

FCC Co-Location Test Report

FCC ID : 188WAC6502D-E

Equipment : 802.11 ac Unified Pro Access Point

Model No. : WAC6502D-S, WAC6502D-E

Brand Name : ZyXEL

Applicant : ZyXEL Communications Corporation

Address : No. 2, Gongye E. 9th Road, Hsinchu Science

Park, Hsinchu, Taiwan

Standard : 47 CFR FCC Part 15.247

47 CFR FCC Part 15.407

Received Date : Dec. 03, 2015

Tested Date : Dec. 25 ~ Dec. 31, 2015

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Approved & Reviewed by:

Gary Chang'/ Manager <

Iac-MRA

Page: 1 of 24

Report No.: FR5D0302CO

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	The Equipment List	
1.3	Test Standards	7
1.4	Measurement Uncertainty	8
2	TEST CONFIGURATION	9
2.1	Testing Condition	g
2.2	The Worst Test Modes and Channel Details	g
3	TRANSMITTER TEST RESULTS	10
3.1	Unwanted Emissions into Restricted Frequency Bands	10
4	TEST LABORATORY INFORMATION	24

Release Record

Report No.	Version	Description	Issued Date
FR5D0302CO	Rev. 01	Initial issue	Mar. 31, 2016

Report No.: FR5D0302CO Page: 3 of 24

Summary of Test Results

FCC Rules	Test Items	Measured	Result
15.247(d)			
15.407(b)	Radiated Emissions	[dBuV/m at 3m]: 2793.00MHz 52.68 (Margin -1.32dB) – AV	Pass
15.209		(a.g5_d2)	

Report No.: FR5D0302CO Page: 4 of 24

1 General Description

1.1 Information

This report is prepared for FCC class II Permissive change.

This report is issued as a supplementary report to the original ICC project no. 491801. The modification is concerned as complying with New U-NII rule requirement.

1.1.1 Product Details

The following models are provided to this EUT.

Brand Name	Model Name	Product Name	Description
ZyXEL	WAC6502D-S	202 11 as Unified Pro Assess Point	With internal antenna
	WAC6502D-E	802.11 ac Unified Pro Access Point	With external antenna

1.1.2 Specification

Operating Frequency	802.11b/g/n: 2412 MHz ~ 2462 MHz 802.11a/n/ac: 5180 MHz ~ 5240 MHz 5260 MHz ~ 5320 MHz 5500 MHz ~ 5700 MHz 5745 MHz ~ 5825 MHz
Modulaton Type	802.11b: DSSS (DBPSK / DQPSK / CCK) 802.11a/g/n/ac: OFDM (BPSK / QPSK / 16QAM / 64QAM / 256QAM)

1.1.3 Antenna Details

Ant.	Туре	Antenna	Operating Frequencies (MHz) / Antenna Gain (dBi)				Remark	
No.	Турс	Connector	2400~2483.5	5150~5250	5250~5350	5470~5725	5725~5850	Hemark
1	Dipole	RSMA	5	7	7	7	7	For WAC6502D-E
2	Dipole	IPEX	4	6	6	6	6	For WAC6502D-S

Note:

1. The antenna connector of PCB board of EUT is IPEX.

2. WAC6502D-E has a RSMA connector jack to connect antenna and PCB board of EUT.

Report No.: FR5D0302CO Page: 5 of 24

1.1.4 Power Supply Type of Equipment under Test (EUT)

	1. AC Adapter (support unit only.) Brand: DVE Model: DSA-24CA-12 120120 Rating: I/P: 100-240Vac, 50/60Hz, 0.8A O/P: 12Vdc, 2A
Power Supply Type	2. POE Injector (support unit for radiated emission test only.) Brand: ZyXEL Model: PoE12-HP Rating: I/P: 100-240V~, 50/60Hz, 1.5A max. O/P: 48Vdc, 42.1W
	3. POE Injector (support unit for conducted emission only.) Brand: PowerDsine 3001GC Model: E018205D G Rating: I/P: 100-240V~, 50/60Hz, 0.5A O/P: 48Vdc, 0.35A

1.1.5 Accessories

N/A

Report No.: FR5D0302CO Page: 6 of 24

1.2 The Equipment List

Test Item	Radiated Emission									
Test Site	966 chamber1 / (03CH01-WS)									
Instrument	Manufacturer Model No. Serial No. Calibration Date Calibration Uni									
Spectrum Analyzer	R&S	FSV40	101498	Dec. 13, 2015	Dec. 12, 2016					
Receiver	R&S	ESR3	101658	Nov. 04, 2015	Nov. 03, 2016					
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-522	Aug. 20, 2015	Aug. 19, 2016					
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1096	Dec. 16, 2015	Dec. 15, 2016					
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Nov. 04, 2015	Nov. 03, 2016					
Loop Antenna	R&S	HFH2-Z2	11900	Nov. 16, 2015	Nov. 15, 2016					
Loop Antenna Cable	KOAX KABEL	101354-BW	101354-BW	Dec. 10, 2015	Dec. 09, 2016					
Preamplifier	Burgeon	BPA-530	SN:100219	Sep. 10, 2015	Sep. 09, 2016					
Preamplifier	Agilent	83017A	MY39501308	Oct. 02, 2015	Oct. 01, 2016					
Preamplifier	EMC	EMC184045B	980192	Sep. 01, 2015	Aug. 31, 2016					
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16014/4	Dec. 10, 2015	Dec. 09, 2016					
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16019/4	Dec. 10, 2015	Dec. 09, 2016					
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16139/4	Dec. 10, 2015	Dec. 09, 2016					
LF cable 3M	Woken	CFD400NL-LW	CFD400NL-001	Dec. 10, 2015	Dec. 09, 2016					
LF cable 10M	Woken	CFD400NL-LW	CFD400NL-002	Dec. 10, 2015	Dec. 09, 2016					
Measurement Software	AUDIX	e3	6.120210g	NA	NA					
Note: Calibration Inter	val of instruments listed	d above is one year.	_	_	Note: Calibration Interval of instruments listed above is one year.					

1.3 Test Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.

47 CFR FCC Part 15.247

47 CFR FCC Part 15.407

ANSI C63.10-2013

FCC KDB 558074 D01 DTS Meas Guidance v03r04

FCC KDB 662911 D01 Multiple Transmitter Output v02r01

FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r01

FCC KDB 644545 D03 Guidance for IEEE 802 11ac New Rules v01

FCC KDB 412172 D01 Determining ERP and EIRP v01r01

Report No.: FR5D0302CO Page: 7 of 24

1.4 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty				
Parameters	Uncertainty			
Radiated emission ≤ 1GHz	±3.66 dB			
Radiated emission > 1GHz	±5.63 dB			

Report No.: FR5D0302CO Page: 8 of 24

2 Test Configuration

2.1 Testing Condition

Test Item	Test Site	Ambient Condition	Tested By
Radiated Emissions	03CH01-WS	22-23°C / 63%	Vincent Yeh

FCC site registration No.: 657002IC site registration No.: 10807A-1

2.2 The Worst Test Modes and Channel Details

Test item	Modulation Mode	Test Channel	Data rate (Mbps) / MCS	Test Configuration
Radiated Emissions ≤1GHz	2.4G 11b + 5G 11ac VHT40	CH6 + CH46	1Mbps + MCS 0	1, 2, 3, 4
Radiated Emissions >1GHz	2.4G 11b + 5G 11ac VHT40	CH6 + CH46	1Mbps + MCS 0	2,4

NOTE:

1. The following antennas are used on this EUT:

1) Configuration 1: model WAC6502D-S, AC Adapter mode.

2) Configuration 2: model WAC6502D-S, POE mode.

3) Configuration 3: model WAC6502D-E, AC Adapter mode

4) Configuration 4: model WAC6502D-E, POE mode

2. The selected channel is the maximum power channel of each Wi-Fi mode

Report No.: FR5D0302CO Page: 9 of 24

3 Transmitter Test Results

3.1 Unwanted Emissions into Restricted Frequency Bands

3.1.1 Limit of Unwanted Emissions into Restricted Frequency Bands

Restricted Band Emissions Limit						
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)			
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300			
0.490~1.705	24000/F(kHz)	33.8 - 23	30			
1.705~30.0	30	29	30			
30~88	100	40	3			
88~216	150	43.5	3			
216~960	200	46	3			
Above 960	500	54	3			

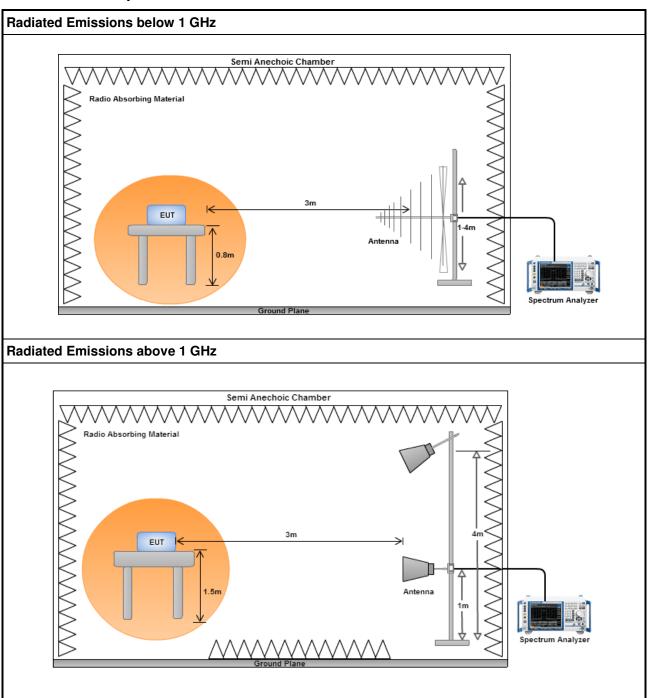
Note 1:

Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit **Note 2:**

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

3.1.2 Test Procedures

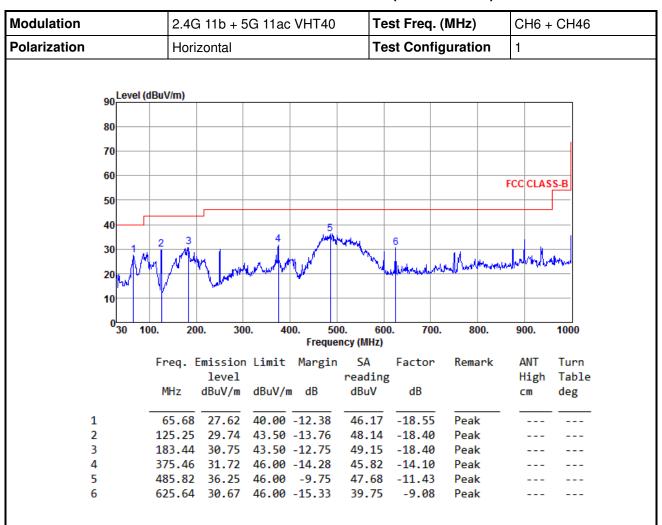
- 1. Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m
- 2. Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.


Note:

- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. RBW=1MHz, VBW=3MHz and Peak detector is for peak measured value of radiated emission above 1GHz.
- 3. RBW=1MHz, VBW=1/T and Peak detector is for average measured value of radiated emission above 1GHz.

Report No.: FR5D0302CO Page: 10 of 24

3.1.3 Test Setup


Report No.: FR5D0302CO

Page: 11 of 24

Configuration 1: model WAC6502D-S, AC Adapter mode

3.1.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

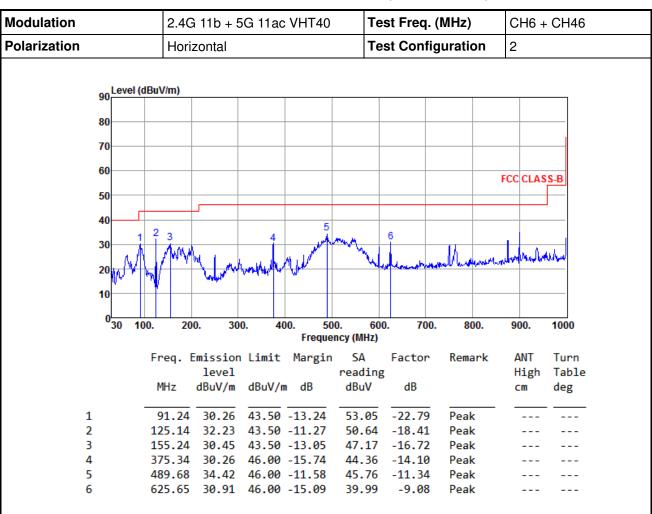
Report No.: FR5D0302CO Page: 12 of 24

Modulation		2.4G	i 11b + 5	G 11ac	VHT40	1	est Freq	CH6	CH6 + CH46	
Polarization		Vertical			1	est Con	figuration	1	1	
90 <mark>L</mark>	evel (dBu	V/m)								
80-										
80										
70										
60										
00									FCC CLAS	SS-B
50										_
40						-6				
	1 2 3		4	5	h.u	Married				
30	آلأا∀	No.	A T		a. 1 lasker in the	**		14		le a
20	WIN	y W	A Judy etc	whole	rur -		المرابياتيا	بمديد بوردانا الماميريون	And the state of t	, Aller Control
	- 1 14	(Proper	A Marie	"						
10										
03	0 100.	200	0. 30	n 44	00. 50	0 6	500. 70	00. 800.	900.	1000
J	0 100.	200	0. 50	J. 40		ncy (MHz		0. 000.	900.	1000
	Fi	req. E	mission	Limit	Margin	SA	Factor	Remark	ANT	Turn
			level			readi	ng		High	Table
	ı	MHz	dBuV/m	dBuV/r	n dB	dBuV	dB		cm	deg
1	_	64.88	32.85	40.00	-7.15	51.2	5 -18.46	OP OP	110	139
2		91.36	29.72		-13.78	52.4		•		139
3		25.24	29.95		-13.55	48.3				
4		16.65	30.84		-15.16	49.9				
5		75.52	32.54		-13.46	46.6				
6	52	29.62	36.85	46.00	-9.15	47.5	8 -10.7	B Peak		

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).


Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

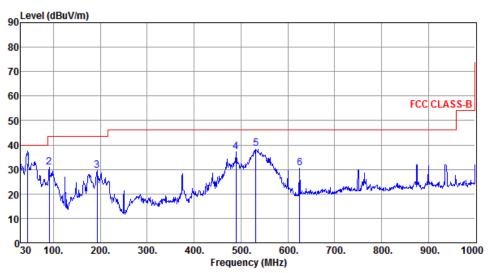
Report No.: FR5D0302CO Page: 13 of 24

Configuration 2: model WAC6502D-S, POE mode

3.1.5 Transmitter Radiated Unwanted Emissions (Below 1GHz)

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain


Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

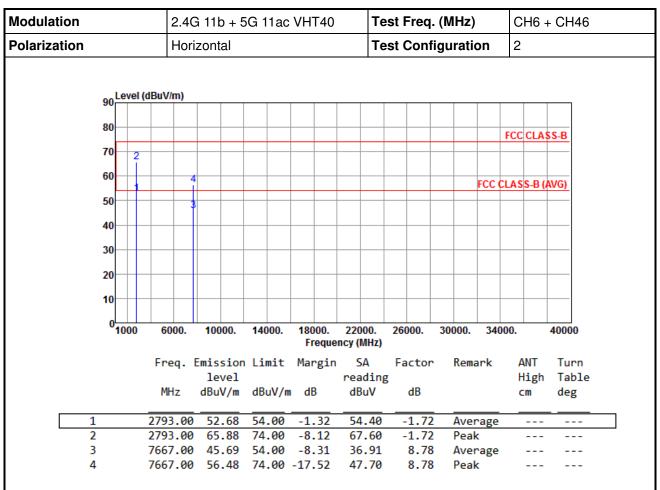
Report No.: FR5D0302CO Page: 14 of 24

Modulation	2.4G 11b + 5G 11ac VHT40	Test Freq. (MHz)	CH6 + CH46
Polarization	Vertical	Test Configuration	2

	Freq. MHz	Emission level dBuV/m		Ū	SA reading dBuV		Remark	ANT High cm	Turn Table deg
1	44.85	32.45	40.00	-7.55	48.78	-16.33	QP .	100	261
2	91.28	30.92	43.50	-12.58	53.70	-22.78	Peak		
3	192.85	29.65	43.50	-13.85	48.81	-19.16	Peak		
4	489.65	37.12	46.00	-8.88	48.46	-11.34	Peak		
5	531.53	38.43	46.00	-7.57	49.14	-10.71	Peak		
6	625.65	30.52	46.00	-15.48	39.60	-9.08	Peak		

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

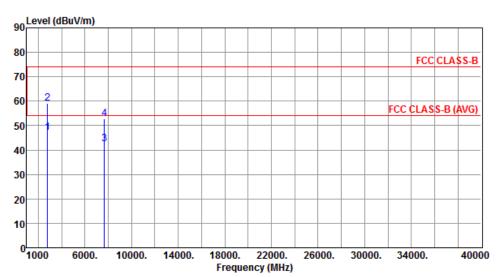

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR5D0302CO Page: 15 of 24

3.1.6 Transmitter Radiated Unwanted Emissions (Above 1GHz)

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)


*Factor includes antenna factor, cable loss and amplifier gain

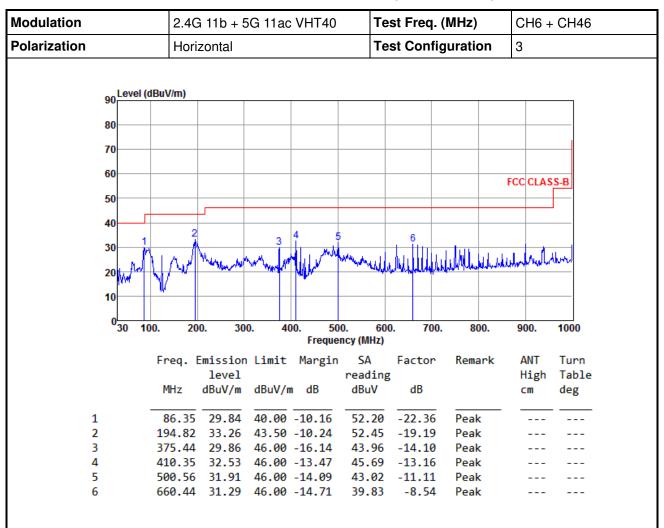
Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR5D0302CO Page: 16 of 24

Modulation	2.4G 11b + 5G 11ac VHT40	Test Freq. (MHz)	CH6 + CH46
Polarization	Vertical	Test Configuration	2

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	2793.00	47.25	54.00	-6.75	48.97	-1.72	Average		
2	2793.00	58.96	74.00	-15.04	60.68	-1.72	Peak		
3	7667.00	42.65	54.00	-11.35	33.87	8.78	Average		
4	7667.00	52.84	74.00	-21.16	44.06	8.78	Peak		

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)


*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR5D0302CO Page: 17 of 24

Configuration 3: model WAC6502D-E, AC Adapter mode

3.1.7 Transmitter Radiated Unwanted Emissions (Below 1GHz)

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR5D0302CO Page: 18 of 24

Modulation	2.4G 11	1b + 5G 11ac VHT40	Test Freq. ((MHz)	CH6 +	CH46
Polarization	Vertical	I	Test Config	guration	3	
80 70 60 50 40 30 10	2 3 100. 200.	300. 400. 500.	600. 700.	800.	FCC CLAS	S-B
30		Frequency	(MHz)			
	16		SA Factor eading BuV dB	Remark	ANT High cm	Turn Table deg
1 2	44.91 31	1.95 40.00 -8.05	8.27 -16.32 62.74 -22.79	QP Peak	100	196
3	196.88 29	9.63 43.50 -13.87	8.86 -19.23 4.91 -14.10	Peak Peak		
5	470.45 33		5.17 -11.74	Peak		

600.46 27.82 46.00 -18.18 37.33 -9.51 Peak

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).


Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR5D0302CO Page: 19 of 24

Configuration 4: model WAC6502D-E, POE mode

3.1.8 Transmitter Radiated Unwanted Emissions (Below 1GHz)

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor , cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR5D0302CO Page: 20 of 24

1

2

3

5

Modulation	2.4G 11b + 5G 11ac VHT40	Test Freq. (MHz)	CH6 + CH46
Polarization	Vertical	Test Configuration	4
90 Level (dBu' 80 70 60 50 40 20 10 030 100.		6 1	FCC CLASS-B
30 100.	200. 500. 400. 500. Frequency (900. 1000
	level rea	5A Factor Remark ading BuV dB	ANT Turn High Table cm deg

44.58 34.79 40.00 -5.21 51.14 -16.35

250.34 33.66 46.00 -12.34 51.37 -17.71

400.68 31.26 46.00 -14.74 44.66 -13.40

500.58 28.62 46.00 -17.38 39.73 -11.11

625.62 30.85 46.00 -15.15 39.93

54.02 -22.78

-9.08

91.28 31.24 43.50 -12.26

106

Peak

Peak

Peak

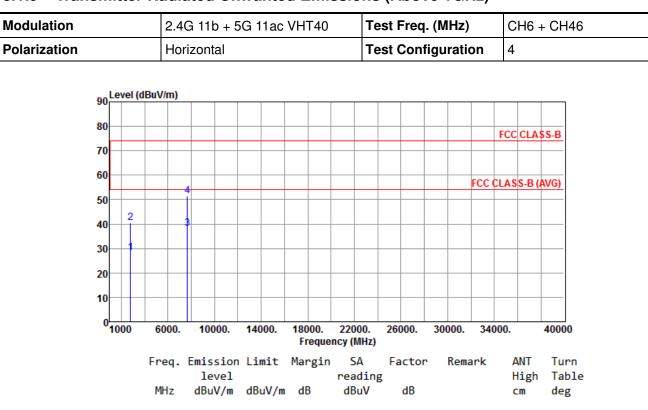
Peak

Peak

18

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain


Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

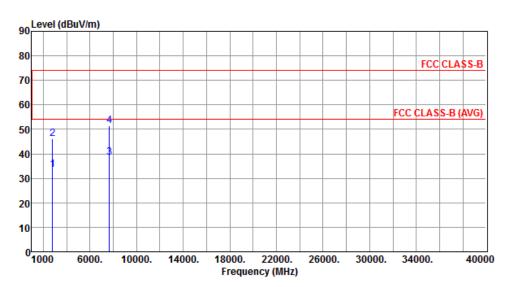
Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR5D0302CO Page: 21 of 24

3.1.9 Transmitter Radiated Unwanted Emissions (Above 1GHz)

	11112	ubuv/ III	abav/iii ab	abav	ub		CIII	ucg
1	2793.00	28.36	54.00 -25.64	30.08	-1.72	Average		
2	2793.00	40.58	74.00 -33.42	42.30	-1.72	Peak		
3	7667.00	38.24	54.00 -15.76	29.46	8.78	Average		
4	7667.00	51.56	74.00 -22.44	42.78	8.78	Peak		

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)


*Factor includes antenna factor , cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m).

Report No.: FR5D0302CO Page: 22 of 24

Modulation	2.4G 11b + 5G 11ac VHT40	Test Freq. (MHz)	CH6 + CH46
Polarization	Vertical	Test Configuration	4

	Freq.	Emission	Limit	Margin	SA	Factor	Remark	ANT	Turn
		level			reading			High	Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	2793.00	33.45	54.00	-20.55	35.17	-1.72	Average		
2	2793.00	46.28	74.00	-27.72	48.00	-1.72	Peak		
3	7667.00	38.56	54.00	-15.44	29.78	8.78	Average		
4	7667.00	51.45	74.00	-22.55	42.67	8.78	Peak		

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR5D0302CO Page: 23 of 24

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp, it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan Hsiang. Location map can be found on our website http://www.icertifi.com.tw.

Linkou

Tel: 886-2-2601-1640

No. 30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City, Taiwan,

R.O.C.

Kwei Shan

Tel: 886-3-271-8666 No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuar

St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C. Kwei Shan Site II

Tel: 886-3-271-8640

No. 14-1, Lane 19, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

If you have any suggestion, please feel free to contact us as below information

Tel: 886-3-271-8666 Fax: 886-3-318-0155

Email: ICC_Service@icertifi.com.tw

<u>==END</u>==

Report No.: FR5D0302CO Page: 24 of 24