Prepared by:	LabTest Certification Inc.	Client:	OMNEX Control Systems ULC
Date Issued:	January 22, 2010	Report No.:	9576-1E
Project No:	9576	Revision No.:	1

Band-edge Compliance

Temperature	11.5 °C
Relative Humidity	64.4 %
Barometric Pressure:	98.47 kPa
Test Date	Jan. 21, 2010
Sample Number	773533
Calibrated Test Equipment (ID)	228, 227-3, 272, 273
Reference Equipment (ID)	059, 233, 235, 227-5
(Calibration not required)	009, 200, 200, 227-0
Tested By	Jeremy Lee

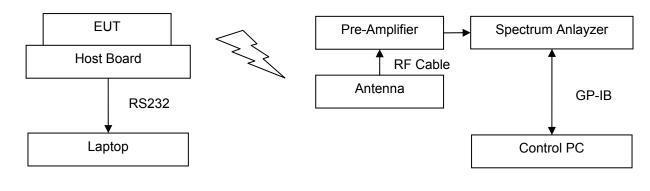
Use the barometric pressure reported at: <u>http://www.theweathernetwork.com/weather/cabc0284</u>

Test Limits

15.247(d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

Test Setup


The test was performed in accordance with FCC 15.247:2008, FCC 15.31:2008, and FCC Public notice DA 00-705 Released March 30, 2000.

- > The RF output of the EUT was connected to the RF input port of the Spectrum Analyzer.
- > The EUT had its hopping function enabled for measuring the channel separation.
- > The transmitter was transmitting at its maximum data rate, 250kbps.
- > The following measurements were made with
 - Span = wide enough to capture the peak level of the emission operating on the channel closest to the band-edge, as well as any modulation products which fall outside of the authorized band of operation.
 - RBW = 100kHz
 - VBW ≥ RBW
 - Sweep = Auto
 - Detector Function = peak
 - Trace = Single trace up to capturing the whole range of signal
- Allowed the trace to stabilize.
- Set the marker on the emission at the bandedge, or on the highest modulation product outside of band, if this level is greater than that at the band edge.
- Enable the marker-delta function, then use the marker-to-peak function to move the marker to the peak of the in-band emission.
- The marker-delta value was measured.

Page 39 of 75

Prepared by:	LabTest Certification Inc.	Client:	OMNEX Control Systems ULC
Date Issued:	January 22, 2010	Report No.:	9576-1E
Project No:	9576	Revision No.:	1

Setup Block Diagram

Test Results:

X	Pass	Fail	N/A

- Band-edge compliance at low-end, the Carrier Frequency is: 2401.5MHz

LabTest	Certification Inc.	

BandEdge Emissions LowEnd FCC15.247, 15.205 & 15.209, ClassB, 3meters, Horizontal Operator: Jeremy Lee

Model #: OEM2400MR Contact: Patrick Ho Company: OMNEX Control Systems ULC

Frequency	Measured	AF	Cable	PreAmp	Emission	Limit	Margin	T/T	Tower	
MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	degree	cm	
2.33750 GHz	20.93	28.10	1.37	-32.66	17.74	53.98	36.24	259.6	100.0	
2.37047 GHz	22.34	28.12	1.37	-32.72	19.12	53.98	34.86	210.7	100.0	
2.39997 GHz	24.61	28.14	1.38	-32.77	21.36	73.98	52.62	56.0	100.0	
			7 —							
Project # : 95	576, Sample	#: 773533								
Temp.: 11.5 C,	Hum.: 64.4	8								
Barometer Pres	s.:98.47 kPa	.								
Derometer Frei		·	-	-				-		_

LabTest Certification Inc. BandEdge Emissions LowEnd FCC15.2447 15.205 & 15.209, ClassB, 3meters, Vertical

Operator: Jeremy Lee

11:15:28 AM, Friday, January 22, 2010

Model #: OEM2400MR Contact: Patrick Ho Company: OMNEX Control Systems ULC

Frequency	Measured	AF	Cable	PreAmp	Emission	Limit	Margin	Т/Т	Tower	
MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	degree	cm	
2.33748 GHz	16.98	28.10	1.37	-32.66	13.79	53.98	40.19	174.3	100.0	
2.37051 GHz	17.15	28.12	1.37	-32.72	13.93	53.98	40.05	347.4	100.0	
2.39994 GHz	16.86	28.14	1.38	-32.77	13.61	73.98	60.37	121.5	100.0	
Project # :	9576, Sample	#: 773533								
Temp.: 11.5	C, Hum.: 64.4	ole								
Barometer Pr	es.:98.47 kPa									
Temp.: 11.5	C, Hum.: 64.4	°								

Page 40 of 75

Prepared by:	LabTest Certification Inc.	Client:	OMNEX Control Systems ULC
Date Issued:	January 22, 2010	Report No.:	9576-1E
Project No:	9576	Revision No.:	1

- Band-edge compliance at High-end, the Carrier Frequency is: 2481.5MHz

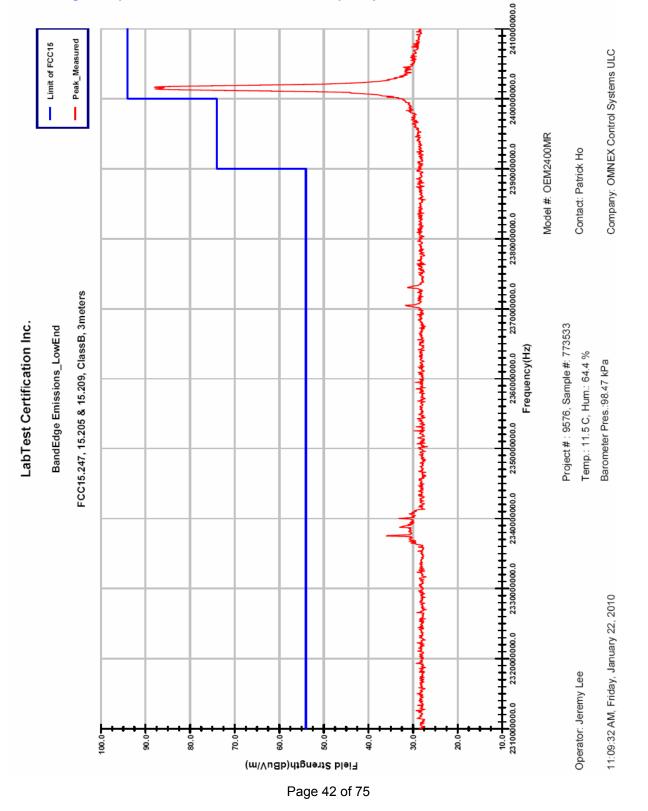
LabTest Certification Inc. BandEdge Emissions HighEnd FCC15.247, 15.205 & 15.209, ClassB, 3meters, Horizontal

Operator: Jeremy Lee

Model #: OEM2400MR Contact: Patrick Ho Company: OMNEX Control Systems ULC

Frequency	Measured	AF	Cable	PreAmp	Emission	Limit	Margin	T/T	Tower
MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	degree	Cm
2.48350 GHz	26.04	28.19	1.40	-32.67	22.96	53.98	31.02	148.5	100.0
2.49466 GHz	25.15	28.20	1.40	-32.66	22.09	53.98	31.89	167.9	100.0
2.51898 GHz	17.45	28.25	1.40	-32.66	14.45	73.98	59.53	48.8	100.0
Project # : 9	576, Sample	#: 773533_							
Temp.: 11.5 C	, Hum.: 64.4	ક							
Barometer Pres	s.:98.47 kPa								

LabTest Certification Inc. BandEdge Emissions HighEnd FCC15.2447 15.205 & 15.209, ClassB, 3meters, Vertical


Operator: Jeremy Lee

Model #: OEM2400MR Contact: Patrick Ho Company: OMNEX Control Systems ULC

Frequency	Measured	AF	Cable	PreAmp	Emission	Limit	Margin	T/T	Tower	+
MHz	dBuV	dB	dB	dB	dBuV/m	dBuV/m	dB	degree	cm	
2.48350 GHz	17.56	28.19	1.40	-32.67	14.48	53.98	39.50	260.3	100.0	
2.49467 GHz	16.91	28.20	1.40	-32.66	13.85	53.98	40.13	291.9	100.0	
2.51900 GHz	17.21	28.25	1.40	-32.66	14.21	73.98	59.77	210.6	100.0	
						-				
Project # : 9	576, Sample	#: 773533								
Temp.: 11.5 C	, Hum.: 64.4	8								
Barometer Pre	s.:98.47 kPa									
	1									

Page 41 of 75

Prepared by:	LabTest Certification Inc.	Client:	OMNEX Control Systems ULC
Date Issued:	January 22, 2010	Report No.:	9576-1E
Project No:	9576	Revision No.:	1

- Band-edge compliance at low-end, the Carrier Frequency is: 2401.5MHz

This document shall not be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from LabTest Certification Inc.

Prepared by:	LabTest Certification Inc.	Client:	OMNEX Control Systems ULC
Date Issued:	January 22, 2010	Report No.:	9576-1E
Project No:	9576	Revision No.:	1

Peak_Measured Limit of FCC15 Company: OMNEX Control Systems ULC いいちまいしていていないでしてい I Model #: OEM2400MR Contact: Patrick Ho FCC15.247, 15.205 & 15.209, ClassB, 3meters LabTest Certification Inc. Project # : 9576, Sample #: 773533 BandEdge Emissions_HighEnd Frequency(Hz) Temp.: 11.5 C, Hum.: 64.4 % Barometer Pres.:98.47 kPa ていました 12:57:42 PM, Thursday, January 21, 2010 Operator: Jeremy Lee 100.0-90.0 80.0 50.0 0.0 30.0 70.0 20.0 60.0 Field Strength(dBuV/m) Page 43 of 75

- Band-edge compliance at High-end, the Carrier Frequency is: 2481.5MHz

This document shall not be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from LabTest Certification Inc.

Prepared by:	LabTest Certification Inc.	Client:	OMNEX Control Systems ULC
Date Issued:	January 22, 2010	Report No.:	9576-1E
Project No:	9576	Revision No.:	1

Spurious RF Conducted Emissions

Temperature	20.5 to 22.8 °C
Relative Humidity	36.5 to 39.2 %
Barometric Pressure:	100.14 to 100.28 kPa
Test Date	Nov. 13, 2009
Sample Number	773533
Calibrated Test Equipment (ID)	152, 228
Reference Equipment (ID)	059, N1, N2
(Calibration not required)	059, NT, NZ
Tested By	Jeremy Lee

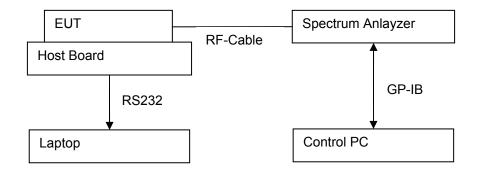
Use the barometric pressure reported at: <u>http://www.theweathernetwork.com/weather/cabc0248</u>

Test Limits

15.247(d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

Test Setup


The test was performed in accordance with FCC 15.247:2008, FCC 15.31:2008, and FCC Public notice DA 00-705 Released March 30, 2000.

- > The RF output of the EUT was connected to the RF input port of the Spectrum Analyzer.
- > The EUT was set-up in three diferrent transmiting modes, low-end, middle, and high-end.
- > The transmitter was set to output its maximum power.
- > The following measurements were made with
 - Span = wide enough to capture the peak level of the in-band emission and all spurious emissions(e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic.
 - RBW = 100kHz up to 2.5GHz, 1MHz over 2.4GHz.
 - VBW ≥ RBW
 - Sweep = Auto
 - Detector Function = peak
 - Trace = Single trace up to capturing the whole range of signal
- Allowed the trace to stabilize.
- > Set the marker on the peak of any spurious emission recorded.

Page 44 of 75

Prepared by:	LabTest Certification Inc.	Client:	OMNEX Control Systems ULC
Date Issued:	January 22, 2010	Report No.:	9576-1E
Project No:	9576	Revision No.:	1

Setup Block Diagram

Test Results:

Difference(dB) = Measured Carrier Level(dBm) – Measured Spurious Level(dBm)

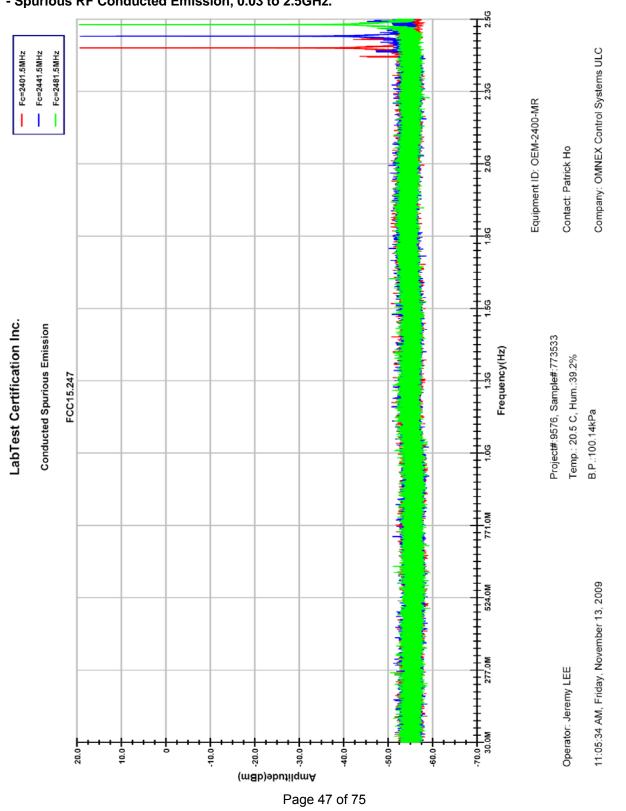
Description	Frequency (MHz)	Measured (dBm)	Difference (dB)	Limit (dB)	Pass/Fail
Carrier_Low End	2401.50	+19.186	-	-	-
	2370.62	-45.444	64.630	> 20	Pass
Courious	2373.19	-43.727	62.913	> 20	Pass
Spurious	2430.35	-42.309	61.495	> 20	Pass
	2432.41	-44.090	63.276	> 20	Pass
2 nd Harmonic	4803.00	-45.709	64.895	> 20	Pass
3 rd Harmonic	7204.50	-43.709	62.895	> 20	Pass
4 th Harmonic	9606.00	-34.584	53.770	> 20	Pass
5 th Harmonic	12007.50	-36.678	55.864	> 20	Pass
6 th Harmonic	14409.00	-38.115	57.301	> 20	Pass
7 th Harmonic	16810.50	-31.053	50.239	> 20	Pass
8 th Harmonic	19212.00	-29.740	48.926	> 20	Pass
9 th Harmonic	21613.50	-30.615	49.801	> 20	Pass
10 th Harmonic	24015.00	-24.865	44.051	> 20	Pass
Carrier_Middle	2441.50	+19.195	-	-	-
Spurious	2387.61	-47.458	66.653	> 20	Pass
	2390.97	-47.336	66.531	> 20	Pass
	2492.14	-45.382	64.577	> 20	Pass

Page 45 of 75

Prepared by:	LabTest Certification Inc.	Client:	OMNEX Control Systems ULC
Date Issued:	January 22, 2010	Report No.:	9576-1E
Project No:	9576	Revision No.:	1

	2495.95	-47.006	66.201	> 20	Pass
2 nd Harmonic	4883.00	-45.303	64.498	> 20	Pass
3 rd Harmonic	7324.50	-44.803	63.998	> 20	Pass
4 th Harmonic	9766.00	-35.771	54.966	> 20	Pass
5 th Harmonic	12207.50	-34.678	53.873	> 20	Pass
6 th Harmonic	14649.00	-35.646	54.841	> 20	Pass
7 th Harmonic	17090.50	-31.709	50.904	> 20	Pass
8 th Harmonic	19532.00	-29.709	48.904	> 20	Pass
9 th Harmonic	21973.50	-29.930	49.125	> 20	Pass
10 th Harmonic	24415.00	-24.771	43.966	> 20	Pass
Carrier_High End	2481.50	+19.395	-	-	-
	2468.71	-47.671	67.096	> 20	Pass
Spurious	2487.52	-43.634	63.029	> 20	Pass
	2494.76	-48.788	68.183	> 20	Pass
2 nd Harmonic	4963.00	-45.771	65.166	> 20	Pass
3 rd Harmonic	7444.50	-43.959	63.354	> 20	Pass
4 th Harmonic	9926.00	-38.990	58.385	> 20	Pass
5 th Harmonic	12407.50	-37.052	56.447	> 20	Pass
6 th Harmonic	14889.00	-35.084	54.479	> 20	Pass
7 th Harmonic	17370.50	-30.646	50.041	> 20	Pass
8 th Harmonic	19852.00	-29.271	48.666	> 20	Pass
9 th Harmonic	22333.50	-29.459	48.854	> 20	Pass
10 th Harmonic	24815.00	-27.428	46.823	> 20	Pass

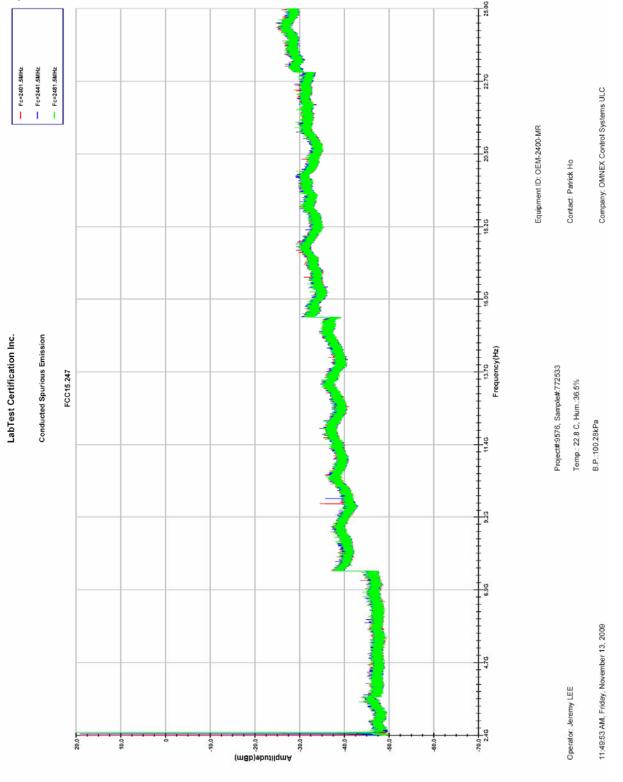
X Pass


Fail

N/A

Page 46 of 75

Prepared by:	LabTest Certification Inc.	Client:	OMNEX Control Systems ULC
Date Issued:	January 22, 2010	Report No.:	9576-1E
Project No:	9576	Revision No.:	1


- Spurious RF Conducted Emission, 0.03 to 2.5GHz.

This document shall not be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from LabTest Certification Inc.

Prepared by:	LabTest Certification Inc.	Client:	OMNEX Control Systems ULC
Date Issued:	January 22, 2010	Report No.:	9576-1E
Project No:	9576	Revision No.:	1

- Spurious RF Conducted Emission, 2.4 to 25GHz.

This document shall not be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from LabTest Certification Inc.

Prepared by:	LabTest Certification Inc.	Client:	OMNEX Control Systems ULC
Date Issued:	January 22, 2010	Report No.:	9576-1E
Project No:	9576	Revision No.:	1

Spurious Radiated Emissions

Temperature	6.7 to 7.2 °C
Relative Humidity	40.2 to 47.2 %
Barometric Pressure:	102.53 to 102.65 kPa
Test Date	Dec. 01 and 02, 2009
Sample Number	773533
Calibrated Test Equipment (ID)	112, 152, 227-1, 227-2, 227-3, 227-4, 228
Reference Equipment (ID) (Calibration not required)	059, 124, 141, 227-5, 233, 235
Tested By	Jeremy Lee

Use the barometric pressure reported at: http://www.theweathernetwork.com/weather/cabc0284

Test Limits

15.247(d)

In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

15.205(a)

Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73–74.6	1645.5-1646.5	9.3–9.5
6.215-6.218	74.8–75.2	1660-1710	10.6–12.7
6.26775–6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175–6.31225	123–138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7–21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36–13.41.			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ² Above 38.6

15.209(a)

Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Page 49 of 75

Prepared by:	LabTest Certification Inc.	Client:	OMNEX Control Systems ULC
Date Issued:	January 22, 2010	Report No.:	9576-1E
Project No:	9576	Revision No.:	1

Frequency (MHz)	Field strength (microvolts/meter)	Measure- ment dis- tance (meters)	
0.009–0.490 0.490–1.705	2400/F(kHz) 24000/F(kHz)	300 30	
1.705–30.0	30	30	
30–88	100 **	3	
88–216	150 **	3	
216–960	200 **	3	
Above 960	500	3	

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54–72 MHz, 76–88 MHz, 174–216 MHz or 470–806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.

Test Setup

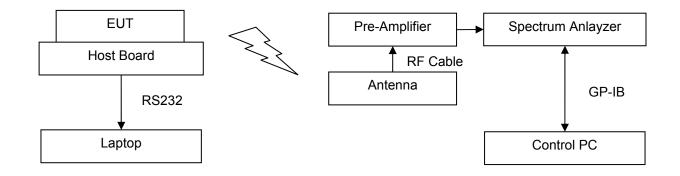
The test was performed in accordance with FCC 15.247:2008, FCC 15.31:2008, FCC 15.33:2008, FCC 15.35:2008, and ANSI C63.4, 2003, and FCC Public notice DA 00-705 Released March 30, 2000.

Test procedure is based on the FCC15.31(a)(3) – Other intentional and unintentional radiators are to be measured for compliance using the following procedure excluding sections 4.1.5.2, 5.7, 9 and 14: ANSI C63.4–2003: "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz" (incorporated by reference, see § 15.38). This incorporation by reference was approved by the Director of the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR Part 51.

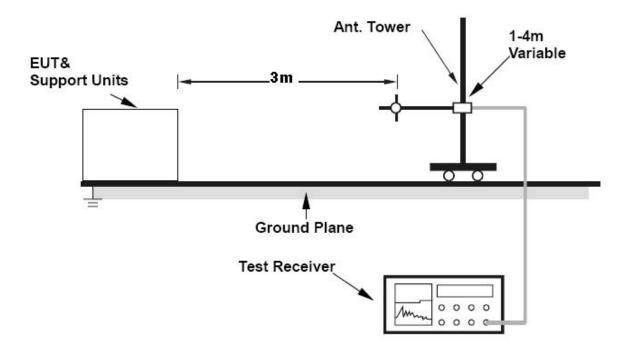
NOTE to Paragraph (a)(3): Digital devices tested to show compliance with the provisions of §§ 15.107(e) and 15.109(g) must be tested following the ANSI C63.4 procedure described in paragraph (a)(3) of this section.[As stated in the adopting R&O, ANSI C63.4 is not used for measurements below 30 MHz.]

The EUT was placed on a 1 meter by 1.5 meters wide and 0.8-meter high nonconductive table that was placed directly onto a flush mounted turntable. The EUT was connected to its support equipment with any excess I/O cabling bundled to approximately 1 meter. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna supporter. It is measured with a receiver – spectrum analyzer, was software controlled. The antennas were balanced dipoles. For frequencies of 80 MHz or above, the antennas were resonant in length, and for frequencies below 80 MHz it had a length equal to the 80 MHz resonant length.

Prescan tests were performed to determine the "worst-case" orientation of the EUT (By Manipulating the EUT's position through all three orthogonal axes). With the EUT positioned in the "worst case" orientation, emissions from the unit were maximized by manipulating the cables, and by adjusting the polarization and height of the receive antenna and rotating the EUT on the turntable.


- > The EUT was measured in three diferrent transmiting frequencies, low-end, middle, and high-end.
- The transmitter was set-up as its maximum power.
- > The following measurements were made with
 - Span = wide enough to fully capture the emission being measured.
 - RBW = 100kHz for f < 1GHz, and 1MHz for $f \ge 1$ GHz
 - VBW ≥ RBW
 - Sweep = Auto
 - Detector Function = peak

Page 50 of 75


Prepared by:	LabTest Certification Inc.	Client:	OMNEX Control Systems ULC
Date Issued:	January 22, 2010	Report No.:	9576-1E
Project No:	9576	Revision No.:	1

- Trace = Single trace up to capturing the whole range of signal
- Detecting Method = Quasi peak for f < 1GHz, and Averaging detector for $f \ge 1GHz$

Setup Block Diagram

Test Setup at OATS

Test Result

Radiated Emission (dBuV/m) = Measured Emission (dBuV) + Antenna Factor(1/m) + Cable Loss(dB)– Pre-Amplifier Gain(dB)

X	Pass	Fail	N/A
· · ·			

Page 51 of 75

Prepared by:	LabTest Certification Inc.	Client:	OMNEX Control Systems ULC
Date Issued:	January 22, 2010	Report No.:	9576-1E
Project No:	9576	Revision No.:	1

Frequency (MHz)	Measured (dBuV)	AF (dB/m)	CL (dB)	Pre- Amp (dB)	Radiated Emission (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Results	
Spurious of Low End									
384.259	47.76	15.79	5.76	32.59	36.72		9.30	Pass	
480.275	40.72	18.06	6.56	32.33	32.81	46.02	13.21	Pass	
576.356	36.24	19.70	7.24	32.08	31.10		14.92	Pass	
Spurious of	Middle								
326.174	31.02	14.90	5.23	32.50	18.65		27.37	Pass	
384.259	47.36	15.79	5.76	32.59	36.32	46.02	9.70	Pass	
480.275	41.05	18.06	6.56	32.33	33.34		12.68	Pass	
986.123	27.30	23.74	9.54	31.50	29.08	53.98	24.90	Pass	
Spurious of	High End								
366.153	39.31	15.11	5.63	32.38	27.67		18.35	Pass	
384.259	50.29	15.79	5.76	32.59	39.25	46.02	6.77	Pass	
480.341	34.03	18.06	6.56	32.33	26.32		19.70	Pass	
Harmonics	of Low End								
4803.06	24.26	33.50	1.86	24.03	35.59	53.98	18.39	Pass	
Harmonics	of middle								
4881.06	22.16	33.90	1.88	23.79	34.15	53.98	19.83	Pass	
7321.59	20.49	36.28	2.36	14.52	44.61	55.90	9.37	Pass	
Harmonics	of Highend								
4959.06	23.25	34.30	1.90	23.55	35.90	53.98	18.08	Pass	
7438.59	22.63	36.34	2.38	14.12	47.23	55.90	6.75	Pass	

Page 52 of 75

Prepared by:	LabTest Certification Inc.	Client:	OMNEX Control Systems ULC
Date Issued:	January 22, 2010	Report No.:	9576-1E
Project No:	9576	Revision No.:	1

- Table of Radiated Spurious Emissions of Lowend: 300 to1000MHz, Quasi-peak Detecting, Antenna was used SAS-510-2.

Operator: J 06:05:37 PM	eremy Lee	Intent CC15.209,		ated Spu	rious Horizontal Model # Contact	: OEM-240 : Patrick : OMNEX C		tems ULC
Frequency	Measured	 Cal Facto	rEmission	 Limit	Marqin	 Tower		 POL
MHz		_dB/m	dBuV/m		dB		Degree	
	47.76		36.72	46.02	9.30	195.3	310.8	н
480.275 MHz	40.52	-7.71	32.81	46.02	13.21	142.2	320.6	H
576.356 MHz_	36.24	-5.14	31.10	46.02	14.92	100.1	11.6	H
Project # :	 9576 Samp	10 #·77353	3					
Temp.: 7.2 C				Pa				
Operator: Je 06:05:37 PM,	eremy Lee	FCC15.209,		-	Vertical Model #: Contact:	OEM-2400 Patrick OMNEX Co		ems ULC
Frequency	Measured	 Cal Factor	rEmission_	 Limit	Margin	 Tower		POL
MHz	dBuV	_Car Factor dB/m	dBuV/m	dBuV/m	dB	_10wer	 Degree	
384.259 MHz		-11.04	_ ′	46.02	19.68	100.1	141.2	
480.275 MHz		-7.71	22.98	46.02	23.04	101.2	91.6	V
576.356 MHz	29.83	-5.14	24.69	46.02	21.33	101.1	88.9	V
Project # : 9 Temp.: 7.2 C,				Pa				

- Table of Radiated Spurious Emissions of Middle: 300 to1000MHz, Quasi-peak Detecting, Antenna was used SAS-510-2.

LabTest Certification Inc. Intentional Radiated Spurious FCC15.209, 3 meters, Middle, Horizontal Operator: Jeremy Lee Model #: OEM-2400-MR							
1 1				Contact	: Patrick	Но	
05:28:04 PM, Tueso	day, December	01, 2009		Company	: OMNEX Co	ontrol Sys	tems ULC
		L					
Frequency Measu	redCal Facto	prEmission_	_Limit	Margin	_Tower	T/T	POL
MHz dBuV	dB/m	dBuV/m	dBuV/m	dB	CM	Degree	
326.174 MHz 29.80	-12.37	17.43	46.02	28.59	246.8	36.9	H
384.259 MHz 47.36	-11.04	36.32	46.02	9.70	144.2	302.4	H
480.275 MHz 41.05	5 -7.71	33.34	46.02	12.68	138.3	330.0	Н
986.123 MHz 27.28	3 1.78	29.06	53.98	24.92	100.1	349.1	Н
Project # : 9576, \$	Sample #:77353	33					
Temp.: 7.2 C, Hum.			kPa				

Page 53 of 75

Prepared by:	LabTest Certification Inc.	Client:	OMNEX Control Systems ULC
Date Issued:	January 22, 2010	Report No.:	9576-1E
Project No:	9576	Revision No.:	1

LabTest Certification Inc. Intentional Radiated Spurious FCC15.209, 3 meters, Middle, Vertical							
Operator: Jeremy Lee					: OEM-240		
					: Patrick		
05:28:04 PM, Tuesday,	December	01, 2009		Company	: OMNEX C	ontrol Sys	tems ULC
Frequency Measured	 Cal Fact	orEmission	 Limit	 Margin	 Tower		POL
MHz dBuV -	dB/m	dBuV/m	dBuV/m	dB		Degree	
326.174 MHz 31.02	-12.37	18.65	46.02	27.37	100.1	217.8	V
384.259 MHz 35.65	-11.04	24.61	46.02	21.41	100.1	10.9	V
480.275 MHz 36.83	-7.71	29.12	46.02	16.90	100.2	227.4	V
986.123 MHz 27.30	1.78	29.08	53.98	24.90	100.2	299.6	V
			\neg $-$		7 -		
Project # : 9576, Samp	le #:7735	33					
Temp.: 7.2 C, Hum.: 47	.2 %, B.	P.:102.65 k	Pa				

- Table of Radiated Spurious Emissions of Highend: 300 to1000MHz, Quasi-peak Detecting, Antenna was used SAS-510-2.

LabTest Certification In Intentional Radiated Spun FCC15.209, 3 meters, Highend, Operator: Jeremy Lee	rious	
Operator: Deremy Lee	Contact: Patrick Ho	
04:22:10 PM, Tuesday, December 01, 2009	Company: OMNEX Contro	ol Systems ULC
Frequency MeasuredCal FactorEmission Limit	MarginTowerT/	rPol
MHzdBuVdB/mdBuV/mdBuV/m		gree
366.153 MHz 39.31 -11.64 27.67 46.02	18.35 195.9 13	36.2 H
384.259 MHz 50.29 -11.04 39.25 46.02	6.77 197.1 32	22.1 H
480.341 MHz 34.03 -7.71 26.32 46.02	19.70 139.8 24	42.2 H
Project # : 9576, Sample #:773533		
Temp.: 7.2 C, Hum.: 47.2 %, B. P.:102.65 kPa		
LabTest Certification I		
Intentional Radiated Spu		
incentional hadraced opt	rious	
FCC15.209, 3 meters, Highend,		
FCC15.209, 3 meters, Highend,	Vertical	
FCC15.209, 3 meters, Highend,	Vertical Model #: OEM-2400-MR	ol Systems ULC
FCC15.209, 3 meters, Highend, Operator: Jeremy Lee	Vertical Model #: OEM-2400-MR Contact: Patrick Ho	ol Systems ULC
FCC15.209, 3 meters, Highend, Operator: Jeremy Lee	Vertical Model #: OEM-2400-MR Contact: Patrick Ho	ol Systems ULC
FCC15.209, 3 meters, Highend, Operator: Jeremy Lee 04:22:10 PM, Tuesday, December 01, 2009	Vertical Model #: OEM-2400-MR Contact: Patrick Ho Company: OMNEX Contro	
FCC15.209, 3 meters, Highend, Operator: Jeremy Lee 04:22:10 PM, Tuesday, December 01, 2009 FrequencyMeasured_Cal FactorEmission_Limit	Vertical Model #: OEM-2400-MR Contact: Patrick Ho Company: OMNEX Contro	TPOL
FCC15.209, 3 meters, Highend, Operator: Jeremy Lee 04:22:10 PM, Tuesday, December 01, 2009 Frequency Measured Cal FactorEmission Limit MHzdBuVdB/mdBuV/mdBuV/m	Vertical Model #: OEM-2400-MR Contact: Patrick Ho Company: OMNEX Contro Margin Tower T/ dBDe	TPOL gree
FCC15.209, 3 meters, Highend, Operator: Jeremy Lee 04:22:10 PM, Tuesday, December 01, 2009 Frequency Measured Cal FactorEmission Limit MHz dBuV dB/m dBuV/m dBuV/m 366.153 MHz 38.64 -11.64 27.00 46.02	Vertical Model #: OEM-2400-MR Contact: Patrick Ho Company: OMNEX Contro Margin Tower T/ dBCm Dev 19.02 101.2 1	 TPOL gree 17.9V
FCC15.209, 3 meters, Highend, Operator: Jeremy Lee 04:22:10 PM, Tuesday, December 01, 2009 Frequency Measured Cal FactorEmission Limit MHz dBuV dB/m dBuV/m dBuV/m 366.153 MHz 38.64 -11.64 27.00 46.02 384.259 MHz 38.16 -11.04 27.12 46.02	Vertical Model #: OEM-2400-MR Contact: Patrick Ho Company: OMNEX Contro MarginT/mer	T POL greeV 17.9V 51.8V
FCC15.209, 3 meters, Highend, Operator: Jeremy Lee 04:22:10 PM, Tuesday, December 01, 2009 Frequency Measured Cal FactorEmission Limit MHz dBuV dB/m dBuV/m dBuV/m 366.153 MHz 38.64 -11.64 27.00 46.02	Vertical Model #: OEM-2400-MR Contact: Patrick Ho Company: OMNEX Contro Margin Tower T/ dBT dBT 19.02 101.2 1 18.90 100.1 1	 TPOL gree 17.9V
FCC15.209, 3 meters, Highend, Operator: Jeremy Lee 04:22:10 PM, Tuesday, December 01, 2009 Frequency Measured Cal FactorEmission Limit MHz dBuV dB/m dBuV/m dBuV/m 366.153 MHz 38.64 -11.64 27.00 46.02 384.259 MHz 38.16 -11.04 27.12 46.02 480.341 MHz 33.61 -7.71 25.90 46.02	Vertical Model #: OEM-2400-MR Contact: Patrick Ho Company: OMNEX Contro MarginT/mer	T POL greeV 17.9V 51.8V
FCC15.209, 3 meters, Highend, Operator: Jeremy Lee 04:22:10 PM, Tuesday, December 01, 2009 Frequency Measured Cal FactorEmission Limit MHz dBuV dB/m dBuV/m dBuV/m 366.153 MHz 38.64 -11.64 27.00 46.02 384.259 MHz 38.16 -11.04 27.12 46.02	Vertical Model #: OEM-2400-MR Contact: Patrick Ho Company: OMNEX Contro MarginT/mer	T POL greeV 17.9V 51.8V

Page 54 of 75

Prepared by:	LabTest Certification Inc.	Client:	OMNEX Control Systems ULC
Date Issued:	January 22, 2010	Report No.:	9576-1E
Project No:	9576	Revision No.:	1

- Table of Radiated Spurious Emissions of LowEnd: 1 to18GHz, Averaging Detecting, Antenna was used SAS-571.

LabTest Certi Intentional Rad					
FCC15.205 and 209, 3 met			Ital		
Operator: Jeremy Lee	-	Model #	: OEM-240		
02:20:22 PM, Wednesday, December 02, 200	09		: Patrick : OMNEX C	Ho Control Sys	tems ULC
Frequency Measured Cal FactorEmission	1_Limit	Margin	Tower	T/T	POL
MHzdBuVdB/mdBuV/m 4.803 GHz24.2611.3335.59_	dBuV/m	dB	_cm	Degree	
4.803 GHz24.2611.3335.59_	53.98	18.39	110.0	345.0	H
Project # : 9576, Sample #:773533 Temp.: 7.2 C, Hum.: 43.5 %, B. P.:102.53	le Do				
Temp.: 7.2 C, Hum.: 43.5 %, B. P.:102.55	кга		_		
LabTest Certi	fication Ir	nc.			
Intentional Rad					
FCC15.205 and 209, 3 me			al		
Operator: Jeremy Lee			: OEM-240	0 – MR	
		Contact	: Patrick	Ho	
02:20:22 PM, Wednesday, December 02, 200	19	Company	: OMNEX C	ontrol Syst	ems ULC
	<u> </u>				
Frequency Measured Cal FactorEmission	Limit	Margin	_Tower	T/T	POL
MHz dBuV dB/m dBuV/m 4.803 GHz21.64 11.33 32.97	dBuV/m	dB	_cm	Degree	
4.803 GHz 21.64 11.33 32.97	53.98	21.01	_ 110.0	300.0	V
Project # : 9576, Sample #:773533 Temp.: 7.2 C, Hum.: 43.5 %, B. P.:102.53	l-Do				
Iemp.: 7.2 C, Hum.: 43.5 %, B. P.:102.55	KPa				
		1	I	1	
- Table of Radiated Spurious Emissions of Mic	1		ing Dotact	ing Antonn	2 W26
		anz, Averagi	ing Delect	ing, Antenna	a was
used SAS-571.					
LabTest Certi	fication I	nc.			
Intentional Rad	liated Spur	rious			
FCC15.205 and 209, 3 met	ers, Middle	e, Horizon	tal		
Operator: Jeremy Lee		Model #	: OEM-240	0-MR	
		Contact	: Patrick	Но	
01:37:22 PM, Wednesday, December 02, 200)9	Company	: OMNEX C	ontrol Sys	tems ULC
_					
FrequencyMeasuredCal FactorEmission	ı_Limit	Margin	_Tower	T/T	POL
MHzdBuVdB/mdBuV/m 4.881 GHz22.0511.9934.04	dBuV/m	dB	_cm	Degree	
4.881 GHz 22.05 11.99 34.04	53.98	19.94	110.0	343.0	H
7.322 GHz 20.19 24.12 44.31	53.98	9.67	110.0	10.8	H
Project # : 9576, Sample #:773533					
Temp.: 7.6 C, Hum.: 40.2 %, B. P.:102.53	кРа				

Temp.: 7.6 C, Hum.: 40.2 %, B. P.:102.53 kPa

Page 55 of 75

Prepared by:	LabTest Certification Inc.	Client:	OMNEX Control Systems ULC
Date Issued:	January 22, 2010	Report No.:	9576-1E
Project No:	9576	Revision No.:	1

LabTest Certification Inc. Intentional Radiated Spurious FCC15.205 and 209, 3 meters, Middle, Vertical Operator: Jeremy Lee 01:37:22 PM, Wednesday, December 02, 2009 Company: OMNEX Control Systems ULC							
Frequency Measured Cal FactorEmission Limit Margin Tower T/T POL							
MHz dBuV dB/m dBuV/m dBuV/m dB cm Degree							
4.881 GHz 22.16 11.99 34.15 53.98 19.83 110.0 300.0 V							
7.322 GHz 20.49 24.12 44.61 53.98 9.37 110.0 76.6 V							
Project # : 9576, Sample #:773533							
Temp.: 7.6 C, Hum.: 40.2 %, B. P.:102.53 kPa							

- Table of Radiated Spurious Emissions of HighEnd: 1 to18GHz, Averaging Detecting, Antenna was used SAS-571.

LabTest Certification Inc. Intentional Radiated Spurious FCC15.205 and 209, 3 meters, Highend, Horizontal

Model #: OEM-2400-MR Contact: Patrick Ho

01:09:56 PM, Wednesday, December 02, 2009

Operator: Jeremy Lee

			_					
Frequency	Measured	Cal Facto	rEmission	Limit	Margin	Tower	T/T	POL
MHz	dBuV	_dB/m	_dBuV/m	dBuV/m	dB	cm	Degree	
4.959 GHz	22.06	12.65	34.71	53.98	19.27	110.0	344.8	Н
7.439 GHz	22.63	24.60	47.23	53.98	6.75	110.0	56.3	H
Project # :								
Temp.: 6.7 C, Hum.: 55.2 %, B. P.:102.53 kP				Pa				
	1	1	1					

LabTest Certification Inc. Intentional Radiated Spurious FCC15.205 and 209, 3 meters, Highend, Vertical Model #: OEM-2400-MR Operator: Jeremy Lee Contact: Patrick Ho 01:09:56 PM, Wednesday, December 02, 2009 Company: OMNEX Control Systems ULC T/T Cal FactorEmission POL Frequency Measured Limit Margin Tower MHz dBuV dB/m dBuV/m dBuV/m dB Degree CM 4.959 GHz 23.25 12.65 35.90 53.98 110.0 18.08 87.0 V 116.0 τ7

7.439 GHz 22.36 24.60 46.96 53.98 7.02 110.0 Project # : 9576, Sample #:773533 Temp.: 6.7 C, Hum.: 55.2 %, B. P.:102.53 kPa

Page 56 of 75

This document shall not be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from LabTest Certification Inc.

Company: OMNEX Control Systems ULC

Prepared by:	LabTest Certification Inc.	Client:	OMNEX Control Systems ULC
Date Issued:	January 22, 2010	Report No.:	9576-1E
Project No:	9576	Revision No.:	1

Continuous Data and Short Transmission

Test Date	Dec. 03, 2009			
Sample Number	773533			
Tested By Jeremy Lee				

Use the barometric pressure reported at: <u>http://www.theweathernetwork.com/weather/cabc0248</u>

Test Limits

FCC15.247(g)

Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.

Test Results

Followed by the theory of operation, The OEM2400MR transceiver is a frequency hopping spread spectrum 2.4-2.4835 MHz radio platform specifically designed for industrial applications. The radio is capable of accepting a wide range of input voltages and is able to operate across a broad temperature range. The radio has been designed to withstand ISM band interference while ensuring the integrity of each data packet. This is accomplished via the OMNEX IRIS data protocol that uses ARQ and Auto-Routing to move data accurately in hostile RF conditions. Each unit is capable of acting as a master, a slave or repeater.

X Pass Fail N/A

Page 57 of 75

Prepared by:	LabTest Certification Inc.	Client:	OMNEX Control Systems ULC
Date Issued:	January 22, 2010	Report No.:	9576-1E
Project No:	9576	Revision No.:	1

Coordination of Frequency Hopping

Test Date	Dec. 03, 2009
Sample Number	773533
Tested By	Jeremy Lee

Use the barometric pressure reported at: <u>http://www.theweathernetwork.com/weather/cabc0248</u>

Test Limits

FCC15.247(h)

The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

Test Results

Followed by the theory of operation, the OEM2400MR transceiver is a frequency hopping spread spectrum 2.4-2.4835 MHz Radio platforms specifically designed for industrial applications.

Frequency hopping spread spectrum technology was originally developed by the U.S. military to prevent interference or interception of radio transmissions on the battlefield. Frequency hopping devices concentrate their full power into a very narrow signal and randomly hop from one frequency to another within a designated frequency band. If they encounter interference on a particular frequency, the devices error checks the affected data, hops to another point on the spectrum, and resumes communications on subsequent hops.

X Pass Fail N/A

Page 58 of 75

Prepared by:	LabTest Certification Inc.	Client:	OMNEX Control Systems ULC
Date Issued:	January 22, 2010	Report No.:	9576-1E
Project No:	9576	Revision No.:	1

RF Exposure (SAR)

Test Date	Dec. 03, 2009				
Sample Number	773533				
Tested By Jeremy Lee					

Use the barometric pressure reported at: <u>http://www.theweathernetwork.com/weather/cabc0248</u>

Test Limits

FCC15.247

02- Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See § 1.1307(b)(1) of this chapter.

FCC1.1310

The criteria listed in table 1 shall be used to evaluate the environmental impact of human exposure to radiofrequency (RF) radiation as specified in § 1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of § 2.1093 of this chapter. Further information on evaluating compliance with these limits can be found in the FCC's OST/OET Bulletin Number 65, "Evaluating Compliance with FCC-Specified Guidelines for Human Exposure to Radiofrequency Radiation."

Frequency range (MHz)			Power density (mW/cm²)	Averaging time (minutes)			
(A) Limits for Occupational/Controlled Exposures							
0.3–3.0 3.0–30	614 1842/f	1.63 4.89/f	*(100) *(900/f²)	6			
30–300 300–1500 1500–100,000	61.4	0.163	1.0 f/300 5	6 6 6			
(B) Limits	for General Populati	on/Uncontrolled Exp	oosure				
0.3-1.34	614	1.63	*(100)	30			

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

0.3–1.34 1.34–30	614 824/f	1.63 2.19/f	*(100) *(180/f²)	30
30–300	27.5	0.073	0.2	30
300–1500			f/1500	30
1500–100,000			1.0	30

f = frequency in MHz

* = Plane-wave equivalent power density

NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

Included are calculations that determine the minimum distance from the transmitter antenna that will ensure an exposure limit at or below the guidelines given in Table 1 of Section 1.1310 for the general population. The formula for these calculations are taken from OET Bulletin 65, edition 97-01, August 1997; "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields".

Page 59 of 75

Prepared by:	LabTest Certification Inc.	Client:	OMNEX Control Systems ULC
Date Issued:	January 22, 2010	Report No.:	9576-1E
Project No:	9576	Revision No.:	1

Calculations

Per Table 1 of Section 1.1310, the limit for General Population/Uncontrolled Exposure at 2400 to 2483.5MHz is 1 mW/cm².

Per OET Bulletin 65, Edition 97-01, the formula for calculating power density is: $S=P^*G/4\pi d^2$ with:

Given

E=√(30*P*G)/d

and

S=E^2/3770

where

E=Field Strength in Volts/meter P=Power in Watts G=Numeric antenna gain D=Distance in meters S=Power Density in milliwatts/square centimeter

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

d=√ ((30*P*G)/(3770*S)

Changing to units of Power to mW and Distance to cm, using: P(mW)=P(W)/1000 and

D(cm)=100*d(m)

yields

d=100*√30*(P/1000)*G)/(3770*S)) d=0.282*√(P*G/S)

where

d=distance in cm P=Power in mW G=Numeric antenna gain S=Power Density in mW/cm²

Substituting the logarithmic form of power and gain using: P(mW)=10^(P(dBm)/10) and G(numeric)=10^(G(dBi)/10)

yields

d=0.282*10^((P+G)/20)/ √S Equation(1)

where

d=MPE distance in cm P=Power in dBm G=Antenna Gain in dBi S=Power Density Limit in mW/cm²

Equation (1) and the measured peak power is used to calculate the MPE distance.

Page 60 of 75

Prepared by:	LabTest Certification Inc.	Client:	OMNEX Control Systems ULC
Date Issued:	January 22, 2010	Report No.:	9576-1E
Project No:	9576	Revision No.:	1

Limits

From §1.1310 Table 1 (B), S=1.0mW/cm^2

Results

No non-compliance noted:

Channel Frequency(MHz)	Power Density Limit (mW/cm^2)	Output Power (dBm)	Gain of Antenna (dBi)	MPE distance (cm)
2401.5	1.0	+19.97	1.76	3.44
2440.5	1.0	+19.86	1.76	3.40
2479.5	1.0	+20.13	1.76	3.51

Conclusion

For mobile or fixed location transmitters, the minimum separation distance is 20cm, even if calculations indicate that the MPE distance would be less. Therefore, the minimum safe distance has to be inserted in the EUT's User Manual.

Page 61 of 75

Prepared by:	LabTest Certification Inc.	Client:	OMNEX Control Systems ULC
Date Issued:	January 22, 2010	Report No.:	9576-1E
Project No:	9576	Revision No.:	1

Radiated Emission: Unintentional Radiators

6.3 to 7.3 °C
46.2 to 49.4 %
102.65 kPa
Dec. 01, 2009
773533
112, 152, 227-1, 227-2, 228
059, 124, 233, 235
Jeremy Lee

Use the barometric pressure reported at: <u>http://www.theweathernetwork.com/weather/cabc0284</u>

Test Limits

FCC 15.109 (a):

Except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency of emission (MHz)	Field strength (microvolts/ meter)
30–88	100
88–216	150
216–960	200
Above 960	500

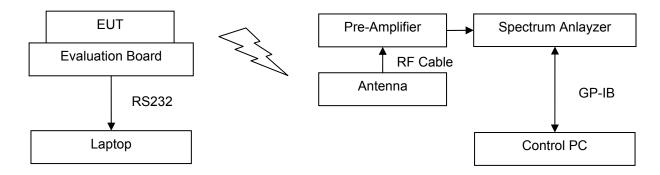
Test Setup

The test was performed in accordance with FCC 15.247:2008, FCC 15.31:2008, FCC 15.33:2008, FCC 15.35:2008, and ANSI C63.4, 2003, and FCC Public notice DA 00-705 Released March 30, 2000.

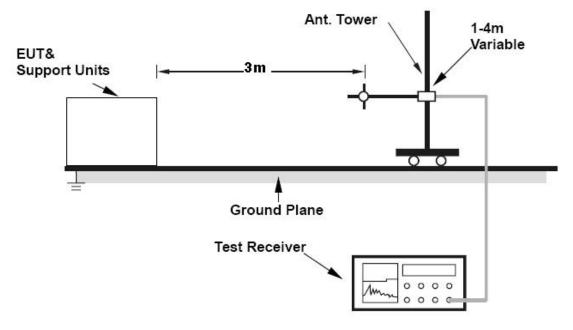
Test procedure is based on the FCC15.31(a)(3) – Other intentional and unintentional radiators are to be measured for compliance using the following procedure excluding sections 4.1.5.2, 5.7, 9 and 14: ANSI C63.4–2003: "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz" (incorporated by reference, see § 15.38). This incorporation by reference was approved by the Director of the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR Part 51.

NOTE to Paragraph (a)(3): Digital devices tested to show compliance with the provisions of §§ 15.107(e) and 15.109(g) must be tested following the ANSI C63.4 procedure described in paragraph (a)(3) of this section.[As stated in the adopting R&O, ANSI C63.4 is not used for measurements below 30 MHz.]

The EUT was placed on a 1 meter by 1.5 meters wide and 0.8-meter high nonconductive table that was placed directly onto a flush mounted turntable. The EUT was connected to its support equipment with any excess I/O cabling bundled to approximately 1 meter. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna supporter. It is measured with a receiver – the spectrum analyzer, was software controlled. The antennas were balanced dipoles. For frequencies of 80 MHz or above, the antennas were resonant in length, and for frequencies below 80 MHz it had a length equal to the 80 MHz resonant length.


Page 62 of 75

Prepared by:	LabTest Certification Inc.	Client:	OMNEX Control Systems ULC
Date Issued:	January 22, 2010	Report No.:	9576-1E
Project No:	9576	Revision No.:	1


Tests were performed to determine the Idle orientation of the EUT. The EUT was positioned Idle and the emissions from the unit were maximized by manipulating the cables, and by adjusting the polarization and height of the receive antenna and rotating the EUT on the turntable.

- > The EUT was set-up in three different receiving modes, lowend, middle and highend.
- The following measurements were made with
 - Span = wide enough to fully capture the emission being measured.
 - RBW = 120kHz.
 - VBW ≥ RBW
 - Sweep = Auto
 - Detector Function = peak
 - Trace = Single trace up to capturing the whole range of signal
 - Detecting Method = Quasi peak.

Setup Block Diagram

Test Setup at OATS

Prepared by:	LabTest Certification Inc.	Client:	OMNEX Control Systems ULC
Date Issued:	January 22, 2010	Report No.:	9576-1E
Project No:	9576	Revision No.:	1

Test Result

Radiated Emission (dBuV/m) = Measured Emission (dBuV) + Antenna Factor(1/m) + Cable Loss(dB)– Pre-Amplifier Gain(dB)

Frequency (MHz)	Measured (dBuV)	AF (dB/m)	CL (dB)	Pre- Amp (dB)	Radiated Emission (dBuV/m)	Limit (dBuV/m)	Margin (dB)	POL	Results
Lowend of receiving mode									
384.26	45.44	15.79	5.76	32.59	34.40		11.62	V	PASS
480.34	34.93	18.06	6.56	32.33	27.22	46.02	18.80	Н	PASS
895.53	33.22	22.90	8.97	31.59	33.50		12.52	V	PASS
Middle of rec	ceiving mode	e							
384.33	52.75	15.79	5.76	32.59	41.72	46.02	4.30	Н	PASS
480.34	46.36	18.06	6.56	32.33	38.65	40.02	7.37	Н	PASS
975.35	27.85	24.00	9.39	31.40	29.84	53.98	24.14	V	PASS
Highend of r	eceiving mo	de							
384.26	49.55	15.79	5.76	32.59	38.51		7.51	Н	PASS
480.34	47.50	18.06	6.56	32.33	39.79	46.02	6.23	Н	PASS
895.53	33.57	22.90	8.97	31.59	33.85		12.17	V	PASS

X Pass Fail N/A

Page 64 of 75

Prepared by:	LabTest Certification Inc.	Client:	OMNEX Control Systems ULC
Date Issued:	January 22, 2010	Report No.:	9576-1E
Project No:	9576	Revision No.:	1

- Table of Unintentional Radiated Emissions of Lowend of receiving mode: 300 to1000MHz, Quasipeak Detecting, Antenna was used SAS-510-2.

LabTest Certification Inc.

Unintentional Radiated Emission

FCC15.109, Class B, 3 meters, Lowend, Horizontal

Operator: Jeremy Lee

03:32:45 PM, Tuesday, December 01, 2009

Model #: OEM-2400-MR Contact: Patrick Ho

Company: OMNEX Control Systems ULC

Company: OMNEX Control Systems ULC

Frequency	Measured	Cal Facto	rEmission	Limit	Margin	Tower	T/T	POL
MHz	dBuV	dB/m	dBuV/m _	dBuV/m	dB	cm	Degree	
384.259 MHz	41.60	-11.04	30.56	46.02	15.46	100.1	225.5	H
480.341 MHz	34.93	-7.71	27.22	46.02	18.80	100.1	35.0	H
895.526 MHz	33.04	0.28	33.32	46.02	12.70	249.4	173.6	Н
]]					
Project # :	9576, Samp	le #:77353	3					
Temp.: 6.3 C	, Hum.: 49	.4 %, B. P	.:102.65 }	Pa				
	1) 	1	1	1		-		

LabTest Certification Inc. Unintentional Radiated Emission

FCC15.109, Class B, 3 meters, Lowend, Vertical Operator: Jeremy Lee Model #: 0

Model #: OEM-2400-MR Contact: Patrick Ho

03:32:45 PM, Tuesday, December 01, 2009

FactorEmission	Limit	Margin	Tower	T/T	POL
dBuV/m	dBuV/m	dB	Cm	Degree	
34.40	46.02	11.62	246.6	270.3	V
71 23.45	46.02	22.57	101.9	49.4	V
28 33.50	46.02	12.52	100.9	86.1	V
773533					
B. P.:102.65 k	Pa				
()	dBuV/m 0434.40 7123.45 2833.50 773533	dBuV/m_dBuV/m_ 0434.4046.02 7123.4546.02 2833.5046.02	dBuV/m dBuV/m dB 04 34.40 46.02 11.62 71 23.45 46.02 22.57 28 33.50 46.02 12.52	dBuV/m dBuV/m dB cm 04 34.40 46.02 11.62 246.6 71 23.45 46.02 22.57 101.9 28 33.50 46.02 12.52 100.9 773533	dBuV/m dBuV/m dB cm Degree 04 34.40 46.02 11.62 246.6 270.3 71 23.45 46.02 22.57 101.9 49.4 28 33.50 46.02 12.52 100.9 86.1

- Table of Unintentional Radiated Emissions of Middle of receiving mode: 300 to1000MHz, Quasipeak Detecting, Antenna was used SAS-510-2.

LabTest Certification Inc.								
Unintention	onal Radiated Emiss	sion						
FCC15.109, Class B	3, 3 meters, Middle,	, Horizont	al					
Operator: Jeremy Lee		Model #:	OEM-2400-	MR				
1 1 1		Contact:	Patrick H	0				
01:41:16 PM, Tuesday, December 01,	, 2009	Company:	OMNEX Con	trol Syste	ms ULC			
Frequency Measured Cal FactorEm	nission Limit 🛛 🖡	Margin	Tower	T/T	POL			
MHz dBuV dB/m dB	3uV/m dBuV/m o	dB	cm	Degree				
384.325 MHz 52.75 -11.03 4	46.02	4.30	100.3	123.1	Н			

384.325 MHZ	52.75	-11.03	41./2	46.02	4.30	100.3	123.1	н
480.341 MHz	46.36	-7.71	38.65	46.02	7.37	100.1	188.8	Η
975.352 MHz	27.61	1.99	29.60	53.98	24.38	355.5	134.1	Η
]
Project # : 9	576, Sampl	e #:773533						
Temp.: 7.3 C,	Hum.: 46.	2 %, B. P.	:102.65 kP	a				
		· · · · · · · · · · · · · · · · · · ·						-

Page 65 of 75

Prepared by:	LabTest Certification Inc.	Client:	OMNEX Control Systems ULC
Date Issued:	January 22, 2010	Report No.:	9576-1E
Project No:	9576	Revision No.:	1

LabTest Certification Inc. Unintentional Radiated Emission FCC15.109, Class B, 3 meters, Middle, Vertical Operator: Jeremy Lee Model #: OEM-2400-MR Contact: Patrick Ho 01:41:16 PM, Tuesday, December 01, 2009 Company: OMNEX Control Systems ULC Measured Frequency Cal FactorEmission Limit Margin Tower T/T POL MHz dBuV dB/m dBuV/m dBuV/m dB сm Degree _ 48.31 384.325 MHz -11.03 37.28 46.02 8.74 100.3 121.8 ٦7 480.341 MHz___ 100.3 43.06 -7.71 35.35 46.02 10.67 220.1 975.352 MHz 27.85 1.99 29.84 53.98 24.14 301.3 275.7 77 Project # : 9576, Sample #:773533 Temp.: 7.3 C, Hum.: 46.2 %, B. P.:102.65 kPa - Table of Unintentional Radiated Emissions of Highend of receiving mode: 300 to1000MHz, Quasipeak Detecting, Antenna was used SAS-510-2. LabTest Certification Inc. Unintentional Radiated Emission FCC15.109, Class B, 3 meters, Highend, Horizontal Operator: Jeremy Lee Model #: OEM-2400-MR

02:38:12 PM, Tuesday, December 01, 2009

Frequency	Measured	Cal Facto	rEmission	Limit	Margin	Tower	T/T	POL
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Cm	Degree	
384.259 MHz	49.55	-11.04	38.51	46.02	7.51	100.3	206.6	H
480.341 MHz	47.50	-7.71	39.79	46.02	6.23	100.1	263.1	H
895.526 MHz	33.25	0.28	33.53	46.02	12.49	100.1	202.1	H
]							
Project # : 9576, Sample #:773533								
Temp.: 7.2 C,	, Hum.: 47	.2 %, B. F	.:102.65 }	cPa				

Contact: Patrick Ho

Company: OMNEX Control Systems ULC

LabTest Certification I Unintentional Radiated Em FCC15.109, Class B, 3 meters, High	ission		
Operator: Jeremy Lee	Model #: (DEM-2400-MR	
	Contact: 1	Patrick Ho	
02:38:12 PM, Tuesday, December 01, 2009	Company: (OMNEX Control	Systems ULC
, 1, ,	1 1		-
Frequency Measured Cal FactorEmission Limit	Margin T	ower T/T	POL
	10		

requency	Measured	Cal Factor	rEmission	Limit	Margin	Tower	T/T	POL
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	cm	Degree	
384.259 MHz	38.51	-11.04	27.47	46.02	18.55	100.2	68.0	V
180.341 MHz	36.05	-7.71	28.34	46.02	17.68	141.1	338.4	V
395.526 MHz	33.57	0.28	33.85	46.02	12.17	143.1	264.8	V
_								
<pre>?roject # :</pre>	9576, Samp	le #:773533	3					
ſemp.: 7.2 (C, Hum.: 47	'.2 %, B. P	.:102.65 k	Pa				

Page 66 of 75

Prepared by:	LabTest Certification Inc.	Client:	OMNEX Control Systems ULC
Date Issued:	January 22, 2010	Report No.:	9576-1E
Project No:	9576	Revision No.:	1

Conducted Emission

Test Date	Dec. 03, 2009				
Sample Number	773533				
Tested By Jeremy Lee					
	a to be the set of the second the second				

Use the barometric pressure reported at: <u>http://www.theweathernetwork.com/weather/cabc0248</u>

Test Limits

FCC 15.207:

02- Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30MHz shall not exceed the limits in the following table, as measured using a 50 µH/50 ohms line impedance stabilization network (LISN).

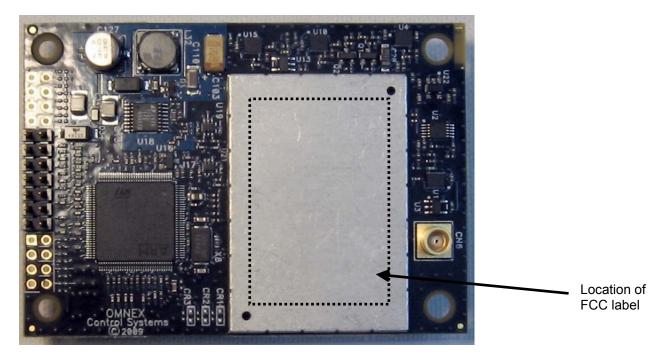
Test Results

The test was exempted because there is no public utility (AC) power line connection.

Page 67 of 75

Prepared by:	LabTest Certification Inc.	Client:	OMNEX Control Systems ULC
Date Issued:	January 22, 2010	Report No.:	9576-1E
Project No:	9576	Revision No.:	1

APPENDIX A: Test Equipment Used


ID No.	Description	Manufacturer	Model	Serial No.	Calibration Date	Calibration Due Date	Calibration Certificate No:	Calibration Laboratory
059	Power Supply	California Instruments	5000i	HK51870	N/A	N/A	N/A	N/A
112	GTEM EMC Chamber	Emco	5317	N/A	04-Oct-2005	04-Oct-2010	1000082343	Wescan
124	Pre-Amplifier	Com-Power	PA-103	161118	N/A	N/A	N/A	N/A
141	Pre-Amplifier	RF Bay	LPA-10-10	04521173	N/A	N/A	N/A	N/A
152	Spectrum Analyzer	Adventest	R3271	15050455	05-Nov-2009	05-Nov-2010	295548	Wescan
227-1	Biconical Antenna	A.H. Systems	SAS-542	716	29-Apr-2009	29-Apr-2010	10399EE	A.H. Systems
227-2	LP Antenna	A.H. Systems	SAS-510- 2	1262	29-Apr-2009	29-Apr-2010	10399EE	A.H. Systems
227-3	Horn Antenna	A.H. Systems	SAS-571	936	29-Apr-2009	29-Apr-2010	10399EE	A.H. Systems
227-4	Horn Antenna	A.H. Systems	SAS-572	233	29-Apr-2009	29-Apr-2010	10399EE	A.H. Systems
227-5	Coaxial RF Cable	A.H. Systems	SAC-26G- 3	205	N/A	N/A	N/A	N/A
228	Humidity/ Temperature Logger	Veriteq	SP-2000- 20R	07072157	02-Oct-2009	02-Oct-2010	0144511	Veriteq
233	Coaxial RF Cable	N/A	LCI-001	N/A	N/A	N/A	N/A	N/A
235	Turn table /Tower System	Sunol Sciences Co.	SC104V	031407-1	N/A	N/A	N/A	N/A
272	EMC Analyzer	Agilent	E7405A	US41110263	14-Dec-2009	14-Dec-2010	138311901104 084091214	TRS- RenTelco
273	RF Preamplifier	Agilent	8449B	3008A02264	06-Jan-2010	06-Jan-2012	138311901068 042101 6	TRS- RenTelco
N1	Coaxial RF Cable	Belden	OC- LMR100A- 4	N/A	N/A	N/A	N/A	N/A
N2	Attenuator	Mini-circuits	UNAT-15+	15542	N/A	N/A	N/A	N/A

Page 68 of 75

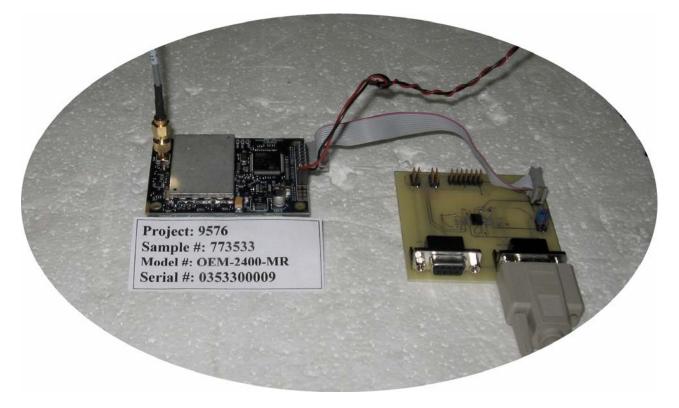
Prepared by:	LabTest Certification Inc.	Client:	OMNEX Control Systems ULC
Date Issued:	January 22, 2010	Report No.:	9576-1E
Project No:	9576	Revision No.:	1

APPENDIX B: EUT photos

- EUT: Top View

Page 69 of 75

Prepared by:	LabTest Certification Inc.	Client:	OMNEX Control Systems ULC
Date Issued:	January 22, 2010	Report No.:	9576-1E
Project No:	9576	Revision No.:	1


- EUT: Bottom View

Page 70 of 75

Prepared by:	LabTest Certification Inc.	Client:	OMNEX Control Systems ULC
Date Issued:	January 22, 2010	Report No.:	9576-1E
Project No:	9576	Revision No.:	1

- EUT with Host Board



Page 71 of 75

Prepared by:	LabTest Certification Inc.	Client:	OMNEX Control Systems ULC
Date Issued:	January 22, 2010	Report No.:	9576-1E
Project No:	9576	Revision No.:	1

APPENDIX C: Test setup photos

- Test configuration for Conducted measurement

Page 72 of 75

Prepared by:	LabTest Certification Inc.	Client:	OMNEX Control Systems ULC
Date Issued:	January 22, 2010	Report No.:	9576-1E
Project No:	9576	Revision No.:	1

- Test configuration for Radiated Emission at OATS #1

Page 73 of 75

Prepared by:	LabTest Certification Inc.	Client:	OMNEX Control Systems ULC
Date Issued:	January 22, 2010	Report No.:	9576-1E
Project No:	9576	Revision No.:	1

- Test configuration for Radiated Emission at OATS #2

Page 74 of 75

Prepared by:	LabTest Certification Inc.	Client:	OMNEX Control Systems ULC
Date Issued:	January 22, 2010	Report No.:	9576-1E
Project No:	9576	Revision No.:	1

- Test configuration for Radiated Emission at OATS #3

END OF REPORT

Page 75 of 75