

FCC Co-Location Test Report

FCC ID	:	I88WRE6505V2
Equipment	:	Wireless AC750 Range Extender
Model No.	:	WRE6505 v2
Brand Name	:	ZYXEL
Applicant	:	Zyxel Communications Corporation
Address	:	No.2 Industry East RD. IX, Hsinchu Science Park, Hsinchu 30075, Taiwan, R.O.C
Standard	:	47 CFR FCC Part 15.247 47 CFR FCC Part 15.407
Received Date	:	May 04, 2016
Tested Date	:	Aug. 02 ~ Aug. 12, 2016

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Reviewed by:

ong Chen

Along Cher / Assistant Manager

Approved by:

Gary Chang / Manager

Table of Contents

1	GENERAL DESCRIPTION	.5
1.1	Information	
1.2	The Equipment List	
1.3	Test Standards	.7
1.4	Measurement Uncertainty	7
2	TEST CONFIGURATION	8
2.1	Testing Condition	.8
2.2	The Worst Test Modes and Channel Details	8
3	TRANSMITTER TEST RESULTS	9
3.1	Unwanted Emissions into Restricted Frequency Bands	9
4	TEST LABORATORY INFORMATION1	8

Release Record

Report No.	Version	Description	Issued Date
FR650401CO	Rev. 01	Initial issue	Oct. 21, 2016

Summary of Test Results

FCC Rules	Test Items	Measured	Result
15.247(d)			
15.407(b)	Radiated Emissions	[dBuV/m at 3m]: 63.95MHz 33.11 (Margin -6.89dB) – PK	Pass
15.209			

1 General Description

1.1 Information

The following versions are provided to this EUT.

sample version	Internal DDR Size	Working voltage of DDR	
VE3	32M	DDR1 voltage: 2.5V	
VE4	64M	DDR2 voltabe:1.8V	

1.1.1 Specification of the Equipment under Test (EUT)

Operating Frequency 802.11b/g/n: 2412 MHz ~ 2462 MHz 802.11a/n/ac: 5180 MHz ~ 5240 MHz; 5745 ~ 5825 MHz	
Modulation Type	802.11b: DSSS (DBPSK / DQPSK / CCK) 802.11a/g/n/ac: OFDM (BPSK / QPSK / 16QAM / 64QAM/256QAM)

1.1.2 Antenna Details

Model			Operating Frequencies (MHz) / Antenna Gain (dBi)			
Model	Туре	Connector	2400~2483.5	5150~5250	5725~5850	
ALA110-052026	PIFA	N/A	4.70836			
ALA160-222034	PIFA	N/A	2.82	3.43	3.43	

1.1.3 Power Supply Type of Equipment under Test (EUT)

Power Supply Type	100-240V, 0.15A, 50/60Hz
-------------------	--------------------------

1.1.4 Accessories

	Accessories				
No.	No. Equipment Description				
1	RJ45 cable	0.94m non-shielded w/o core			

The Equipment List 1.2

Test Item	Radiated Emission						
Test Site	966 chamber 3 / (03CH03-WS)						
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until		
Spectrum Analyzer	Agilent	N9010A	MY53400091	Sep. 14, 2015	Sep. 13, 2016		
Receiver	Agilent	N9038A	MY53290044	Oct. 14, 2015	Oct. 13, 2016		
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-563	Dec. 29, 2015	Dec. 28, 2016		
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1206	Feb. 24, 2016	Feb. 23, 2017		
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Nov. 04, 2015	Nov. 03, 2016		
Preamplifier	EMC	EMC02325	980187	Sep. 21, 2015	Sep. 20, 2016		
Preamplifier	Agilent	83017A	MY53270014	Sep. 07, 2015	Sep. 06, 2016		
Preamplifier	EMC	EMC184045B	980192	Sep. 01, 2015	Aug. 31, 2016		
RF cable-3M	HUBER+SUHNER	SUCOFLEX104	MY22620/4	Feb. 05, 2016	Feb. 04, 2017		
RF cable-8M	HUBER+SUHNER	SUCOFLEX104	MY22600/4	Feb. 05, 2016	Feb. 04, 2017		
RF cable-1M	HUBER+SUHNER	SUCOFLEX104	MY22624/4	Feb. 05, 2016	Feb. 04, 2017		
LF cable-0.8M	EMC	EMC8D-NM-NM-800	EMC8D-NM-NM-800-001	Feb. 05, 2016	Feb. 04, 2017		
LF cable-3M	EMC	EMC8D-NM-NM-3000	131103	Feb. 05, 2016	Feb. 04, 2017		
LF cable-13M	EMC	EMC8D-NM-NM-13000	131104	Feb. 05, 2016	Feb. 04, 2017		
Loop Antenna	R&S	HFH2-Z2	100330	Nov. 16, 2015	Nov. 15, 2016		
Measurement Software	AUDIX	e3	6.120210g	NA	NA		
Note: Calibration Inte	erval of instruments lis	ted above is one year.					

Test Item	RF Conducted					
Test Site	(TH01-WS)					
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until	
Spectrum Analyzer	R&S	FSV40	101063	Feb. 17, 2016	Feb. 16, 2017	
TEMP&HUMIDITY CHAMBER	GIANT FORCE	GCT-225-40-SP-SD	MAF1212-002	Nov. 27, 2015	Nov. 26, 2016	
Power Meter	Anritsu	ML2495A	1241002	Sep. 21, 2015	Sep. 20, 2016	
Power Sensor	Anritsu	MA2411B	1207366	Sep. 21, 2015	Sep. 20, 2016	
Signal Generator	R&S	SMB100A	175727	Oct. 05, 2015	Oct. 04, 2016	
AC POWER SOURCE	APC	AFC-500W	F312060012	Oct. 26, 2015	Oct. 25, 2016	
Measurement Software	Sporton	Sporton_1	1.3.30	NA	NA	
Note: Calibration Interval of instruments listed above is one year.						

1.3 Test Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.

47 CFR FCC Part 15.247 47 CFR FCC Part 15.407 ANSI C63.10-2013 FCC KDB 558074 D01 DTS Meas Guidance v03r05 FCC KDB 662911 D01 Multiple Transmitter Output v02r01 FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r03 FCC KDB 644545 D03 Guidance for IEEE 802 11ac New Rules v01 FCC KDB 412172 D01 Determining ERP and EIRP v01r01

1.4 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty				
Parameters	Uncertainty			
Radiated emission \leq 1GHz	±3.66 dB			
Radiated emission > 1GHz	±5.37 dB			

2 Test Configuration

2.1 Testing Condition

Test Item	Test Site	Ambient Condition	Tested By
Radiated Emissions	03CH03-WS	23-25°C / 60-64%	Warren Lee Brad Wu
Conducted Emissions	TH01-WS	22°C / 65%	Brad Wu

➢ FCC site registration No.: 207696

➢ IC site registration No.: 10807C-1

2.2 The Worst Test Modes and Channel Details

Test item	Modulation Mode	Test Channel	Data Rate	Test Configuration
Radiated Emissions	0.40.116 . 50.115			1, 2
Conducted Emissions	2.4G 11b + 5G 11a	CH6 + CH40	1Mbps + 6Mbps	1
 Z-plane. The X-pla 2) The EUT has two very VE4). 3) The test configuration 1 : Sa Configuration 2 : Sa 		case and were shov e and Working volta	vn in this report.	

3 Transmitter Test Results

3.1 Unwanted Emissions into Restricted Frequency Bands

3.1.1 Limit of Unwanted Emissions into Restricted Frequency Bands

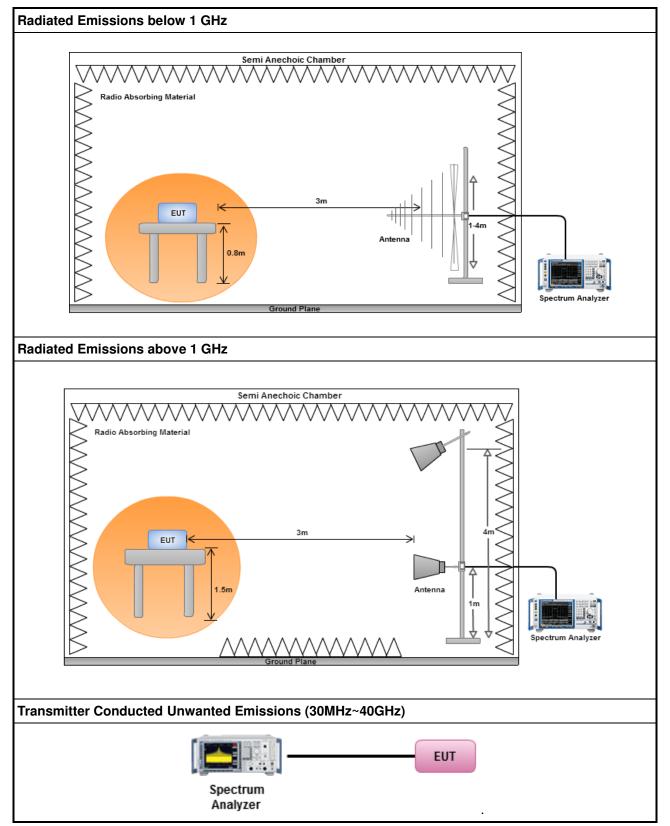
	Restricted Band	Emissions Limit	
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300
0.490~1.705	24000/F(kHz)	33.8 - 23	30
1.705~30.0	30	29	30
30~88	100	40	3
88~216	150	43.5	3
216~960	200	46	3
Above 960	500	54	3

Note 1:

Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit **Note 2:**

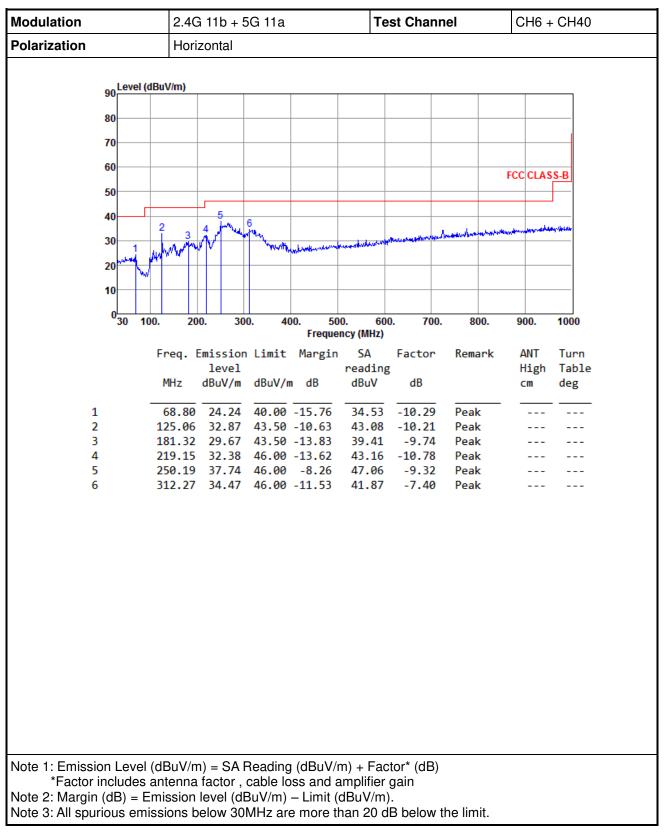
Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

3.1.2 Test Procedures

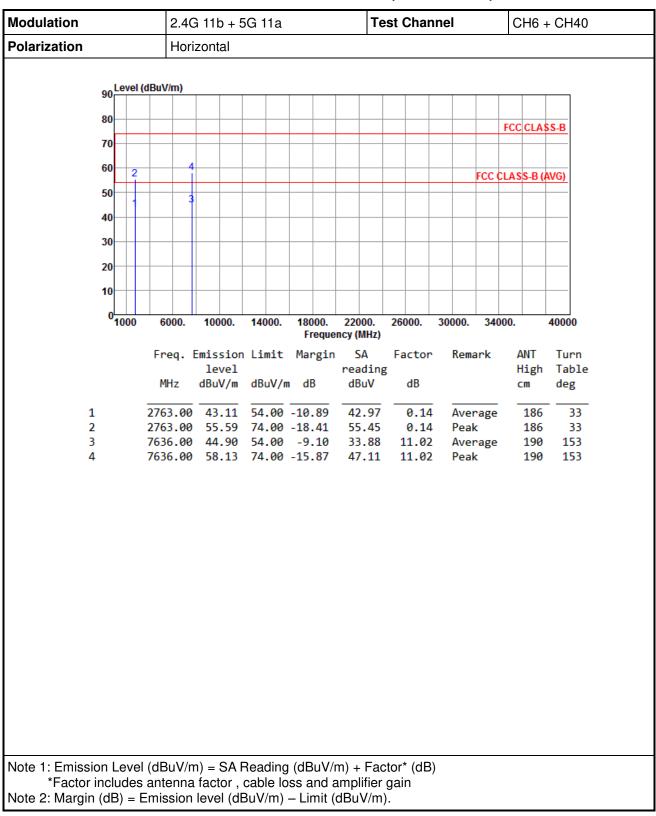

- Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m.
- Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

Note:

- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. RBW=1MHz, VBW=3MHz and Peak detector is for peak measured value of radiated emission above 1GHz.
- 3. RBW=1MHz, VBW=1/T and Peak detector is for average measured value of radiated emission above 1GHz.

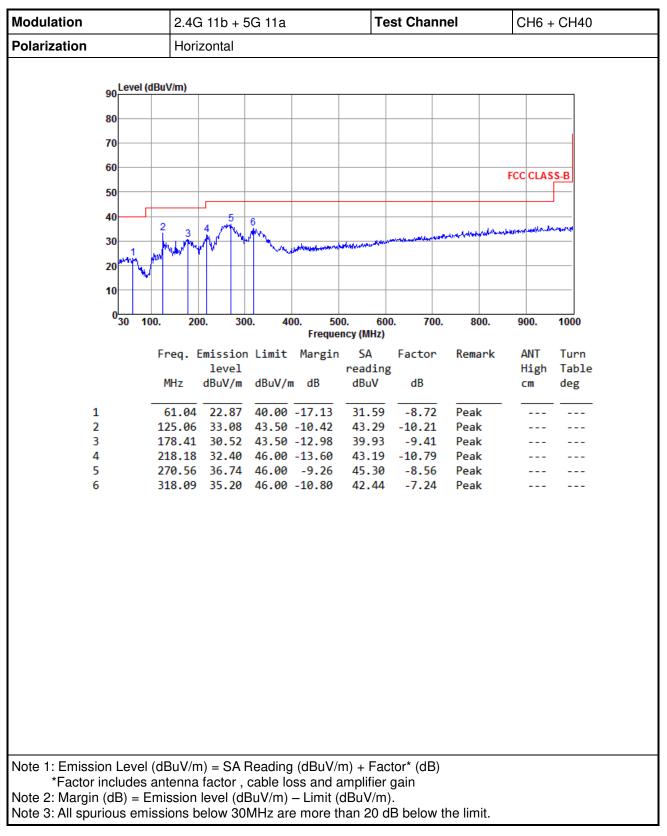

3.1.3 Test Setup

Configuration 1 : Sample 1: VE3


3.1.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)

Modulation	2.40	G 11b + 5	5G 11a		est Chai	CH6	H6 + CH40		
Polarization	Vert	ical							
90 Level (dBuV/m)								
80									
70									
60								FCC CLA	SS D
50									
40		4	-						موسوديلون موسوديلون
30	3 سيلون الم	Here many and	5	A A LANARD	and all months with	man	a she was a strange of	al for the street of the street of the	
20	Maple marker	V.	~~	- Telder Heren					
20									
10									
0 30 10)0. 20	0. 30	0 4	DO. 50	0. 60	0. 70	0. 800.	900.	1000
50 10	<i>J</i> U. 20	0. 30	0. 4		o. oo ncy (MHz)		<i>i</i> u. 800.	900.	1000
	Freq.	Emission	Limit	Margin	SA	Factor	- Remar	k ANT	Turn
		level		_	reading	g		High	Table
	MHz	dBuV/m	dBuV/r	n dB	dBuV	dB		cm	deg
1	38 73	31.62	10 00	8 38	40.08	-8.46	5 Peak		
2		33.11			40.00				
3		29.75			37.93				
4		32.89			41.65				
5				-14.87					
6	500.45	32.29	46.00	-13.71	35.18	-2.89	9 Peak		
Noto 1: Emission Loval			Pooding		m) + Ecc	otor* (dE	2)		
Note 1: Emission Level *Factor includes)		
Note 2: Margin (dB) = E									
				(~~~~				

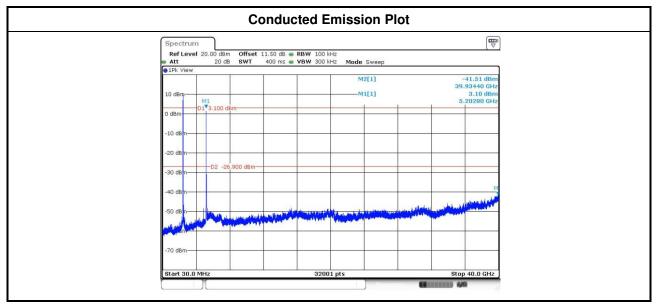
3.1.5 Transmitter Radiated Unwanted Emissions (Above 1GHz)



Modulation	2.40	à 11b + 5	G 11a		Те	st Chan	CH6 + CH40					
Polarization	Vert	Vertical										
Level	(dBuV/m)											
90												
80								FCC CLAS	SS-B			
70												
60	4											
2							FCC	CLASS-B (A	AVG)			
50	3											
40												
30												
20												
10												
0 <mark>01000</mark>	6000.	10000.	14000.	18000. Freque	22000. ncy (MHz)	26000.	30000. 34	000.	40000			
	Freq. B	Emission	Limit	Margin		Factor	Remark	ANT	Turn			
	MHz	level dBuV/m	dBuV/m	dB	reading dBuV	dB		High cm	Table deg			
			ubuv/1					CIII	ueg			
1	2763.00				41.19							
2 3	2763.00 7636.00				53.45 32.08	0.14 11.02		211 174				
4	7636.00					11.02		174				

Configuration 2 : Sample 2: VE4

3.1.6 Transmitter Radiated Unwanted Emissions (Below 1GHz)



Modulation	2.40	G 11b + 5	5G 11a		Те	est Char	nnel	C	CH6 -	+ CH40
Polarization	Ver	ical								
1										
90 ^{Lev}	el (dBuV/m)									
80										
70										
60								FC	CLAS	SS-B
50										<u> </u>
40										
1 2	2	3 4	5				6 h.m.m.M.		-	-secondary
30	My physical		and the second sec	Martiner	here the work is shown					
20	14 4									
10									_	
0 30	100. 20	00. 30	0. 4	00. 50 Freque	0. 60 ncy (MHz)		0. 8	00. 9	00.	1000
	Enog	Emission	limi+	Margin		Factor	Rom	ark	ANT	Turn
	rreq.	level		nargin	reading		Nein		High	Table
	MHz	dBuV/m	dBuV/ı	n dB	dBuV	dB			cm	deg
			10.00				-			
1 2		31.83 32.40			40.18 42.13					
3		30.44			41.20					
4		32.39			40.78					
5				-13.96	37.65					
6	773.02	35.32	46.00	-10.68	33.12	2.20	Pea	k		
Note 1: Emission Lev)			
*Factor include										
Note 2: Margin (dB) =							, a la - 1'	- : +		
Note 3: All spurious e	missions l	below 30	MHz ar	e more tl	nan 20 c	and pelow	the lin	nit.		

3.1.7 Conducted Emissions (30MHz~40GHz)

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp (EMC and Wireless Communication Laboratory), it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan District. Location map can be found on our website <u>http://www.icertifi.com.tw</u>.

Linkou Tel: 886-2-2601-1640 No. 30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City, Taiwan, R.O.C. Kwei Shan Tel: 886-3-271-8666 No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C. Kwei Shan Site II Tel: 886-3-271-8640 No. 14-1, Lane 19, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C..

If you have any suggestion, please feel free to contact us as below information

Tel: 886-3-271-8666 Fax: 886-3-318-0155 Email: ICC_Service@icertifi.com.tw

—END—