital part and receiver	36
	4.9	AC Line Conducted Emission	39
5.0	List	of test equipment	42
6.0	Docu	ment History	43

1.0 Summary of Tests

TEST	REFERENCE	RESULTS
Max. Output power	15.247(b)	Complies
20 dB Bandwidth	15.247(a)(1)	Complies
Min. Channel Separation	15.247(a)(1)	Complies
Min. Hopping Channels	15.247(a)(1)	Complies
Average Channel Occupancy Time	15.47(a)(1)	Complies
Out-of-Band Radiated Emission	15.247(c)	Complies
Radiated Emission in Restricted Bands	15.247(c), 15.205	Complies
Out-of-band Antenna Conducted Emission	15.247(c)	Not performed. The EUT passed Out-of-band Radiated Emission
AC Conducted Emission	15.207	Complies
Radiated Emission from Digital Part	15.109	Complies
Radiated Emission from Receiver L.O.	15.109	Not Applicable. The receiver tuned frequency is above 960 MHz
Antenna Requirement	15.203	Complies. The antenna is integral part of the radio.

2.0 General Description

2.1 Product Description

The EUT is a frequency hopping spread spectrum (FHSS) module that will typically be mounted on a carrier circuit board, which will be used in a variety of housings. General applications will be for handheld remote control of industrial equipment.

Overview of the EUT

Applicant	OMNEX Control Systems, Inc.			
Trade Name & Model No.	Frequency Hopping Spre	ad Spectrum (FHS	S) Transmitter Module,	
	Model: LPT-24			
FCC Identifier	IA9LPT24RC			
Use of Product	Transmitter for hand-held	d remote control of	industrial equipment.	
Type of Transmission	Spread Spectrum, Freque	ency Hopping		
Rated RF Output	10 mW (Typical), 12 mV	V (Maximum)		
Frequency Range	2403.1-2478.6 MHz			
Number of Channel(s)	756 (12 groups of 63 frequency channels)			
Data Rates and Modulation				
Type	4800 sym/s	FSK	4800 bps	
Antenna(s) type & Gain	2.45 GHz Chip Antenna,	Average Gain 1.0	dBi	
Antenna Requirement	The antenna is an integra	ted on-board chip	antenna; therefore, there	
	is no external antenna con	nnector.		
Manufacturer name &	OMNEX Control System	is Inc.		
address	#74-1833 Coast Meridian	n Rd.		
	Port Coquitlam, B.C., Ca	nada V3C 6G5		
	Tel: 604/944-9247 Fax: 6	604/944-9267		

A pre-production version of the EUT was received on January 15, 2004 in good operating condition. As declared by the Applicant, it is identical to the production units.

Date of Test: January 15, 2004 - January 25, 2004

2.2 Related Submittal(s) Grants

None.

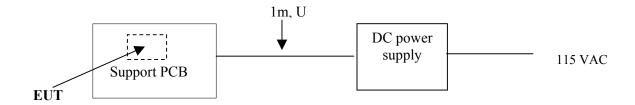
EMC Report for OMNEX Control Systems Inc. on the LPT-24, FCC ID: IA9LPT24RC File: 30536141 Page 4 of 43

2.3 Test Methodology

Radiated emissions measurements were performed according to the procedures in ANSI C63.4 (1992). Radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the **"Data Sheet"** of this Application. All other measurements were made in accordance with the procedures in part 2 of CFR 47.

2.4 Test Facility

The test site and conducted measurement facility used to collect the radiated data is site 1 (10 m semi-anechoic chamber) located in Menlo Park, California. This test facility and site measurement data have been fully placed on file with the FCC and A2LA accredited.



3.0 System Test Configuration

3.1 Support Equipment

Item #	Description	Model No.	Serial No.
1	DC power supply	HP E363A	Not labeled

3.2 Block Diagram of Test Setup

m: Length in metersU: UnshieldedS: Shielded

EMC Report for OMNEX Control Systems Inc. on the LPT-24, FCC ID: IA9LPT24RC
File: 30536141 Page 6 of 43

3.3 Justification

For radiated emission measurements the EUT is placed on a non-conductive table. The EUT is wired to transmit full power. During testing, all external I/O cables are manipulated to produce worst-case emissions.

The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters and the table is rotated 360°. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance. All readings are extrapolated back to the equivalent three-meter reading using inverse scaling with distance.

3.4 Software Exercise Program

The EUT exercise program used during radiated and conducted testing was designed to exercise the various system components in a manner similar to a typical use.

3.5 Mode of Operation During Test

The EUT was tested in 2 operation modes: Transmitting at a single frequency (low, middle and high) and transmitting employing the FHSS technique. In both modes the modulation was applied.

3.6 Modifications Required for Compliance

The following modifications were installed during compliance testing in order to bring the product into compliance (Please note that this list does not include changes made specifically by OMNEX Control Systems, Inc. Inc. prior to compliance testing):

Intertek installed no modifications.

4.0 Measurement Results

4.1 Conducted Output Power at Antenna Terminals FCC 15.247(b)(1)

Requirements

For systems operating in the 2400-2483.5 MHz band employing at least 75 hopping channels, the maximum peak output power is 1 watt (30 dBm), for all other systems – 0.125 W (21 dBm).

Procedure

Since the antenna port is not accessible, the alternative method was used to obtain the EUT output power. The field strength was measured at 3 m distance and the output power was calculated as below:

P (dBm) = E(dBuV/m) - 95.23 - G(dBi)

Where G is antenna gain of the EUT.

Test Results

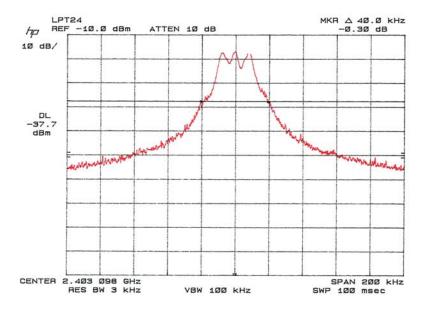
Frequency	SA	AF	CL	FS	Calculated
	Reading				Power
(MHz)	dB(uV)	dB(1/m)	dB	dB(uV/m)	dBm
2403	71.7	29.2	7.2	108.1	11.9
2442	71.5	29.3	7.2	108.0	11.8
2479	70.4	29.4	7.2	107.0	10.8

NOTE: Hopping function was disabled during the test

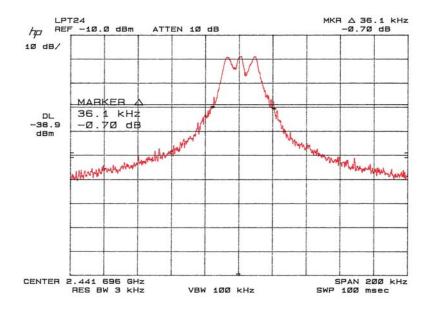
4.2 Hopping Channel 20 dB Bandwidth FCC 15.247(a)(ii)(iii)

Requirements

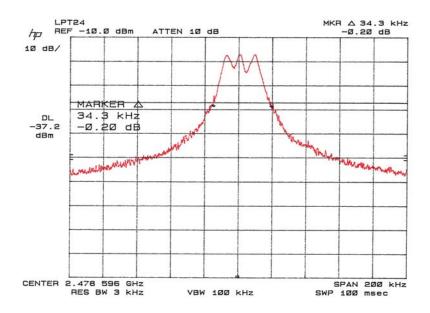
For systems operating in the 2400-2483.5 MHz band employing at least 75 hopping channels, the maximum 20 dB bandwidth of the hopping channel is 1 MHz. Systems may utilize hopping channels whose 20 dB bandwidth is greater than 1 MHz provided the system use at least 15 non-overlapping channels.


Test Results

The test result is presented in the table below and spectrum analyzer plots.


Frequency (MHz)	20-dB channel bandwidth	Plot
2403	40.0 kHz	2.1
2442	36.1 kHz	2.5
2479	34.3 kHz	2.9

Plot 2.1



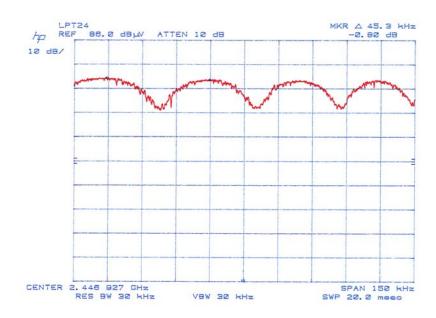
Plot 2.2

Plot 2.3

4.3 Minimum Hopping Channel Carrier Frequency Separation FCC Ref: 15.247(a)(1)

Requirements

Systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth, whichever is greater.


Procedure

Using the DELTA MARKER function of the analyzer, the frequency separation between two adjacent channels was measured and compared against the limit.

Test Results

Please refer to the spectrum analyzer plot # 3.1. The channel separation is 45.3 kHz.

Plot 3.1

4.4 Minimum Number of Hopping FCC Ref: 15.247(a)(1)(i&ii)

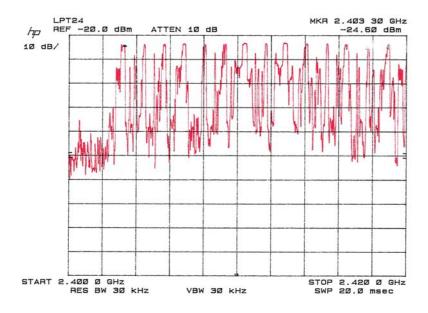
Requirements

Systems operating in the 2400-2483.5 MHz band shall use at least 75 hopping channels having the 20 dB bandwidth of 1 MHz or less, and at least 15 non-overlapping channels having the 20 dB bandwidth of more than 1 MHz.

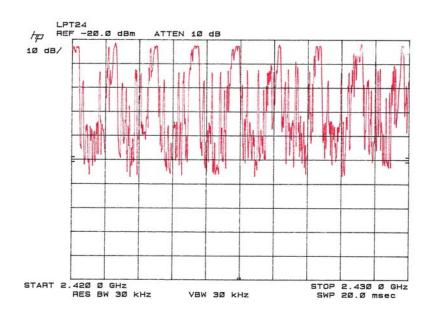
Procedure

The RF passband of the EUT was divided into 3 approximately equal bands. With the analyzer set to MAX HOLD, readings were taken for 2 - 3 minutes in each band. The channel peaks so recorded were added together, and the total number compared to the minimum number of channels required in the regulation.

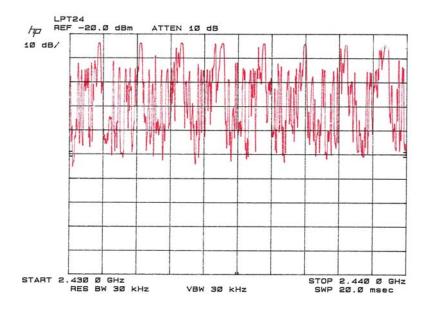
Test Results


Number of hopping channels with the bandwidth of 35 kHz	>75	

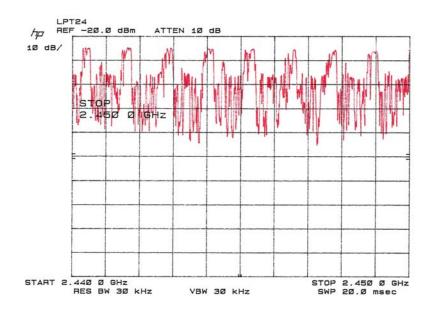
Refer to attached spectrum analyzer plots: plots 4.1-4.7.


EMC Report for OMNEX Control Systems Inc. on the LPT-24, FCC ID: IA9LPT24RC File: 30536141 Pa

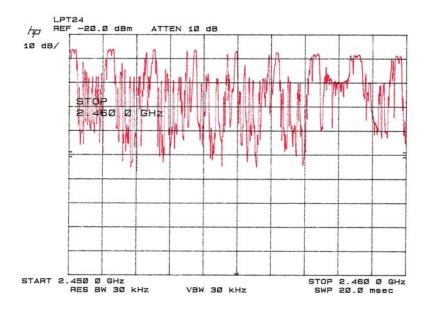
Plot 4.1



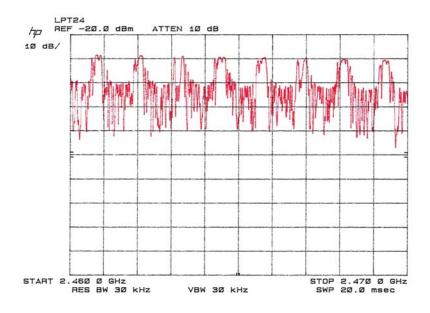
Plot 4.2



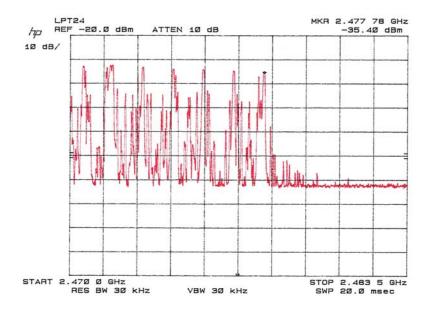
Plot 4.3



Plot 4.4



Plot 4.5



Plot 4.6

Plot 4.7

4.5 Average Channel Occupancy Time FCC 15.247(a)(1)(ii)(iii)

Requirements

For systems operating in the 2400-2483.5 MHz band and using at least 75 hopping channels with the 20-dB bandwidth of 1 MHz or less, the average time of occupancy on any frequency shall not be greater than 0.4 second within a 30 second period.

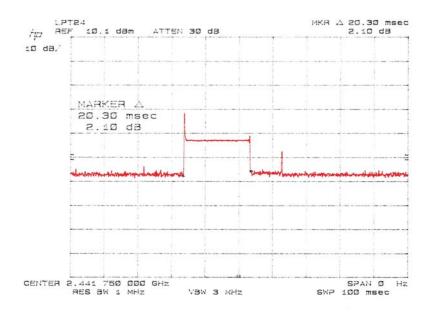
For systems operating in the 2400-2483.5 MHz band and using at least 15 hopping channels with the 20-dB bandwidth greater than 1 MHz, the average time of occupancy on any frequency shall not be greater than 0.4 second within the time period required to hop through all channels.

Procedure

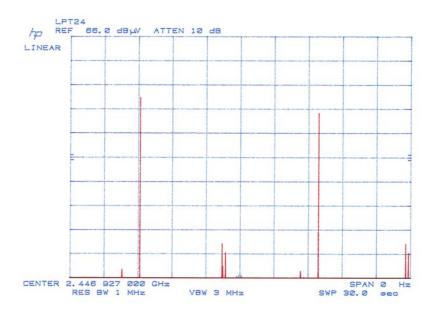
The spectrum analyzer center frequency was set to one of the known hopping channels. The SWEEP was set to 0.4 second, the SPAN was set to ZERO SPANS, and the TRIGGER was set to VIDEO. The time duration of the transmission so captured was measured with the MARKER DELTA function.

The SWEEP was then set to the time required by the regulation (30 seconds). The analyzer was set to SINGLE SWEEP, the total ON time was added and compared against the limit (0.4 seconds).

Test Results


The average time occupancy is: $20.3 \text{ ms} \times 2 = 40.6 \text{ ms}$.

Refer to attached spectrum analyzer plots 5.1-5.2 for details.


EMC Report for OMNEX Control Systems Inc. on the LPT-24, FCC ID: IA9LPT24RC File: 30536141

Plot 5.1

Plot 5.2

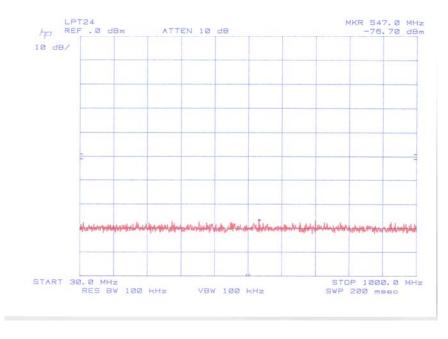
4.6 Out-of-Band Radiated Emissions (except emissions in restricted bands) FCC 15.247(c)

Requirement

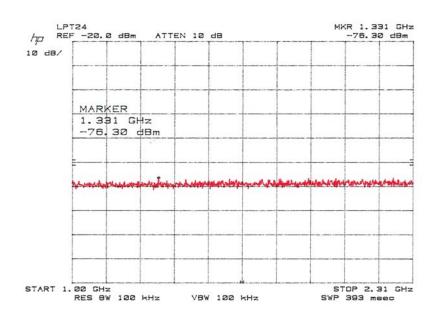
In any 100 kHz bandwidth outside the EUT pass-band, the RF power shall be at least 20 dB below that of the maximum in-band 100 kHz emission.

Procedure

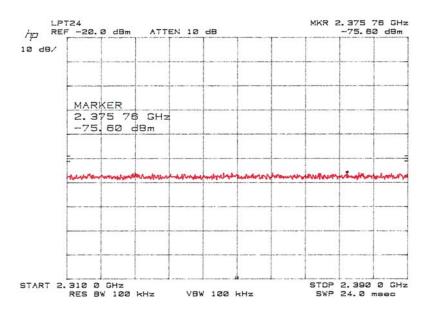
An antenna was setup at a distance of 0.2 m from the EUT. A spectrum analyzer was connected to the antenna. Analyzer Resolution Bandwidth was set to 100 kHz. For each channel investigated, the in-band and out-of-band emission, measured with the spectrum analyzer, were plotted.


Test Result

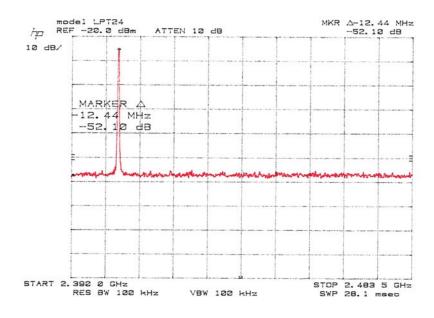
The test result is presented on the following plots. The EUT passed by more than 20 dB.


Frequency	Description	Plot
	Scan 30 MHz – 1 GHz	6.1
	Scan 1 GHz – 2.31 GHz	6.2
	Scan 2.31 – 2.39 GHz	6.3
2403	Scan 2.39 – 2.4835 GHz	6.4
	Scan 2.4835 – 2.5 GHz	6.5
	Scan 2.5 GHz – 18 GHz	6.6
	Scan 18 GHz – 24 GHz	6.7
	Scan 30 MHz – 1 GHz	6.8
	Scan 1 GHz – 2.31 GHz	6.9
	Scan 2.31 – 2.39 GHz	6.10
	Scan 2.39 – 2.4 GHz	6.11
2442	Scan 2.4 – 2.4835 GHz	6.12
	Scan 2.4835 – 2.5 GHz	6.13
	Scan 2.5 GHz – 18 GHz	6.14
	Scan 18 GHz – 24 GHz	6.15
	Scan 30 MHz – 1 GHz	6.16
	Scan 1 GHz – 2.4 GHz	6.17
	Scan 2.4 – 2.4835 GHz	6.18
2479	Scan 2.4835 – 2.5 GHz	6.19
	Scan 2.5 GHz – 18 GHz	6.20
	Scan 18 GHz – 24 GHz	6.21

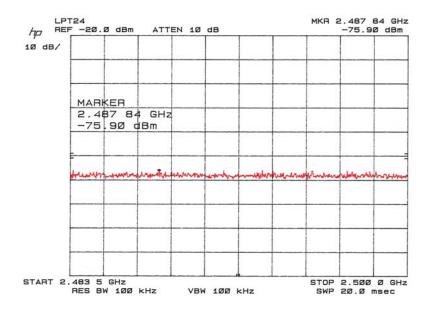
Plot 6.1



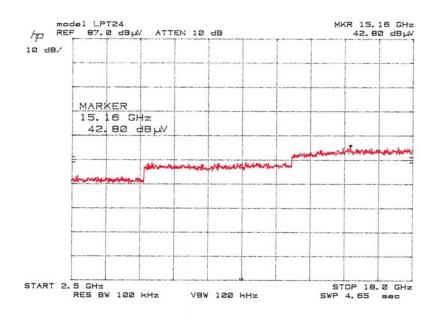
Plot 6.2



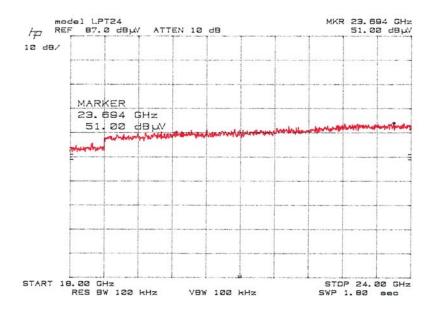
Plot 6.3



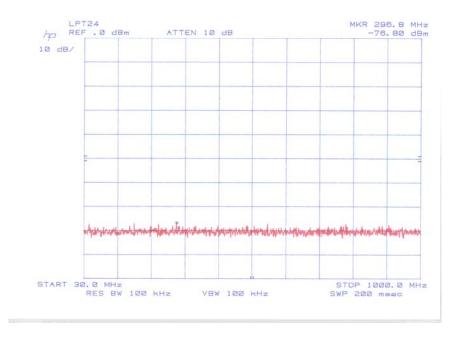
Plot 6.4



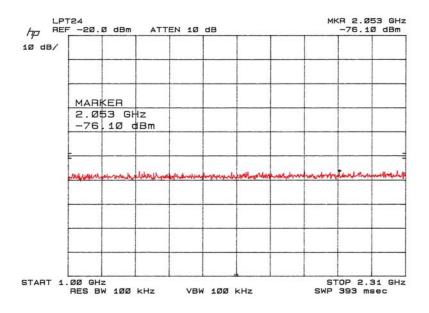
Plot 6.5



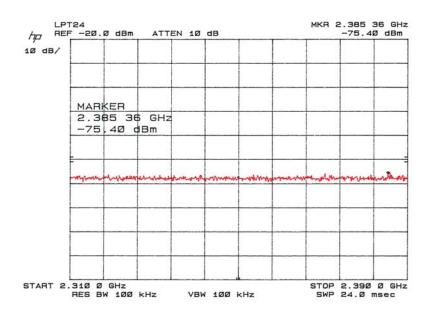
Plot 6.6



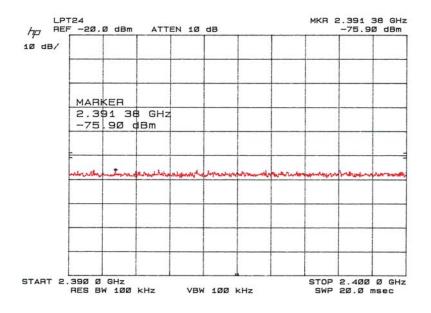
Plot 6.7



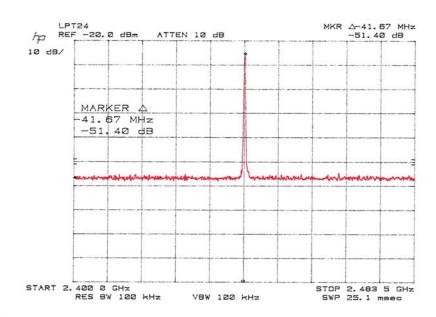
Plot 6.8



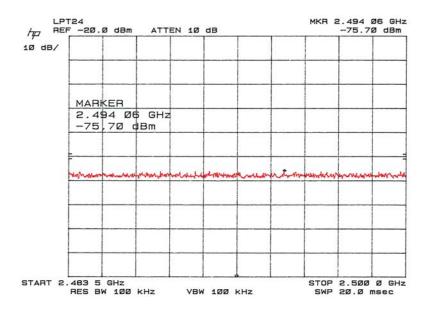
Plot 6.9



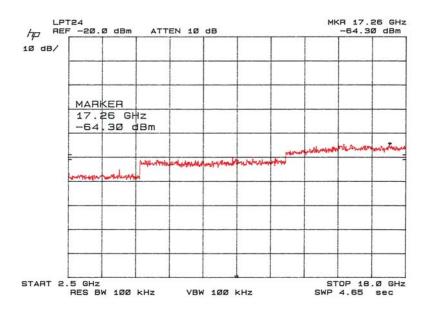
Plot 6.10



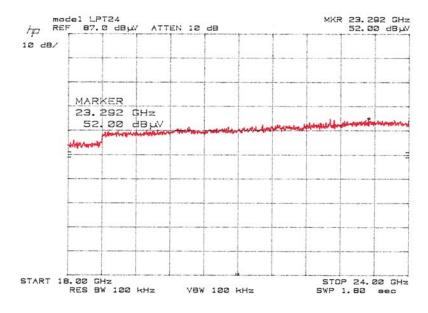
Plot 6.11



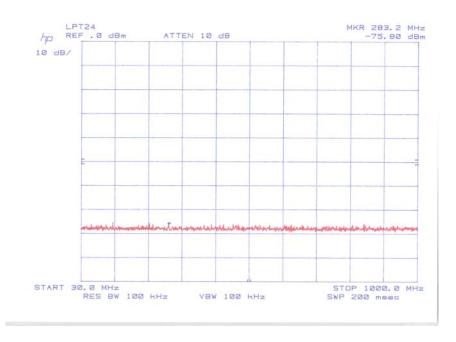
Plot 6.12



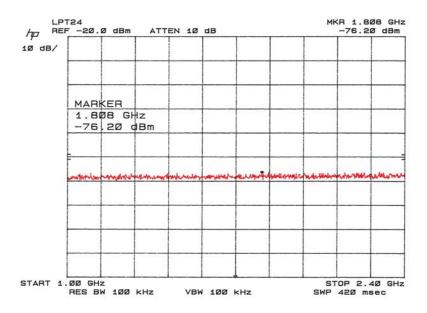
Plot 6.13



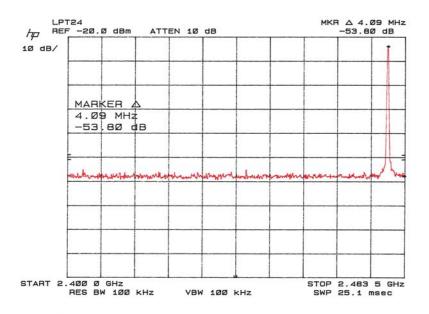
Plot 6.14



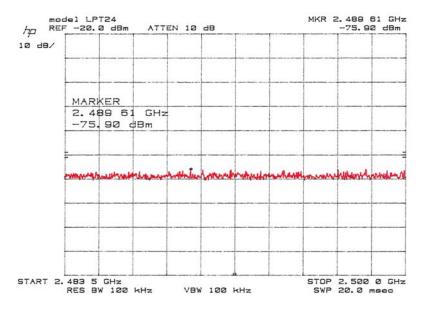
Plot 6.15



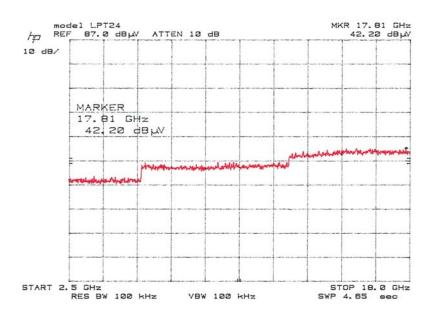
Plot 6.16



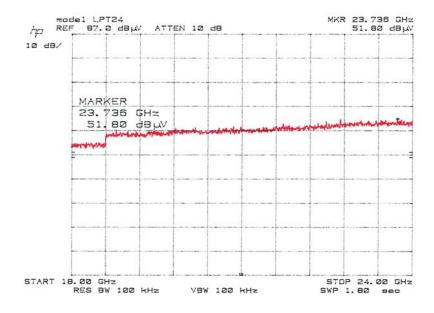
Plot 6.17



Plot 6.18



Plot 6.19



Plot 6.20

Plot 6.21

4.7 Transmitter Radiated Emissions in Restricted Bands FCC 15.247 (c), 15.205

Procedure

Radiated emission measurements were performed from 30 MHz to 25,000 MHz. Spectrum Analyzer Resolution Bandwidth is 100 kHz or greater for frequencies 30 MHz to 1000 MHz, 1 MHz - for frequencies above 1000 MHz.

The EUT is placed on the non-conductive turntable. If the EUT attaches to peripherals, they are connected and operational (as typical as possible). During testing, all cables were manipulated to produce worst case emissions. The signal is maximized through rotation. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters.

Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance. All readings are extrapolated back to the equivalent three-meter reading using inverse scaling with distance.

A sample calculation, configuration photographs and data tables of the emissions are included. All measurements were performed with peak detection unless otherwise specified.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

```
\begin{split} FS &= RA + AF + CF - AG \\ Where &\quad FS = Field \ Strength \ in \ dB(\mu V/m) \\ &\quad RA = Receiver \ Amplitude \ (including \ preamplifier) \ in \ dB(\mu V) \\ &\quad CF = Cable \ Attenuation \ Factor \ in \ dB \\ &\quad AF = Antenna \ Factor \ in \ dB(1/m) \\ &\quad AG = Amplifier \ Gain \ in \ dB \end{split}
```

Assume a receiver reading of 52.0 dB(μ V) is obtained. The antenna factor of 7.4 dB(1/m) and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving field strength of 32 dB(μ V/m). This value in dB(μ V/m) was converted to Intertek corresponding level in μ V/m.

```
RA = 52.0 dB(\muV); CF = 1.6 dB; AF = 7.4 dB(1/m); AG = 29.0 dB
FS = 52 + 7.4 + 1.6 - 29 = 32 dB(\muV/m)
Level in \muV/m = Common Antilogarithm [(32 dB(\muV/m)/20] = 39.8 \muV/m
```

EMC Report for OMNEX Control Systems Inc. on the LPT-24, FCC ID: IA9LPT24RC File: 30536141

Result

Data is included of the worst-case configuration (the configuration which resulted in the highest emission levels).

The data on the following pages list the significant emission frequencies, the limit and the margin of compliance.

For some frequencies the Duty Cycle Correction Factor (DCCF) = $20\log(20.3 \text{ ms}/100 \text{ ms}) = -13.9 \text{ dB}$ is included.

The results also include emissions in the restricted bands: 2.4835-2.5 GHz and 2.31-2.39 GHz.

The "delta-marker" method was used to calculate the field strength (FS_b) on the band-edge frequency 2483.5 MHz.

$$FS_b = FS_0 + \Delta + DCCF$$
,

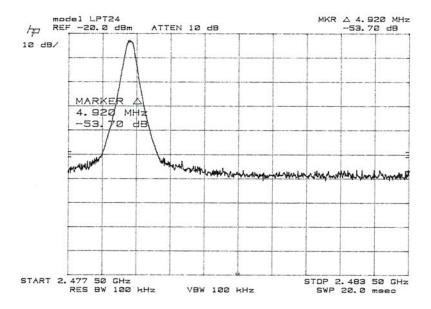
where

FS₀ is the field strength on fundamental frequency (highest channel), Δ is the delta from plot 7.1 (on the next page)

The EUT passed by 11.1 dB.

EMC Report for OMNEX Control Systems Inc. on the LPT-24, FCC ID: IA9LPT24RC File: 30536141

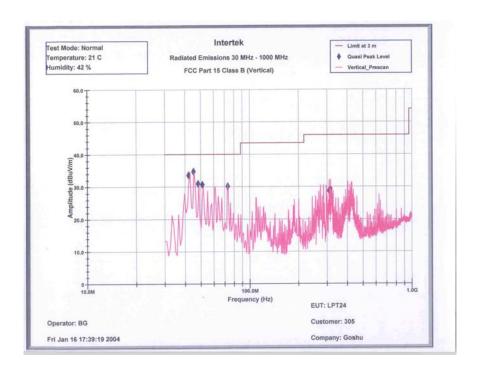
			Inte	rtek				
		R	estricted Ba		ions			
			FCC Part 15					
Operator:BG	Company I		INEX Contro					
January 16, 20		Model: LP		•	-			
Frequency	FS Level	D 4 4	Limit@3m	Margin	Raw	Cable	Preamp	Antenna
GHz	dB(uV/m)	Detector	dB(uV/m)	(dB)	dB(uV)	(dB)	(dB)	dB(1/m)
			Tx at 2.4	03 GHz				, , ,
2.31-2.39	** 42.9	Av	54.0	-11.2	26.4	1.0	-	29.3
2.31-2.39	** 53.5	Pk	74.0	-20.5	37.0	1.0	-	29.3
4.806	** 42.5	Av	54.0	-11.5	57.7	1.0	35.9	33.8
4.806	57.8	Pk	74.0	-16.2	58.9	1.0	35.9	33.8
12.015	39.0	Av	54.0	-15.0	34.0	2.5	37.2	39.7
12.015	47.2		74.0	-26.8	42.2	2.5	37.2	39.7
19.224	** 31.6	Av	54.0	-22.4	* 24.0	4.2	23.0	40.3
19.224	55.5	Pk	74.0	-18.5	* 34.0	4.2	23.0	40.3
			Tx at 2.4	41 GHz				
4.883	** 42.9	Av	54.0	-11.1	57.6	1.0	35.9	34.0
4.883	57.3		74.0	-16.7	58.1	1.0	35.9	34.0
7.325	** 33.4	Av	54.0	-20.6	44.8	1.3	35.4	36.6
7.325	49.1	Pk	74.0	-24.9	46.6	1.3	35.4	36.6
12.209	40.7	Av	54.0	-13.3	36.2	2.1	37.1	39.5
12.209	47.0		74.0	-27.0	42.5	2.1	37.1	39.5
19.533	** 31.6	Av	54.0	-22.4	* 24.0	4.2	23.0	40.3
19.533	55.5	Pk	74.0	-18.5	* 34.0	4.2	23.0	40.3
			Tx at 2.4	78 GHz				
2.4835-2.5	*** 38.1		54.0	<i>-15.9</i>	-	-	-	-
2.4835-2.5	*** 39.4		74.0	-34.6	-	-	-	-
4.957	** 42.3		54.0	-11.7	56.7	1.0	35.8	34.3
4.957	56.5		74.0	-17.5	57.0	1.0	35.8	34.3
7.435	42.4	Av	54.0	-11.6	39.9	1.3	35.4	36.6
7.435	47.2		74.0	-26.8	44.7	1.3	35.4	36.6
12.393	37.1		54.0	-16.9	33.1	1.7	37.1	39.3
12.393	45.0		74.0	-29.0	41.0	1.7	37.1	39.3
19.828	** 31.8		54.0	-22.2	* 24.0	4.4	23.0	40.3
19.828	55.7		74.0	-18.3	* 34.0	4.4	23.0	40.3
22.307	** 33.1	Av	54.0	-20.9	* 24.0	5.7	23.0	40.3
22.307	57.0	Pk	74.0	-17.0	* 34.0	5.7	23.0	40.3


note: peak $FS_0=107.0 \text{ dB(uV/m)}$; Average $FS_0=105.7 \text{ dB(uV/m)}$

ground floor measurement
 includes a Duty Cycle Correction Factor (DCCF)

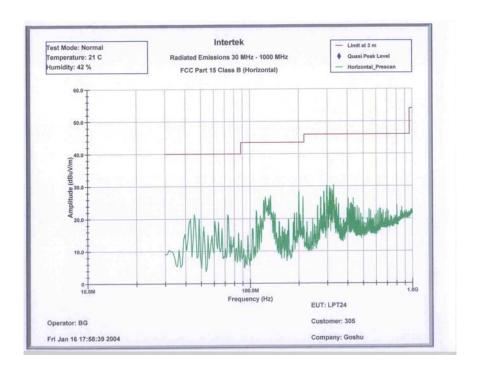
^{***} calculated using the "delta-marker" method

Plot 7.1


4.8 Radiated Emissions from digital part and receiver FCC Ref: 15.109

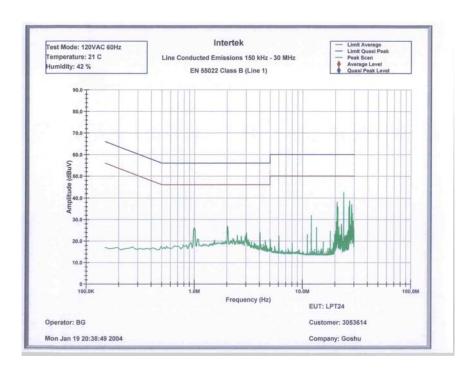
Radiated emission measurements were performed from 30 MHz to 1000 MHz. Spectrum Analyzer Resolution Bandwidth is 100 kHz or greater. See also section 4.7.

Test results are attached. The EUT passed the test by 5.3 dB.


Page 36 of 43

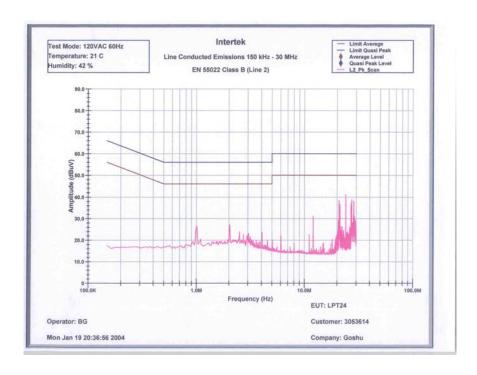
y, January 16, 20 1 Pk FS Limite3 1 Pk FS Limite3 1 0 40.0 1 40.0 1 40.0 1 40.0 1 40.0 1 40.0	3 Margin dB -6.4 -5.3 -9.1 -9.3	dB(uV) 54.7 54.9	5 AG dB 32.4 32.4	6 CF dB		mber: LPT24 Number: 305 Goshu 8 Atten dB
V/m) dB(uV/m) .6 40.0 .7 40.0 .9 40.0 .7 40.0 .1 40.0	Margin dB -6.4 -5.3 -9.1 -9.3	RA dB(uV) 54.7 54.9	AG dB 32.4	CF dB 0.6	AF dB(1/m)	Atten
V/m) dB(uV/m) .6 40.0 .7 40.0 .9 40.0 .7 40.0 .1 40.0	dB -6.4 -5.3 -9.1 -9.3	dB(uV) 54.7 54.9	dB 32.4	dB 0.6	dB(1/m)	dB
V/m) dB(uV/m) .6 40.0 .7 40.0 .9 40.0 .7 40.0 .1 40.0	dB -6.4 -5.3 -9.1 -9.3	dB(uV) 54.7 54.9	32.4	0.6		
.7 40.0 .9 40.0 .7 40.0 .1 40.0	-5.3 -9.1 -9.3	54.9			7.7	3.0
.9 40.0 .7 40.0 .1 40.0	-9.1 -9.3		32.4			
.7 40.0	-9.3			0.6	8.5	3.0
.1 40.0		52.9	32.4	0.6	6.8	3.0
	-0.0	53.3	32.4	0.6	6.1	3,0
2 46.0		53.0	32.3	0.9	5.6	3.0
	-17.3		32.2	1.9	13.8	3.0
.1 46.0	-16.9	41.8	32.2	2.0	14.4	3.0
		_	_	-		
		-				

08:19:39 PM, N	Monday, Ja	inuary 19,	2004		izontal)		Model Numb ITS Job Nu Company: G	mber: 305
	1	2	3	4	5	6	7	8
Frequency	Pk	Limit@3m	Margin	RA	PA	CF	AF	Atten
(MHz)	dB(uV/m)	dB(uV/m)	dB	dB(uV)	dB	dB	dB(1/m)	dB
122.150 MHz	25.7	43.5	-17.8	47.1	32.3	1.0	6.9	3.0
134.275 MHz	27.2	43.5	-16.3	47.3	32.3	1.0	8.2	3.0
200.558 MHz	28.3	43.5	-15.2	45.1	32.3	1.3	11.1	3.0
212.683 MHz	26.8	43.5	-16.7	43.5	32.2	1.4	11.1	3.0
273.308 MHz	26.7	46.0	-19.3	41.5	32.2	1.5	12.9	3.0
285.433 MHz	28.3	46.0	-17.7	42.6	32.2	1.5	13.4	3.0
288.667 MHz	24.7	46.0	-21.3	39.0	32.2	1.5	13.4	3.0
297.558 MHz	30.1	46.0	-15.9	43.9	32.2	1.6	13.8	3.0
308.875 MHz	29.7	46.0	-16.3	42.9	32.2	1.9	14.2	3.0
312.108 MHz	28.1	46.0	-17.9	41.3	32.2	2.0	14.0	3.0
315.342 MHz	29.2	46.0	-16.8	42.3	32.2	2.1	14.1	3.0
321.000 MHz	28.5	46.0	-17.5	40.8	32.2	2.2	14.8	3.0
327.467 MHz	30.3	46.0	-15.7	42.2	32.2	2.0	15.4	3.0
339.592 MHz	26.4	46.0	-19.6	38.4	32.2	1.7	15.5	3.0
350,908 MHz	24.6	46.0	-21.4	36.6	32.2	1.7	15.6	3.0
403.450 MHz	26.3	46.0	-19.7	37.0	32.3	1.9	16.7	3.0
115,575 MHz	24.6	46.0	-21.4	35.0	32.3	1.9	17.0	3.0
421.233 MHz	24.9	46.0	-21.1	35.0	32.3	1.9	17.3	3.0
23.658 MHz	24.4	46.0	-21.6	34.4	32.3	1.9	17.5	3.0
433.358 MHz	26.4	46.0	-19.6	36.0	32.3	1.9	17.8	3.0
Test Mode: Norm								
Cemperature: 21	C							
Humidity: 42 %			-					


4.9 AC Line Conducted Emission FCC 15.207:

AC line conducted emission test was performed according the ANSI C63.4 standard. The DC power supply, used to power the EUT, was connected to AC Line through the LISN.

For the test result, see attached plots. The EUT passed by 7.6 dB.


Page 39 of 43

Operator: BG				ons 150 kHz - 30 M s B (Line 1)	Model Number: LPT24
08:33:33 PM, 1	Monday, Ja	nuary 19,	2004		ITS Job Number: 3053614 Company: Goshu
	1	2	3	4	
Frequency	Pk Level	Av Limit	QP Limit	Pk Margin	
MHz	(dBuV)	(dBuV)	(dBuV)	(dBuV)	
12.030 MHz	31.9	50.0	60.0	-18.1	
20.508 MHz	29.0	50.0	60.0	-21.0	
20.821 MHz	38.2	50.0	60.0	-11.8	
20.866 MHz	36,6	50.0	60.0	-13.4	
20.941 MHz	35.4	50.0	60.0	-14.6	
21.045 MHz	34.1	50.0	60.0	-15.9	
21.224 MHz	35.9	50.0	60.0	-14.1	
22.821 MHz	27.8	50.0	60.0	-22.2	
24.030 MHz	42.4	50.0	60.0	-7.6	
26.836 MHz	35.5	50.0	60.0	-14.5	
26.881 MHz 27.060 MHz	36.2	50.0	60.0	-13.8	
	35.8	50.0	60.0	-14.2	
27.239 MHz 27.299 MHz	37.9	50.0	60.0	-12.1 -11.3	
28.224 MHz	38.7	50.0	60.0	-18.1	
28.224 MHZ 28.299 MHz	32.1	50.0	60.0	-17.9	
28.433 MHz	37.0	50.0	60.0	-17.9	
28.836 MHz	32.9	50.0	60.0	-17.1	
29.030 MHz	27.7	50.0	60.0	-22.3	
29.373 MHz	29.4	50.0	60.0	-20.6	
estors the	62.4	30.0	00.0	-20.0	
Test Mode: 120%	AC 60Hz				
Temperature: 21					
Humidity: 42 %					

Operator: BG	L			ons 150 kHz - 30 1 s B (Line 2)	MHz Model Number: LPT24
08:36:38 PM, N	Monday, Ja	nuary 19,	2004		ITS Job Number: 3053614 Company: Goshu
	1	2	3	4	
Frequency	Pk Level	Av Limit	QP Limit	Pk Margin	
MHz	(dBuV)	(dBuV)	(dBuV)	(dBuV)	
12.030 MHz	31.2	50.0	60.0	-18.8	
20.508 MHz	29.2	50.0	60.0	-20.8	
20.821 MHz	38.6	50.0	60.0	-11.4	
20.866 MHz	35.7	50.0	60.0	-14.3	
21.045 MHz	34.5	50.0	60.0	-15.5	
21.224 MHz	35,6	50.0	60.0	-14.4	
21.284 MHz	36.5	50.0	60.0	-13.5	
24.030 MHz	41.3	50.0	60.0	-8.7	
24.075 MHz 26.821 MHz	39.0	50.0	60.0	-11.0	
	35.9	50.0	60.0	-14.1 -12.9	
26.881 MHz 26.955 MHz	37.1	50.0	60.0	-12.9	
27.060 MHz	34.0	50.0	60.0	-10.0	
27.060 MHZ 27.239 MH2	38.1	50.0	60.0	-13.1	
27.299 MHz	38.9	50.0	60.0	-11.1	
28.224 MHz	32.1	50.0	60.0	-17.9	
28.433 MHz	38.3	50.0	60.0	-11.7	
28.851 MHz	30.9	50.0	60.0	-19.1	
28.955 MHz	30.0	50.0	60.0	-20.0	
29.373 MHz	29.3	50.0	60.0	-20.7	
Test Mode: 120V					
Temperature: 21	C				
Humidity: 42 %					

5.0 List of test equipment

Measurement equipment used for emission compliance testing utilized the equipment on the following list:

Equipment	Manufacturer	Model/Type	Serial #	Cal Int	Cal Due
Spectrum Analyzer	Hewlett Packard	8566B	2416A00317	12	10/28/04
w/85650 QP Adapter			2043A00251		
Spectrum Analyzer	Hewlett Packard	8565E	AE9674	12	5/27/04
BI-Log Antenna	EMCO	3143	9509-1160	12	4/24/04
Horn Antenna	EMCO	3115	8812-3049	12	4/08/04
Horn Antenna	EMCO	3160-09	Not Labeled	#	#
Pre-Amplifier	Miteq	AMF-4D-001180-24-10P	799159	12	4/06/04
Pre-Amplifier	Avantek	AFT-18855	8723H705	12	4/10/04
Pre-amplifier	CTT	ACO/400	47526	12	4/10/04
RF Filter Section	Hewlett Packard	85460A	3448A00267	12	9/9/04
EMI Receiver	Hewlett Packard	8546A	3710A00373	12	9/8/04
LISN	FCC	FCC-LISN-50-50-M-H	2012	12	1/23/05

[#] No calibration required

6.0 Document History

Revision/ Job Number	Writer Initials	Date	Change
1.0 / 3053614	BG	April 10, 2004	Original document