

	Date(s) of Evaluation December 19, 2007	<u>Test Report Serial No.</u> 121807IA9-T880-S15I	Test Report Revision No. Revision 1.0	
s List	<u>Test Report Issue Date</u> January 03, 2008	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Certificate No. 2470.01

SAR TEST REPORT									
RF EXPOSURE EVAL	UATION SPECIFIC /				ABSORPTION RATE				
APPLICANT		(OMNEX CONTROL SYSTEMS ULC						
DEVICE UNDER TEST (DUT)			EAD SPECTRUM DATA TRANSCEIVER MODULE PORTABLE RADIO REMOTE CONTROL CONSOLE						
MODEL (S)	HPD-24R	C 2	2.4GHz Spread S	pectrum Da	ata Transceiver Module				
MODEL(S)	T42		Portable Ra	dio Remot	e Control Console				
IDENTIFIER(S)	FCC ID:IA9HPD-24RCIC:1338B-HPD24RC								
APPLICATION TYPE	Certification								
STANDARD(S) APPLIED			FCC 47 CI	R §2.1093					
STANDARD(S) AT LIED			Health Canada	Safety Co	de 6				
PROCEDURE(S) APPLIED		FCC	OET Bulletin 65,	Suppleme	nt C (01-01)				
	Industry Canada RSS-102 Issue 2								
FCC DEVICE CLASSIFICATION	Part 15 Spread Spectrum Transmitter (DSS) - §15C								
IC DEVICE CLASSIFICATION	Low Power	Licen	se-Exempt Radio	communic	cation Device (RSS-210)				
RF EXPOSURE CATEGORY			General Populati	on / Uncon	trolled				
RF EXPOSURE EVALUATION(S)			Body	-worn					
DATE(S) OF EVALUATION(S)			Decembe	r 19, 2007					
TEST REPORT SERIAL NO.			121807IA9	-T880-S15I					
TEST REPORT REV. NO. & DATE	Revisio	on 1.0	Initial F	Release	January 03, 2008				
	Testi	ng Per	formed By	Test	Test Report Prepared By				
TEST REPORT SIGNATORIES			hnston abs Inc.		Jonathan Hughes Celltech Labs Inc.				
TEST LAB AND LOCATION	Ce	elltech	Compliance Tes	ting and E	ngineering Lab				
TEST EAD AND LOCATION	21-36	64 Lou	gheed Road, Kel	owna, B.C.	V1X 7R8 Canada				
TEST LAB CONTACT INFO.	Tel	.: 250 -7	765-7650	F	ax: 250-765-7645				
	info@	cellted	chlabs.com	ww	w.celltechlabs.com				
TEST LAB ACCREDITATION(S)		Certificate No. 2470.01							

Company Name:								
HPD-24RC 2.4 GH	z Spread Spectrum Transceiver M	odule insta	Illed in T42 Portable	e Remo	te Control Console	TRUSTED WIRELESS**		
2008 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.								

Cilling	Date(s) of Evaluation December 19, 2007	<u>Test Report Serial No.</u> 121807IA9-T880-S15I	Test Report Revision No. Revision 1.0	
Celltech	<u>Test Report Issue Date</u> January 03, 2008	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Certificate No. 2470.01

				F COMPLIA E EVALUA									
Test Lab Information	Name		LABS INC.	Kolowno Dritich	Columbi		odo						
	Address			Kelowna, British	Columbi	a V1X 7R8 Can	ada						
Applicant Information	Name		ONTROL SYS										
	Address			Road, Port Coqui	itlam, Bri	tish Columbia V	30.60	55 Canada					
Standard(s) Applied	FCC		47 CFR §2.1093										
	IC		Health Canada Safety Code 6										
Procedure(s) Applied	FCC			ment C (Edition 0	1-01)								
	IC		RSS-102 Issue 2										
Device Classification(s)	FCC	Part 15 Sp	ead Spectrun	n Transmitter (DS	S)								
	IC	Low Power	License-Exe	mpt Radiocommu	nication	Device (RSS-21	10)						
Device Description	DUT	2.4 GHz S	oread Spectru	m Data Transceiv	ver Modu	Ile installed in P	ortable	e Remote Co	ntrol Console				
	FCC ID:	IA9HP	D-24RC	2.4 GHz Sprea	d Spectr	um Data Transc	eiver	Module					
	IC:	1338B-H	IPD24RC	2.4 GHz Sprea	d Spectr	um Data Transc	eiver	Module					
Device Identifier(s)	Model(s)	HPD	-24RC	2.4 GHz Sprea	d Spectr	um Data Transc	eiver	Module					
Device identifier (5)	woder(3)	Т	42	Portable Radio	Remote	Control Consol	е						
	Serial No.(None (Pre	-Production)	2.4 GHz Sprea	d Spectr	um Data Transc	eiver	Module					
	Senai NO.(1104705 Portable Radi			io Remote Control Console							
Mode(s) of Operation	Frequency	requency Hopping Spread Spectrum (FHSS)											
Transmit Frequency Range	(s) 2403.1 - 24	78.6 MHz											
No. of Channels	756												
Max. Duty Cycle Tested	50% (Sourc	ce-Based Time-/	Averaged)										
		Peak Conducted Power Channel Frequency											
	0.0	66 Watts	18	3.20 dBm		Low		2403	3.1 MHz				
Max. RF Output Power Tes	.ed 0.0	93 Watts	19.68 dBm			Middle		244	1.7 MHz				
	0.1	22 Watts	20.86 dBm			High		2478	8.6 MHz				
Antenna Type(s) Tested	Internal												
Battery Type(s) Tested	Nickel-Cad	mium	um 9.6V				Mod	el: Makita 90	00				
Body-worn Accessories Te	sted None (touc	h position)											
Audio Accessories Tested	None (not	applicable)											
Max. SAR Level(s) Evaluate	ed Body-w	orn 0.07	2 W/kg	1g average	ANSI	IEEE SAR Limi	it	1.6 W/kg	1g average				
Celltech Labs Inc. declares u Absorption Rate (SAR) RF ex for the General Population measurement standards and Canada RSS-102 Issue 2. recommendations.	xposure requirement / Uncontrolled Exp procedures specific All measurements	s specified in FC osure environm ed in FCC OET were performe	CC 47 CFR §2 ent. The de Bulletin 65, § ed in accord	2.1093 and Healtl evice was testec Supplement C (E ance with the S	h Canad J in acc dition 01 AR syst	a's Safety Code ordance with tl -01) and Indust em manufactur	e 6 he try rer	Ī	Í				
I attest to the accuracy of data. All measurements were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.													
•	•	The results and statements contained in this report pertain only to the device(s) evaluated.											
The results and statements c	ontained in this report		. ,										
•	ontained in this report		. ,		elltech La	ibs Inc.							
The results and statements c	pontained in this reported in this reported partially, of the second sec		the prior writte	en approval of Ce		ibs Inc.	(
The results and statements c This test report shall not be re	pontained in this reported in this reported partially, of the second sec	or in full, without	the prior writte	en approval of Ce			(

 Company Name:
 OMNEX Control Systems ULC
 FCC ID:
 IA9HPD-24RC
 IC:
 1338B-HPD24RC

 HPD-24RC 2.4 GHz
 Spread Spectrum Transceiver Module installed in T42 Portable Remote Control Console
 Image: Control Control Console
 Image: Control Co

	Date(s) of Evaluation December 19, 2007	<u>Test Report Serial No.</u> 121807IA9-T880-S15I	Test Report Revision No. Revision 1.0	
Lat	<u>Test Report Issue Date</u> January 03, 2008	Description of Test(s) Specific Absorption Rate	<u>RF Exposure Category</u> General Population	Certificate No. 2470.01

TABLE OF CONTENTS

1.0 INTRODUCTION	4
2.0 SAR MEASUREMENT SYSTEM	4
3.0 MEASUREMENT SUMMARY	5
4.0 DETAILS OF SAR EVALUATION	6
5.0 EVALUATION PROCEDURES	
6.0 SYSTEM PERFORMANCE CHECK	7
7.0 SIMULATED EQUIVALENT TISSUES	
8.0 SAR SAFETY LIMITS	
9.0 ROBOT SYSTEM SPECIFICATIONS	9
10.0 PROBE SPECIFICATION (EX3DV4)	10
11.0 SAM TWIN PHANTOM V4.0C	10
12.0 DEVICE HOLDER	10
13.0 TEST EQUIPMENT LIST	11
14.0 MEASUREMENT UNCERTAINTIES	12
MEASUREMENT UNCERTAINTIES (Cont.)	13
15.0 REFERENCES	14
APPENDIX A - SAR MEASUREMENT DATA	15
APPENDIX B - SYSTEM PERFORMANCE CHECK DATA	24
APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS	27
APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS	29
APPENDIX E - SYSTEM VALIDATION	36
APPENDIX F - PROBE CALIBRATION	37
APPENDIX G - SAM PHANTOM CERTIFICATE OF CONFORMITY	38

Company Name: OMNEX Control Systems ULC FCC ID: IA9HPD-24RC IC: 1338B-HPD24RC									
HPD-24RC 2.4 GHz Spread Spectrum Transceiver Module installed in T42 Portable Remote Control Console									
2008 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.									

Date(s) of Evaluation	<u>Test Report Serial No.</u>	Test Report Revision No.	
December 19, 2007	121807IA9-T880-S15I	Revision 1.0	
<u>Test Report Issue Date</u>	Description of Test(s)	RF Exposure Category	Certificate No. 2470.01
January 03, 2008	Specific Absorption Rate	General Population	

1.0 INTRODUCTION

This measurement report demonstrates that the OMNEX Control Systems ULC Model: HPD-24RC 2.4GHz Spread Spectrum Transceiver Module installed in Model: T42 Portable Radio Remote Control Console complies with the SAR (Specific Absorption Rate) RF exposure requirements specified in FCC 47 CFR §2.1093 (see reference [1]) and Health Canada's Safety Code 6 (see reference [2]) for the General Population / Uncontrolled Exposure environment. The test procedures described in FCC OET Bulletin 65, Supplement C, Edition 01-01 (see reference [3]) and IC RSS-102 Issue 2 (see reference [4]) were employed. A description of the product and operating configuration, detailed summary of the test results, methodology and procedures used in the evaluation, equipment used, and the various provisions of the rules are included within this test report.

2.0 SAR MEASUREMENT SYSTEM

Celltech Labs Inc. SAR measurement facility utilizes the Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG[™]) of Zurich, Switzerland. The DASY4 measurement system is comprised of the measurement server, robot controller, computer, near-field probe, probe alignment sensor, specific anthropomorphic mannequin (SAM) phantom, and various planar phantoms for brain and/or body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electrooptical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the DASY4 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the DASY4 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

Company Name:										
HPD-24RC 2.4 GHz Spread Spectrum Transceiver Module installed in T42 Portable Remote Control Console										
2008 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.										

Callback	Date(s) of Evaluation December 19, 2007	<u>Test Report Serial No.</u> 121807IA9-T880-S15I	Test Report Revision No. Revision 1.0	
Celltech	<u>Test Report Issue Date</u>	Description of Test(s)	RF Exposure Category	Certificate No. 2470.01
Teng ard Egheerry Series Let	January 03, 2008	Specific Absorption Rate	General Population	

3.0 MEASUREMENT SUMMARY

					E	BODY S	AR	EVA	LUA	TION R	ESULTS						
Freq.					Duty	Crest	Bi	attery		DUT osition	DUT Spacing	Sta Pow		Measu SAR Le			SI/IEEE R Limit
	Chan.	Те	st M	ode	Cycle	Factor		Type To I		Planar	To Planar	Condu	ucted	SAR LE	veis	Uncontrolled	
MHz									Pn	antom	Phantom	dB	m	W/k	g	۷	//kg
2403.1	Low		odula I Fre	ated quency	50%	1:2	Ν	li-Cd	Bott	ttom Side 0.0 cm (Touch)		18.2	20	0.021	Pk	1.6	1g
2441.7	Mid		odula I Fre	ated quency	50%	1:2	Ν	li-Cd	Bott	om Side	0.0 cm (Touch)	19.0	68	0.015	Pk	1.6	1g
2478.6	High		odula I Fre	ated quency	50%	1:2	Ν	li-Cd	Bott	om Side	0.0 cm (Touch)	20.8	86	0.021	Pk	1.6	1g
2441.7	Mid		odula I Fre	ated quency	50%	1:2	Ν	li-Cd	Ba	ck Side	1-Point Touch	19.6	68	0.019	Pk	1.6	1g
2441.7	Mid	Modulated Fixed Frequency		50%	1:2	Ν	li-Cd	Ba	ck Side	2-Point Touch	19.0	68	0.053	1g	1.6	1g	
2403.1	Low	Modulated Fixed Frequency			50%	1:2	Ν	li-Cd	Ba	ck Side	2-Point Touch	18.2	20	0.032	1g	1.6	1g
2478.6 High Modulate Fixed Frequ				50%	1:2	Ν	li-Cd	Ba	ck Side	2-Point Touch	20.8	86	0.072	1g	1.6	1g	
1	Fest Date(s)		Dece	mber 19, 20	007			Re	lative Humidity			35			%	
Meas	ured Fluid	l Type			245	0 MHz Bod	y			Atmo	ospheric Pressure	e 101.1				kPa	
Diele	Dielectric Constant			IEEE	Measure	sured Deviation			Ambient Temperature				24.0			°C	
	3			52.7	±5%	50.1		-4.9	%	Flu	iid Temperature		23.5				°C
	Conductivi			IEEE	IEEE Target Measured Deviation				Fluid Depth			≥ 15			cm		
	σ (mho/m)		1.95	±5%	1.98		+1.6	1.00 /				1000				
			1.		ed measu						DUT tested in e maximum SA						
Note(s)			2. 3. 4. 5.	is the F peak S formula mm ste as the level is longer Therefe the pea SAR ca The por referen value a The DU The flu remain The dia	Peak (Pk) BAR value a used to eps leadin probe mo c competin a curving ore the pe ak values alculation ower drift nee point of at the refer JT battery uid tempe eed within electric pa	SAR level from the a extrapolat g away fro wes away g with the slope an ak value f are less t while mair of the Dl of the phat ence poin was fully rature was +/-2°C of t	I me area the thom to from the solution from the solution to t	asurec a scan he SAR he sur m the s R leve he extr 1% of ing a c was m n with close to rged pr easure luid ter e simu	I from evalue value face a surface l, the rapola rea so f the a conser neasue low S o the r rior to d price npera llated	the area ation is le e at the s assumes e). When zoom sca tion form can is rep average l rvative es red by th SAR. The measurer the SAR the SAR the san the san the san	om side and bac scan. The 1g-a ess than 1% of t surface from the a curving slope in the peak SAR an measurement outa cannot acci- borted in place o imit. This avoid stimation of the S me DASY4 systeme emeasured drift ment noise floor evaluations. after the SAR rited during the co- ixture were meas	veraged the 1g a zoom : (i.e. the of a de ts leadii urately f the 1g SAR leve em duri levels and are evaluar dielectric	d SAR averagescan S e SAR evice i ng aw estima g averages s unce el. ing th were i e there tions the c para	is not m ge limit. SAR valu values g s so low ay from ate the aged SA rtainties e SAR e inaccurat fore not to ensure meter me	easure The mass me radua that the the su Ig ave R value in the evalua te due reporte e the easure	ed wh nather easure lly de he RF rface rface a wh 1g a 1g a tions to th ed abo	en the matical ed at 5 crease noise are no SAR. enever verage at the e SAR ove.
			6. 7	a Diele	ctric Prob	e Kit and a	a Ne	etwork	Analy	zer (see /	Appendix C).						
			7.	The SA	AR evalua	tions were	per	tormed	1 withi	n 24 hou	rs of the system	perform	nance	check.			

Company Name:	ompany Name: OMNEX Control Systems ULC FCC ID: IA9HPD-24RC IC: 1338B-HPD24RC					
HPD-24RC 2.4 GHz Spread Spectrum Transceiver Module installed in T42 Portable Remote Control Console						
2008 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 5 of 38

	Date(s) of Evaluation December 19, 2007	<u>Test Report Serial No.</u> 121807IA9-T880-S15I	Test Report Revision No. Revision 1.0	
Celltech	<u>Test Report Issue Date</u> January 03, 2008	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Certificate No. 2470.01

4.0 DETAILS OF SAR EVALUATION

The OMNEX Control Systems ULC Model: HPD-24RC 2.4GHz Spread Spectrum Transceiver Module installed in Model: T42 Portable Radio Remote Control Console was compliant for localized Specific Absorption Rate (Uncontrolled Exposure) based on the test provisions and conditions described below. The SAR test setup photographs are shown in Appendix D.

Test Configuration(s)

- 1. The DUT was tested for body-worn SAR with the bottom side placed parallel to, and touching, the outer surface of the SAM phantom (planar section).
- 2. The DUT was tested for body-worn SAR with the back side placed parallel to, and touching (1-point touch), the outer surface of the SAM phantom (planar section).
- 3. The DUT was tested for body-worn SAR with the back side placed parallel to, and touching (2-point touch), the outer surface of the SAM phantom (planar section).
- 4. The DUT is worn on the body using a shoulder strap accessory. The shoulder strap accessory was not provided for the SAR evaluations and was considered unnecessary to be utilized for the SAR evaluations by Celltech Labs Inc.

Test Mode(s) & Power Level(s)

- 5. The DUT was placed into test mode using the control panel on the T42 radio remote control console to transmit the transceiver module, disable the frequency hopping and change channels.
- 6. The DUT was tested at maximum power with a modulated signal on a fixed frequency (frequency hopping disabled) at 50% duty cycle (source-based time-averaged).
- The peak conducted output power levels of the DUT referenced in this report were measured with a spectrum analyzer prior to the SAR evaluations by LabTest Certification Inc. (please refer to LabTest Report No. 8972-1E for the output power measurement procedures).
- 8. The DUT battery was fully charged prior to the SAR evaluations.

5.0 EVALUATION PROCEDURES

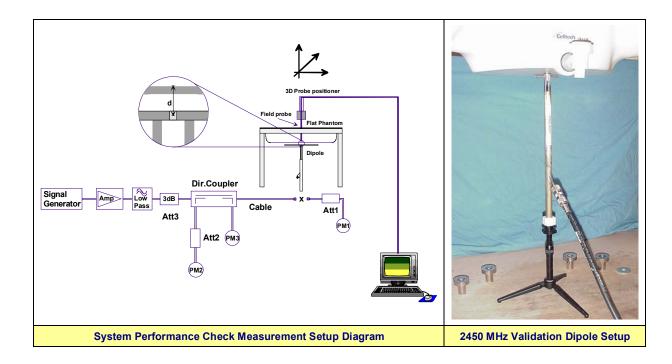
- a. (i) The evaluation was performed in the applicable area of the phantom depending on the type of device being tested. For devices held to the ear during normal operation, both the left and right ear positions were evaluated using the SAM phantom.
 - (ii) For body-worn and face-held devices a planar phantom was used.
- b. The SAR was determined by a pre-defined procedure within the DASY4 software. Upon completion of a reference and optical surface check, the exposed region of the phantom was scanned near the inner surface with a grid spacing of 15mm x 15mm.

An area scan was determined as follows:

- c. Based on the defined area scan grid, a more detailed grid is created to increase the points by a factor of 10. The interpolation function then evaluates all field values between corresponding measurement points.
- d. A linear search is applied to find all the candidate maxima. Subsequently, all maxima are removed that are >2 dB from the global maximum. The remaining maxima are then used to position the cube scans.

A 1g and 10g spatial peak SAR was determined as follows:

- e. Extrapolation is used to determine the values between the dipole center of the probe and the surface of the phantom. This data cannot be measured because the center of the dipole sensors is 1.0 mm away from the probe tip and the distance between the probe and the boundary must be larger than 25% of the probe diameter. The probe diameter is 2.4 mm. In the DASY4 software, the distance between the sensor center and phantom surface is set to 2.0 mm. This provides a distance of 1.0 mm between the probe tip and the surface. The extrapolation of the values between the dipole center and the surface of the phantom was based on trivariate quadratics computed from the previously calculated 3D interpolated points nearest the phantom surface.
- f. Interpolated data is used to calculate the average SAR over 1g and 10g cubes by spatially discretizing the entire measured cube. The volume used to determine the averaged SAR is a 1 mm grid (42875 interpolated points).
- g. A zoom scan volume of 24 mm x 24 mm x 20 mm (7x7x9 points) centered at the peak SAR location determined from the area scan was used and a zoom scan resolution of 4 mm x 4 mm x 2.5 mm was used.


Company Name:	OMNEX Control Systems ULC FCC ID: IA9HPD-24RC IC:		IC:	1338B-HPD24RC			
HPD-24RC 2.4 GH	HPD-24RC 2.4 GHz Spread Spectrum Transceiver Module installed in T42 Portable Remote Control Console						
2008 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 6 of 38	

Celltech	Date(s) of Evaluation December 19, 2007	<u>Test Report Serial No.</u> 121807IA9-T880-S15I	Test Report Revision No. Revision 1.0	
C Centrecn	<u>Test Report Issue Date</u>	Description of Test(s)	RF Exposure Category	Certificate No. 2470.01
Testing and Engineering Services Lat	January 03, 2008	Specific Absorption Rate	General Population	

6.0 SYSTEM PERFORMANCE CHECK

Prior to the SAR evaluations a system check was performed at the planar section of the SAM phantom with a 2450 MHz validation dipole (see Appendix B for system performance check test plot). The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer (see Appendix C). A forward power of 250 mW was applied to the dipole and the system was verified to a tolerance of $\pm 10\%$ from the system validation target SAR value (see Appendix E for system validation procedures).

	SYSTEM PERFORMANCE CHECK EVALUATION																		
Test	Equiv. Tissue			GAR 1g (W/kg)		Dielect	tric Cons _{&r}	stant		ductivity mho/m)	,	ρ	ρ Amb. Tomp			Fluid Temp.	Fluid Depth	Humid.	Barom. Press.
Date	Freq.	-	. Val.	Meas.	Dev.	Sys. Val.	Meas.	Dev.	Sys. Val.	Meas.	Dev.	2	•						
	(MHz)	Ia	rget			Target			Target			Kg/m ³	°C	°C	cm	%	kPa		
Dec 19	Body	13.4	±10%	13.9	+3.8%	50.1 ±5%	50.1	0.0%	1.99 ±5%	1.98	-0.5%	1000	24.0	23.3	≥ 15	35	101.1		
000 10	2450	10.4	10/0	10.0	10.070	00.1 1070	00.1	0.070	1.00 2070	1.00	0.070	1000	24.0	20.0	2 10	00	101.1		
		1.	The t	arget SAF	R values	are referenc	ed from t	he Syste	m Validation	procedur	es perfo	rmed by C	elltech L	abs Inc. (see Appe	ndix E).			
		2.	The t	arget diel	ectric par	ameters are	e referenc	ed from t	he System \	/alidation	procedu	res perfor	med by C	elltech La	abs Inc. (s	see Appen	dix E).		
Note	Note(s) 3. The fluid temperature was measured prior to and after the system performance check. The fluid temperature remained within +/-2°C of the fluid temperature from the dielectric parameter measurements.							C of the											
		4.	The	SAR evalu	uations w	ere perform	ed within	24 hours	of the syste	m perforr	nance ch	ieck.							

Company Name:	ompany Name: OMNEX Control Systems ULC FCC ID: IA9HPD-24RC IC: 1338B-HPD24RC						
HPD-24RC 2.4 GH	HPD-24RC 2.4 GHz Spread Spectrum Transceiver Module installed in T42 Portable Remote Control Console						
2008 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 7 of 38		

Callback	Date(s) of Evaluation December 19, 2007	<u>Test Report Serial No.</u> 121807IA9-T880-S15I	Test Report Revision No. Revision 1.0	
Celltech	<u>Test Report Issue Date</u> January 03, 2008	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Certificate No. 2470.01

7.0 SIMULATED EQUIVALENT TISSUES

The simulated tissue mixture consisted of Glycol-monobutyl, water and salt. The tissue mixtures were prepared according to standardized procedures and measured for dielectric parameters (permittivity and conductivity).

SIMULATED TISSUE MIXTURE								
INGREDIENT	2450 MHz Body	2450 MHz Body						
INGREDIENT	System Performance Check	DUT Evaluation						
Water	69.98 %	69.98 %						
Glycol Monobutyl	30.00 %	30.00 %						
Salt	0.02 %	0.02 %						

8.0 SAR SAFETY LIMITS

	SAR (W/kg)				
EXPOSURE LIMITS	General Population / Uncontrolled Exposure	Occupational / Controlled Exposure				
Spatial Average (averaged over the whole body)	0.08	0.4				
Spatial Peak (averaged over any 1 g of tissue)	1.60	8.0				
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0				
The Spatial Average value of the SAR averaged	d over the whole body.					
The Spatial Peak value of the SAR averaged ov shape of a cube) and over the appropriate avera		ed as a tissue volume in the				
The Spatial Peak value of the SAR averaged or the shape of a cube) and over the appropriate a		fined as a tissue volume in				
Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.						
Controlled environments are defined as locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.						

Company Name:	ompany Name: OMNEX Control Systems ULC FCC ID: IA9HPD-24RC IC: 1338B-HPD24RC			1338B-HPD24RC		
HPD-24RC 2.4 GHz Spread Spectrum Transceiver Module installed in T42 Portable Remote Control Console						
2008 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. Page						Page 8 of 38

Cilling	Date(s) of Evaluation December 19, 2007	<u>Test Report Serial No.</u> 121807IA9-T880-S15I	Test Report Revision No. Revision 1.0	
Celltech	<u>Test Report Issue Date</u> January 03, 2008	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Certificate No. 2470.01

9.0 ROBOT SYSTEM SPECIFICATIONS

Specifications	
Positioner	Stäubli Unimation Corp. Robot Model: RX60L
Repeatability	0.02 mm
No. of axis	6
Data Acquisition Electronic (D	AE) System
Cell Controller	
Processor	AMD Athlon XP 2400+
Clock Speed	2.0 GHz
Operating System	Windows XP Professional
Data Converter	
Features	Signal Amplifier, multiplexer, A/D converter, and control logic
Software	Measurement Software: DASY4, V4.7 Build 44
	Postprocessing Software: SEMCAD, V1.8 Build 171
Connecting Lines	Optical downlink for data and status info.; Optical uplink for commands and clock
DASY4 Measurement Server	
Function	Real-time data evaluation for field measurements and surface detection
Hardware	PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM
Connections	COM1, COM2, DAE, Robot, Ethernet, Service Interface
E-Field Probe	
Model	EX3DV4
Serial No.	3600
Construction	Symmetrical design with triangular core
Frequency	10 MHz to 6 GHz
Linearity	±0.2 dB (30 MHz to 3 GHz)
Phantom(s)	
Туре	SAM V4.0C
Shell Material	Fiberglass
Thickness	2.0 ±0.1 mm
Volume	Approx. 25 liters

Company Name:	OMNEX Control Systems ULC	FCC ID:	IA9HPD-24RC	IC:	1338B-HPD24RC	
HPD-24RC 2.4 GHz Spread Spectrum Transceiver Module installed in T42 Portable Remote Control Console						
2008 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 9 of 38

Celltech

	Date(s) of Evaluation December 19, 2007	<u>Test Report Serial No.</u> 121807IA9-T880-S15I	Test Report Revision No. Revision 1.0	
iat	<u>Test Report Issue Date</u> January 03, 2008	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Certificate No. 2470.01

10.0 PROBE SPECIFICATION (EX3DV4)

Construction:	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g. DGBE)
Calibration:	Basic Broadband Calibration in air: 10-3000 MHz Conversion Factors (CF) for HSL 900 and HSL 1750
Frequency:	10 MHz to >6 GHz; Linearity: ±0.2 dB (30 MHz to 3 GHz)
Directivity:	± 0.3 dB in HSL (rotation around probe axis)
	± 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic Range:	10 μ W/g to >100 mW/g; Linearity: ±0.2 dB
	(noise: typically < 1 μ W/g)
Dimensions:	Overall length: 330 mm (Tip: 20 mm)
	Tip diameter: 2.5 mm (Body: 12 mm)
	Typical distance from probe tip to dipole centers: 1.0 mm
Application:	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better than 30%.

11.0 SAM TWIN PHANTOM V4.0C

The SAM twin phantom V4.0C is a fiberglass shell phantom with a 2.0 mm (+/-0.2 mm) shell thickness for left and right head and flat planar area integrated in a wooden table. The shape of the fiberglass shell corresponds to the phantom defined by SCC34-SC2. The device holder positions are adjusted to the standard measurement positions in the three sections (see Appendix G for specifications of the SAM phantom V4.0C).

SAM Twin Phantom V4.0C

12.0 DEVICE HOLDER

The DASY4 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

Device Holder

Company Name:	OMNEX Control Systems ULC	FCC ID:	IA9HPD-24RC	IC:	1338B-HPD24RC	
HPD-24RC 2.4 GHz Spread Spectrum Transceiver Module installed in T42 Portable Remote Control Console						
2008 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 10 of 38

Celltech Teny of Expering Server Le	Date(s) of Evaluation December 19, 2007	<u>Test Report Serial No.</u> 121807IA9-T880-S15I	Test Report Revision No. Revision 1.0	
	<u>Test Report Issue Date</u> January 03, 2008	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Certificate No. 2470.01

13.0 TEST EQUIPMENT LIST

TEST EQUIPMENT		ASSET NO.	SERIAL NO.	D	ATE	CALIBRATION	
USED	DI	ESCRIPTION	ASSET NO.	SERIAL NU.	CALI	BRATED	DUE DATE
x	Schmid & I	Partner DASY4 System	-	-		-	-
x	-DASY4	Measurement Server	00158	1078		N/A	N/A
х	-Robot		00046	599396-01		N/A	N/A
x		-DAE4	00019	353	10	Jul07	10Jul08
		-DAE3	00018	370	13	Mar07	13Mar08
	-ET3[DV6 E-Field Probe	00016	1387	16	Mar07	16Mar08
х	-EX3[DV4 E-Field Probe	00213	3600	24	Jan07	24Jan08
	-300 MI	Hz Validation Dipole	00023	135	08	Jun07	08Jun08
	-450 MI	Hz Validation Dipole	00024	136	30	Jul07	30Jul08
	925 MI	Iz Validation Dinala	00022	411	Brain	07Jun07	07Jun08
	-835 IVII	Hz Validation Dipole	00022	411	Body	07Jun07	07Jun08
	000 M	In Validation Dinala	00000	054	Brain	07Jun07	07Jun08
	-900 Mi	Hz Validation Dipole	00020	054	Body	07Jun07	07Jun08
	4000 M	U-Malidatian Disala	00004	0.17	Brain	06Jun07	06Jun08
	-1800 M	Hz Validation Dipole	00021	247	Body	06Jun07	06Jun08
	1000			454	Brain	06Jun07	06Jun08
	-1900 M	1Hz Validation Dipole	00032	151	Body	06Jun07	06Jun08
	0.450.14	lle Validation Dinala	00025	450	Brain	16Jul07	16Jul08
х	-2450 M	Hz Validation Dipole	00025	150	Body	08Jun07	08Jun08
		-5200 MHz			Body	18May07	18May08
	5GHz	-5500 MHz		1001	Body	22May07	22May08
	Validation Dipole	5000 MUL	00126	1031	Brain	09May07	09May08
		-5800 MHz			Body	10May07	10May08
х	-SAM T	win Phantom V4.0C	00154	1033		N/A	N/A
	-Barsl	ki Planar Phantom	00155	03-01	N/A		N/A
	-Plexiglas	Side Planar Phantom	00156	161	N/A		N/A
	-Plexiglas Va	alidation Planar Phantom	00157	137	N/A		N/A
	ALS-PR-D	IEL Dielectric Probe Kit	00160	260-00953		N/A	N/A
х	HP 85070	C Dielectric Probe Kit	00033	US39240170		N/A	N/A
х	Gigatronic	cs 8652A Power Meter	00007	1835272	26	Mar07	26Mar08
	Gigatronic	cs 8652A Power Meter	00008	1835267	22	Jan07	22Jan08
х	Gigatronics	80701A Power Sensor	00012	1834350	22	Jan07	22Jan08
х	Gigatronics	80701A Power Sensor	00014	1833699	22	Jan07	22Jan08
	Gigatronics	80701A Power Sensor	00109	1834366	26	Mar07	26Mar08
х	HP 8753	ET Network Analyzer	00134	US39170292	20	Apr07	20Apr08
	HP 8648D Signal Generator		00005	3847A00611	1	NCR	NCR
х	Rohde & Schwarz SMR20 Signal Generator		00006	100104	1	NCR	NCR
х	Amplifier Resea	arch 5S1G4 Power Amplifier	00106	26235	١	NCR	NCR
	Amplifier Researc	h 10W1000C Power Amplifier	00041	27887	1	NCR	NCR
	Nextec NB00	383 Microwave Amplifier	00151	0535	1	NCR	NCR
	HP E4408	3B Spectrum Analyzer	00015	US39240170	05	Feb07	05Feb08

Company Name:	OMNEX Control Systems ULC	FCC ID:	IA9HPD-24RC	IC:	1338B-HPD24RC	
HPD-24RC 2.4 GHz Spread Spectrum Transceiver Module installed in T42 Portable Remote Control Console						
2008 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 11 of 38

Date(s) of Evaluation	Test Report Serial No.	Test Report Revision No.	and and a second second
December 19, 2007	121807IA9-T880-S15I	Revision 1.0	
Test Report Issue Date	Description of Test(s)	RF Exposure Category	ACCREDITED
January 03, 2008	Specific Absorption Rate	General Population	Certificate No. 2470.01

14.0 MEASUREMENT UNCERTAINTIES

UNCERTAINTY BUDGET FOR DEVICE EVALUATION						
Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	ci 1g	Uncertainty Value ±% (1g)	V _i or V _{eff}
Measurement System						
Probe calibration (2450 MHz)	5.9	Normal	1	1	5.9	œ
Axial isotropy of the probe	4.7	Rectangular	1.732050808	0.7	1.9	œ
Spherical isotropy of the probe	9.6	Rectangular	1.732050808	0.7	3.9	œ
Spatial resolution	0	Rectangular	1.732050808	1	0.0	œ
Boundary effects	0.2	Rectangular	1.732050808	1	0.1	œ
Probe linearity	4.7	Rectangular	1.732050808	1	2.7	œ
Detection limit	1	Rectangular	1.732050808	1	0.6	œ
Readout electronics	0.3	Normal	1	1	0.3	œ
Response time	0.8	Rectangular	1.732050808	1	0.5	œ
Integration time	2.6	Rectangular	1.732050808	1	1.5	œ
RF ambient conditions	3	Rectangular	1.732050808	1	1.7	œ
Mech. constraints of robot	0.4	Rectangular	1.732050808	1	0.2	∞
Probe positioning	2.9	Rectangular	1.732050808	1	1.7	∞
Extrapolation & integration	1	Rectangular	1.732050808	1	0.6	œ
Test Sample Related						
Device positioning	2.9	Normal	1	1	2.9	12
Device holder uncertainty	3.6	Normal	1	1	3.6	8
Power drift	5	Rectangular	1.732050808	1	2.9	œ
Phantom and Setup	· · · · · · · · · · · · · · · · · · ·					
Phantom uncertainty	4	Rectangular	1.732050808	1	2.3	œ
Liquid conductivity (target)	5	Rectangular	1.732050808	0.64	1.8	œ
Liquid conductivity (measured)	1.6	Normal	1	0.64	1.0	œ
Liquid permittivity (target)	5	Rectangular	1.732050808	0.6	1.7	œ
Liquid permittivity (measured)	4.9	Normal	1	0.6	2.9	œ
Combined Standard Uncertain	ty				11.00	
Expanded Uncertainty (k=2)					22.01	
	ertainty Table i	n accordance with	IEEE Standard 152	8-2003 (se		

Company Name:	OMNEX Control Systems ULC	FCC ID:	IA9HPD-24RC	IC:	1338B-HPD24RC	
HPD-24RC 2.4 GHz Spread Spectrum Transceiver Module installed in T42 Portable Remote Control Console						
2008 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 12 of 38

Date(s) of Evaluation	Test Report Serial No.	Test Report Revision No.	ALL COMPANY
December 19, 2007	121807IA9-T880-S15I	Revision 1.0	
Test Report Issue Date	Description of Test(s)	RF Exposure Category	ACCREDITED
January 03, 2008	Specific Absorption Rate	General Population	Certificate No. 2470.01

MEASUREMENT UNCERTAINTIES (Cont.)

UNCERTAINTY BUDGET FOR SYSTEM VALIDATION						
Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	ci 1g	Uncertainty Value ±% (1g)	V _i or V _{eff}
Measurement System						
Probe calibration (2450 MHz)	5.9	Normal	1	1	5.9	8
Axial isotropy of the probe	4.7	Rectangular	1.732050808	1	2.7	8
Spherical isotropy of the probe	0	Rectangular	1.732050808	1	0.0	×
Spatial resolution	0	Rectangular	1.732050808	1	0.0	8
Boundary effects	0.2	Rectangular	1.732050808	1	0.1	8
Probe linearity	4.7	Rectangular	1.732050808	1	2.7	8
Detection limit	1	Rectangular	1.732050808	1	0.6	×
Readout electronics	0.3	Normal	1	1	0.3	×
Response time	0	Rectangular	1.732050808	1	0.0	8
Integration time	0	Rectangular	1.732050808	1	0.0	×
RF ambient conditions	3	Rectangular	1.732050808	1	1.7	8
Mech. constraints of robot	0.4	Rectangular	1.732050808	1	0.2	8
Probe positioning	2.9	Rectangular	1.732050808	1	1.7	×
Extrapolation & integration	1	Rectangular	1.732050808	1	0.6	8
Dipole						
Dipole Positioning	2	Normal	1.732050808	1	1.2	8
Power & Power Drift	4.7	Normal	1.732050808	1	2.7	8
Phantom and Setup					·	
Phantom uncertainty	4	Rectangular	1.732050808	1	2.3	×
Liquid conductivity (target)	5	Rectangular	1.732050808	0.64	1.8	x
Liquid conductivity (measured)	0.5	Normal	1	0.64	0.3	8
Liquid permittivity (target)	5	Rectangular	1.732050808	0.6	1.7	8
Liquid permittivity (measured)	0	Normal	1	0.6	0.0	8
Combined Standard Uncertain	ty				8.76	
Expanded Uncertainty (k=2)						
	ertainty Table i	n accordance with	IEEE Standard 152	8-2003 (see	e reference [5])	

Company Name:	OMNEX Control Systems ULC	FCC ID:	IA9HPD-24RC	IC:	1338B-HPD24RC	
HPD-24RC 2.4 GHz Spread Spectrum Transceiver Module installed in T42 Portable Remote Control Console						TRUSTED WIRELESST*
2008 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 13 of 38	

Date(s) of Evaluation	<u>Test Report Serial No.</u>	Test Report Revision No.	
December 19, 2007	121807IA9-T880-S15I	Revision 1.0	
<u>Test Report Issue Date</u>	Description of Test(s)	RF Exposure Category	Certificate No. 2470.01
January 03, 2008	Specific Absorption Rate	General Population	

15.0 REFERENCES

[1] Federal Communications Commission - "Radiofrequency radiation exposure evaluation: portable devices", Rule Part 47 CFR §2.1093: 1999.

[2] Health Canada - "Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz", Safety Code 6: 1999.

[3] Federal Communications Commission - "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields", OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.

[4] Industry Canada - "Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)", Radio Standards Specification RSS-102 Issue 2: November 2005.

[5] IEEE Standard 1528-2003 - "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques": December 2003.

[6] ANSI/IEEE C95.1-2005 - "American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz", New York: IEEE, April 2006.

Company Name:	OMNEX Control Systems ULC	FCC ID:	IA9HPD-24RC	IC:	1338B-HPD24RC	
HPD-24RC 2.4 GHz Spread Spectrum Transceiver Module installed in T42 Portable Remote Control Console						TRUSTED WIRELESS**
2008 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 14 of 38	

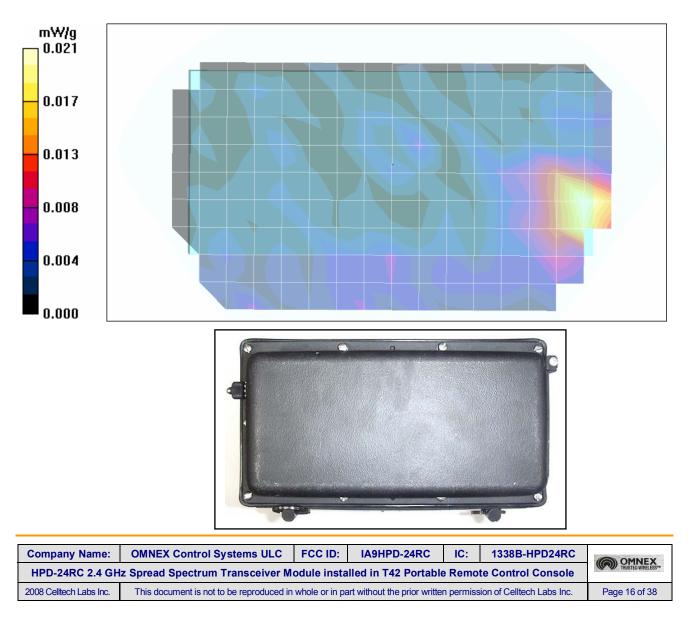
Celltech

Date(s) of Evaluation	Test Report Serial No.	Test Report Revision No.	and and a second s
December 19, 2007	121807IA9-T880-S15I	Revision 1.0	
Test Report Issue Date	Description of Test(s)	RF Exposure Category	ACCREDITED
January 03, 2008	Specific Absorption Rate	General Population	Certificate No. 2470.01

APPENDIX A - SAR MEASUREMENT DATA

Company Name:	OMNEX Control Systems ULC	FCC ID:	IA9HPD-24RC	IC:	1338B-HPD24RC	
HPD-24RC 2.4 GHz Spread Spectrum Transceiver Module installed in T42 Portable Remote Control Console						TRUSTED WIRELESS**
2008 Celtech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celtech Labs Inc.					Page 15 of 38	

College	Date(s) of Evaluation December 19, 2007	<u>Test Report Serial No.</u> 121807IA9-T880-S15I	Test Report Revision No. Revision 1.0	
Celltech	<u>Test Report Issue Date</u> January 03, 2008	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Certificate No. 2470.01


Body SAR - Bottom Side of DUT (0.0 cm Touch Position) - Low Channel - 2403.1 MHz

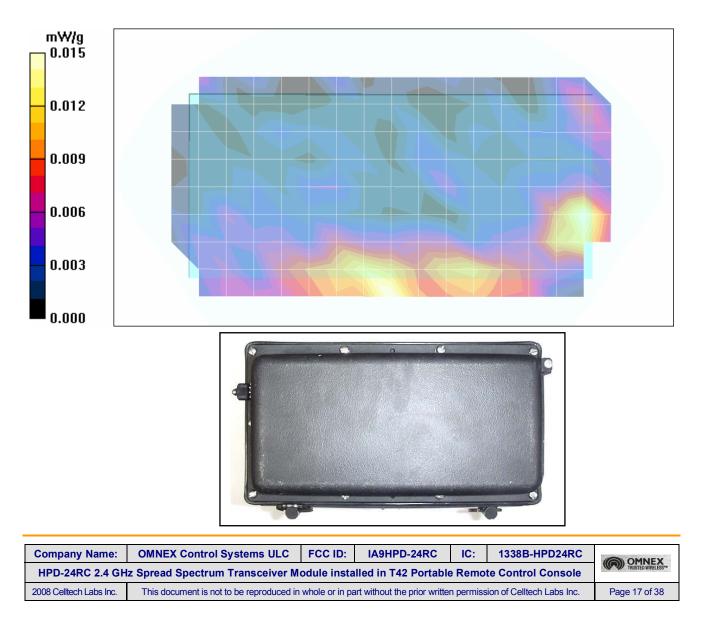
DUT: Omnex Controls; Type: HPD-24RC Transceiver installed in T42 Remote Control Console; Serial: 1104705

Ambient Temp: 24.0°C; Fluid Temp: 23.5°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: Mod. Fixed Freq. RF Output Power: 18.20 dBm (Conducted) Makita 9000 9.6V, 1.3Ah Ni-Cd Battery Pack Frequency: 2403.1 MHz; Duty Cycle: 1:2 Medium: M2450 Medium parameters used: f = 2403.1 MHz; σ = 1.98 mho/m; ϵ_r = 50.1; ρ = 1000 kg/m³ - Probe: EX3DV4 - SN3600; ConvF(6.31, 6.31, 6.31); Calibrated: 24/01/2007 - Sensor-Surface: 2 mm (Mechanical Surface Detection) - Electronics: DAE4 Sn353; Calibrated: 10/07/2007 - Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033 - Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body SAR - Bottom Side of DUT Touching Planar Phantom - Low Channel - 2403.1 MHz Area Scan (10x17x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.021 mW/g

College	Date(s) of Evaluation December 19, 2007	<u>Test Report Serial No.</u> 121807IA9-T880-S15I	Test Report Revision No. Revision 1.0	
Celltech	<u>Test Report Issue Date</u> January 03, 2008	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Certificate No. 2470.01


Body SAR - Bottom Side of DUT (0.0 cm Touch Position) - Mid Channel - 2441.7 MHz

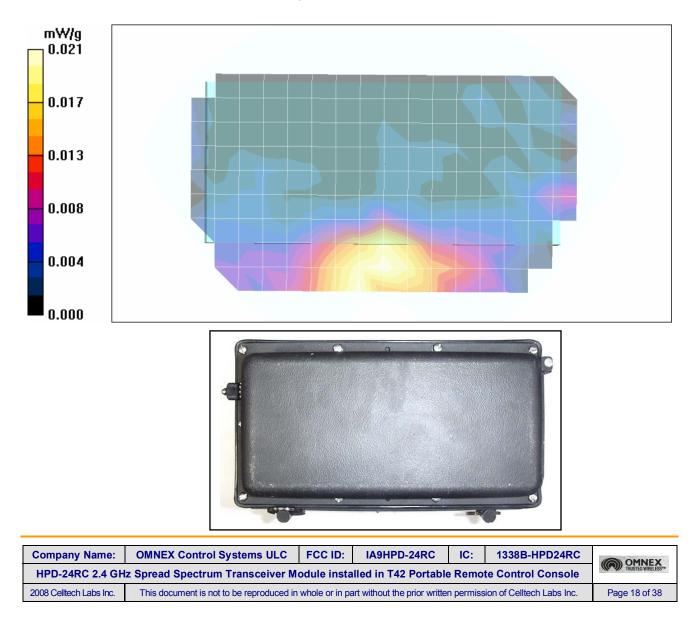
DUT: Omnex Controls; Type: HPD-24RC Transceiver installed in T42 Remote Control Console; Serial: 1104705

Ambient Temp: 24.0°C; Fluid Temp: 23.5°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

 $Communication System: Mod. Fixed Freq. \\ RF Output Power: 19.68 dBm (Conducted) \\ Makita 9000 9.6V, 1.3Ah Ni-Cd Battery Pack \\ Frequency: 2441.7 MHz; Duty Cycle: 1:2 \\ Medium: M2450 Medium parameters used: f = 2441.7 MHz; \sigma = 1.98 mho/m; \epsilon_r = 50.1; \rho = 1000 kg/m^3 \\ - Probe: EX3DV4 - SN3600; ConvF(6.31, 6.31, 6.31); Calibrated: 24/01/2007 \\ - Sensor-Surface: 2 mm (Mechanical Surface Detection) \\ - Electronics: DAE4 Sn353; Calibrated: 10/07/2007 \\ - Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033 \\ - Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171$

Body SAR - Bottom Side of DUT Touching Planar Phantom - Mid Channel - 2441.7 MHz Area Scan (9x17x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.015 mW/g

College	<u>Date(s) of Evaluation</u> December 19, 2007	<u>Test Report Serial No.</u> 121807IA9-T880-S15I	Test Report Revision No. Revision 1.0	
Celltech	<u>Test Report Issue Date</u> January 03, 2008	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Certificate No. 2470.01


Body SAR - Bottom Side of DUT (0.0 cm Touch Position) - High Channel - 2478.6 MHz

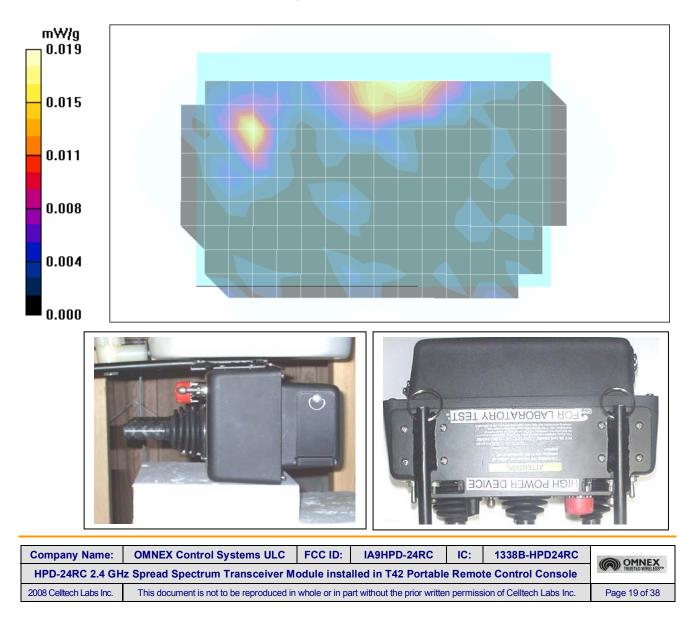
DUT: Omnex Controls; Type: HPD-24RC Transceiver installed in T42 Remote Control Console; Serial: 1104705

Ambient Temp: 24.0°C; Fluid Temp: 23.5°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: Mod. Fixed Freq. RF Output Power: 20.86 dBm (Conducted) Makita 9000 9.6V, 1.3Ah Ni-Cd Battery Pack Frequency: 2478.6 MHz; Duty Cycle: 1:2 Medium: M2450 Medium parameters used: f = 2478.6 MHz; σ = 1.98 mho/m; ϵ_r = 50.1; ρ = 1000 kg/m³ - Probe: EX3DV4 - SN3600; ConvF(6.31, 6.31, 6.31); Calibrated: 24/01/2007 - Sensor-Surface: 2 mm (Mechanical Surface Detection) - Electronics: DAE4 Sn353; Calibrated: 10/07/2007 - Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033 - Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body SAR - Bottom Side of DUT Touching Planar Phantom - High Channel - 2478.6 MHz Area Scan (10x17x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.021 mW/g

College	Date(s) of Evaluation December 19, 2007	<u>Test Report Serial No.</u> 121807IA9-T880-S15I	Test Report Revision No. Revision 1.0	
Celltech	<u>Test Report Issue Date</u> January 03, 2008	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Certificate No. 2470.01

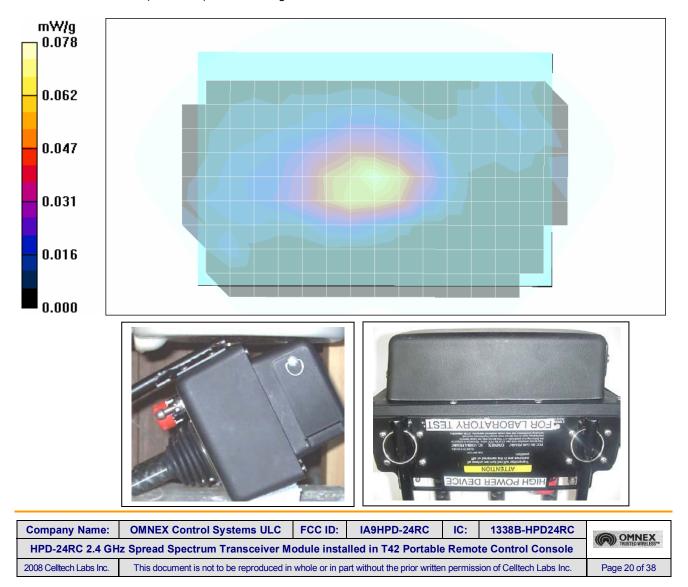

Body SAR - Back Side of DUT (1-Point Touch Position) - Mid Channel - 2441.7 MHz

DUT: Omnex Controls; Type: HPD-24RC Transceiver installed in T42 Remote Control Console; Serial: 1104705

Ambient Temp: 24.0°C; Fluid Temp: 23.5°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: Mod. Fixed Freq. RF Output Power: 19.68 dBm (Conducted) Makita 9000 9.6V, 1.3Ah Ni-Cd Battery Pack Frequency: 2441.7 MHz; Duty Cycle: 1:2 Medium: M2450 Medium parameters used: f = 2441.7 MHz; σ = 1.98 mho/m; ϵ_r = 50.1; ρ = 1000 kg/m³ - Probe: EX3DV4 - SN3600; ConvF(6.31, 6.31, 6.31); Calibrated: 24/01/2007 - Sensor-Surface: 2 mm (Mechanical Surface Detection) - Electronics: DAE4 Sn353; Calibrated: 10/07/2007 - Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033 - Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body SAR - Back Side of DUT Touching Planar Phantom (1-Point Touch) - Mid Channel - 2441.7 MHz Area Scan (10x17x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.019 mW/g

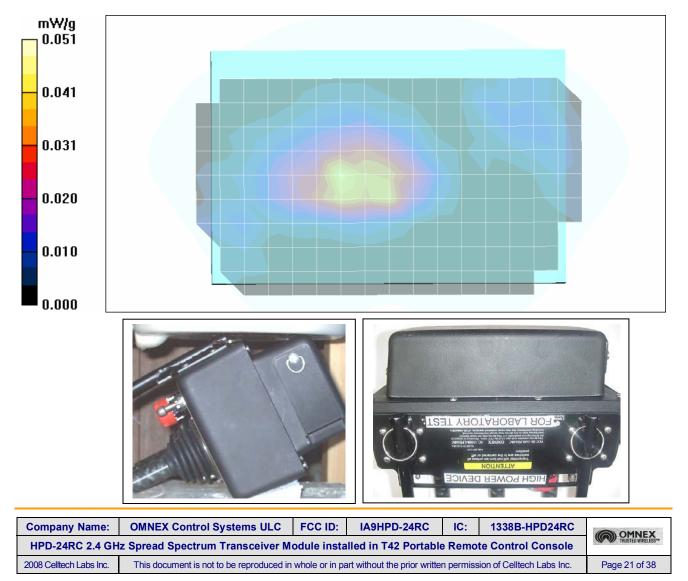


Cellhada	Date(s) of Evaluation December 19, 2007	<u>Test Report Serial No.</u> 121807IA9-T880-S15I	Test Report Revision No. Revision 1.0	
Celltech	<u>Test Report Issue Date</u> January 03, 2008	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Certificate No. 2470.01

Body SAR - Back Side of DUT (2-Point Touch Position) - Mid Channel - 2441.7 MHz

DUT: Omnex Controls; Type: HPD-24RC Transceiver installed in T42 Remote Control Console; Serial: 1104705 Ambient Temp: 24.0°C; Fluid Temp: 23.5°C; Barometric Pressure: 101.1 kPa; Humidity: 35% Communication System: Mod. Fixed Freq. RF Output Power: 19.68 dBm (Conducted) Makita 9000 9.6V, 1.3Ah Ni-Cd Battery Pack Frequency: 2441.7 MHz; Duty Cycle: 1:2 Medium: M2450 Medium parameters used: f = 2441.7 MHz; σ = 1.98 mho/m; ϵ_r = 50.1; ρ = 1000 kg/m³ - Probe: EX3DV4 - SN3600; ConvF(6.31, 6.31, 6.31); Calibrated: 24/01/2007 - Sensor-Surface: 2 mm (Mechanical Surface Detection) - Electronics: DAE4 Sn353: Calibrated: 10/07/2007 - Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033 - Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171 Body SAR - Back Side of DUT Touching Planar Phantom (2-Point Touch) - Mid Channel - 2441.7 MHz Area Scan (10x17x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.073 mW/g Body SAR - Back Side of DUT Touching Planar Phantom (2-Point Touch) - Mid Channel - 2441.7 MHz Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.52 V/m

Peak SAR (extrapolated) = 0.101 W/kg SAR(1 g) = 0.053 mW/g; SAR(10 g) = 0.031 mW/g Maximum value of SAR (measured) = 0.078 mW/g

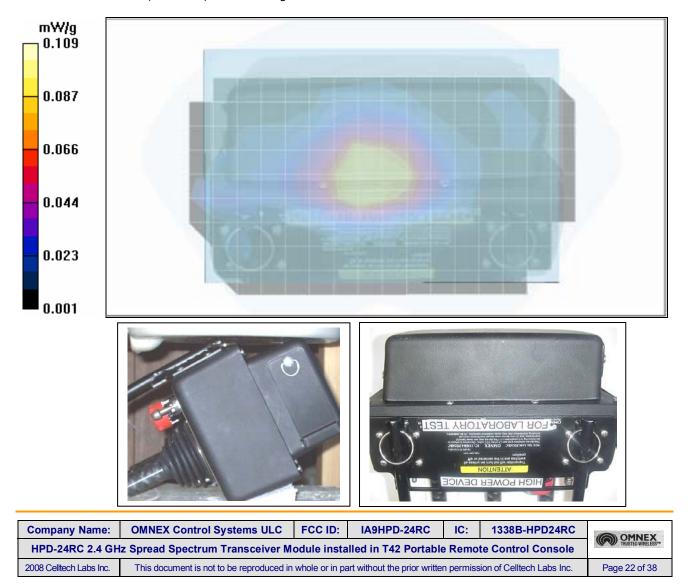

College	Date(s) of Evaluation December 19, 2007	<u>Test Report Serial No.</u> 121807IA9-T880-S15I	Test Report Revision No. Revision 1.0	
Celltech	<u>Test Report Issue Date</u> January 03, 2008	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Certificate No. 2470.01

Body SAR - Back Side of DUT (2-Point Touch Position) - Low Channel - 2403.1 MHz

DUT: Omnex Controls; Type: HPD-24RC Transceiver installed in T42 Remote Control Console; Serial: 1104705 Ambient Temp: 24.0°C; Fluid Temp: 23.5°C; Barometric Pressure: 101.1 kPa; Humidity: 35% Communication System: Mod. Fixed Freq. RF Output Power: 18.20 dBm (Conducted) Makita 9000 9.6V, 1.3Ah Ni-Cd Battery Pack Frequency: 2403.1 MHz; Duty Cycle: 1:2 Medium: M2450 Medium parameters used: f = 2403.1 MHz; σ = 1.98 mho/m; ϵ_r = 50.1; ρ = 1000 kg/m³ - Probe: EX3DV4 - SN3600; ConvF(6.31, 6.31, 6.31); Calibrated: 24/01/2007 - Sensor-Surface: 2 mm (Mechanical Surface Detection) - Electronics: DAE4 Sn353: Calibrated: 10/07/2007 - Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033 - Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171 Body SAR - Back Side of DUT Touching Planar Phantom (2-Point Touch) - Low Channel - 2403.1 MHz Area Scan (10x17x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.042 mW/g Body SAR - Back Side of DUT Touching Planar Phantom (2-Point Touch) - Low Channel - 2403.1 MHz Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.07 V/m

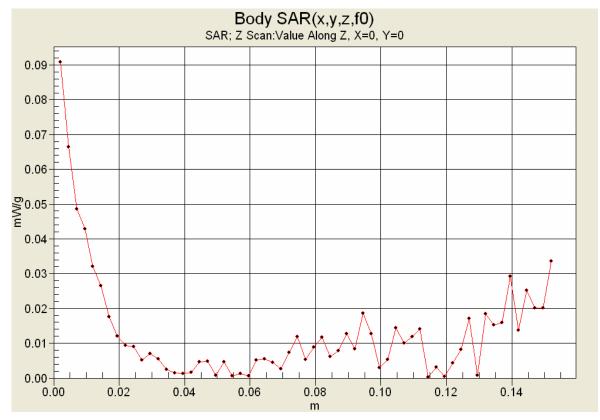
Peak SAR (extrapolated) = 0.064 W/kg SAR(1 g) = 0.032 mW/g; SAR(10 g) = 0.018 mW/g

Maximum value of SAR (measured) = 0.051 mW/g



College	Date(s) of Evaluation December 19, 2007	<u>Test Report Serial No.</u> 121807IA9-T880-S15I	Test Report Revision No. Revision 1.0	
Celltech	<u>Test Report Issue Date</u> January 03, 2008	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Certificate No. 2470.01

Body SAR - Back Side of DUT (2-Point Touch Position) - High Channel - 2478.6 MHz


DUT: Omnex Controls; Type: HPD-24RC Transceiver installed in T42 Remote Control Console; Serial: 1104705 Ambient Temp: 24.0°C; Fluid Temp: 23.5°C; Barometric Pressure: 101.1 kPa; Humidity: 35% Communication System: Mod. Fixed Freq. RF Output Power: 20.86 dBm (Conducted) Makita 9000 9.6V, 1.3Ah Ni-Cd Battery Pack Frequency: 2478.6 MHz; Duty Cycle: 1:2 Medium: M2450 Medium parameters used: f = 2478.6 MHz; σ = 1.98 mho/m; ϵ_r = 50.1; ρ = 1000 kg/m³ - Probe: EX3DV4 - SN3600; ConvF(6.31, 6.31, 6.31); Calibrated: 24/01/2007 - Sensor-Surface: 2 mm (Mechanical Surface Detection) - Electronics: DAE4 Sn353: Calibrated: 10/07/2007 - Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033 - Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171 Body SAR - Back Side of DUT Touching Planar Phantom (2-Point Touch) - High Channel - 2478.6 MHz Area Scan (10x17x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.092 mW/g Body SAR - Back Side of DUT Touching Planar Phantom (2-Point Touch) - High Channel - 2478.6 MHz Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.50 V/m Peak SAR (extrapolated) = 0.139 W/kg SAR(1 g) = 0.072 mW/g; SAR(10 g) = 0.042 mW/g

Maximum value of SAR (measured) = 0.109 mW/g

Celltech	Date(s) of Evaluation December 19, 2007	Test Report Serial No. 121807IA9-T880-S15I	Test Report Revision No. Revision 1.0	
	<u>Test Report Issue Date</u> January 03, 2008	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Certificate No. 2470.01

Z-Axis Scan

Due to the very low SAR level measured in this configuration the Z-axis scan is only reporting noise. The DASY4 software adjusts the scale according to the measured SAR level, which for this evaluation is close to the measurement noise floor.

Company Name:	OMNEX Control Systems ULC	FCC ID:	IA9HPD-24RC	IC:	1338B-HPD24RC	
HPD-24RC 2.4 GHz Spread Spectrum Transceiver Module installed in T42 Portable Remote Control Console						TRUSTED WIRELESS
2008 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 23 of 38	

Date(s) of Evaluation	<u>Test Report Serial No.</u>	Test Report Revision No.	
December 19, 2007	121807IA9-T880-S15I	Revision 1.0	
<u>Test Report Issue Date</u>	Description of Test(s)	RF Exposure Category	Certificate No. 2470.01
January 03, 2008	Specific Absorption Rate	General Population	

APPENDIX B - SYSTEM PERFORMANCE CHECK DATA

Company Name:	OMNEX Control Systems ULC	FCC ID:	IA9HPD-24RC	IC:	1338B-HPD24RC	
HPD-24RC 2.4 GHz Spread Spectrum Transceiver Module installed in T42 Portable Remote Control Console						TRUSTED WIRELESST
2008 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 24 of 38	

Callback	Date(s) of Evaluation December 19, 2007	<u>Test Report Serial No.</u> 121807IA9-T880-S15I	Test Report Revision No. Revision 1.0	
Celltech	Test Report Issue Date January 03, 2008	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Certificate No. 2470.01

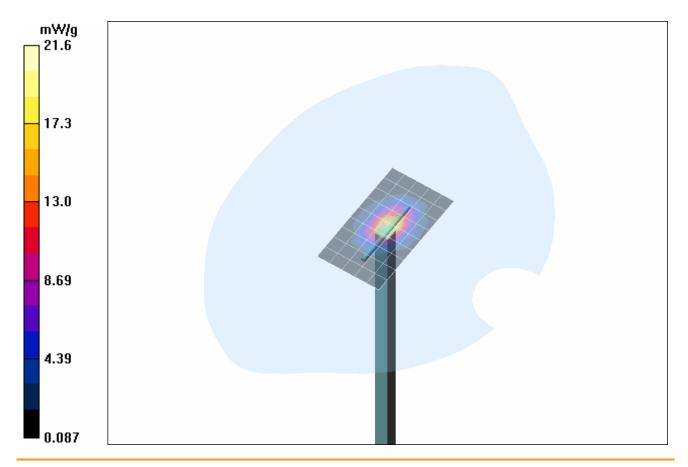
System Performance Check - 2450 MHz Dipole - MSL

DUT: Dipole 2450 MHz; Asset: 00025; Serial: 150; Validation: 06/08/2007

Ambient Temp: 24.0°C; Fluid Temp: 23.3°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW

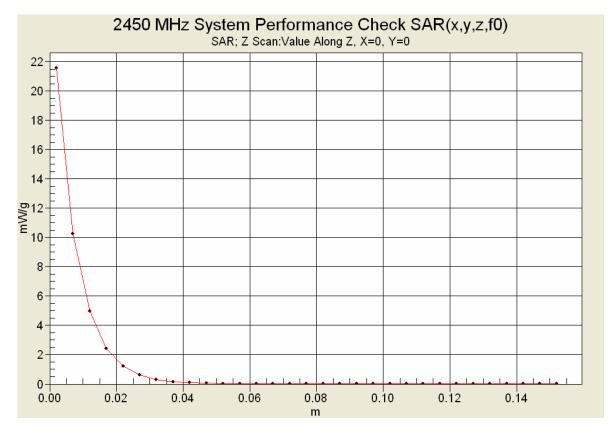
Forward Conducted Power: 250 mW


Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: M2450 Medium parameters used: f = 2450 MHz; σ = 1.98 mho/m; ϵ_r = 50.1; ρ = 1000 kg/m³

- Probe: EX3DV4 SN3600; ConvF(6.31, 6.31, 6.31); Calibrated: 24/01/2007
- Sensor-Surface: 2 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 10/07/2007
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

2450 MHz Dipole - System Performance Check/Area Scan (6x10x1):


Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 18.3 mW/g 2450 MHz Dipole - System Performance Check/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 106.6 V/m; Power Drift = -0.079 dB Peak SAR (extrapolated) = 29.6 W/kg SAR(1 g) = 13.9 mW/g; SAR(10 g) = 6.19 mW/g Maximum value of SAR (measured) = 21.6 mW/g

Company Name:	OMNEX Control Systems ULC	FCC ID:	IA9HPD-24RC	IC:	1338B-HPD24RC	
HPD-24RC 2.4 GHz Spread Spectrum Transceiver Module installed in T42 Portable Remote Control Console						TRUSTED WIRELESS**
2008 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 25 of 38	

Celltech	Date(s) of Evaluation December 19, 2007	<u>Test Report Serial No.</u> 121807IA9-T880-S15I	Test Report Revision No. Revision 1.0	
	Test Report Issue Date January 03, 2008	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Certificate No. 2470.01

Z-Axis Scan

Company Name:	OMNEX Control Systems ULC	FCC ID:	IA9HPD-24RC	IC:	1338B-HPD24RC	
HPD-24RC 2.4 GHz Spread Spectrum Transceiver Module installed in T42 Portable Remote Control Console						TRUSTED WIRELESS**
2008 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 26 of 38	

Date(s) of Evaluation	Test Report Serial No.	Test Report Revision No.	
December 19, 2007	121807IA9-T880-S15I	Revision 1.0	HAC-MRA
Test Report Issue Date	Description of Test(s)	RF Exposure Category	ACCREDITED
January 03, 2008	Specific Absorption Rate	General Population	Certificate No. 2470.01

APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS

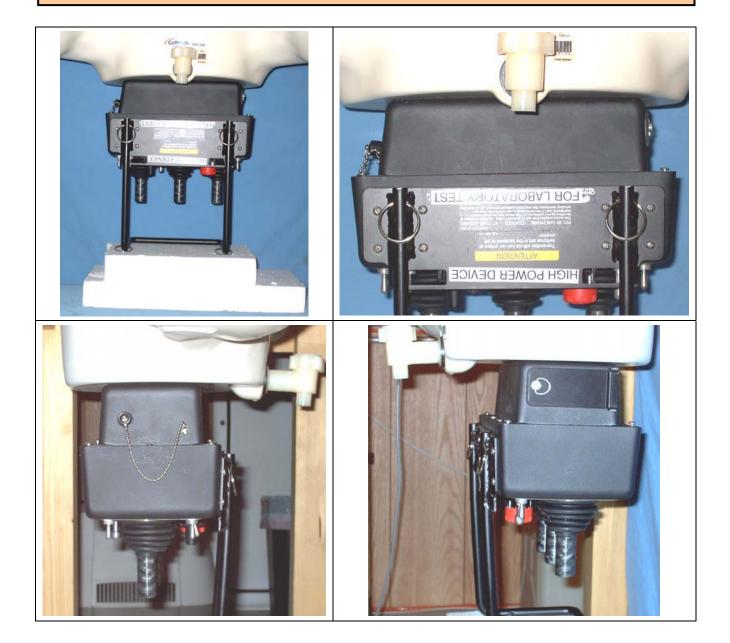
Company Name:	OMNEX Control Systems ULC	FCC ID:	IA9HPD-24RC	IC:	1338B-HPD24RC	
HPD-24RC 2.4 GHz Spread Spectrum Transceiver Module installed in T42 Portable Remote Control Console						TRUSTED WIRELESST
2008 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 27 of 38	

College	Date(s) of Evaluation December 19, 2007	<u>Test Report Serial No.</u> 121807IA9-T880-S15I	Test Report Revision No. Revision 1.0	
Celltech	<u>Test Report Issue Date</u>	Description of Test(s)	RF Exposure Category	Certificate No. 2470.01
Testy and Exploring Service Let	January 03, 2008	Specific Absorption Rate	General Population	

2450 MHz System Performance Check & DUT Evaluation (Body)

Celltech Labs Inc. Test Result for UIM Dielectric Parameter Wed 19/Dec/2007 Frequency (GHz) FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma FCC_eB FCC Limits for Body Epsilon FCC_sB FCC Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM								
Freq	FCC eB	FCC sF	3 Test e	Test s				
2.3500	52.83	1.85	50.53	1.86				
2.3600	52.82	1.86	50.63	1.88				
2.3700	52.81	1.87	50.57	1.88				
2.3800	52.79	1.88	50.46	1.91				
2.3900	52.78		50.44	1.91				
2.4000	52.77	1.90	50.35	1.92				
2.4100	52.75	1.91	50.27	1.94				
2.4200	52.74	1.92	50.23	1.94				
2.4300	52.73	1.93	50.22	1.96				
2.4400	52.71	1.94	50.27	1.97				
<mark>2.4500</mark>	52.70	1.95	50.13	<mark>1.98</mark>				
2.4600	52.69	1.96	50.15	1.99				
2.4700	52.67	1.98	50.06	2.00				
2.4800	52.66	1.99	50.16	2.02				
2.4900	52.65	2.01	50.03	2.04				
2.5000	52.64	2.02	49.96	2.06				
2.5100	52.62	2.04	49.99	2.06				
2.5200	52.61	2.05	49.89	2.07				
2.5300	52.60	2.06	49.87	2.09				
2.5400 2.5500	52.59 52.57	2.08 2.09	49.91 49.94	2.11 2.11				
2.5500	52.57	2.09	49.94	2.11				

Company N	ame:	OMNEX Control Systems ULC	FCC ID:	IA9HPD-24RC	IC:	1338B-HPD24RC	
HPD-24RC 2.4 GHz Spread Spectrum Transceiver Module installed in T42 Portable Remote Control Console						TRUSTED WIRELESS**	
2008 Celltech La	ibs Inc.	This document is not to be reproduced in	whole or in pa	art without the prior writte	n permiss	ion of Celltech Labs Inc.	Page 28 of 38


Date(s) of Evaluation	<u>Test Report Serial No.</u>	Test Report Revision No.	
December 19, 2007	121807IA9-T880-S15I	Revision 1.0	
Test Report Issue Date	Description of Test(s)	RF Exposure Category	Certificate No. 2470.01
January 03, 2008	Specific Absorption Rate	General Population	

APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS

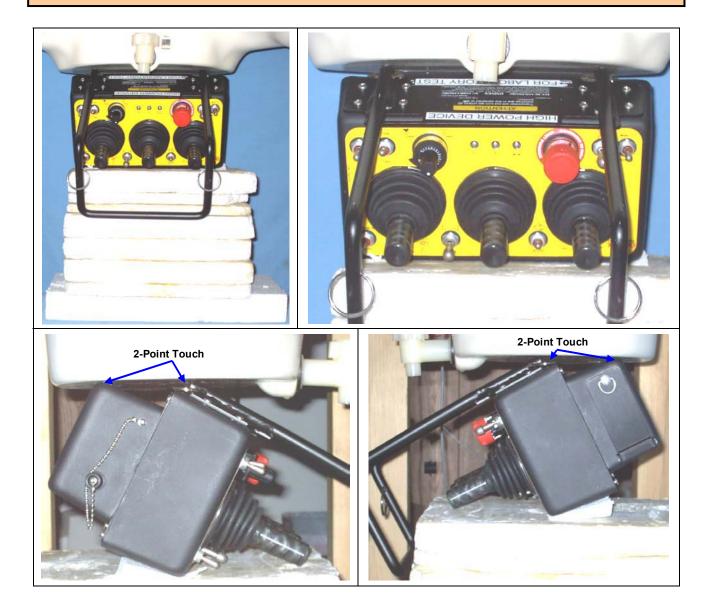
Company Name:	OMNEX Control Systems ULC	FCC ID:	IA9HPD-24RC	IC:	1338B-HPD24RC	
HPD-24RC 2.4 GHz Spread Spectrum Transceiver Module installed in T42 Portable Remote Control Console						TRUSTED WIRELESST*
2008 Celltech Labs Inc.	This document is not to be reproduced in	whole or in pa	art without the prior writte	n permiss	ion of Celltech Labs Inc.	Page 29 of 38

Celltech	Date(s) of Evaluation December 19, 2007	<u>Test Report Serial No.</u> 121807IA9-T880-S15I	Test Report Revision No. Revision 1.0	
CCENTECH	<u>Test Report Issue Date</u>	Description of Test(s)	RF Exposure Category	Certificate No. 2470.01
Transport Expressing Services Lat	January 03, 2008	Specific Absorption Rate	General Population	

BODY SAR TEST SETUP PHOTOGRAPHS Bottom Side of DUT Touching Planar Phantom

Company Name:	OMNEX Control Systems ULC	FCC ID:	IA9HPD-24RC	IC:	1338B-HPD24RC	
HPD-24RC 2.4 GHz Spread Spectrum Transceiver Module installed in T42 Portable Remote Control Console						TRUSTED WIRELESS**
2008 Celltech Labs Inc.	This document is not to be reproduced in	whole or in pa	art without the prior writte	n permiss	ion of Celltech Labs Inc.	Page 30 of 38

Callback	<u>Date(s) of Evaluation</u> December 19, 2007	<u>Test Report Serial No.</u> 121807IA9-T880-S15I	Test Report Revision No. Revision 1.0	
Celltech	<u>Test Report Issue Date</u> January 03, 2008	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Certificate No. 2470.01


BODY SAR TEST SETUP PHOTOGRAPHS Back Side of DUT Touching Planar Phantom 1-Point Touch Position

Company Name:	OMNEX Control Systems ULC	FCC ID:	IA9HPD-24RC	IC:	1338B-HPD24RC	
HPD-24RC 2.4 GHz Spread Spectrum Transceiver Module installed in T42 Portable Remote Control Console						TRUSTED WIRELESS**
2008 Celltech Labs Inc.	This document is not to be reproduced in	whole or in pa	art without the prior writte	n permiss	ion of Celltech Labs Inc.	Page 31 of 38

Celltech	Date(s) of Evaluation December 19, 2007	<u>Test Report Serial No.</u> 121807IA9-T880-S15I	Test Report Revision No. Revision 1.0	
Testing and Engineering Services Lat	<u>Test Report Issue Date</u> January 03, 2008	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Certificate No. 2470.01

BODY SAR TEST SETUP PHOTOGRAPHS Back Side of DUT Touching Planar Phantom 2-Point Touch Position

Company Name:	OMNEX Control Systems ULC	FCC ID:	IA9HPD-24RC	IC:	1338B-HPD24RC	
HPD-24RC 2.4 GHz Spread Spectrum Transceiver Module installed in T42 Portable Remote Control Console						TRUSTED WIRELESS**
2008 Celltech Labs Inc.	This document is not to be reproduced in	whole or in pa	art without the prior writte	n permiss	sion of Celltech Labs Inc.	Page 32 of 38

Celltech	Date(s) of Evaluation December 19, 2007	<u>Test Report Serial No.</u> 121807IA9-T880-S15I	Test Report Revision No. Revision 1.0	
Testing and Engineering Services Lat	<u>Test Report Issue Date</u> January 03, 2008	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Certificate No. 2470.01

DUT PHOTOGRAPHS

Company Name:	ompany Name: OMNEX Control Systems ULC FCC ID: IA9HPD-24RC IC: 1338B-HPD24RC					
HPD-24RC 2.4 GHz Spread Spectrum Transceiver Module installed in T42 Portable Remote Control Console						TRUSTED WIRELESS**
2008 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 33 of 38	

Celltech	Date(s) of Evaluation December 19, 2007	<u>Test Report Serial No.</u> 121807IA9-T880-S15I	Test Report Revision No. Revision 1.0	
Testing and Engineering Services Lat	<u>Test Report Issue Date</u> January 03, 2008	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Certificate No. 2470.01

DUT PHOTOGRAPHS

Bottom Side of T42 Radio Remote Control Console

Company Name:	OMNEX Control Systems ULC	FCC ID:	IA9HPD-24RC	IC:	1338B-HPD24RC	
HPD-24RC 2.4 GHz Spread Spectrum Transceiver Module installed in T42 Portable Remote Control Console						TRUSTED WIRELESS**
2008 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 34 of 38	

Cillingh	<u>Date(s) of Evaluation</u> December 19, 2007	<u>Test Report Serial No.</u> 121807IA9-T880-S15I	Test Report Revision No. Revision 1.0		
Celltech	<u>Test Report Issue Date</u> January 03, 2008	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Certificate No. 2470.01	

DUT PHOTOGRAPHS

Company Name:	OMNEX Control Systems ULC	FCC ID:	IA9HPD-24RC	IC:	1338B-HPD24RC	
HPD-24RC 2.4 GHz Spread Spectrum Transceiver Module installed in T42 Portable Remote Control Console						
2008 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 35 of 38

Date(s) of Evaluation	<u>Test Report Serial No.</u>	Test Report Revision No.	
December 19, 2007	121807IA9-T880-S15I	Revision 1.0	
Test Report Issue Date	Description of Test(s)	RF Exposure Category	Certificate No. 2470.01
January 03, 2008	Specific Absorption Rate	General Population	

APPENDIX E - SYSTEM VALIDATION

Company Name:	Company Name: OMNEX Control Systems ULC FCC ID: IA9HPD-24RC IC: 1338B-HPD24RC					
HPD-24RC 2.4 GHz Spread Spectrum Transceiver Module installed in T42 Portable Remote Control Console						TRUSTED WIRELESS**
2008 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 36 of 38	

2450 MHz SYSTEM VALIDATION

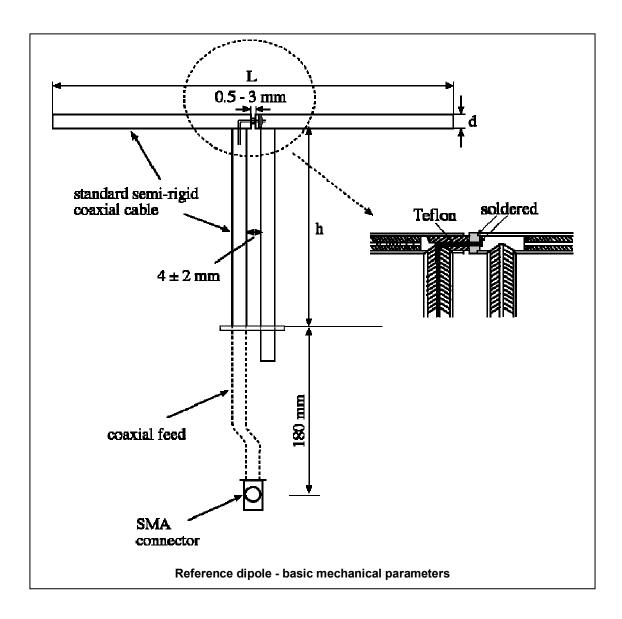
Туре:	2450 MHz Validation Dipole
Asset Number:	00025
Serial Number:	150
Place of Validation:	Celltech Labs Inc.
Date of Validation:	June 08, 2007

Celltech Labs Inc. certifies that the 2450 MHz System Validation was performed on the date indicated above.

Performed by: Cheri Frangiadakis
Approved by: Sean Johnston

Callhada	Date of Evaluatio	n:	June 08, 20	007	Document	t Serial No.:	SV2450M-06	0807-R1.4
Celltech Testing and Engineering Services Lat	Evaluation Type:	Sys	stem Validation	Validat	ion Dipole:	2450 MHz	Fluid Type:	Body

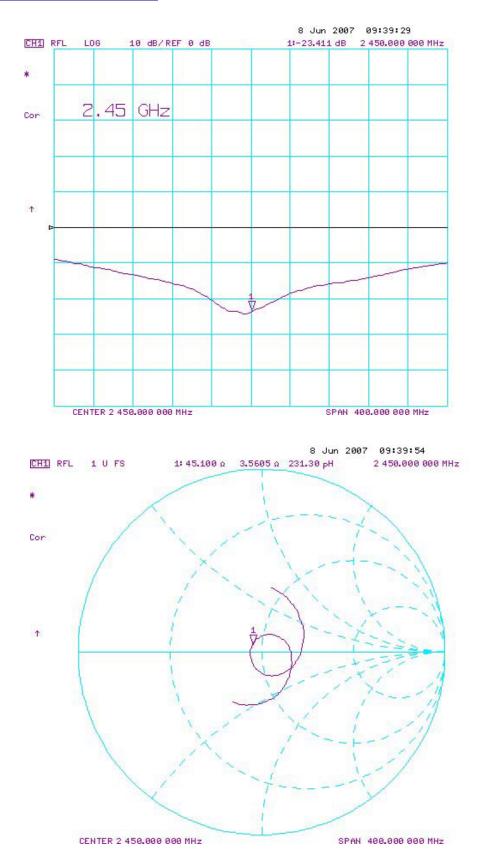
1. Dipole Construction & Electrical Characteristics


The validation dipole was constructed in accordance with the requirements specified in IEEE Standard 1528-2003 and International Standard IEC 62209-1:2005. The electrical properties were measured using an HP 8753ET Network Analyzer. The network analyzer was calibrated to the validation dipole N-type connector feed point using an HP85032E Type N calibration kit. The dipole was placed parallel to a planar phantom at a separation distance of 10.0mm from the simulating fluid using a loss-less dielectric spacer. The measured input impedance is:

Feed point impedance at 2450 MHz

 $Re{Z} = 45.100\Omega$ $Im{Z} = 3.5605\Omega$

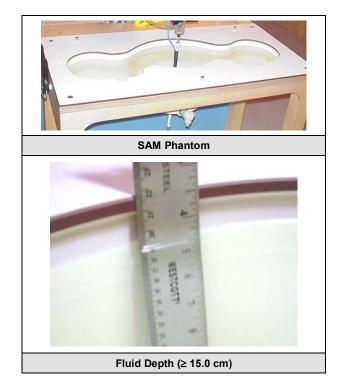
Return Loss at 2450 MHz


-23.411dB

Date of Evaluatio	uation: June 08, 2007		007	Document	t Serial No.:	SV2450M-060807-R1.4		
Evaluation Type:	Sys	tem Validation	Validati	ion Dipole:	2450 MHz	Fluid Type:	Body	

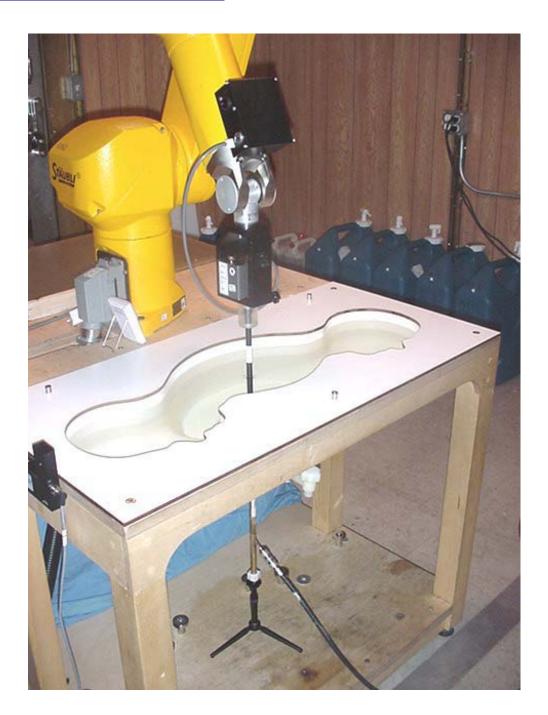
2. Validation Dipole VSWR Data

Callback	Date of Evaluation:		June 08, 2007		Document Serial No.:		SV2450M-060807-R1.4	
Celltech Testing and Engineering Services Lat	Evaluation Type:	Syste	em Validation	Validati	on Dipole:	2450 MHz	Fluid Type:	Body

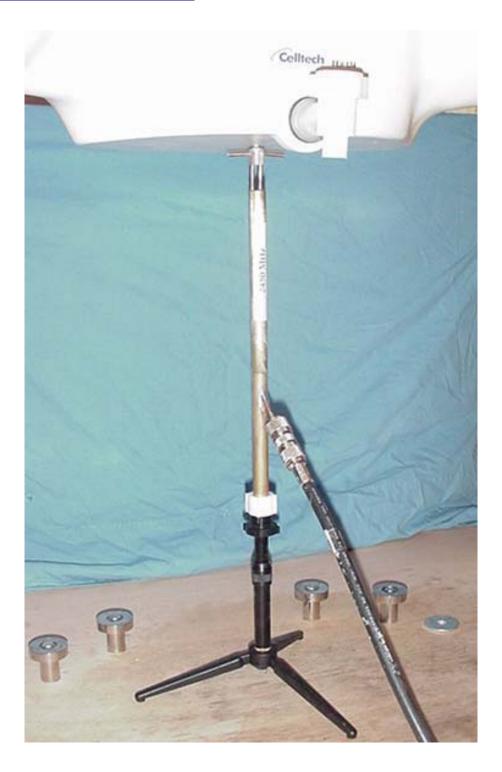

3. Validation Dipole Dimensions

Frequency (MHz)	L (mm)	H (mm)	D (mm)
300	396.0	250.0	6.0
450	270.0	167.0	6.0
835	161.0	89.8	3.6
900	149.0	83.3	3.6
1450	89.1	51.7	3.6
1800	72.0	41.7	3.6
1900	68.0	39.5	3.6
2000	64.5	37.5	3.6
2450	51.5	30.4	3.6
3000	41.5	25.0	3.6

4. Validation Phantom


The validation phantom is the SAM (Specific Anthropomorphic Mannequin) phantom manufactured by Schmid & Partner Engineering AG. The SAM phantom is a Fiberglass shell integrated in a wooden table. The shape of the shell corresponds to the phantom defined by SCC34-SC2. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

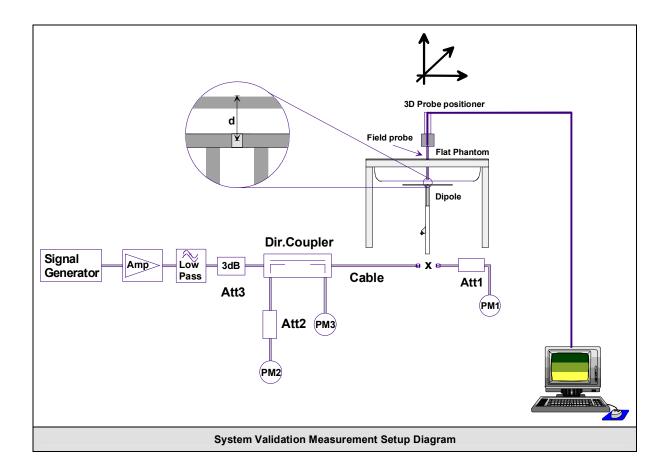
Shell Thickness:	2.0 ± 0.1 mm
Filling Volume:	Approx. 25 liters
Dimensions:	50 cm (W) x 100 cm (L)


Callback	Date of Evaluation:		June 08, 2007		Document Serial No.:		SV2450M-060807-R1.4	
Celltech Testing and Engineering Services Lat	Evaluation Type:	Sys	tem Validation	Validat	ion Dipole:	2450 MHz	Fluid Type:	Body

5. 2450 MHz System Validation Setup

Callback	Date of Evaluation	n:	June 08, 20	007	Document	t Serial No.:	SV2450M-06	0807-R1.4
Celltech Testrg and Engineering Services Lat	Evaluation Type:	Sys	tem Validation	Validat	ion Dipole:	2450 MHz	Fluid Type:	Body

6. 2450 MHz Validation Dipole Setup



Callback	Date of Evaluatio	n:	June 08, 20	07	Document	Serial No.:	SV2450M-06	0807-R1.4
Celltech Testing and Engineering Services Lat	Evaluation Type:	Sys	stem Validation	Validat	ion Dipole:	2450 MHz	Fluid Type:	Body

7. SAR Measurement

Measurements were made at the planar section of the SAM phantom using a dosimetric E-field probe EX3DV4 (S/N: 3600, conversion factor 6.31). The SAR measurement was performed with the E-field probe in mechanical detection mode only. The setup and determination of the forward power into the dipole was performed using the procedures described below.

First the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the attenuation of Att1) as read by power meter PM2. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow adjustment in 0.01dB steps, the remaining difference at PM2 must be taken into consideration. PM3 records the reflected power from the dipole to ensure that the value is not changed from the previous value. The reflected power should be 20dB below the forward power.

Callback	Date of Evaluatio	n:	June 08, 2007		Document	Serial No.:	SV2450M-060807-R1.4	
Celltech Testing and Engeneering Services Late	Evaluation Type:	Sys	tem Validation	Validati	ion Dipole:	2450 MHz	Fluid Type:	Body

8. Measurement Conditions

The SAM phantom was filled with 2450 MHz Body tissue simulant.

Relative Permittivity:	50.1 (-4.9% deviation from target)
Conductivity:	1.99 mho/m (+2.1% deviation from target)
Fluid Temperature:	21.5 °C (Start of Test) / 21.2 °C (End of Test)
Fluid Depth:	≥ 15.0 cm
Environmental Conditio	ns:
Ambient Temperature:	22.7 °C

Barometric Pressure:101.1 kPaHumidity:31 %

The 2450 MHz Body tissue simulant consisted of the following ingredients:

Ingredient	Percenta	ige by weight		
Water	69.98%			
Glycol Monobutyl	3	30.00%		
Salt	C).02%		
IEEE Target Dielectric Parameters:	ε _r = 52.7 (+/-5%)	σ = 1.95 S/m (+/-5%)		

9. System Validation SAR Results

SAR @ 0.25W Input averaged over 1g (W/kg)				SAF	R @ 1	1W Inp	ut av	eraged	over 1	g (W/kg)	
SPEAG	SPEAG Target Measured Deviation			SPE	SPEAG Target Measured Devi				Deviation		
12.8	+/- 10%	1	3.4	+4.7%	51.2		+/- 1	0%	53	.6	+4.7%
SAR @ 0.2	25W Input a	verage	ed over 1	0g (W/kg)	SAR	@1	W Inpu	ut ave	eraged	over 10	0g (W/kg)
SPEAG	Target	Mea	sured	Deviation	SPE	AG	Target		Meas	ured	Deviation
5.93	+/- 10%	6	.03	+1.7%	23.7	23.7 +/- 10% 24		24	.1	+1.7%	
	Ty Di Di Di Di Di Di Di Di Di Di Di Di Di	ipole ype 300V2 450V2 835V2 900V2 1450V2 1500V2 1640V2 1800V2 1900V2 2000V2 2450V2 3000V2 Numeric	Distance [mm] 15 15 15 15 10 10 10 10 10 10 10 10 10 10 20 10 20 20 20 20 20 20 20 20 20 20 20 20 20	Frequency [MHz] 300 450 835 900 1450 1500 1640 1800 1900 2000 2450 3000 e SAR values	SAR (1g) [W/kg] 3.02 5.01 9.71 11.1 29.6 30.8 34.4 38.5 39.8 40.9 51.2 61.9 for SPEAC		R (10g) V/kg] 2.06 3.36 6.38 7.17 16.6 17.1 18.7 20.3 20.8 21.2 23.7 24.8 obles and		(peak) //kg] 36 22 4.1 	filled wi	th

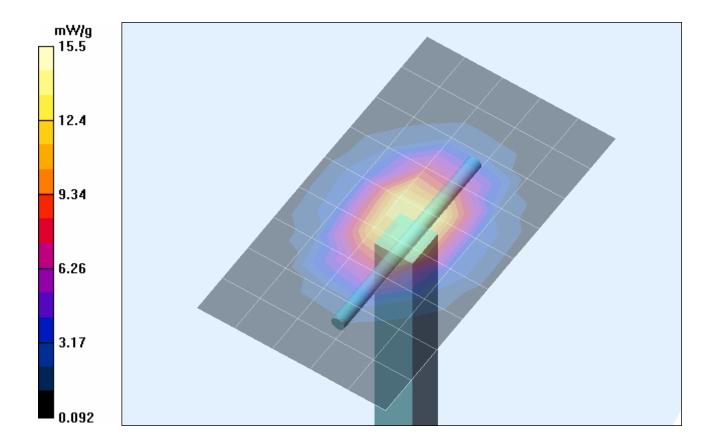
Celltech	Date of Evaluation:		June 08, 2007		Document	Serial No.:	SV2450M-060807-R1.4	
Testing and Engineering Services Lat	Evaluation Type:	Syst	tem Validation	Validati	on Dipole:	2450 MHz	Fluid Type:	Body

System Validation - 2450 MHz Dipole - June 8, 2007

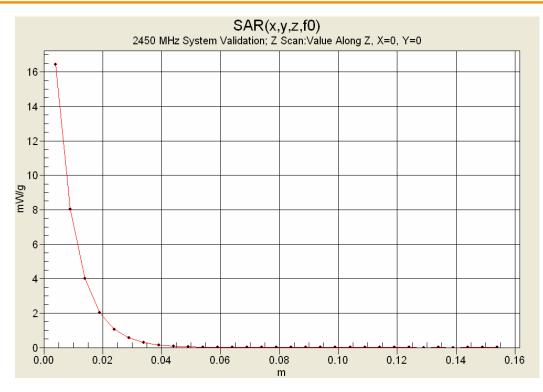
DUT: Dipole 2450 MHz; Asset: 00025; Serial: 150

Ambient Temp: 22.7°C; Fluid Temp: 21.5°C; Barometric Pressure: 101.1 kPa; Humidity: 31%

Communication System: CW Forward Conducted Power: 250 mW Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: M2450 Medium parameters used: f = 2450 MHz; σ = 1.99 mho/m; ϵ_r = 50.1; ρ = 1000 kg/m³


- Probe: EX3DV4 SN3600; ConvF(6.31, 6.31, 6.31); Calibrated: 24/01/2007
- Sensor-Surface: 2 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 21/06/2006
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

2450 MHz System Validation/Area Scan (6x10x1):


Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 13.1 mW/g

2450 MHz System Validation/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 91.9 V/m; Power Drift = -0.128 dB Peak SAR (extrapolated) = 28.6 W/kg **SAR(1 g) = 13.4 mW/g; SAR(10 g) = 6.03 mW/g** Maximum value of SAR (measured) = 15.5 mW/g

10. Measured Fluid Dielectric Parameters

System Validation - 2450 MHz (Body)

Celltech Labs Inc. Test Result for UIM Dielectric Parameter Fri 08/Jun/2007 Frequency (GHz) FCC_eH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma FCC_eB FCC Limits for Body Epsilon FCC_sB FCC Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM

Freq	FCC_eE	FCC_sE	Test_e	Test_s
2.3500	52.83	1.85	50.39	1.89
2.3600	52.82	1.86	50.32	1.90
2.3700	52.81	1.87	50.28	1.91
2.3800	52.79	1.88	50.28	1.93
2.3900	52.78	1.89	50.31	1.94
2.4000	52.77	1.90	50.26	1.95
2.4100	52.75	1.91	50.24	1.96
2.4200	52.74	1.92	50.21	1.96
2.4300	52.73	1.93	50.21	1.98
2.4400	52.71	1.94	50.13	1.99
2.4500	52.70	1.95	50.09	1.99
2.4600	52.69	1.96	50.01	2.03
2.4700	52.67	1.98	50.10	2.03
2.4800	52.66	1.99	50.12	2.05
2.4900	52.65	2.01	50.09	2.07
2.5000	52.64	2.02	50.08	2.07
2.5100	52.62	2.04	50.03	2.08
2.5200	52.61	2.05	50.02	2.09
2.5300	52.60	2.06	49.93	2.10
2.5400	52.59	2.08	49.87	2.11
2.5500	52.57	2.09	49.78	2.13

Calles	Date of Evaluatio	n:	June 08, 2007		Document Serial No.:		SV2450M-060807-R1.4	
Celltech	Evaluation Type:	Syst	tem Validation	Validati	ion Dipole:	2450 MHz	Fluid Type:	Body

11. Measurement Uncertainties

UNCERTAINTY BUDGET FOR SYSTEM VALIDATION								
Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	ci 1g	Uncertainty Value ±% (1g)	V _i or V _{eff}		
Measurement System								
Probe calibration (2450 MHz)	5.9	Normal	1	1	5.9	∞		
Axial isotropy of the probe	4.7	Rectangular	1.732050808	1	2.7	x		
Spherical isotropy of the probe	0	Rectangular	1.732050808	1	0.0	×		
Spatial resolution	0	Rectangular	1.732050808	1	0.0	00		
Boundary effects	0.2	Rectangular	1.732050808	1	0.1	×		
Probe linearity	4.7	Rectangular	1.732050808	1	2.7	x		
Detection limit	1	Rectangular	1.732050808	1	0.6	×		
Readout electronics	0.3	Normal	1	1	0.3	∞		
Response time	0	Rectangular	1.732050808	1	0.0	œ		
Integration time	0	Rectangular	1.732050808	1	0.0	x		
RF ambient conditions	3	Rectangular	1.732050808	1	1.7	x		
Mech. constraints of robot	0.4	Rectangular	1.732050808	1	0.2	œ		
Probe positioning	2.9	Rectangular	1.732050808	1	1.7	œ		
Extrapolation & integration	1	Rectangular	1.732050808	1	0.6	œ		
Dipole								
Dipole Positioning	2	Normal	1.732050808	1	1.2	x		
Power & Power Drift	4.7	Normal	1.732050808	1	2.7	00		
Phantom and Setup								
Phantom uncertainty	4	Rectangular	1.732050808	1	2.3	8		
Liquid conductivity (target)	5	Rectangular	1.732050808	0.64	1.8	00		
Liquid conductivity (measured)	2.1	Normal	1	0.64	1.3	œ		
Liquid permittivity (target)	5	Rectangular	1.732050808	0.6	1.7	×		
Liquid permittivity (measured)	4.9	Normal	1	0.6	2.9	x		
Combined Standard Uncertain	ty				9.33			
Expanded Uncertainty (k=2)					18.66			
Measurement Uncertaint	y Table in acco	rdance with IEEE S	tandard 1528-2003	and IEC St	andard 62209-1	:2005		

12. Test Equipment List

TEST EQUIPMENT	ASSET NO.	SERIAL NO.	DATE OF CAL.	CAL. DUE DATE
SPEAG DASY4 Measurement Server	00158	1078	N/A	N/A
SPEAG Robot	00046	599396-01	N/A	N/A
SPEAG DAE4	00019	353	21Jun06	21Jun07
SPEAG EX3DV4 E-Field Probe	00213	3600	24Jan07	24Jan08
2450 MHz Validation Dipole	00025	150	08Jun07	08Jun08
SPEAG SAM Phantom V4.0C	00154	1033	N/A	N/A
ALS-PR-DIEL Dielectric Probe Kit	00160	260-00953	N/A	N/A
Gigatronics 8652A Power Meter	00007	1835272	26Mar07	26Mar08
Gigatronics 80701A Power Sensor	00014	1833699	22Jan07	22Jan08
Gigatronics 80701A Power Sensor	00109	1834366	26Mar07	26Mar08
HP 8753ET Network Analyzer	00134	US39170292	20Apr07	20Apr08
HP 8648D Signal Generator	00005	3847A00611	NCR	NCR
Amplifier Research 5S1G4 Power Amplifier	00106	26235	NCR	NCR

Date(s) of Evaluation	Test Report Serial No.	Test Report Revision No.	
December 19, 2007	121807IA9-T880-S15I	Revision 1.0	
Test Report Issue Date	Description of Test(s)	RF Exposure Category	ACCREDITED
January 03, 2008	Specific Absorption Rate	General Population	Certificate No. 2470.01

APPENDIX F - PROBE CALIBRATION

Company Name:	OMNEX Control Systems ULC	FCC ID:	IA9HPD-24RC	IC:	1338B-HPD24RC	
HPD-24RC 2.4 GHz Spread Spectrum Transceiver Module installed in T42 Portable Remote Control Console						TRUSTED WIRELESS**
2008 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 37 of 38

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

- Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

S

С

Client	Cellfech		Certifica	ate No: EX3-3600_Jan07
CAL	BRANONO	ERTIFICAT		
Object		EX3DV4 - SN:36	600	
Calibratio	on procedure(s)		nd QA CAL-14.v3 edure for dosimetric E-field pr	
Calibratio	on date:	January 24, 200		
Condition	n of the calibrated item	In Tolerance		Anone
The mea	surements and the uncert	tainties with confidence p red in the closed laborato	ional standards, which realize the physic probability are given on the following pag pry facility: environment temperature (22	ges and are part of the certificate.
Primary	Standards	D#	Cal Date (Calibrated by, Certificate N	No.) Scheduled Calibration
	eter E4419B	GB41293874	5-Apr-06 (METAS, No. 251-00557)	Apr-07
	ensor E4412A	MY41495277	5-Apr-06 (METAS, No. 251-00557)	Apr-07
Power se	ensor E4412A	MY41498087	5-Apr-06 (METAS, No. 251-00557)	Apr-07
Reference	e 3 dB Attenuator	SN: S5054 (3c)	10-Aug-06 (METAS, No. 217-00592)) Aug-07
Reference	e 20 dB Attenuator	SN: S5086 (20b)	4-Apr-06 (METAS, No. 251-00558)	Apr-07
Reference	e 30 dB Attenuator	SN: S5129 (30b)	10-Aug-06 (METAS, No. 217-00593)) Aug-07
Reference	e Probe ES3DV2	SN: 3013	4-Jan-07 (SPEAG, No. ES3-3013_Ja	•
DAE4		SN: 654	21-Jun-06 (SPEAG, No. DAE4-654_,	Jun06) Jun-07
Seconda	ry Standards	ID #	Check Date (in house)	Scheduled Check
RF gene	rator HP 8648C	US3642U01700	4-Aug-99 (SPEAG, in house check N	Nov-05) In house check: Nov-07
Network	Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check (Oct-06) In house check: Oct-07
		Name	Function	Signature
Calibrate	d by:	Katja Pokovic	Technical Manager	Alus Kof-
Approved	d by:	Niels Kuster	Quality Manager	N.Ko
This calit	pration certificate shall not	t be reproduced except ir	n full without written approval of the labor	Issued: January 24, 2007 pratory.
			•••••	

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
Polarization φ	φ rotation around probe axis
Polarization 9	ϑ rotation around an axis that is in the plane normal to probe axis (at
	measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- *DCPx,y,z:* DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to *NORMx,y,z* * *ConvF* whereby the uncertainty corresponds to that given for *ConvF*. A frequency dependent *ConvF* is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe EX3DV4

SN:3600

Manufactured: Calibrated: January 10, 2007 January 24, 2007

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: EX3DV4 SN:3600

Sensitivity in Fre	Diode C	ompression ^B		
NormX	0.460 ± 10.1%	μV/(V/m) ²	DCP X	90 mV
NormY	0.470 ± 10.1%	μV/(V/m) ²	DCP Y	88 mV
NormZ	0.380 ± 10.1%	μV/(V/m) ²	DCP Z	89 mV
Sensitivity in Tise	sue Simulating Li	quid (Convers	ion Factors)	

Please see Page 8.

Boundary Effect

TSL 1810 MHz Typical SAR gradient: 10 % per mm

Sensor Center t	2.0 mm	3.0 mm	
SAR _{be} [%]	Without Correction Algorithm	4.5	3.5
SAR _{be} [%]	With Correction Algorithm	0.2	0.4

TSL 5800 MHz Typical SAR gradient: 30 % per mm

Sensor Center to Phantom Surface Distance 2.		2.0 mm	3.0 mm
SAR _{be} [%]	Without Correction Algorithm	3.5	2.0
SAR _{be} [%]	With Correction Algorithm	0.1	0.3

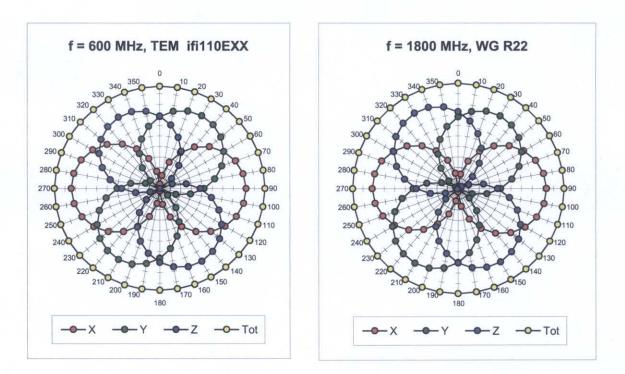
Sensor Offset

Probe Tip to Sensor Center

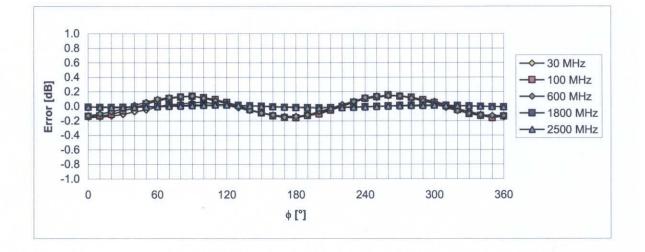
1.0 mm

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

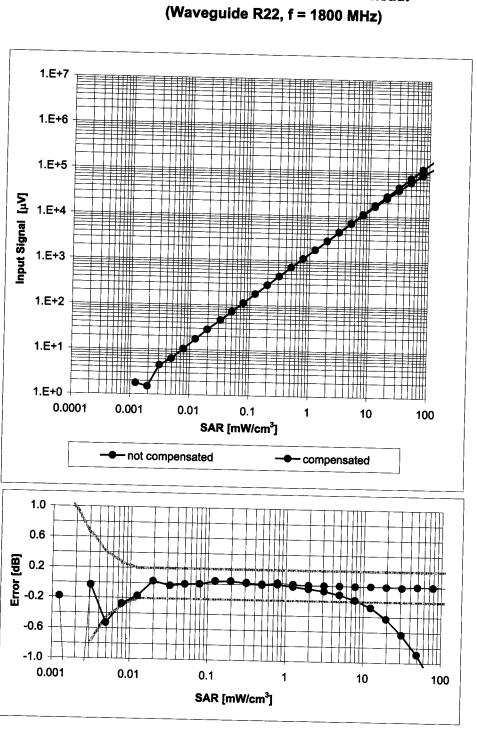
^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).


^B Numerical linearization parameter: uncertainty not required.

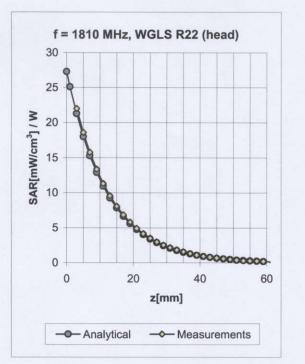
Frequency Response of E-Field


1.5 1.4 1.3 Frequency response (normalized) 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0 500 1000 1500 2000 2500 3000 f [MHz] --- TEM

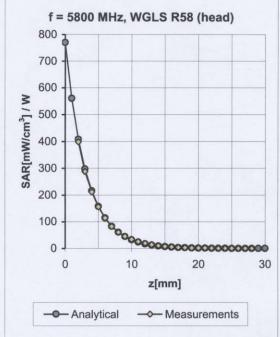
(TEM-Cell:ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ **),** ϑ = 0°



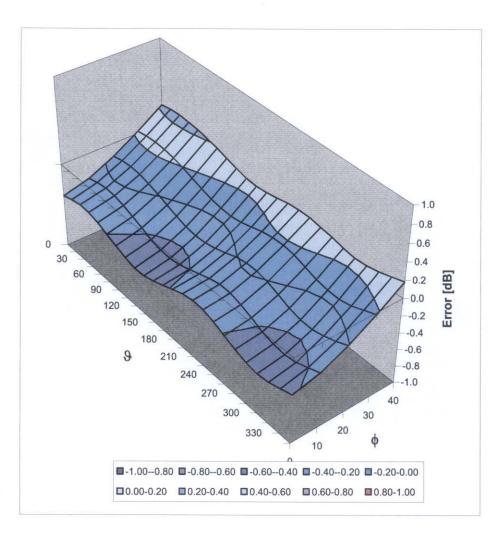
Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)



Dynamic Range f(SAR_{head})

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment



f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
1810	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.20	1.01	7.02 ± 11.0% (k=2)
1950	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.26	1.05	6.59 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.44	1.00	6.37 ± 11.8% (k=2)
5800	± 50 / ± 100	Head	35.3 ± 5%	5.27 ± 5%	0.37	1.65	4.34 ± 13.1% (k=2)
1810	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.24	1.06	6.85 ± 11.0% (k=2)
1950	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.16	1.35	6.54 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.42	1.00	6.31 ± 11.8% (k=2)
5200	± 50 / ± 100	Body	49.0 ± 5%	5.30 ± 5%	0.35	1.70	4.10 ± 13.1% (k=2)
5500	± 50 / ± 100	Body	48.6 ± 5%	5.65 ± 5%	0.32	1.70	3.95 ± 13.1% (k=2)
5800	± 50 / ± 100	Body	48.2 ± 5%	6.00 ± 5%	0.33	1.70	4.14 ± 13.1% (k=2)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (φ, ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Date(s) of Evaluation December 19, 2007	<u>Test Report Serial No.</u> 121807IA9-T880-S15I	Test Report Revision No. Revision 1.0	
<u>Test Report Issue Date</u> January 03, 2008	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Certificate No. 2470.01

APPENDIX G - SAM PHANTOM CERTIFICATE OF CONFORMITY

Company Name:	OMNEX Control Systems ULC	FCC ID:	IA9HPD-24RC	IC:	1338B-HPD24RC	
HPD-24RC 2.4 GHz Spread Spectrum Transceiver Module installed in T42 Portable Remote Control Console					TRUSTED WIRELESS**	
2008 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.			Page 38 of 38			

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Certificate of conformity / First Article Inspection

Item	SAM Twin Phantom V4.0
Туре No	QD 000 P40 BA
Series No	TP-1002 and higher
Manufacturer / Origin	Untersee Composites Hauptstr. 69 CH-8559 Fruthwilen Switzerland

Tests

The series production process used allows the limitation to test of first articles.

Complete tests were made on the pre-series Type No. QD 000 P40 AA, Serial No. TP-1001 and on the series first article Type No. QD 000 P40 BA, Serial No. TP-1006. Certain parameters have been retested using further series units (called samples).

Test	Requirement	Details	Units tested
Shape	Compliance with the geometry according to the CAD model.	IT'IS CAD File (*)	First article, Samples
Material thickness	Compliant with the requirements according to the standards	2mm +/- 0.2mm in specific areas	First article, Samples
Material parameters	Dielectric parameters for required frequencies	200 MHz – 3 GHz Relative permittivity < 5 Loss tangent < 0.05.	Material sample TP 104-5
Material resistivity	The material has been tested to be compatible with the liquids defined in the standards	Liquid type HSL 1800 and others according to the standard.	Pre-series, First article

Standards

- [1] CENELEC EN 50361
- [2] IEEE P1528-200x draft 6.5
- [3] IEC PT 62209 draft 0.9
- (*) The IT'IS CAD file is derived from [2] and is also within the tolerance requirements of the shapes of [1] and [3].

Conformity

Based on the sample tests above, we certify that this item is in compliance with the uncertainty requirements of SAR measurements specified in standard [1] and draft standards [2] and [3].

Date 18.11.2001 Fin Brubolt Schmid & Partner Signature / Stáme Engineering AG Zeughausstrasse 43, CH-8004 Zurich Tel. +41 1 245 97 00, Fax +41 1 245 97 79