

FCC Test Report

FCC ID : 188WSR30

Equipment : Multy U AC2100 Tri-Band WiFi System

Model No. : WSR30

Brand Name : ZYXEL

Applicant : Zyxel Communications Corporation

Address : No.2 Industry East RD. IX, Hsinchu Science

Park, Hsinchu 30075, Taiwan, R.O.C

Standard : 47 CFR FCC Part 15.247

Received Date : Aug. 01, 2018

Tested Date : Aug, 16 ~ Aug. 23, 2018

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Reviewed by: Approved by:

Along Chen Assistant Manager Gary Chang / Manager

Testing Laboratory

2732

Report No.: FR880101AE Page: 1 of 34
Report Version: Rev. 01

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Local Support Equipment List	
1.3	Test Setup Chart	
1.4	Test Equipment List and Calibration Data	
1.5	Test Standards	g
1.6	Measurement Uncertainty	g
2	TEST CONFIGURATION	10
2.1	Testing Condition	10
2.2	The Worst Test Modes and Channel Details	10
3	TRANSMITTER TEST RESULTS	11
3.1	Conducted Emissions	11
3.2	6dB and Occupied Bandwidth	14
3.3	RF Output Power	
3.4	Power Spectral Density	
3.5	Emissions in Restricted Frequency Bands	22
3.6	Emissions in non-restricted Frequency Bands	32
4	TEST LABORATORY INFORMATION	34

Release Record

Report No.	Version	Description	Issued Date
FR880101AE	Rev. 01	Initial issue	Oct. 24, 2018

Report No.: FR880101AE Page: 3 of 34

Summary of Test Results

FCC Rules	Test Items	Measured	Result
15.207	AC Power Line Conducted Emissions	[dBuV]: 0.159MHz 51.97 (Margin -13.55dB) - QP	Pass
15.247(d)	Radiated Emissions	[dBuV/m at 3m]: 125.04MHz	Pass
15.209	Radiated Emissions	40.46(Margin -3.04dB) - QP	Fa55
15.247(b)(3)	Maximum Output Power	Power [dBm]: 4.25	Pass
15.247(a)(2)	6dB Bandwidth	Meet the requirement of limit	Pass
15.247(e)	Power Spectral Density	Meet the requirement of limit	Pass
15.203	Antenna Requirement	Meet the requirement of limit	Pass

Report No.: FR880101AE Page: 4 of 34

1 General Description

1.1 Information

1.1.1 Specification of the Equipment under Test (EUT)

RF General Information								
Frequency Range (MHz) Bluetooth Ch. Freq. (MHz) Channel Number Data Rate								
2400-2483.5 V4.0 LE 2402-2480 0-39 [40] 1 Mbps								
Note 1: Bluetooth LE	(Low energy) uses G	Note 1: Bluetooth LE (Low energy) uses GFSK modulation.						

1.1.2 Antenna Details

Ant. No.	Model	Туре	Gain (dBi)	Connector
1	WRTT-335ACN	PIFA	3	

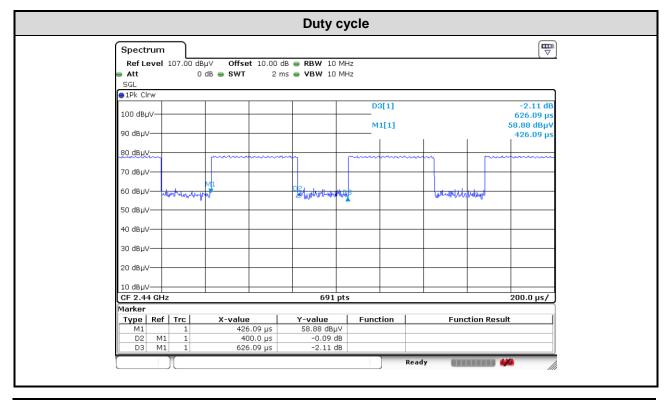
1.1.3 Power Supply Type of Equipment under Test (EUT)

Power Supply Type	12Vdc from adapter
-------------------	--------------------

1.1.4 Accessories

	Accessories						
No.	Equipment	Description					
1 AC Adapter		Brand Name: APD Model Name: WB-18R12R Power Rating: I/P: 100-240Vac, 50-60Hz, 0.6A Max O/P: 12Vdc, 1.5A Power Line: 1.8m non-shielded cable without core					
2	RJ45 cable	2m non-shielded without core					

Report No.: FR880101AE Page: 5 of 34



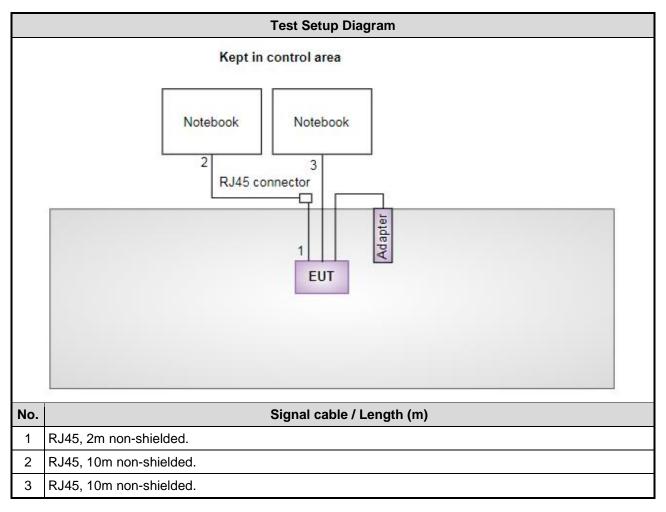
1.1.5 Channel List

Frequency band (MHz)					2400~	2483.5	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
37	2402	9	2422	18	2442	28	2462
0	2404	10	2424	19	2444	29	2464
1	2406	38	2426	20	2446	30	2466
2	2408	11	2428	21	2448	31	2468
3	2410	12	2430	22	2450	32	2470
4	2412	13	2432	23	2452	33	2472
5	2414	14	2434	24	2454	34	2474
6	2416	15	2436	25	2456	35	2476
7	2418	16	2438	26	2458	36	2478
8	2420	17	2440	27	2460	39	2480

1.1.6 Test Tool and Duty Cycle

Test tool	MP_TEST, Version: RTL819X 3.5
Duty cycle of test signal (%)	63.89%
Duty Factor (dB)	1.95

Report No.: FR880101AE Page: 6 of 34


1.1.7 Power Setting

Modulation Mode	Test Frequency (MHz)			
Wodulation Wode	2402 2440 2480			
GFSK/1Mbps	17	15	14	

1.2 Local Support Equipment List

	Support Equipment List							
No. Equipment Brand Model FCC ID Remarks								
1	Notebook	DELL	Latitude E5470	DoC				
2	Notebook	DELL	Latitude E5470	DoC				

1.3 Test Setup Chart

Report No.: FR880101AE Page: 7 of 34

1.4 Test Equipment List and Calibration Data

Conducted Emission								
Conduction room 1 / (Conduction room 1 / (CO01-WS)							
Aug, 23, 2018								
Manufacturer	Manufacturer Model No. Serial No. Calibration Date Calibration Until							
Agilent	N9038A	MY53290044	Sep. 26, 2017	Sep. 25, 2018				
R&S	ENV216	101579	Feb. 13, 2018	Feb. 12, 2019				
RF Cable-CON EMC EMCCFD300-BM-B 50821 Dec. 18, 2017 Dec. 17, 201								
easurement Software AUDIX e3 6.120210k NA NA NA								
	Aug, 23, 2018 Manufacturer Agilent R&S EMC	Conduction room 1 / (CO01-WS) Aug, 23, 2018 Manufacturer Model No. Agilent N9038A R&S ENV216 EMC EMCCFD300-BM-B M-6000	Conduction room 1 / (CO01-WS) Aug, 23, 2018 Manufacturer Model No. Serial No. Agilent N9038A MY53290044 R&S ENV216 101579 EMC EMCCFD300-BM-B M-6000 50821	Conduction room 1 / (CO01-WS) Aug, 23, 2018 Manufacturer Model No. Serial No. Calibration Date Agilent N9038A MY53290044 Sep. 26, 2017 R&S ENV216 101579 Feb. 13, 2018 EMC EMCCFD300-BM-B M-B M-6000 50821 Dec. 18, 2017				

Test Item	Radiated Emission					
Test Site	966 chamber 3 / (03C	H03-WS)				
Tested Date	Aug, 16 ~ Aug. 17, 2018					
Instrument	Manufacturer	Manufacturer Model No. Serial No. Calibration Date Calibra				
Spectrum Analyzer	R& S	FSV40	101499	Jan. 03, 2018	Jan. 02, 2019	
Receiver	R& S	ESR3	101658	Nov. 20, 2017	Nov. 19, 2018	
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-685	Apr. 19, 2018	Apr. 18, 2019	
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1206	Jan. 18, 2018	Jan. 17, 2019	
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Nov. 23, 2017	Nov. 22, 2018	
Loop Antenna	R&S	HFH2-Z2	100330	Nov. 13, 2017	Nov. 12, 2018	
Loop Antenna Cable	KOAX KABEL	101354-BW	101354-BW	Dec. 07, 2017	Dec. 06, 2018	
Preamplifier	EMC	EMC02325	980187	Sep. 04, 2017	Sep. 03, 2018	
Preamplifier	Agilent	83017A	MY53270014	Aug. 09, 2018	Aug. 08, 2019	
Preamplifier	EMC	EMC184045B	980192	Aug. 09, 2018	Aug. 08, 2019	
RF cable-3M	HUBER+SUHNER	SUCOFLEX104	MY22620/4	Nov. 27, 2017	Nov. 26, 2018	
RF cable-8M	HUBER+SUHNER	SUCOFLEX104	MY32487/4	Nov. 27, 2017	Nov. 26, 2018	
RF cable-1M	HUBER+SUHNER	SUCOFLEX104	MY22624/4	Nov. 27, 2017	Nov. 26, 2018	
LF cable-0.8M	EMC	EMC8D-NM-NM-800	EMC8D-NM-NM-800 -001	Nov. 27, 2017	Nov. 26, 2018	
LF cable-3M	EMC	EMC8D-NM-NM-300 0	131103	Nov. 27, 2017	Nov. 26, 2018	
LF cable-13M	EMC	EMC8D-NM-NM-130 00	131104	Nov. 27, 2017	Nov. 26, 2018	
Measurement Software	AUDIX	e3	6.120210g	NA	NA	
Note: Calibration Inter	val of instruments liste	d above is one year.				

Report No.: FR880101AE Page: 8 of 34

Test Item	RF Conducted				
Test Site	(TH01-WS)				
Tested Date	Aug, 22, 2018				
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until
Spectrum Analyzer	R&S	FSV40	101063	Apr. 16, 2018	Apr. 15, 2019
Power Meter	Anritsu	ML2495A	1241002	Oct. 16, 2017	Oct. 15, 2018
Power Sensor	Anritsu	MA2411B	1207366	Oct. 16, 2017	Oct. 15, 2018
Signal Generator	R&S	SMB100A	175727	Oct. 26, 2017	Oct. 25, 2018
AC POWER SOURCE	APC	AFC-500W	F312060012	Dec. 01, 2017	Nov. 30, 2018
Measurement Software	Sporton	Sporton_1	1.3.30	NA	NA
Note: Calibration Inte	rval of instruments liste	d above is one year.	•	•	

1.5 Test Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.

47 CFR FCC Part 15.247 ANSI C63.10-2013 FCC KDB 558074 D01 DTS Meas Guidance v05

1.6 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty				
Parameters	Uncertainty			
Bandwidth	±34.134 Hz			
Conducted power	±0.808 dB			
Power density	±0.463 dB			
Conducted emission	±2.670 dB			
AC conducted emission	±2.90 dB			
Radiated emission ≤ 1GHz	±3.66 dB			
Radiated emission > 1GHz	±5.37 dB			

Report No.: FR880101AE Page: 9 of 34

2 Test Configuration

2.1 Testing Condition

Test Item	Test Site	Ambient Condition	Tested By
AC Conduction	CO01-WS	23°C / 55%	Alex Huang
Radiated Emissions	03CH03-WS	25°C / 62%	Roger Lu
RF Conducted	TH01-WS	21°C / 64%	Aska Huang

FCC Designation No.: TW0009
 FCC site registration No.: 207696
 IC site registration No.: 10807C-1

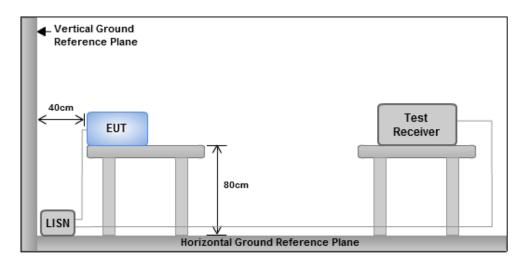
2.2 The Worst Test Modes and Channel Details

Test item	Mode	Test Frequency (MHz)	Data Rate	Test Configuration
AC Power Line Conducted Emissions Radiated Emissions ≤ 1GHz	BT LE	2402	1Mbps	
Maximum Output Power 6dB bandwidth Power spectral density Radiated Emissions > 1GHz	BT LE	2402, 2440, 2480	1Mbps	

Report No.: FR880101AE Page: 10 of 34

3 Transmitter Test Results

3.1 Conducted Emissions

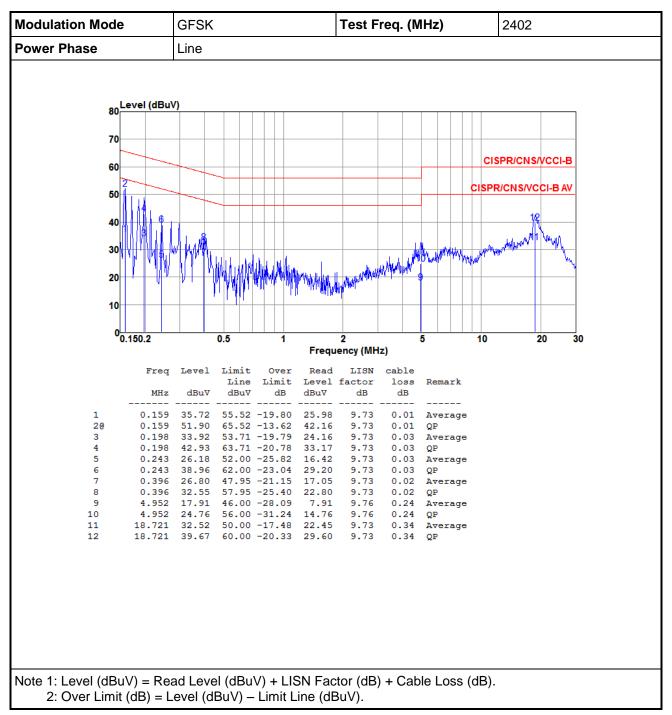

3.1.1 Limit of Conducted Emissions

Conducted Emissions Limit						
Frequency Emission (MHz) Quasi-Peak Average						
0.15-0.5	66 - 56 *	56 - 46 *				
0.5-5	56	46				
5-30 60 50						
Note 1: * Decreases with the logarithm of the frequency.						

3.1.2 Test Procedures

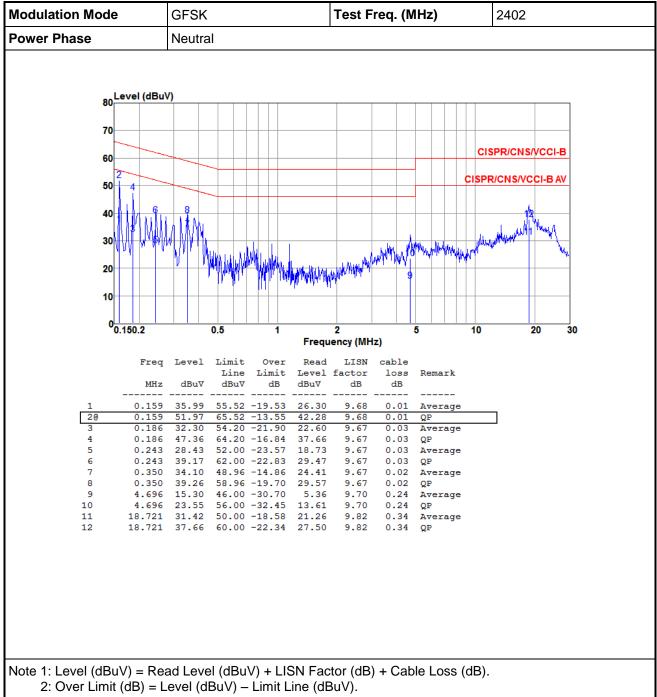
- 1. The device is placed on a test table, raised 80 cm above the reference ground plane. The vertical conducting plane is located 40 cm to the rear of the device.
- 2. The device is connected to line impedance stabilization network (LISN) and other accessories are connected to other LISN. Measured levels of AC power line conducted emission are across the 50 Ω LISN port.
- 3. AC conducted emission measurements is made over frequency range from 150 kHz to 30 MHz.
- 4. This measurement was performed with AC 120V/60Hz

3.1.3 Test Setup


Note: 1. Support units were connected to second LISN.

Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

Report No.: FR880101AE Page: 11 of 34



3.1.4 Test Result of Conducted Emissions

Report No.: FR880101AE Page: 12 of 34

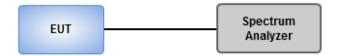
Report No.: FR880101AE Page: 13 of 34

3.2 6dB and Occupied Bandwidth

3.2.1 Limit of 6dB Bandwidth

The minimum 6dB bandwidth shall be at least 500 kHz.

3.2.2 Test Procedures


6dB Bandwidth

- 1. Set resolution bandwidth (RBW) = 100 kHz, Video bandwidth = 300 kHz.
- 2. Detector = Peak, Trace mode = max hold.
- 3. Sweep = auto couple, Allow the trace to stabilize.
- 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6dB relative to the maximum level measured in the fundamental emission.

Occupied Bandwidth

- Set resolution bandwidth (RBW) = 1% ~ 5 % of OBW, Video bandwidth = 3 x RBW
- 2. Detector = Sample, Trace mode = max hold.
- 3 Sweep = auto couple, Allow the trace to stabilize.
- 4. Use the OBW measurement function of spectrum analyzer to measure the occupied bandwidth.

3.2.3 Test Setup

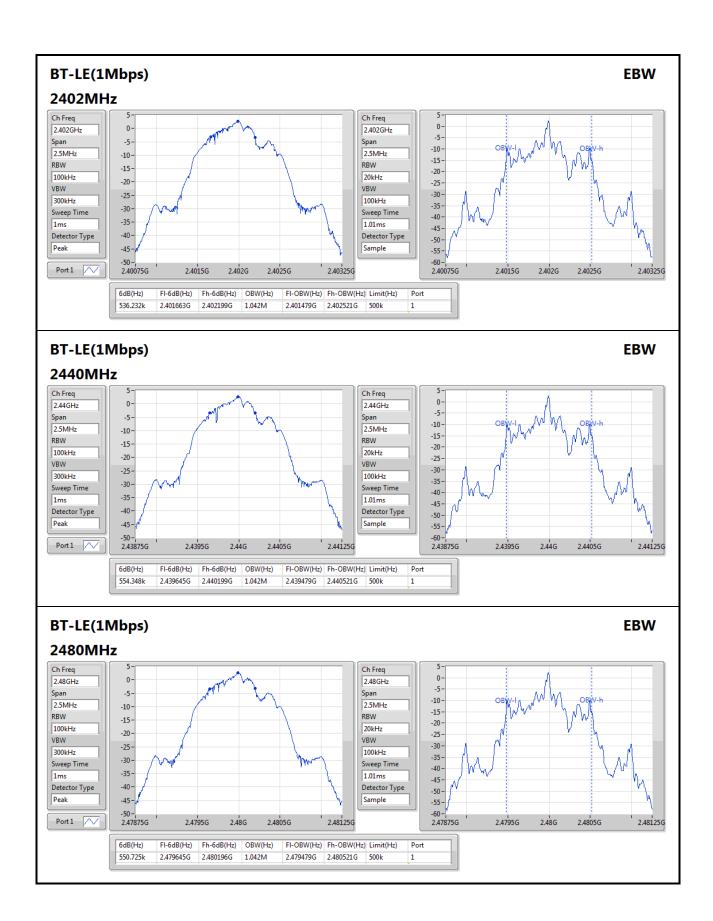
Report No.: FR880101AE Page: 14 of 34

3.2.4 Test Result of 6dB and Occupied Bandwidth

Summary

Mode	Max-N dB (Hz)	Max-OBW (Hz)	ITU-Code	Min-N dB (Hz)	Min-OBW (Hz)
2.4-2.4835GHz	-	-	-	-	-
BT-LE(1Mbps)	554.348k	1.042M	1M04F1D	536.232k	1.042M

Max-N dB = Maximum 6dB down bandwidth; Max-OBW = Maximum 99% occupied bandwidth; Min-N dB = Minimum 6dB down bandwidth; Min-OBW = Minimum 99% occupied bandwidth;


Result

Mode	Result	Limit	Port 1-N dB	Port 1-OBW
		(Hz)	(Hz)	(Hz)
BT-LE(1Mbps)	-	-	-	-
2402MHz	Pass	500k	536.232k	1.042M
2440MHz	Pass	500k	554.348k	1.042M
2480MHz	Pass	500k	550.725k	1.042M

Port X-N dB = Port X 6dB down bandwidth; Port X-OBW = Port X 99% occupied bandwidth;

Report No.: FR880101AE Page: 15 of 34

Report No.: FR880101AE Page: 16 of 34

3.3 RF Output Power

3.3.1 Limit of RF Output Power

Conducted power shall not exceed 1Watt.

Antenna gain <= 6dBi, no any corresponding reduction is in output power limit.

3.3.2 Test Procedures

A broadband RF power meter is used for output power measurement. The video bandwidth of power meter is greater than DTS bandwidth of EUT. If duty cycle of test signal is not 100 %, trigger and gating function of power meter will be enabled to capture transmission burst for measuring output power.

3.3.3 Test Setup

3.3.4 Test Result of Maximum Output Power

Peak Power

Summary

Mode	Power	Power
	(dBm)	(W)
2.4-2.4835GHz	-	-
BT-LE(1Mbps)	4.25	0.00266

Result

Mode	Result	Gain	Power	Power Limit
		(dBi)	(dBm)	(dBm)
BT-LE(1Mbps)	-	-	-	-
2402MHz	Pass	3.00	4.02	30.00
2440MHz	Pass	3.00	3.97	30.00
2480MHz	Pass	3.00	4.25	30.00

Report No.: FR880101AE Page: 17 of 34

Average power

Summary

Mode	Power	Power
	(dBm)	(W)
2.4-2.4835GHz	-	-
BT-LE(1Mbps)	3.97	0.00249

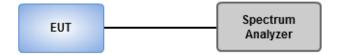
Result

Mode	Result	Gain	Power	Power Limit
		(dBi)	(dBm)	(dBm)
BT-LE(1Mbps)	-	-	-	-
2402MHz	Pass	3.00	3.77	-
2440MHz	Pass	3.00	3.74	-
2480MHz	Pass	3.00	3.97	-

Note: Average power is for reference only.

Report No.: FR880101AE Page: 18 of 34

3.4 Power Spectral Density


3.4.1 Limit of Power Spectral Density

Power spectral density shall not be greater than 8 dBm in any 3 kHz band.

3.4.2 Test Procedures

- 1. Set the RBW = 3 kHz, VBW = 10 kHz.
- 2. Detector = Peak, Sweep time = auto couple.
- 3. Trace mode = max hold, allow trace to fully stabilize.
- 4. Use the peak marker function to determine the maximum amplitude level.

3.4.3 Test Setup

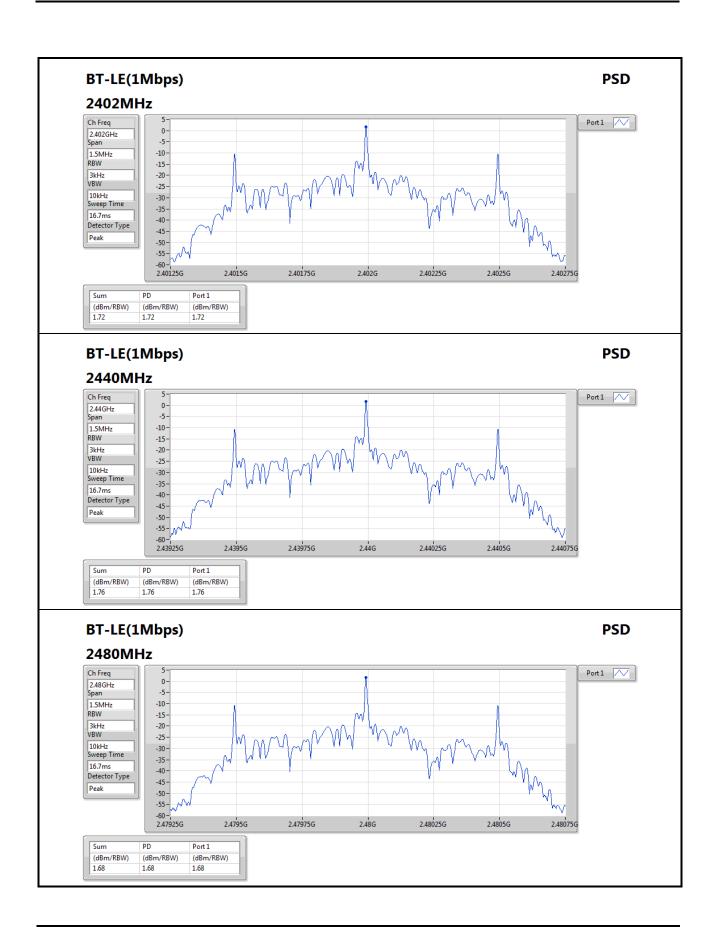
Report No.: FR880101AE Page: 19 of 34

3.4.4 Test Result of Power Spectral Density

Summary

Mode	PD
	(dBm/RBW)
2.4-2.4835GHz	-
BT-LE(1Mbps)	1.76

RBW=3kHz.


Result

Itoodit				
Mode	Result	Gain	PD	PD Limit
		(dBi)	(dBm/RBW)	(dBm/RBW)
BT-LE(1Mbps)	-	-	-	-
2402MHz	Pass	3.00	1.72	8.00
2440MHz	Pass	3.00	1.76	8.00
2480MHz	Pass	3.00	1.68	8.00

RBW=3kHz.

Report No.: FR880101AE Page: 20 of 34

Report No.: FR880101AE Page: 21 of 34

3.5 Emissions in Restricted Frequency Bands

3.5.1 Limit of Emissions in Restricted Frequency Bands

	Restricted Band	Emissions Limit	
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300
0.490~1.705	24000/F(kHz)	33.8 - 23	30
1.705~30.0	30	29	30
30~88	100	40	3
88~216	150	43.5	3
216~960	200	46	3
Above 960	500	54	3

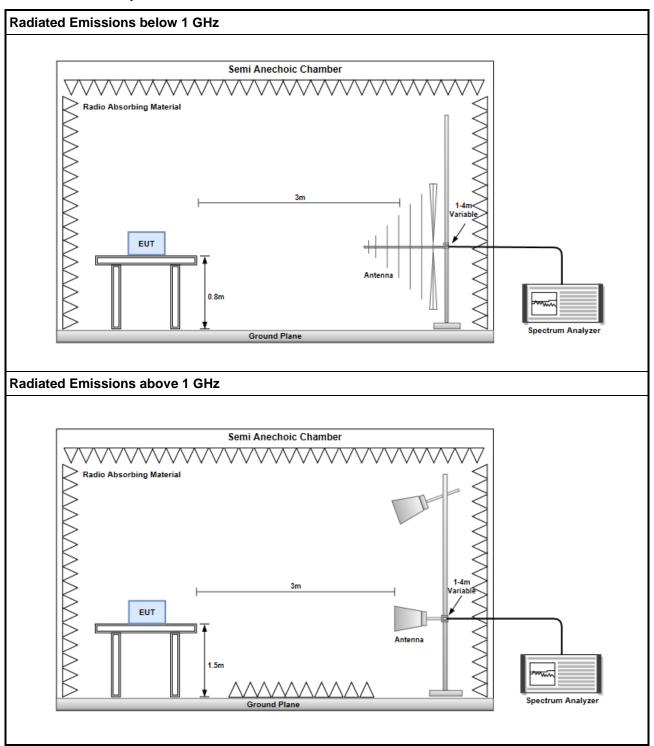
Note 1:

Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit **Note 2**:

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

3.5.2 Test Procedures

- 1. Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m
- 2. Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.


Note:

- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. RBW=1MHz, VBW=3MHz and Peak detector is for peak measured value of radiated emission above 1GHz.
- RBW=1MHz, VBW=1/T and Peak detector is for average measured value of radiated emission above 1GHz.

Report No.: FR880101AE Page: 22 of 34


3.5.3 Test Setup

Report No.: FR880101AE Page: 23 of 34

3.5.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR880101AE Page: 24 of 34

Modulation			GFSK Test Freq. (MHz) 2402								
Polarization			Verti	cal							
g	Leve	l (dBuV	/m)								
	80										
•	50										
7	70										
6	60										
										FCC CLAS	SS-B
5	50										_
4	10	2		3		:	5				5
	"I'M	، ا ا	w.		4				unthorne	allengumen	Jan de Ho
	30	W.	. ad	η.	. B	Malakopan	appropriate the same	April 19 Mary	7,120		
2	20			Marine	Am Ammir In						
4	10										
	030	100.	200). 30	0. 4		00. 60	0. 700	. 800.	900.	1000
		_	_				ency (MHz)	. .	ъ .	ANT	_
		Fre	eq. E	missior level	1 Limit	Margir	n SA reading	Factor	Remark	ANT High	Turn Table
		M	Ηz	dBuV/m	dBuV/	m dB	dBuV	dB		cm	deg
1						-5.75	42.42		•	100	3
2			4.09	39.17			49.41		Peak		
3			9.22	36.72	46.00		45.91	-9.19	Peak		
4			4.35			-16.59	35.17	-5.76	Peak		
5			9.48	39.95			42.95	-3.00			
6		95	5.38	36.13	46.00	-9.87	30.65	5.48	Peak		

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain


Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

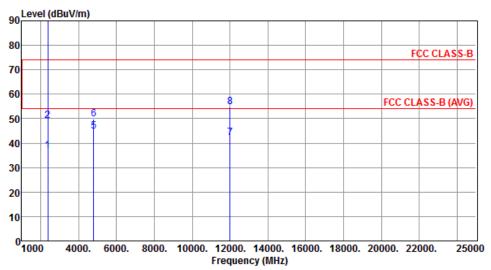
Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR880101AE Page: 25 of 34

3.5.5 Transmitter Radiated Unwanted Emissions (Above 1GHz) for GFSK

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain


Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: "*" is Peak / Average value of fundamental frequency

Report No.: FR880101AE Page: 26 of 34

Modulation	GFSK	Test Freq. (MHz)	2402
Polarization	Vertical		

		Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1		2390.00	36.90	54.00	-17.10	38.11	-1.21	Average	100	67
2		2390.00	49.18	74.00	-24.82	50.39	-1.21	Peak	100	67
3	*	2402.00	95.16			96.32	-1.16	Average	100	67
4	*	2402.00	95.69			96.85	-1.16	Peak	100	67
5		4804.00	44.68	54.00	-9.32	39.07	5.61	Average	215	210
6		4804.00	49.73	74.00	-24.27	44.12	5.61	Peak	215	210
7		12010.00	42.32	54.00	-11.68	26.57	15.75	Average	100	60
8		12010.00	54.72	74.00	-19.28	38.97	15.75	Peak	100	60

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: "*" is Peak / Average value of fundamental frequency

Report No.: FR880101AE Page: 27 of 34

Modulation			GFS	GFSK Test Freq. (MHz) 2440										
Polarization			Horizontal											
	90	Level	(dBuV/m)											
	00													
	80									FCC CLAS	S-B			
	70													
	60													
			6 0	10					FCC C	CLASS-B (A	(VG)			
	50		8 7	1										
	40		5											
	20													
	30													
	20													
	10													
	10													
	0	1000	4000.	6000. 80	000. 100			16000. 180	00. 20000. 2	22000.	25000			
							ency (MHz)							
			Freq. I	Emission	Limit	Margir		Factor	Remark	ANT	Turn			
			MII	level	JD: 377	- 40	reading			High	Table			
			MHz	dBuV/m	aBuv/	т ав	dBuV	dB		CM	deg			
	1		2390.00	37.07	54.00	-16.93	38.28	-1.21	Average	242	162			
	2		2390.00			-24.69	50.52	-1.21	Peak	242	162			
	3 *		2440.00				97.75	-1.02	Average	242	162			
	4 *	c	2440.00				98.29	-1.02	Peak	242	162			
	5		2483.50				38.50	-0.86	Average	242	162			
	6		2483.50					-0.86	Peak	242	162			
	7		4880.00					5.82	Average	100	179			
	8		4880.00					5.82	Peak	100	179			
	9		7320.00	37.00	54.00	-17.00	26.01	10.99	Average	100	60			

10.99

Peak

100

60

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

7320.00 49.33 74.00 -24.67 38.34

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: "*" is Peak / Average value of fundamental frequency

Report No.: FR880101AE Page: 28 of 34

Report Version: Rev. 01

10

4

5

6

7

8

9

10

2440.00

2483.50

2483.50 49.70

4880.00 44.41

4880.00 49.63

95.60

37.75

7320.00 36.43 54.00 -17.57

7320.00 49.37 74.00 -24.63

54.00 -16.25

74.00 -24.30

54.00 -9.59

74.00 -24.37

Modulation	GFS	GFSK Test Freq. (MHz) 2440									
Polarization			Vert	ical							
			•								
	9	Level	(dBuV/m)			,					
	8	0								FCC CLAS	S R
	7	o								TCCCLAS	3-6
	•	۱ ۱									
	6	0							FCC	CLASS-B (A	WG)
		0	26 8	10					100	CLM33-D (F	(VO)
	3	U	1 7								
	4	0	•								
	,										
	J	0									
	2	0									-
	1	0									
		01000	4000.	6000. 80	000. 100	000 42000	14000 1	16000 400	00. 20000.	22000	25000
		1000	4000.	0000. 60	100. 100		ncy (MHz)	10000. 160	00. 20000.	22000.	23000
			Freq.	Emission	Limit	Margin	SA	Factor	Remark	ANT	Turn
				level			reading			High	Table
			MHz	dBuV/m	dBuV/ı	m dB	dBuV	dB		cm	deg
	1		2390.00	36.87	54.00	-17.13	38.08	-1.21	Average	100	66
	2					-24.86	50.35	-1.21	Peak	100	66
		*	2440.00				96.04	-1.02	Average		66
									_		

96.62

38.61

50.56

38.59

43.81

25.44

38.38

-1.02

-0.86

-0.86

5.82

5.82

10.99

10.99

Average

Average

Average

100

100

100

214

214

100

100

66

66

66

213

213

50

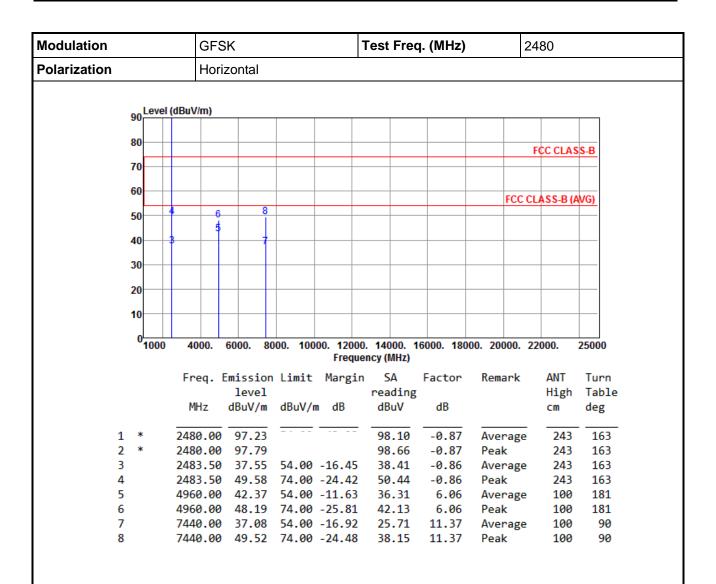
50

Peak

Peak

Peak

Peak


Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB) *Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: "*" is Peak / Average value of fundamental frequency

Report No.: FR880101AE Page: 29 of 34

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: "*" is Peak / Average value of fundamental frequency

Report No.: FR880101AE Page: 30 of 34

Modulation	GFS	GFSK Test Freq. (MHz) 2480									
Polarization			Verti	ical		1			1		
	90	Level	(dBuV/m)								
	80									FCC CLAS	SS-B
	70										
	60								FCC (CLASS-B (A	AVG)
	50		6	8							
			5								
	40		3	7							
	30										
	20										
	10										
	0	1000	4000.	6000. 8	000. 100			16000. 180	00. 20000. 2	22000.	25000
							ency (MHz)				
			Freq. [mission	l Limit	Margi		Factor	Remark	ANT	Turn
				level	ID 144		reading	-		High	Table
			MHz	dBuV/m	dBuV/	m dB	dBuV	dB		cm	deg
	1 *	k	2480.00	95 52			96.39	-0.87	Average	100	69
	2 *		2480.00				96.99		Peak	100	69
	3		2483.50		54.00	-16.34		-0.86	Average	100	69
	4		2483.50						Peak	100	69
	5		4960.00	43.61	54.00	-10.39	37.55	6.06	Average	212	215
	6		4960.00			-25.16		6.06	Peak	212	215
7	7		7440.00	36.85	54.00	-17.15	25.48	11.37	Average	100	40

11.37

Peak

100

40

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

7440.00 49.47 74.00 -24.53 38.10

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: "*" is Peak / Average value of fundamental frequency

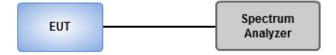
Report No.: FR880101AE Page: 31 of 34

3.6 Emissions in non-restricted Frequency Bands

3.6.1 Emissions in non-restricted frequency bands limit

Peak power in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz.

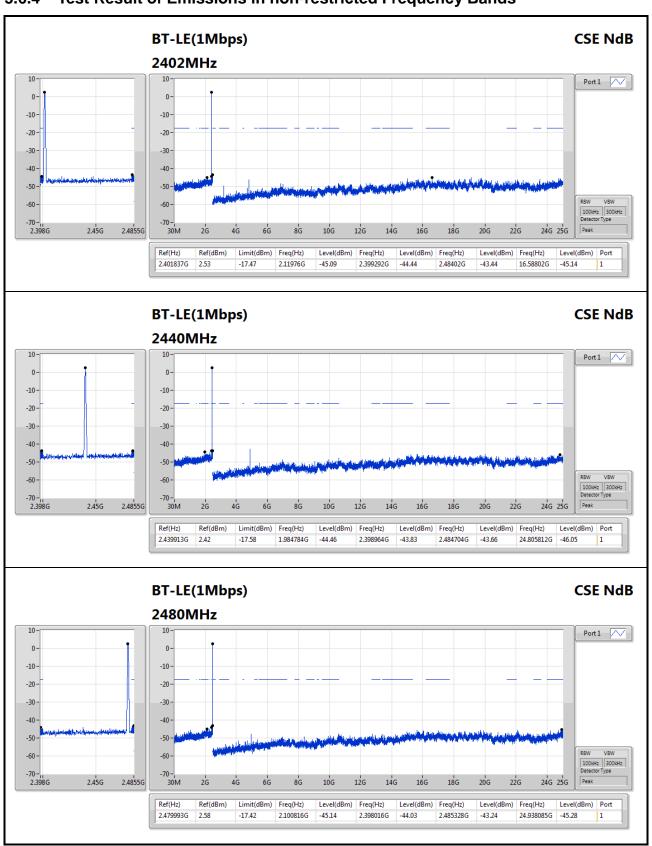
3.6.2 Test Procedures


Reference level measurement

- 1. Set RBW=100kHz, VBW = 300kHz, Detector = Peak, Sweep time = Auto
- 2. Trace = max hold, Allow Trace to fully stabilize
- 3. Use the peak marker function to determine the maximum PSD level

Emission level measurement

- 1. Set RBW=100kHz, VBW = 300kHz, Detector = Peak, Sweep time = Auto
- 2. Trace = max hold, Allow Trace to fully stabilize
- 3. Scan Frequency range is up to 25GHz
- 4. Use the peak marker function to determine the maximum amplitude level


3.6.3 Test Setup

Report No.: FR880101AE Page: 32 of 34

3.6.4 Test Result of Emissions in non-restricted Frequency Bands

Report No.: FR880101AE

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp (EMC and Wireless Communication Laboratory), it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan District. Location map can be found on our website http://www.icertifi.com.tw.

Linkou

Tel: 886-2-2601-1640 No. 30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City,

Taiwan, R.O.C.

Kwei Shan

Tel: 886-3-271-8666 No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C.

Kwei Shan Site II

Tel: 886-3-271-8640

No. 14-1, Lane 19, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C.

If you have any suggestion, please feel free to contact us as below information.

Tel: 886-3-271-8666 Fax: 886-3-318-0155

Email: ICC_Service@icertifi.com.tw

<u>==END</u>==

Report No.: FR880101AE Page: 34 of 34